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1 Introduction

1.1 Ordinary Differential Equations

For F = F(x,y1,...,y4), the theory of ordinary differential equations seeks to find a differentiable function
u = u(z) such that

F(x7u(x)7...7u(")(x)> =0, (1.1.1)

for all z € Q C R, which is referred to as the domain.

1.2 Partial Differential Equations

Suppose that u = u(zg, ..., xq) for some d > 1. Then for fixed k > 1 and Q C R¥*! an equivalent formulation
of ([1.1.1)) involving partial differential terms 8%7 8322(';26] ey axif).]f%% is
ou ou ok
Flzo,....,24,—,...,—,...,———— | = F (D*u(x),..., Du(z), ,x) =0, 1.21
(”50 o ore " By’ B, m) (D u() u(w), (), 2) (121)

for all z € (), where D denotes the gradient operator and F': REHD" 5. RIFLXR % — R is known. Equation
(1.2.7) is a kth order partial differential equation and we investigate solving (1.2.1]) for u = u(xzg, ..., 74) : Q — R.

Remark 1.2.1. Partial differential equations are ubiquitous in physical settings. When xy can be identified
with time, equation (1.2.1|) is referred to as a parabolic equation. If u is only a function of spatial variables,
then ((1.2.1)) is referred to as an elliptic equation.

To aid notation, for a = (g, ..., aq) € N? let

dlely

o1 ... oo

D™y

where |a] = a1 + -+ - + aq. Moreover, al = aq!...aq! and 2® = 27" ... 2J?. Note the distinction between Dk
when k& € N and when o € N?. The former is the k™" order gradient operator, whilst the latter is a component
of the |a|th order gradient operator.

Definition 1.2.2.
1. A linear formulation of ([1.2.1)) has the form

> aa(@)Du(z) = f(2),

lee| <k
where f is given.

2. A semi-linear formulation of (1.2.1)) has the form

Z aa(z)Du(z) + ag (D*u(z),...,u(z),z) = 0.
=k

3. A quasi-linear formulation of (1.2.1]) has the form

Z ao (D" 'u(2),. .., u(z),z) D*u(z) + ao (D 'u(z),...,u(z),z) =

4. A non-linear formulation of ([1.2.1) depends non-linearly upon the highest-order derivative.



Remark 1.2.3. A linear partial differential equation, as given by statement 1 of Definition [I.2.2, has the
property that if u and v are solutions to the equation, then so is au + bv for constant a and b.

Definition 1.2.4. A system of partial differential equations is a collection of several partial differential equations
in several unknown functions. More specifically,

F (Dku(x), . u(z),z) =0,

is a k" order system of partial differential equations, where u = (u1, ..., Uy) : @ — R™ is the unknown and
FR™EHD 5 R™ x Q — R™ is known.

Example 1.2.5.

1. Poisson’s equation is the linear partial differential equation
_Af =9,

2
where g : Q@ — R is given and f is unknown. Here A = Z?:l % is the Laplacian operator. Poisson’s
equation belongs to the class of elliptic equations.

2. The heat equation, which introduces a time component to Poisson’s equation, is the linear partial differ-
ential equation

atf_Af:gv

where g : I x Q — R is given and f is unknown. The heat equation belongs to the class of parabolic
equations.

3. The wave equation is the linear partial differential equation

where g : I x Q — R is given and f is unknown. The wave equation belongs to the class of hyperbolic
equations.
4. Schrédinger’s equation is
O f +Af =V,

where V : I x Q — R is a potential and f = f(t,x1,x2,x3) is unknown. If V depends on f then we have
a non-linear equation, otherwise it is linear. A typical example of the non-linear case is when V = |f|?.
Schrédinger’s equation is referred to as a dispersive equation.

5. The incompressible Naiver-Stokes equation is

O+ (u-V)u+ Vp =vAu
V.u=0.

The constant v describes viscosity, p is the pressure, and w = u(t,xz1,x2,x3). The gradient is V =
(Day > Ony» Opy) | such that A=V - V.

6. The Boltzmann equation is
Onf +u-Vaof =Q(f, f)
- / |, (@) @) = F©)f (02) B (v = v.,0) dodo,



where f = f(t,x1,x2, 23,01, v2,03) > 0 is integrable with unit mass, B is the collision kernel, with

;U U " |v — vi|o

2 2
and
, VU jv—vo
U, = — .
2 2
7. The reaction-diffusion equation
Uy — Au = f(u)a

where u = (u1,u2) and f is unknown.
Solving these equations explicitly requires the specification of boundary conditions.

Definition 1.2.6. The partial differential equation (|1.2.1)) with space and time boundary conditions is known
as a Cauchy problem.

Definition 1.2.7. A Cauchy problem is well-posed if a solution exists, is unique and is stable. A solution is
stable if it depends continuously on the boundary conditions.

Remark 1.2.8.

1. The notion of a solution in Definition[1.2.7] needs to be made precise before a problem can be judged as
well-posed. problems may be well-posed under one specification but not another.

2. The stability of a problem depends on the topology of the problem. To be stable, perturbations to the
initial conditions of a problem need not drastically change the solution it admits.

Definition 1.2.9. A solution to (1.2.1)) is referred to as a classical or strong solution if it exists in C*(Q) for
some k € N.

Not all specifications of (1.2.1)) admit strong solutions. Indeed, statement 1 of Example [1.2.10] is an explicit
specification with no strong solution. However, we can consider so-called weak solutions that loosen the properties
a solution to ([1.2.1)) must satisfy. Statement 2 of Example[1.2.10|shows a way that such a weakening may occur.

Example 1.2.10.

» Burger's equation is the Cauchy problem

{atf+fazf:o TR, t>0 a9

f(0,2) =g(z) xzeR.

One can show that if g is at any point decreasing then the solution of (1.2.2]) admits a discontinuity [3].

v Let f € C([a,b]), and consider the Cauchy problem

—u"(z) +u(z) = f(z)
{u(a) =u(b) =0, (123)

where u : [a,b] — R. A classical solution to (1.2.3)) would be a solution u € C?([a,b]). However, if we



take ¢ € C'([a,b]) with ¢(a) = ¢(b) = 0, then
b b b
|~ @eta)do+ [ u@o@)do= [ o@)sa) da,
which we integrate by parts to obtain
b b b
/ o' (z)¢ () dx—l—/ u(x)p(r) dx :/ f(z)p(x) dx. (1.2.4)

Equation (1.2.4) is the weak formulation of (1.2.3) and makes sense as long as u,u’ € L'(a,b) and
f € L'(a,b). A solution to (1.2.4)) is referred to as a weak solution.



2 Ordinary to Partial Differential Equations

In the study of ordinary differential equations, there are a few main theorems that establish the existence and
uniqueness of solutions to the differential equations. Stronger regularity conditions of the differential equation
lead to stronger results regarding its solutions. The Cauchy-Kovalevskaya theorem, the Picard-Lindeldf theorem,

and the Cauchy-Peano theorem progressively reduce the regularity conditions of the differential equation. The
Cauchy-Kovalevskaya theorem is the only result which extends to the theory of partial differential equations.

2.1 Analyticity

Definition 2.1.1. Let U C R be open. A function f € C>(U) is real-analytic at xy € U if

™) (2
T(x)=> fT(!O)(x — o))" (2.1.1)

converges to f(x) for all z in a neighbourhood Uy, of zo. If f is real-analytic for every xo € U, then f is said
to be real-analytic on U.

Proposition 2.1.2. Let U C R be open. A function f € C*°(U) is real-analytic if and only if for all K C U
compact there exists constant C,r > 0 such that for all x € K we have

’fm)(x)’ < C%, (2.1.2)

Proof. (=). Suppose T'(z), from (2.11)), is absolutely-uniformly convergent in B(zq,r) C U. Thus we can let
f(z) =T(z) for z € B(xg,r) C C. By Cauchy’s integral formula it follows that

) () — fz)
[ (x) = o /szol—g (z — z)ntL dz

for zx € B (J;O, i) Thus,

max
J;EB(:co,g)

n!
S @) < O -

Thus (2.1.2) holds for compact set K of the form B (xo, i) C U. For general compact sets K one considers a
finite covering of such closed balls to deduce (2.1.2).
(«<). For @ € B (w9, %), expand the Taylor series of f at z( to order n to deduce that

f(z) = Zn:f(k) (z )M 4 ) (@)M
& Ok Yn (n+1)!
for some y,, € B (9, ). Using (2.1.2) on K = B(xo,r) it follows that
n+1
(n+1) (x — x0) C oo 0
Thus the Taylor series is convergent to f(z) for x € B (:170, g) O

Example 2.1.3. Polynomial, exponential and trigonometric functions on R are analytic.



Definition 2.1.4. Let f : U — R, where U C R? is open. Then f is real-analytic at xo € U if there exists an
r > 0 and constants f, € R such that

f@)=>" falz —x0)®

a€eNd

for |x — xo| < 7. If f is real-analytic for every xo € U, then f is said to be real-analytic on U.

Remark 2.1.5. In particular, if f is real-analytic near xo then it is smooth and the constants f, € R are
computed as
_ D*f(=)

al

Jfa

2.2 General Theorems of Ordinary Differential Equations

Consider the system of ordinary differential equations given by

ul]_ = (t7u1a"'7um)
u'(t)=1" = F (t,u(t)) (2.2.1)
ul, = Fo (tug, .oy Um)
fort € I C R, where u = (uy,...,un,). The function F = (Fy,...,F,,) is referred to as the vector field and a

solution w is referred to as a flow.

Theorem 2.2.1 (Cauchy-Kovalevskaya). Let A C I xR™ be open. If F is real-analytic on A then there exists
a unique local analytic C' solution. That is, for all (to,u) € A there exists a neighbourhood U, x U,, C A
such that (2.2.1) has a unique, local, real-analytic solution u on this neighbourhood with u(ty) = xo.

To prove Theorem [2.2.1] we consider its form in the case of a scalar ordinary differential equation. Moreover, we
assume the existence and uniqueness of a solution by using Theorem [2.2.4] in this setting.

Theorem 2.2.2. For b > 0 suppose that F' : (ug — b, up +b) — R is real-analytic and that u(t) is the unique

solution to
u'(t) = F(u(t))

with u(0) = ug € R on some neighbourhood (—a, a), with u((—a, a)) C (uo—b,up+b). Then u is real-analytic
on (—a,a).

Proof. Proceed by the method of majorants. Assuming analyticity it follows that

u O (1) = FO (u(t))
uW(t) = FO (u(t))u© (t) = FO (u(t)) FO (u(t))
uB) () = FO(u(t)) (FO (u(t))” + (FO(u(t)))* FO (u(t))

Through induction one can show that there exists a polynomial p,, such that
(1) = pu (FO@), ..., FU D u(®)))

Therefore,
()] < pu (|FO©O) ... [ FD00))).



For a majorant function G > 0 of F with G(™(0) > [F(™)(0)| it follows that

Pn (‘F(O)(O)‘ _ ‘F(”‘l)(O)D < Pn (G<°>(0), . .,G<"—1>(0)) .
Letting
pu (GO0),-..,GO7(0)) =10 (0),

we obtain an auxiliary differential equation

"(t) = 4
{v (t) = G(o(t)) (222)
Note that v(™)(0) > |u(”)(0)‘ for all n > 0 and so if v is real analytic near zero then
o) (0)n
Su(t) =) -
n>0 :

has a positive radius of convergence so that

[ (0)] ¢
n!

Su(t) = Z

n>0

has a positive radius of convergence. In other words, for n > 1 we have
0< ‘ (0 ‘ < C—

As this argument applies uniformly for t € [—a’,a’], for some o' < a, we can use the uniform growth control on
the derivatives of F' on u ([—a’,a’]) to deduce that

o< iero] <

for all t € [—a’,a’] and n > 1. Thus u is analytic in a neighbourhood by Proposition It remains to find a
majorant G of F' and show that the corresponding solution v to (2.2.2) is analytic. Let

:Cz(i)nzc1ljzc<rrz>'

n>0
Then G is real-analytic at B,(0) and
!
G (0) = 0=
r

As F' is real-analytic we have

‘F(") ‘ < C—
and so

G 2 [F )

for all n > 0 which means that G is a majorant for F. Through separation of variables the solution to (2.2.2)) is

v(t)=r—r I—Z—Ct
,

which is analytic for || < 5 and so the proof is complete. O



Remark 2.2.3. The proof of Theorem [2.2.2 can be generalised to the case of Theorem [2.2.1] by recognising
that G(z1,...,2n) = (G1,...,Gy,) given by

for k =1,...,m is a majorant for F'.

Theorem 2.2.4 (Picard-Lindeldf). Let £ C I x R™ be open. Suppose F' is continuous with respect tot € I
and locally Lipschitz in w € R™ on L. That is, for every (tg,ug) € L there exists a neighbourhood Uy, x U,
and a constant ¢ > 0 such that for all t € Uy, and for all u,v € Uy, we have

|F'(t,u) = F(t,0)] < Clu— .

Then for all (tg,ug) € L there exists a neighbourhood Uy, x U, such that (2.2.1)) has a unique local solution
in C1 with u(to) = zo.

Proof. For ug € L there exists a neighbourhood V' of ug such that
|F(v) — F(w)| < Clv — w]

for any v,w € V. In particular, as V is open there exists an > 0 such that B,.(ug) C V. As f is continuous it
is bounded on the compact set B (ug), that is

[f(w)] < M
for all u € Bz (ug) and some M € R. Let
Cyi={w: [=b,8] = By uo) } NC° ([-b,4]),

where b := min (357, 55 ). Note that Cj, is a Banach space with respect to || - [|o. Consider I' : C;, — C, given

by .
T(w)(t) = ug +/0 flw(s

Observe that for w € Cy, and t € [—b, b] we have

IT(w) - uolo = sup / Flu(s)) ds

te[—b,b]

< s ([ 1Fwnas)

te[—b,b]

/Mds

= Mb

M—
2M
r

57

10



and so I' : Cy, — Cy is well-defined. Moreover, for wq,ws € Cp we have

ID(w1) = T(wa)lloo = sup [(wi)(t) — T'(w2)(t)]
te[—b,b]

= sup
te[—b,b]

< sup / |F(wi (5)) — Fluwn(s)) ds
b

/0 Flun(s)) — Flwa(s)) ds

te[—b,b]

< s [ Clun(s) - walo)]ds
te[—b,b] JO

< OClwr — wa o

1
< %CHM — Walloo

1
= w1 — wslle.

Therefore, T is a contraction. As C} is a Banach space we can apply Banach'’s fixed point theorem to deduce
that there exists a unique u € Cj, such that T'(u) = u. In other words,

u:uo—i—/o F(u(s))ds,

which implies that
Cut) = Flu(t).

As u(0) = ug it follows that u solves the Cauchy problem

qu(t) = F(u(t))
u(0) = up.

As any solution to this Cauchy problem is a fixed of point of I it follows that u uniquely solves this problem
amongst functions of the form v : [—b, b] — R™. O

Theorem 2.2.5 (Cauchy-Peano). Let C C I x R™ be open. If F is continuous with respect to t € I and
u € R™ on C, then there exists a local solution in a neighbourhood of (t,u).

For F' let A C I x R™ be the region where F' is real-analytic, £ C I x R™ be the region where F' is continuous
with respect to ¢t € I and locally Lipschitz, and C C I x R™ be the region where F is continuous with respect
tote I andu e R™ Then A C L CC C I xR™ such that Theorems 2.2.1} 2.2.4] and [2.2.5] determine the
behaviour of solutions as they traverse these regions.

Figure 2.2.1: Regularity on F' ensure certain regularity conditions on the solutions of (2.2.1)).

Note that if F is linear then £ = I x R™ and thus solutions to ([2.2.1]) exist uniquely on I x R™. Therefore, for
u to be able to leave £, and to become potentially non-unique, F' has to be non-linear.

11



2.2.1 Local and Global Solutions

Theorems 2.2.T] 2.2.4] and [2.2.5] provide the existence of local solutions. However, it is of interest to understand
when local solutions can be extended globally in time. A local solution may not admit a global solution if it blows
up in a finite time.

b4l
|
,,¥‘._‘7_,

%.

Figure 2.2.2: A solution blowing up in finite time.

Example 2.2.6. Consider the system
u'(t) =u?(t) teR

Using separation of variables it follows that
Ug

u =
1—’U,0t

u

which only exists for t € {0, %) refer to Figure|2.2.3a, On the other hand,

has the solution

which exists for all t > 0, refer to Figure[2.2.35

12
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(a) The solution to the first system of Example

(b) The solution to the second system of Example
Figure 2.2.3: Solutions to the problems of Example m

A criterion on F' to avoid blow up in finite time is that F' is globally Lipschitz. More specifically, let I = R and
F be a C! vector field. If there exists a constant C' > 0 such that for all t € R and u € R™ we have

|[F(t,u)] < C 1+ |ul),
then solutions to

u'(t) = F(t,u(t))
are global in time.

2.3 Cauchy-Kovalevskaya Theorem for First-Order Partial Differential Equations
2.3.1 Majorants

Definition 2.3.1. Let f : R? — R be given by

f= Z focxa
a€eNd
for fo € R. Similarly, let g : R? — R be given by
9= Z gocxa
a€eNd

for g, € R. Then g majorizes f, written g > f, if

Ja > |fal
for all « € N¢.

13



Exercise 2.3.2. For x € R? and j € N, show that

@1+ +za) = > ('j)xo‘,

lee| =5

where (‘ZI) = el

Example 2.3.3. Forr > 0 let

for ||z|| < 75 Then,

where
ol _ lo!
o al

@1+ -+ zal < lzllI2] < Vallz|l <7,

Using Cauchy-Schwartz

and so the series absolutely converges. Thus, the sums can be re-arranged to yield

That is,

for o« € N%. In conclusion,

k
o' | e |z1] +- - + |zl
> alrlal ol = r

aeNd k>0
B 7
r—(lza] -+ |znl)
< 00,
when ||z < T
Lemma 2.3.4. Let f : R? — R be given by
f@)=)_ faz®

14



for fo € R. Similarly, let g : R — R be given by
9(x) = Y gaz®
aeNd

for g, € R.

1. Suppose g > f. If g converges for ||z|| < r then f converges for ||z| < r.

2. If f converges for ||z|| < r, then there exists a majorant g that converges for |z| < 5 where
s € (0, ﬁ)
Proof.

1. Observe that

S Hfar®l = 3 Halleal . Jzal

lal<k lal<k
< > galm|™ |z
|| <K
<g(7)
where & = (|z1],. .., |z4l|) so that ||z|| = ||Z]|. Therefore, for ||z|| < r we ||| < r and so g(&) converges.

Thus, the partial sums of f are uniformly bounding and so

E: U@xa|<cm7

aeNd

which implies that |f(z)| < oo and so f(x) converges.

2. Lets e (0, ﬁ) and consider y = (s, ..., s) such that |jy|| = sv/d < r. Then
fly) =Y fay®
aeNd

converges. In particular, this means that there exists a C' > 0 such that |f,y®| < C and

c c cC W Cal
|fal < — < =, (2.3.1)

= Twl T e Jyaed sl = slel o

where in (1) the inequality o! < |a|! is used. Let

Cs |a|!
= :C a.
g(x) S—(l‘1++xd) aez x

From Example we know that g(x) converges for ||z|| < 5+ Thus, using (2.3.1)), it follows that g is a
majorant for f on |[z| < =
O

Proposition 2.3.5. Let z € RY, and let f(z) := Y cya fa®®, g() := Y cna o™ be formal power series.

Then the following statements hold.

1. If g>> f then D%g > DPf for every 5 € N%.

15



2. If g> f and g converges for |x| < r then for every s < r we have

sup |f(z)| < sup g().
je|<s jol<s

Proof.

1. Suppose that
Dﬂg = Z gaxa

aeNd

DPf = Z farz®.
a€eNd

If g converges in a neighbourhood of zero, we can differentiate term by term to get

and

aeNd
al
= > (a— 5)|xa_ﬂ7
aeN? o;>p; ’
where a — 3 = (a1 — B1,...,aq — B4) € N? is well-defined under the assumption that a; > f3; for every

i=1,...,d. Consequently,

~ ga(aﬁilﬂ), a; > B foreveryi=1,...,d
Ja = ‘ .
0 otherwise.

Furthermore, under the assumption that g converges in a neighbourhood of zero it follows that f also
converges in a neighbourhood as g > f. Thus, we can differentiate term by term to deduce that

7 {fa(af'ﬁ); a; > f; foreveryi=1,....d

0 otherwise.

Hence, as 0 < |f.| < g for all a € N9, it follows that
0<|fal < 3a
for all o« € N?. Which means that D%g > DP f for every 3 € N
2. If g(x) converges for |z| < r, then g(x) also converges for |z| < s. Thus, as g > f it follows that f(x)

converges for |z| < s. This means that for |z| < s the series f(z) = > faz® and g(z) = > gaz®
converge. In particular,

sup |f(x)| = sup | Y far®

jo|<s le|<s |
< sup Y |fallz|”
|I|SSO¢€N’1
g>f

< sup Y gala|®

‘xlgsaeNd
= sup Y gaz®
|35|S3a€Nd

— sup g(a).
|z|<s

16



Corollary 2.3.6. Let v € R?, and let f(x) := > acnd fat® be a formal power series. Then f is real analytic
atx =0 if and only if f : B,(0) — R is smooth for some r > 0 and there exists some constants C,s,p > 0

such that cla!
sup |DPf(z)| < .
s [DUf (@) < 2

(2.3.2)

for every 3 € N9,
Proof. (=). As f is real-analytic near zero, for some constants C' > 0 and r > 0 the function

allz®
g(x) = Z Lll‘a'

a€eNd

is a majorant for f and converges to
Cr

r—(z1+4+ -+ x4
for 2 € B_(0). Using statement 1 of Proposition we have D%g > DPf and using statement 2 of

g(z) =

Proposition , for0 < s < ﬁ we have
‘s&p ‘Dﬁf(x)’ < |s1|1<p ‘D'gg(a:)‘ . (2.3.3)

In particular, we observe that for |z| < s we have

Cr ): Cr|p)!
r=(zttza)) (= (o)

DPg(x) = D” (

Asrf(:c1+~~~+$d)27"*ﬁf0r |x] < s we note that

1

711
r—(z1 4+ 2xq)

1
Sf
p

for some p > 0. In particular, we note that p can be chosen independently of 3 as 71 < r for all 3 € N¢. Thus,

|
Dlg(a) < SO
1]
for all |x| < s. Therefore, using ([2.3.3)) we have
clsl!

D? < :
Al

(«). If f is smooth in B,(0) then it is also smooth in Bz (0) for # < L min (r,s,p). Therefore, using Taylor's
theorem for = € Bz(0) we can write

oy = Y P00 pw)

where

Rk(ﬂf) _ Z Daf(g)xa

a!
|| =k
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for some ¢ € B);(0). Observe that

(2.3.2) Cla!
Z Z |Oé| |x|a

e e
s
C |l
— 2 (e
P o=k
c
= — (Jo1| + - + |za))"

|z <7 7\ P
p

k
o)

)

where convergence follows from the fact that n# < p. It follows that for z € B(0) that

sy = Y2 ZIO0 0

ol
aeN?
which means that f is real-analytic in a neighbourhood of zero. O
2.3.2 Cauchy-Kovalevskaya Theorem
Let © = (21,...,2q) = (2/,z4) € R% For u(z) = (u!(z),...,u™(x)) : R? — R™ let
o
81‘j TR

such that u’j] denotes the k" partial derivative of u with respect to x;. Consider the Cauchy problem

{“zd = Z;i Bj(u, 2" )u,, +c(u,z’) B,(0):= {x eR: ||z|| < r} (23.4)

u=20 {xd:O}ﬂBr(O),

where B; = (b?l) tR™ xR — Myyum(R) and e = (c!,...,¢™) : R™ xR — R™. Note how B; (u, ') and
c (u, ") are independent of z4. In particular, (2.3.4) can be viewed as an evolution equation in the x4-coordinate
in the interior of a ball of radius r > 0.

Theorem 2.3.7. Assume (Bj);l;l1 and c are real-analytic functions. Then there exists an r > 0 such that

(2.3.4) has a real-analytic solution
u = Z Ua T,

a€eND

which is unique amongst real-analytic functions.

Proof. Step 1: Write each B, and c as power-series.
Without loss of generality suppose that each B; and c is analytic around zero. Hence, we can write

Bj(z,2)= Y. (By) ;2" («)),

~,6€Nd
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and

Z cys27 (2')

~v,0€Nd

with |z| 4 |2/| < s for some s > 0, where

D1D}B;(0,0)

(Bidos = =11
and
o . D1D3,c(0,0)

T T
for v,0 € N?.
Step 2: Find the derivatives of w on {z4 = 0}.
Since u =0 on {z4 = 0} it follows that

D*u(0
Uo = “'( ) _ g (2.3.5)
al

for all a € N¢ with ag = 0. The equation of (2:3:4) written component-wise is
d
k kl ! k
uy, = bi' (u, ") u Uy, +c (u, ")
j=11=1

1 m

for k =1,...,m, which when partially differentiated with respect to x; yields

d—1 m m m
k _ § § : ki, 1 kl § : kl p 2
uxdwi - bj ux,i;vj + b b z uwl Tj + cwl + czp mL
j=11=1 p=1

Thus using ( we have that u¥ . (0) = ¢ (0,0). By induction it follows that
D*uF(0) = D' ¢*(0,0)

for a € N? of the form o = (o, 1). For a = (/,2) note that

za)z,
d—1 m
_ na’ kL, L k
=D g biug, +c
j=11=1 T4
d—1 m m
_ na’ kLl kl kl p
=D E bqudw—l—b u—I—g b uwI —|—§cu
j=11=1 p=1
Therefore,
d—1 m m
o, k _ o kil 1 k . p
Du™(0) =D E bi Uy 2, + E c; ub, L_u_o.
j=11=1 p=1 =

More generally, for p© some polynomial with non-negative coefficients
D*uk(0) =pk (...,DIDSB;,...,DIDl¢c,...,Du,...) |s=uo,

where 84 < 1. In particular,
k k
Uy = qn (...,(Bj)w,...,c.y(;,...,ug,...)
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for g* a polynomial with non-negative coefficients and B4 < ag — 1.
Step 3: Work with a priori majorising functions B} > B; and ¢* > c.

B; = Z (B;f)wsz”:z?‘S
~,6€NE

¢’ = E cfﬂ;ﬂx‘S

~v,6€Nd

Suppose that
and

are convergent for |z| 4 |z'| < s. Then,

0<|(B),.4 < (B)),,
and
0 < [eys| < €5

Then consider

{UL =000 BS (ut,2)) + ¢ (ut, ) B.(0) (2.3.6)

u* =0 {zq4 =0} N B.(0).

and suppose it has solution

Step 4: Show that u* > u.
From (2.3.5)) we have

for each a € N? with ay = 0. Assume that
0 < |ub] < (ug)*

for each o € N¢ with ag < n — 1. Then for o € N? with ag = n, using the non-negativity of the coefficients of
g%, with B} > B and c} > c it follows that

¢t (...,(Bj),ﬂs,...,Cﬂﬂs,...,Uﬁ,...)‘

§q§<..., (Bj)w‘,...,|c75|,...,|uﬁ\,...)

(1)
k
< g (...,(B;f)w,...,c;é,...,ug)

= (ug)”

where (1) is an application of the inductive hypothesis as 8, < ag — 1 =n — 1. Therefore, by induction

0 < uf] < (u)"

for each v € N,
Step 5: Find majorants B} > Bj and c* > c.

Using step 1, statement 2 of Lemma [2.3.4| can be applied to yield B} and c}. In particular,

1 ... 1
B* = Cr :
J 7"—(55'1+"'+$d71)—(21+"'+2m) 1
forj=1,...,d—1 and
¢t = Cr 1,...,1)

r_(xl_i__l’_wdil)_(zl_i'_.._f_zm)
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on |z'| 4+ |z| < r for some r > 0. With these, (2.3.6]) becomes

l
* Cr d—1 m *
Uzy = 7=(@1tFza_1)— (1t F2m) <2j—1 Zl:l (u%) + 1) B.(0) (2.3.7)
uw =0 {zq =0} N B,(0).

Step 6: Show that ([2.3.7)) has an real-analytic solution u* and conclude that w is real-analytic.
A solution to ([2.3.7)) is given by

u =v"(1,...,1)

for

md

1
vt = <r_(m1+...+xd1)_\/(r—(m1+...+xd1)2)—2md07‘xd>,

which is analytic for |z| < r when r > 0 sufficiently small. Therefore, using step 4 and statement 1 of Lemma
it follows that u converges for |z| < r.
Step 7: Argue that u is a unique real analytic solution to (2.3.4).

As u is real-analytic near zero, by step 6, the Taylor expansions of u,, and Z?;ll B (u, )+ c(u, x) agree at zero
and on |z| < r, thus it is unique. O

Example 2.3.8. Consider the two-dimensional system, (u(z,y),v(x,y)), that satisfies

Uy =Vy — f
Uy = —Ug (2.3.8)
u=v=0 {y=0},

where f € C*°. Then one can compute all the derivatives of u and v with respect to x and y on {y = 0} in
the following way. From u(z,0) = v(z,0) = 0 it follows that

(02)" w(z,0) = (95)"v(z,0) = 0.
Then from u, = v, — f we deduce that
Oyu(z,0) = —f(z,0),

which implies that,
(02)"0yu(z,0) = —(9)" f(z,0).

Similarly from v, = —u, it follows that
Oyv(z,0) =0

and so

(0z)"0yv(x,0) = 0.
Taking the y" derivative of (2.3.8]) we obtain the equations

{uyy = Uyz — fy

Vyy = —Uya,

which on {y = 0} become

{uyy@c,m = —fy(2,0)
Vyy(x,0) = fo(z,0).

Hence,

(az)naju(xa 0) = —(6x)n8yf($, 0)
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and
(aw)"(?;v(x,O) = (0)" " f(z,0).

Iterating this process one can obtain all order partial derivatives of u and v with respect to x andy on {y = 0}.

2.4 Cauchy-Kovalevskaya Theorem for Quasi-Linear Partial Differential Equations

Equation ([2.3.4)) may seem like a rather specific type of partial differential equation, for instance, the right-hand
side of (2.3.4)) is independent of 4. However, as the right-hand side can be dependent on u if a dependency on
x4 is present we can enlarge the space to R™*! to accommodate this. More specifically, let u,, 1 = 24 such that

Qmi1 — | \which can then be accommodated into (2-3.4) by letting ™! =1 and for each j = 1,...,d — 1

oxyg

letting bjf’mﬂ =0fork=1,...,m+1

Example 2.4.1. Consider the partial differential equation
Uty = Ulgy — Ugy + uy
with u|i=0 = go(x,y) and u¢|i=0 = g1(x,y) for g1 and g real-analytic functions.

1. Let f(x,y,t) := go + tg1, then f is real-analytic with f|i—o = go and fi|t—o = g1. Now set w = u — f
such that

wtt:wwzy*wmx+wt+fwmy+fmyw+F,

where F' = f fry— foa+ fi is independent of w and real-analytic. Observe that w|i—o = 0 and wy|;—o = 0.
Therefore, we have reduced the system to have trivial boundary conditions.

2. Consider the transformation (z,y,t) — (z*,2% 23) and let u = (0, Wy, wy, wy) =: (u',u?, ud u?).
Then
(u'),, = (ut), =we =u'
(w?),, = (), = wor = (u') |
(w?),, = (W), = wy = (u'),,
(uh),, = ('), =wu =u' (v?),, — (), +u'+f(u?),, +foyu' +F
Therefore,
il o 0 o o\ [(), o o o o\ (),
9 [wr| _[o 0 01 (u?)m+0 0 0 o],
dxy | w? 00 0 0], 0 0 0 1],
u? 0 -1 0 0 (ub) 0 f+u' 0 0 (ub)
3 T2
B1 B2
4
u
2

u + fryul + F

c

which is of the form (2.3.4)) and so Theorem can be applied.

Remark 2.4.2. If dealing with a general k™" order partial differential equation, then in step 2 of Examp/e
one would take u to be a function in all of the lower-order derivatives. Under some conditions, the arguments
of Examp/e can be generalised to general k' order quasi-linear partial differential equations. In turn, we
will arrive at a version of Theorem m that applies to k™ order quasi-linear partial differential equations.
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2.4.1 Hypersurfaces

Let T' be a smooth (d — 1)-dimensional hypersurface in U C R9, with an outward normal vector n(z) =

(ni(z),...,nq(x)) : T — R? In particular, denote the j™ derivative of u at = € I" along n by
du j du o o J\o0%u
oni '_|Z,<a) 81‘1’1...8%’““’”1 1o _ZI:' a) oz’
al=j al=j

Definition 2.4.3. Let U C R open. Then AU is a C*-boundary if for all xo € OU there exists an r > 0 and
C*-function v : R*~' — R such that

OU N By (x9) = {x € Br(x9) : xg = y(21,...,Z4-1)}

upon relabelling and reorienting the coordinates.

Remark 2.4.4.
1. Definition says that locally the boundary of U C R can be represented by a C*-function.

2. If locally OU can be described by a smooth function then QU is said to be smooth. Likewise, if locally
OU can be described by a real-analytic function then OU is said to be analytic.

3. IfT, a (d— 1)—di£nensiona/ hypersurface, in U C R? js a Cl—boundary, with outward normal vector n,
then for u € C* (U) we have
ou

— =n-Du.

on

Example 2.4.5. Consider the open unit disc
U={(z,y): 2> +y* <1}.
Then for (zg,yo) € OU the boundary OU is represented locally by (x,sign(yo)y(x)) where y(x) = v1 — 2.

Given such a boundary one can consider locally straightening the boundary in one of the dimensions through a
change of coordinates. In particular, suppose that we want to flatten the boundary along the x, axis, then let
® : B(xg,€) — U be given by

€T;) =
g —y(T1,. .., Ta-1).

With y := ®(z) one has
<I>(8U N B(l‘o,e)) = {yd = 0} NnU.

Moreover, one can construct the reverse transformation

U(y;) = vi Psd-l
Ya +’}/($1, . ,xd_l),

with x = U(y) so ¥ = &~ ! and det(D®) = det(DV) = 1.
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Figure 2.4.1: Flattening a smooth boundary in the neighbourhood of a point using a change of coordinates ®.

2.4.2 Quasi-Linear Partial Differential Equations

Consider the k™ order quasi-linear Cauchy problem given by

> la|=k Ta (DF (), ... ,u(z),z) D*u

reUCR?
+ag (D 'u(z),...,u(z),z) =0 - (2.4.1)
Pu =g, T,j=0,...k—1,
where u : U = R, g; : I' = R are given real-analytic functions for j = 0,...,k — 1 and I' is assumed to be

analytic. Observe that in (2.3.4) we had I = {z4 = 0} and for Example we had I" = {t = 0}, each of which
are flat boundaries. Moreover, we have seen under a change of coordinates, I" can be made to be a flat boundary.

Remark 2.4.6. To compute an analytic solution to (2.4.1]) it must be the case that all the partial derivatives
of u can be determined from (2.4.1)). In particular, all the partial derivatives of u on I' should be computable
from the boundary conditions. We can use this intuition to arrive at conditions under which an analytic solution

to (2.4.1)) may be determined.

Definition 2.4.7. A hypersurface’ = {4 = 0} with the boundary conditions gy, . . . , gx—1 is non-characteristic
for (2.4.1)) at xo € I N U if there exists an open neighbourhood U, C U of xy such that

A(z) = ao,...0,k) (Dkilu(a:), u(z),z) #£0
forx e I'NU,

Theorem 2.4.8. Let I = {x4 = 0} be a non-characteristic for (2.4.1). Then if u € C>=(U) is a solution for
(2.4.1)), the partial derivatives of u on ' can be determined uniquely by the functions go,

.., gk—1 and the
coefficients an, ag.

Proof. Note that a unit normal vector to I' is given by n = eg, that is the d*" standard basis vector R? and so
u _ du
ond T Bzq°

1. As u = gg on I' it follows that
Ju  0go
a.’L'i o al'l
fori <d—1. Using 88—;; = g1 on I it follows that Du = Vu is determined on T.

2. More generally for o = (&, aq) € N? with |ag| < k — 1 we have

0%u 0% Ou o

x> Ox% Oz = 9z Jera:

Along with ‘
0’u
ooy
oz,

for j < k — 1 we determine D?u,...,D* 1y onT.
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Since, T is non-characteristic we can use (2.4.1]) to obtain

Ou_ _ 1 D) (e 2) o (DFTule). . ufa).a
ok~ A() a|_k,§a;gk_1 o (D" tu(@), .. u(z), 2) +ag (DM u(z), ... u(x), x) (2.4.2)

on T'. Thus along with statement 2 we determine D*u on I'. Now differentiating (2.4.1)) along x, gives

Z ao (DF (), ..., u(z),2) DUy, (z) + do (D*u(2),. .., u(z),z) =0
|| =k

for x € U, where

+ 52 (a0 (D M), . u(w), ).

All of this is computable due to previous calculations and is only dependent on the gi_1,...,go and coefficients
Gq, 0. Now through similar arguments one obtains

o+l 1 _ N _
Wz—m Z . (Dk 1u(x),...,u(x),x)D Ug, () + ag (Dku(x),...,u(x),x)
1 o=k, oy <k—1

Thus, with statement 2 and (2.4.2)) one determines D**1y on T'. Proceeding inductively it follows that D"u can
be determined on T for all n € N. O

Definition 2.4.9. A hypersurface I' with boundary conditions gy, ..., gx_1 is non-characteristic for (2.4.1)) if

A(z) := Z ao (D" tu(z),. .., u(z),2) n®* #0
for all x € ' N U and where n is the normal vector to T.

Theorem 2.4.10. Let T' be non-characteristic for (2.4.1)). Then if u € C*°(U) is a solution for (2.4.1)), the
partial derivatives of w on I" can be determined uniquely by the functions gq,...,gr_1 and the coefficients
Ay AQ -

Proof. Let z € T', then there exists smooth maps ® = (®!,...,®%) ¥ = (¥, ... ¥¢) : R — R? such that
¥ = &1, Moreover, for some r > 0 we have

o' N B(x,7)) € {ya = 0}
where y = ®(x). Let v(y) = u (¥ (y)) such that u(x) = v (®(x)). Observe that

u K v 0D
(')xi N 8y1 83:1 ’

Jj=1

so that v satisfies the quasi-linear equation

Z bo (Dk_lv(y), oo u(y), y) D% + by (Dk_lv(y)7 oo u(y), y) =0, (2.4.3)
la|=k
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with boundary data

v

——h,

oy}
on {yq = 0} for j = 0,...,k — 1. Note that the coefficients by, by and functions h; are real-analytic as ¥ is
real-analytic. Moreover, using the chain rule on u =vo ® = v (®!(x),...,®%(x)) it follows that when |a| = k
and z € I' we have

o _ v o
D% = W(y) (D®(x))” 4 lower order terms
Ya

where the lower order terms involve only partial derivatives of the order less than k—1 in y4. Therefore, substituting

this into (2.4.1)) it follows that

k
0= Z ao (DFtu(z),. .. u(z),z) 8—: (D®%) + lower order terms,
0y
|a|=k
thus, N
bo,...0k) = Z Ao, (Dkilu(z), .. .,u(r),x) (D<I>d) .
la|=k
Since, ®(z) = 24—y (x1,...,24_1), it follows that D®? is parallel to n on I". Therefore, bo....,0,k) is @ non-zero

multiple of ka\:k asn® which is non-zero by the assumption that I' is non-characteristic. Hence, {yq = 0} is a

non-characteristic surface of (2.4.3), and so the partial derivatives on of v on {y4s = 0} can be determined using
Theorem Then using the reparameterisations and the chain rule we can determine the partial derivatives
of wonT. O

2.4.3 The Cauchy-Kovalevskaya Theorem

Theorem 2.4.11. Let T be a real-analytic Cauchy surface on U C R%. Under real-analytic assumptions on
all the coefficients on U, boundary data on I', and the non-characteristic condition on I there exists a unique,

local analytic solution u to ([2.4.1)).
Proof.

1. Under the change of coordinates ® we can transform T into the flat boundary {z4 = 0}. From the proof
of Theorem [2.4.10| the hypersurface {x4 = 0} is non-characteristic for the transformed equation. Thus
without loss of generality, we may assume that ' = {z4 = 0}.

2. As T is non-characteristic, a(o,... 0,r)(2) # 0 locally on I'. As aq,...0,x) is real-analytic we can divide (2.4.1)
by a(o,...,0,x) and maintain the all the real-analytic assumptions. Therefore, without loss of generality, we

may assume that a(,... o.x) = 1.

3. By subtracting appropriate real-analytic functions, we may assume the boundary data is trivial. That is,
go,---sgr—1 =0o0onT.

: 5151 .
4. Letw = (u, g;i,...,g;;,...,galﬁ), for all |3| < k — 1. In particular, suppose that w has m terms.

With these reductions (2.4.1) is reduced to an equation of the form (2.3.4)). Thus one can apply Theorem [2.3.7]
to conclude. O

Remark 2.4.12. Note how the non-characteristic condition is crucial for the reduction of to (2.3:4).
Physically, this relates to being able to use one of the variables as a time variable to reformulate the problem
as an evolution problem. However, in practice finding non-characteristic surfaces is challenging, and poses one
of the major obstacles in solving many partial differential equations encountered in physics.
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Example 2.4.13. Foru = u(t,x) : R> — R, consider the heat equation
O = 02u (2.4.4)

with u(0,z) = g(z). Thatis, I' = {t = 0} with the normal vector n = e; = (1,0). Then the non-characteristic
condition is a0y # 0, which does not hold for any Cauchy data g. Therefore, (2.4.4)) is characteristic, and

this reflects the fact that (2.4.4)) cannot be reversed in time. In other words, the Cauchy problem (2.4.4)) is
ill-posed for negative times. More specifically, let

9(a) = —— = Y (-DFa

2
Lara keN

which is clearly real-analytic. Then,
9%Fu(0,0) = (—1)*(2k)!

and
2 14(0,0) = 0.
Therefore,
2Lk (0, 0) D2k +21,(0,0) = (—1)* 1 (2k + 21)!.
Similarly,

ALo*H1u(0,0) = 0.

Thus, if u were real-analytic for negative times one could write

w(—1,0) =Y 0 p10,0)

I
IEN

21)!
-

leN

>yt

leN

but this does not converge for any t > 0. It is in this sense that time cannot be reversed for the heat equation.

Remark 2.4.14.

1. From Example we see that characteristic boundary conditions can highlight some key properties
of the partial differential equation.

2. From Example it is clear that a necessary condition for an evolution system with boundary conditions
onT' = {t = 0} to be solvable using Theorem|2.4.11| is that

oFu = E aa05u
|| =1

with | < k.

2.4.4 Characteristic Form

Theorem requires the hypersurface on which the boundary conditions are defined to be non-characteristic.
Instead of defining a priori boundary conditions for a partial differential equation, one can instead understand under
what conditions boundary conditions are characteristic, and thus also conditions for when boundary conditions are
non-characteristic. In turn, one can arrive at a classification of partial differential equations depending on when
boundary conditions permit the application of Theorem [2.4.11
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Definition 2.4.15. Let P be a scalar linear differential operator of order k € N given by

Pu := Z ao ()05 u(x)

|| <k

for u = u(x) and x € R%. Then the total symbol of P is

o(@,8) = ) aa(x)E"

|| <k
where £* = £ ... £9Y. The principal symbol, or the characteristic form, of P is
1 d
op(,6) == ) aa(@)E",
|| =k

Remark 2.4.16. The non-characteristic condition of a hypersurface I, with normal vector n, can be written
in terms of the principal symbol as

ap(z;n(x)) # 0

forx eT.

Definition 2.4.17. The characteristic cone of a partial differential equation at x € R? is

Cp = {5 eRe: op(,§) = O}.
Remark 2.4.18. Note that a hypersurface T', with normal n, is characteristic at a point xog € T' if n(zg) € Cy, .

Definition 2.4.19. Partial differential equations without real characteristic surfaces are referred to as elliptic
equations.

Example 2.4.20.

1. Consider Laplace’s equation, that is Au = 0. Theno,(x,&) = | | and so any surface is non-characteristic
for Laplace’s equation. Indeed the characteristic cone is C, = {0}. Thus, Laplace’s equation is elliptic.
More generally, let

d o2
L= sig o
i,j=1 v

where A = (ai;)i,j=1,....d iS @ symmetric matrix and consider

{Lu(x) =0 zeR? (2.4.5)

“:07%:0 I,

where I1,, := {& € R* : - n = 0} for [n| = 1. Then the non-characteristic condition for (2.4.5)) is

d
Z Q5705705 7& 0.

2,j=1
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Suppose that the eigenvalues of A are (X\;)i=1,....a, such that by diagonalising A the non-characteristic
condition becomes

d
i=1
Consequently, (2.4.5)) is non-characteristic when \; > 0 for each i € {1,...,d} or A; < 0 for each
ie{l,...,d}.
2. Consider Schrédinger’s equation,
d—1

i0r, + > 02,u=0.

i=1
Then the characteristic form is
op(a, ) =&+ +£5_;.

Thus, the only characteristic surfaces are of the form {x4 = c} for some constant c € R.

3. Consider the wave equation
d—1
U= —Oﬁdu + Z 8§u
i=1

Then the characteristic form is
2 2 2
op(z,§) =&+ + &1 — &
Observe that o,(x, &) = 0 has non-trivial solutions. Indeed, the characteristic cone in this case is

Co={¢eR": &=+ +&_,},

and thus any surface whose normal makes an angle of 7 with the ey direction is characteristic. The
variable x4 represents time.

4. Consider the transport equation
d
Z ¢;j(2)0z;u =0
j=1

for u = u(xy,...,x4). Then the characteristic form is

op(z,8) = Y c;(2)§

=1
with the characteristic cone being
e = c(z)t
where ¢ = (c1,...,cq) and x € R, Consequently, every characteristic surface is everywhere tangent to

c(x). Thus, the transport equation only describes the behaviour of u along a characteristic surface, and
what u does in the traversal direction is free. Consequently, the existence of solutions is lost unless the
initial condition on the surfaces satisfies certain constraints, and if a solution exists it will not be unique.

Exercise 2.4.21. Consider

_ 92 _
(=02 +A)u=0 (2.4.6)
u=go, u=g T

where u : R'™3 = R and T' = {¢(z,y, 2) = t}.
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1. Show that T is characteristic everywhere if and only if ¢ obeys the Eikonal equation, namely

IVo* = 1.

2. Suppose that gy, g1 € R® — R are everywhere real-analytic. Show that in a neighbourhood of {t = 0}
there exists a unique real analytic solution u to ([2.4.6]).

Theorem 2.4.11] has some limitations.

1. Theorem [2.4.11] only provides local solutions. What's more, one has no control over the neighbourhood of
the existence of a solution.

2. Theorem does not guarantee that the corresponding partial differential equation is well-posed. For
example, consider
Ugy + Uyy =0

on R?. With the initial data u(x, 0) = cos(kzx) and u,(x,0) = 0 on {y = 0}, through separation of variables
on can show that
u(z,y) = cos(kx) cosh(ky).

We note that u(z,y) is a real analytic solution, and therefore it must be the solution provided by Theorem

2.4.11| due to uniqueness. However,
sup |u(z,0)] < 1,
z€eR

and

sup [u(z, €)] = oo
zeR

for all € > 0. This shows that there is no continuous dependency between the solution and the initial data,
meaning the problem is not well-posed.

3. Theorem[2.4.11|requires strong assumptions on the partial differential equations which limit its applicability.

Exercise 2.4.22. Consider the equation
Uy — (2% = ¢) Upy =0 (2.4.7)
for (z,y) € R? and ¢ > 0.
1. Find all the characteristic surfaces to .

2. Let (2.4.7) be given the initial data

ug(0,y) = 0.
For which values of ¢ > 0 does (2.4.7) admit a real-analytic solution in a neighbourhood of (0,y)?

{U(O, y) = cos(y)

2.5 Solutions to Exercises
Exercise [2.3.2)
Solution.
» For d =1 and j € N note that |a| = j for & € N! if and only if o = (j). Therefore,
S LN (€)1 N 1(4)] ) lal o
(1) = (@)Y = == (@)Y = (70 ) (01)V) = z®.
5! 5! () aeN;ll_j “

The case d = 2 is the standard binomial theorem.
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= Suppose that for z € R4 we have

(@14 tza) = Y <Z|)xa

a€NA—1 |a|=5

for every j € N. Then for z = (z1,...,2q_1,24) = (2',24) € R? and j € N we have

(14 -+ xq)’ :kzj_%(i) (21 + - +2q_1)" (a) "
=2 () N (1) " oy

o’eNd-1 |a/|=k ! !

j .
_ Z Z J! plataa1,j—k)
Ozl! .. .Ozdfl!(j - k)'

k=0 a’eN—1 |/ |=k

= = G
al

a€eNd |a|=j

)3 ('S!')xa.

le|=4

J i an
_ J: |O( | (a1ye,q—1,5—k)
_I;)k!(j—k)! > U ag !

Therefore, by induction it follows that for any d € N, with = € R? we have
e 3 (e
a€Nd |a|=j

for every j € N.

Exercise [2.4.21]

Solution.

1. The characteristic condition of (2.4.6]) is
3
Z NN = 0
i,j=1
where A = diag(—1,1,1,1). Writing T’ = {¢(z,y,2) —t = 0} = {¢(t,x,y,2) = 0}. The normal to I is
given by Vi = (1,V¢) € RT3, Inserting this into the characteristic condition it follows that
—1+4|Ve|* =0.

2. Let w = (w1,...,ws) = (U, Ug, Uy, Uz, us). Then

atwl = 3tu = Ws

O wa = Uz = OpWs
Orws = Uyt = Oyws
Orwy = Uy = O, ws

atwf) = Ut = Ugy + Uyy + Uz, = al‘w2 + ayw3 + azw4-
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Therefore,

00 0 0 O 0 00 0 O 0 00 0 O
0 0 0 01 0 0 0 0O 0 0 0 0O
Ow=[0 0 0 0 0|0w+ |0 0 0 O O)Fw+]0 0 0 0 1]0,w
0 0 0 0 O 0 0 0 0 1 0 0 0 0O
01 0 0 O 0 0 01O 0 01 0 O
0 0 0 0 1
0 0 0 0O
+10 0 0 0 Ofw
0O 00 0 O
0 0 00O
with initial conditions
90
aa:gO
w0=3ygo
8290
g1

on {t = 0}. Let w = w — wyq such that 0, satisfies a matrix equation but with the initial condition that
w=0on {t =0}. Now we can apply Theorem mto get the existence and uniqueness of a real-analytic
solution in a neighbourhood of zero.

O

Exercise [2.4.22
Solution.

1. As we are working in two dimensions we can parameterise a surface by a curve v : (a,b) — R2. More
specifically, we let v(t) = (z(t),y(t)) so that the normal to the curve is given by n(t i
Recall, that v is a characteristic curve if

> aala,y)n(z,y) =0

|| =2

~
I
—
|
<
—~
~
~—
8
—~
~
~

for all (x,y) € . Consequently, 7 is characteristic if

(@(t)* —¢) (=9()* =0
for all t € (a,b). Therefore, the characteristics of (2.4.7)) are either
(a) {y = a} for some a € R,
(b) z=¢, or
(c) . =—c.
2. Observe that if ¢ # 0, then {x = 0} is a non-characteristic surface. Moreover, the boundary data is analytic
along {z = 0} and so we can apply Theorem [2.4.11] to obtain a unique real analytic solution to (2.4.7) in

a neighbourhood of (0,y).
O
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3 Distributions
3.1 Functions

Example 3.1.1. Let U C R? be an open bounded set with a smooth boundary. Let p: U — R be the charge
density of U, then the characteristic field satisfies

{Agp:p U

e (3.1.1)

In such a case, OU s referred to as a perfect conductor. Theorem|[2.4.1]| cannot be applied in this instance as
too few boundary data are provided. To be able to solve (3.1.1)) using Theorem (2.4.11| one would also need to
know the behaviour of V|ay .

To progress in more general problems, such as Example we must introduce function space theory to facilitate
working with fewer regularity assumptions. Thus, let us recall some prominent function spaces.

= C°(R?) is the space of continuous functions on R?.
= C? (R?) is the space of continuous functions with compact supports on R%.

 CT (Rd is the space of continuous functions on R? with the first  derivatives being continuous. With
Cr (Rd) as expected.

= C® (Rd) is the space of smooth functions. With Cg° (Rd) as expected.
» LP(X) for 1 < p < oo is the space of functions whose LP-norm is finite.

= LP_(R?) for 1 < p < oo is the space of functions that are in LP(K) for every compact subset K C R?.

3.1.1 Differentiability

Not all function spaces are endowed with a notion of differentiability. This is not ideal when working with
differential equations. However, we can still operate under similar regularity conditions by introducing different
notions of differentiability. Suppose f is differentiable, then for p(z) € C°(R), it follows through integration by
parts that

[ F@et@)ds = = [ fa)e@)a.

Where we use the fact that ¢(z) = 0 at © = +00 as ¢ has compact support.

Exercise 3.1.2. Show that — [, f(z)¢'(x) dx is well-defined for f € Lj,(R).

loc

In light of Exercise for f € LL_(R) the linear operator T : C° (R) — R given by

loc
Ty(0) = = | fa)e'(a)do.
provides an implicit notion of a derivative for f which need not be differentiable in the usual sense.

Definition 3.1.3. Let U C R? be open, and f € L, (R?). The o order weak derivative D f € Ljoc (R?) is
such that

| @ neda=ve [ iprpda

for all ¢ € C°(U).
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Example 3.1.4. Consider the following Poisson problem,

{—u”(aj) +u(z) = f(z) =€ (a,b)
u(a) = u(b) = 0.

A strong solution to this problem would be a u € C*([a, b]) that satisfies the equation of the problem and the
initial conditions. Instead suppose that ¢ € C1([a,b]) with p(a) = ¢(b) = 0, and suppose

b b
/ (—"(z) + u(z)) p(z) dz = / f(@)o() de.

Through integration by parts we have

/ (e pla) dr = / )l

and so, , ,
/ (' (@) + u(z)) p(@) dz = / f(@)o() da. (312)

For (3.1.2) to make sense it is sufficient that u,u’, f € L'(a,b). A weak solution to our Poisson problem is a
function u € L'(a,b) that satisfies (3.1.2)).

3.1.2 Support and Convolution

Definition 3.1.5. For a function f defined on a domain ) C R, jts support is

supp(f) :==QnN{z € Q: f(z) #0}.

Remark 3.1.6. /f supp(f) C Q is compact, then f is said to be compactly supported. The set of smooth
and compactly supported functions on Q) is denoted C°(Q2). The functions of C°(S2) are referred to as test
functions.

Example 3.1.7. Let ¢ : R? — R be given by

1
o(z) = <P (_HIP) el <1 (3.1.3)
0 otherwise,

for some ¢ € R. Note that supp(p) = B1(0) and ¢ is smooth, therefore, ¢ € C° (R?).

For functions f, g defined on R¢, their convolution is

(@) = [ fa-vawas= [ fwta=wa.

Theorem 3.1.8 (Young’s). Let f € L? (R?) and g € L (R?) for some p,q € [1,00]. Then f*g € L™ (R?)

where L =L+ L _ 1 and
r—p g

I % 9llr@ey < fllze@ellgllLe@e)-
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Proposition 3.1.9. Let f € L' (R?) and g € L? (R?) for p € [1,00]. Then,

supp(f x g) € supp(f) + supp(g).

3.1.3 Convergence

Convolution can be used to regularise functions. Consider ¢ > 0 as given by (3.1.3). With 1 = S5, (0) exP (ﬁ) dx
we have that [, p(z)dz = 1. In particular, € > 0 let

Pe(x) = Gidw (x) (3.1.4)

€
such that ¢, € C° (RY), supp (@) = Bc(0), and [pa pe(z)dz = 1. Let f € LP(Q), for p € [1,00]. Setting
f=0inR?\ Q we can think of f € L? (Rd). Thus we can consider

fe(@) = (pex f)()

= [ w(z—y)f(y)dy

2

— [ e
B.(0)

Lemma 3.1.10.

1. For f € C° (R?), we have f. € C*° (R?) and f. — f uniformly on every compact set K C R as e \, 0.
That is, for K C R¢ compact we have

sup | fe(z) — f(z)] =0

reK
as e \, 0.

2. For f € C* (R?), we have f. € C* (R?) and for every a € N we have D*f. — D f uniformly on
every compact set K C R? as e \, 0.

3. For f € LP (]Rd), where p € [1,00), we have f. € C*>® (Rd). Moreover,
fe = f in LP-norm as e \ 0.

fe”LP(Rd) < ||f||Lp(]Rd) with

Proof.
1. Since f is continuous on €2, it follows that

la) = 5 [ eda =iy

= /Q d%tpe(w -y)fly)dy

= / oL(x) f(y)dy.
Q

Thus, as . € C> (R?), it is clear that f. € C* (R?). Let K C R be a compact set. For fixed € > 0
consider z € K. Let % > 0 be such that ¢g > €. Then

Supp(@e) = BG(O) - B€0 (0)7

and so

r—y €K+ B.,(0):=K'
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where K’ is a compact set. Note that on K’, the function f is uniformly continuous, and so there exists a
6 > 0 such that for |y| < 6 we have

[f(z—y) = fz)| <€

for all z € K. Observe that for any € > 0 we have

= @l = | [ Ze (£) e =) - 160 @y
Y Y
<[ L ae(Ore—v-s@iws [ Ze(t)ife - sl
I Iz
On the one hand,
I < 2[| fll oo may / 0 gldw (%) dy
yli=z
<A fllimn [ 020

and so I; = 0 when € < 6 as ¢(z) =0 for |z| > 1. On the other hand, using uniform continuity it follows
that

Hence, for € < min(eg, 9) it follows that
[fe(z) = fa)] <€
for all x € K, which means that f x ¢, — f uniformly on K as e\, 0.

. As feC™® (Rd) cco (Rd), using statement 1 we have that f. € C* (Rd). Furthermore, as D(f,) €
C> (Rd) cc° (Rd) and D%*f. = (D*f) x ¢, statement 1 can be used to deduce that D*f. — D*f
uniformly on compacts subsets K C R as ¢ \, 0.

. Fix e > 0. As C? (R?) C LP (R?) is dense, there exists a fec® (R?) such that
~ €
Hf - f”Lp(Rd) < 3

Let f. := f * @o. From statement 1 we know that fo — f uniformly on every compact subset of R? as
€ 0. Since,

supp (fer) € supp (f) + Be(0),
it follows that supp (f) is compact and so
| fer = fHLP(Rd) =0

as ¢ \, 0. Moreover, observe that for arbitrary g € L? (R?), by letting ¢ be such that % —l—% =1, it follows
from Holder's inequality that

o) = [ oote =gl dy

/R (@ —y) ¥ oo(a —y)Fg(y) dy

:
(

1

/Rd per(z = y) dy>q </Rd we'(:v—y)lg(y)lpdy);

AN

/Rd per(z —y)|g(y)[” dy) '

IN
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Therefore,

96 520y = [ o @)l o
Rd

< [ ([ eeta=ilatwr ar) as

Fubini.
=0 el (/ per(z —y) dfﬂ) dy
]Rd Rd'
< ”g”ip(Rd) (3.1.5)

Using the triangle inequality and ((3.1.5) with f — f, for sufficiently small ¢’ it follows that

Ifer = Fllogeay < llve* (F = Dl poay + 1 e = Fll poay + 17 = Sl 1o oy
~ € €
= Hf_f|‘Lp(Rd)+§+§

PN
-3 3 3
= €.

Remark 3.1.11.

1. Note how regardless of the regularity of f, we have f. € C*° (R?). In this sense, p. imposes regularity
and is thus referred to as a mollified.

2. For statement 3 of Lemma[3.1.10 it is necessary not to include p = .

Corollary 3.1.12.

1. The set of functions C*° (Rd) is dense in C° (Rd) for the topology of uniform convergence on all compact
sets.

2. The set of function C° (RY) is dense in C> (R?) for the topology of uniform convergence of all deriva-
tives on all compact sets.

3. The set of functions C> (R?) is dense in LP (R?) for p € [1,00).

Corollary 3.1.13. Letv,v € L. _(U) be ot order weak derivatives of u € Ljoc(U), in the sense of Definition

loc

[31:3 Then v = o almost everywhere in U.

Proof. Let ¢ € C*(U). Then
/ o()p(z) dz = (~1)°] / u() (D) (x) da
U U
:/ o(x)p(x) dx
U

which implies that

/U (v(z) - 5(x)) pla) dz = 0 (3.1.6)
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for all ¢ € C°(U). In particular, let K C U be a compact set and take ¢ to be the mollifier with support K.
With ¢, as given by (3.1.4)) it follows that

= lim pc(z —y) (v—"10) (y)dy
6\0 yERd
3é6 0
Therefore, v — © = 0 almost everywhere in K. This implies that v = ¥ almost everywhere in U. O

Definition 3.1.14. Let (f,)nen C C°(R) and f € C°(2). Then f,, — f asn — oo in C2°(Q) if the following
hold.

1. There exists a compact set K C Q such that supp(f,) C K for every n € N.

2. For all « € N* we have D®f,, — D f uniformly on K.

Remark 3.1.15.
1. When f,, — f in C2°(2) one often writes f, 2, I

2. Note that limits as per Definition are unique.

Definition 3.1.16. The space C2°(§2) with the convergence provided by Definition is denoted D(2).

3.2 Linear Forms

Definition 3.2.1. A distribution in R s a linear and continuous form on D(Q). More specifically a distribution
is a linear map T : D (R?) — R given by ¢ — (T, ), such that for all sequences (¢n)nen € D (RY) with

on — ¢ we have (T, ) = (T, p).

Remark 3.2.2. The space of distributions is the dual of D (R?), thus the space of distributions is denoted
D' (R%).

Example 3.2.3.
1. Let f € Lj,. (R?). Let Ty : D (R%) — R? be given by

loc

Ty(0) = | F@)pla)de.

Then Ty is well-defined, just as in Exercise

= T is linear.
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CcDh (Rd) is such that ¢, 2, peD (Rd). Then

= Assume (¢n),cn C

(T5.0m) = 7.9 = | [ 160} Gpna) = pte)) i
< | @) lon(@) — o(a)| do
< Ion = Plzmun [ 1f@)ldo

where K is the compact set provided by statement 1 of Definition As [ |f(z)|dz < oo
and ||¢n — ¢l Loo(may — 0 as n — oo it follows that

|<Tf790n> - <Tf790>| —0

as n — oo. Hence, Ty is continuous in D (R?) with respect to the topology induced by Definition
Note the difference to the operator in Exercise[3.1.3 that is not continuous in CZ° (R?) with
respect to the supremum norm.

ThusTy € D/ (Rd). Consequently, we see that L,loc (Rd) is continuously embedded in D! (Rd), which we
denote L.

loc (Rd) — D’ (Rd). Similarly, one can show that LP (Rd) — D' (Rd) using Hoélder's inequality.
. The Dirac delta at o € R? is 65, : D (R?) — R where

Iz (0) = p(0)-
The Dirac delta is linear and if ¢, 2, @ then p,(xo) — ¢(xo), meaning the Dirac delta is continuous.

Therefore, 0,, € D’ (Rd). However, suppose that Ty = 6, for some f € L}, (Rd). Then for a compact
set K C R? with z ¢ K it should be the case that

[ 1@pl@)de = [ @olz)de =0

for all ¢ € D(K). This implies that f(x) = 0 almost everywhere on K. As K was arbitrary, only with
the condition that o & K, it follows that f is zero almost everywhere on R?. However, this means that

[ F@)o(z) =0 plao)

for ¢ € D (R?), which is a contradiction.

. Let f(z) =1 ¢ L} (R) and consider pv (1) : D(R) — R given by

pv (1) () = lim @) 4.

§ NOIR\[-e] T

Using Taylor's formula of ¢ around zero, we have

p(x) = ¢(0) + 26(z),
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for some 6 € C*°(R). It follows that

1 0
<pv <> ,gp> = lim 7('0(0) + 28(z) dzx
x e\ 0 R\[—€,€] X
_ / o() de + lim ©(0) + z0(z) du
R\[-1,1] % NOJ[—1,1\[~e,e] w
g / () dz + lim 0(z) dx.
R\[-1,1] T NOS[—1,1\[~e,e]

where in (1) we use the fact that 2% is odd over the interval [~1,1] \ [~¢,¢]. Hence, pv (1) is a
distribution.

3.2.1 Convergence and Differentiability
Definition 3.2.4. Let (T},),.y € D’ (Rd), then T,, — T in D’ (Rd) if
(T, ) = (T’ 0)

for all p € D (]Rd).

Example 3.2.5.
1. Let (fn)nen € Lip. (R?) and let f € Lj,. (R?) be such that

loc

in LY(K) for any K C R? compact. It follows that
(Ty.vh = Tl = | [ () = 1) p(a)
(1)
M

1
< |[fn(z) = f(z)| do
supp(¢)
= M”fn - fHLl(supp(cp))
where (1) follows as ¢(z) is continuous on a bounded set. As supp(yp) is compact it follows that

| fn — f”Ll(supp(w)) —0

asn — oo and so |(Ty,, ) — (T, )| — 0 asn — oo for any ¢ € D (R?). Therefore, Ty, — Ty in
D’ (RY).

2. Let p(z) be as given by with ¢ such that [, ¢(z)dz = 1. Let . be as given by (3.1.4). Then
Ty, — do
in D' (R%) as e\, 0.
For u € C! (Rd) and ¢ € D (Rd) we have
/ Op,u(x)p(z)de = 7/ w(x)0y, p(x) da. (3.2.1)
R Rd

Note that d,,¢(z) € D (R?) and so u on the right-hand side can be replaced by a distribution 7. Thus, (8.2.1)
can be understood as a characterisation of the derivative of a distribution.
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Definition 3.2.6. Let T' € D' (R?). Then the generalised derivative of T with respect to x; is

oT B O
<aw> = <T’ ami>

for all ¢ € D (]Rd). More generally, for any o € N¢ we let

<DaT7 (P> = (_1)|o<\ <T7 Da(p>

for all p € D (Rd).

Remark 3.2.7.

1 IfT =T, for some u € C' (R?), then 8,,T, = Oy,u. More generally, if u € Lioc (R?), then DT,
coincides with Definition

2. Note that a distribution T' is infinitely differentiable with commuting derivatives as p € D (Rd) is smooth
with commuting derivatives.

I Lemma 3.2.8. If (T},), .y S D' (Rd) is such that T,, — T in D’ (Rd). Then D*T,, — D%T in D’ (Rd).

Proof. Let ¢ € D (R?), then for o € N we have

(DT, ) = (—1)1*(T;,, D)
" (—1)lel(T, D)

= (DT, ),
where the convergence follows as D%p € D (R?) and T, — T in D’ (RY). O
Example 3.2.9.
1. Let
w720
Then

= ¢(0),

where in the last step we have used the fact that o(z) — 0 as & — oo. Hence, H' = &y in the sense
of distributions. However, in the pointwise sense, H' = 0 almost everywhere, and so we see that the
generalised derivative does not coincide with the pointwise derivative. Note also that

(D845, 0) = (—=1)1*'Dp(x0)

for all p € D (]Rd).
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2. Let f € C* (RY) and o € N%. Then for all ¢ € D (R?) we have

(DTy, ) = (=1)*(Ty, D)

|a|/ F@)D%
)

= [ Df(x)p(x)dx
Rd
= <TD”‘f7 90> )
where in (1) we use reverse integration by parts, which we can do as f € C* (Rd). Thus it follows that

Tpay = D*T}.

Definition 3.2.10. Let ¢ € D (R%), h € R? and X € R.

1. The translation of ¢ by h is
Thp(x) = p(x + h)
for x € RY.

2. The dilation of ¢ by X is
Hyp(x) = p(Az)
for z € R

Definition 3.2.11. Let T € D' (R?), h € R and X € R.
1. The translation of T by h is the distribution 13, T given by
(T, ) = (T, Tap)
foro € D (Rd).
2. The dilation of T' by X is the distribution H\T given by
(T, 9) = 33 <T Hy <P>

for p € D (]Rd).

3.3 Solution to Exercises
Exercise [3.1.2)

Solution. Note that ¢'(x) has compact support, say K C R. In particular, as ¢'(x) is continuous on K it is
bounded, that is
' ()| < M

42



for all z € K. Therefore,

Amwmw

sAWMWMMx
SMAU@Nx

= M| fllzr(x)
< 00,

where in the last step we use that f € L. _(R) and K C R is compact.

loc
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4 Sobolev Spaces

It will turn out that Sobolev spaces are the proper setting to apply functional analysis ideas to investigate partial
differential equations.

4.1 Holder Spaces
Definition 4.1.1. Let U C R be open. For k € N let C*(U) denote the set of functions f : U — R that are

k-times differentiable with D*f : U — Rl continuous for every o € N* with |a| < k.

Remark 4.1.2. As U is open, we can not determine anything about the behaviour of the function of C*(U)
on OU.

Definition 4.1.3. Let U C R? be open. Fork € N let C¥ (U) denote the set of functions f € C*(U) for which
D f is bounded and uniformly continuous for all o« € N% with |a| < k.

Remark 4.1.4.

1. Equivalently, C¥ (U) can be seen as the set of functions in C¥(U) whose derivatives of order less than or
equal to k have continuous extensions to the whole of OU .

2. OnCk (U) the map || - ”ck(U) :CF (U) — R given by
Fles(o) = 3 sup D7 f(a)
lal<k zeU

is well-defined.

I Theorem 4.1.5. The space (C’C (U) Il = ||ck(g)) is a Banach space.

Definition 4.1.6. A function f : U — R is Hélder continuous with index ~y if for some ¢ € R we have
|f(z) = f(y)| < clz—y[”

for every x,y € U.

Remark 4.1.7. If f is Hélder continuous with index v € (0, 1], then f is Lipschitz continuous.

Definition 4.1.8. For U C R open and v € (0, 1], the 0-Hélder space denoted C°” ((7) contains functions
u € C° (U) such that u is Hélder continuous with index .

Remark 4.1.9. Note that if u is Hélder continuous with index v > 1, then v’ = 0 which implies that u is
constant.
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Exercise 4.1.10. On C%" (U') show that the map [‘]co,w((j) - @0 (U') — R given by

— [u(z) — u(y)|
Heon@) = S8 e =ab

is a semi-norm.

Remark 4.1.11. The semi-norm of Exercise can be seen as a computation of the smallest constant
¢ € R that satisfies the statement of Definition[4.1.8

Proposition 4.1.12. The map | - HCOW(U) :C%7 (U) — R given by
[ullgo () = [Wleon () + l1ulleo (o)
is a norm on C°" (U)
Proof. As || - [|co(z7) is @ norm, using Exercise it follows that

Al o () = Al o o7y

for A € R and
lu+2llcoq 0y < [Weon () + [Wleon (o) + 1ulleo () + I10llco(ory
= ||U||co=v(U) + ”UHCOW(U)'
Suppose |[u]|qo. () = 0, then it must be the case that ||u||CO(U) =0. As |- HCO(U) is a norm, this happens if

and only if u = 0. Therefore, || - HC“»W(U) is a norm. O

I Theorem 4.1.13. The space (CO’7 (0), 1 ”cﬂ«v(U)) is a normed Banach space.

Proof. Let (f,)nen C C%7 ((_]) be a Cauchy sequence. It follows that (f,,)nen C C° (U) is a Cauchy sequence
with respect to || - ||CD(L—,). As (CO 0). - ||C0(0)> is a Banach space we know that f, — f € C° (U). For any
(v,y) € U2 with x # y, let 6 = |x —y|. Then as f,, — fin || - ||C0(g) it follows that there exists an N € N such
that
57
ula) — 1) < 2
for any x € U. Therefore, for n > N it follows that

[f(x) = fW)] _ [f(@) = fa(@)| + [falz) = Fa(y)][ + | fn(y) = [(y)]

lz -yl |z —y[7
_ @) = fo@) [+ [faly) = F()] N |fn(2) = fu(y)l
o lz —y|
T AT @) — fal)]
e R e
=1 + ‘fn(x) - fn(y)|
le —ylr
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As (fn)nen € COY (U) is Cauchy we know that the sequence (f,,),en is bounded and so W < C for
all n € N and (z,y) € U?. Therefore,

ap @ISO o

(z,y)€U?,xy ‘33 _y"y N

and so f € C%7 (U) By similar arguments we show that given an € > 0 and (z,y) € U? there exitsa N € N
such that for n > N we have that

(@)~ fal@) = (F&) ~ Sa))] _ €
oz =yl T2
Therefore,
wp  H@) @) - GW) = B _ €
(z,y)€U? 24y “T - y|'y 2

Moreover, there exists a M € N such that for n > M we have that || f — anCO(U) < § by the fact that f,, — f
in || - ||C0(U)' Therefore,

[f(x) = ful2) = (f(y) = fu(®))]

f_fn ~A(T) = f_fn 7) T sup
| o () = | lleo (2) - o=y
P
-2 2
for n > max(N, M). Hence, f,, — f in C®7 (U) O

Definition 4.1.14. Let vy € (0,1]. The corresponding k" order Hélder space is

CkY (U) :={ueC"(U) : D*ue C® (U) forall a« € N* with |a| < k}.

Remark 4.1.15.

1. The space C*7 (U) can be thought of as a space between C* (U) and C*! (U). In a sense, u € C¥7 (U)
can be seen to be (k + ~y)-times differentiable on U.

2. Note if U C R is bounded, then for 0 < a < <1 and k=0,1,... we have

ck1(U) cckP (U) c k= (U) ccF (D).
Remark 4.1.16. The map || - ”ckw(U) : Ck7 (U) — R given by

ey =" D2 Dueon@y+ D I1D%lleo(r)

€N |a|=k aeNd |a|<k

is a norm on C*7 (U).

I Theorem 4.1.17. The space (C’m @), 1l HCM(U)) is a normed Banach space.
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4.2 Construction

The space CF (U) measures regularity pointwise, whereas Sobolev spaces measure regularity using integrals.
Recall, that the space LI (U) is the space of locally integrable functions. More specifically,

loc

L (U) = (] L7(K),
Veu

where V' € U means that there exists a compact set K such that V C K C U.

Definition 4.2.1. The space W*?(U) consists of functions u € L} (U) whose weak derivatives D“u exist
and belong to LP(U) for all o € N¢ with |a| < k.

Remark 4.2.2.
1. We require u € L}, (U) such that u is differentiable in the generalised sense.
2. The space WF-2(U) is usually denoted H*(U) to reflect the fact that it is a Hilbert space.
3. The map | - |lwrw(wy : WPP(U) — R given by

1

= (ZaeNd,\a|§k fU |Dau|p) ! 1<p<oo

HUHW’“P(U) = .
ZaeNd,|a|§k |1D UHLoo(U) b =00,

is referred to as the Sobolev norm on W*(U).

Definition 4.2.3. For U C R? open, the space W’g’p(U) is the completion of C2°(U) with respect to |||l wr.»(v)-
That is,
WhP(U) = C(0) "W

Remark 4.2.4. As before, Hf is used to denote W2,

Example 4.2.5.
1. Let U = B1(0) CRY. Letu:U — R? be given by
= zeU\{0}
u(z) = ||
c z =0,

where ¢ € R is some arbitrary value and o € R s some fixed constant. The constant ¢ can be arbitrary
as Sobolev spaces use an integral measure of regularity, and {0} is a set of measure zero and thus
insignificant.

= Note that u € LP(U) when

1 |
de=Cy [ —r?1dr < oo, (4.2.1)
B1(0) 1Z|°P o TP

where C is some constant that arises as we transition from Cartesian to radial coordinates. Equality
(4.2.1)) holds if and only if ap —d + 1 < 1. Therefore, w € LP(u) if and only if ap < d.
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» When x # 0 we can compute the derivative of u(x) classically as

ax;
Diu == |1‘|0‘+2
such that o

Consequently, as weak derivatives are unique, it follows that if u is weakly differentiable then the
weak derivative must be given by D;u = —‘xfly%jﬁ Observe that

a
Voo = [ e
L) By (0) |2|*T!

1
«
_ d—1
= Cd/o ToH_lr dr
1
«
= Od/(; 77«06-5-2—(1 dT’.

Thus, ||[Vul||L1 @y < oo if and only if « < d — 1. Now let € C°(U), then integrating by parts it

follows that
— / w0y, pdx = / (0z,u) pdz — / upn; dS;,
U\ Bc(0) U\B.(0) 9B(0)

where n. = (nq,...,nq) is the outward normal vector. Therefore, assuming o < d — 1 we have that
Vul| 1y < 0o and so we can apply the dominated convergence theorem to deduce that

[ @aeds ™S [ @u)pds
U\B.(0) U

and

/ UOy, pdx i / U0y, pdx.
U\B.(0) U

Furthermore, we have

| upnidsi < el (%) (ect™)
8B.(0) ——
c-vol(B¢(0))
S 56(1_1_&
0o,

where convergence follows as we are assuming o < d — 1. Therefore, for « < d — 1 the function u

QaxT;

is weakly differentiable and thus must have weak derivative D;u = — late -

= As before

1
1
IVull ey = Cdap/o =+t 4"

which if finite if and only if a < %,

Therefore, w € W'P(U) if « < £ —1 and u ¢ W'P(U) if « > 4. In particular, note that when p > d
the condition o < % — 1 implies that o < 0 and so u is continuous on By (0).

48



2. Let (ri)reny C B1(0) be a dense set. Then let
u(x) := Z 1
o W 2 — [
keN

for x € U. Then u is unbounded in any open subset of U. However, as in statement 1 we have that
u € WHP(U) when a < % —1.

Theorem 4.2.6. Forallk € {0,1,...} and p € [1,00], the Sobolev space (W*?(U), || - |[wr.»1r)) is a Banach
space.

Proof.
1. As
fullwesoy = | 35 [ 1Dl da
la]<k’V
it follows that || - [lyx.» (1) is positive and homogeneous. Now take u,v € W*P(U), then

P

Ee— /U D% (u + v)?

lo| <k

— | S ID(u+0) 20
la|<k

IN

p
S (D%l oy + 1Dl 1))
la|<k

p

Z HDO‘HII'LP(U) + Z ||DQU||1£;7(U)
le| <k lee|<k

A
INE
o=

= |lullwer @y + lvllwerw)-

where (1) is an application of Minkowski's inequality as contextualised on the discrete counting measure.
Therefore, || - [[wr.s(rr) is @ norm on WP (U).

2. Observe that
1D%ull Loy < lluellwes @) (4.2.2)

for all @ € N¢ with |a| < k. Let (u;);en € WFP(U) be a Cauchy sequence. Then by (#.2.2)) it follows that
(D%uj) ;e € LP(U) is a Cauchy sequence for all a € N¢ with |a| < k. Therefore, as LP(U) is complete,

there exists a u® € LP(U) such that D%u; I2% e in LP(U). Let u = u(®+9), that is u is the limit of
(uj)jen in LP. Now let ¢ € C2°(U), then using the definition of a weak derivative we have

V! [ 0y (D) do = [ (D)) oda

for all j € N. Applying the dominated convergence theorem to both sides it follows that

(—1)lel / uD%pdx = / u®pdz.
U U
Therefore, by Corollary [3.1.13|it follows that D®u = u® in LP(U), and so u; — u in W*P(U).
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4.3 Properties

Having established Sobolev spaces, understanding how functions operate within them will be important. In
particular, it will be useful to understand how the properties of the weak derivatives of Sobolev functions.

Theorem 4.3.1. For U C R?, let u,v € WFP?(U).

1. For all a, 3 € N* with |a| + |B] < k we have D®u € W*~llP(U) and DP (D*u) = D (DPu) =
Dathy,

2. For A1, A2 € R we have \ju + \ogv € WEP(U) with
D(Mu + Av) = M1 D% + Ao D%v
for all a € N¢ such that |a| < k.
3. IfV C U is open, then u|y € WFP (V).
4. If¢ € C2(U), then éu € WFP(U) and
D(¢u) = (g) DPeD*By, (4.3.1)
Bl
Proof.
1. Note that for ¢ € C3°(U) we have D¢ € C°(U). Hence,

D) DPodx = (—1)1°! | uD*DPpdx
( ® ®
U U

:(—1)“1‘/ uD“Jrﬂcpdx
U

— (—1)lal+(al+I8) / (D*+Pu) 6 da
U

= (_1)\5\/ (D"Jrﬁu)cpdx.
U

Therefore, by the uniqueness of the weak derivative, we have that D? (D%u) = D®*8u. Similarly,
D (DPu) = D*"Pu, and so D (DPu) = DP (D*u). Consequently, for any 8 € N with [3| < k — |o
we have that D? (D%u) exists and is in LP(U) as |a| + |8] < k and u € WFP(U). Therefore, Du €
Wk=lelp(1r).

2. Observe that
/ (M D%+ Ao D%) pdx = N\ / (D%u) o dx + Ao / (D) pdx
U U U

:(—1)“")\1/ uD‘dex—i—(—l)'O“/\g/ vD%p dx
U U

= (_1)\04 / (Mu + Av) D%pda.
U
Therefore, by the uniqueness of the weak derivative, it follows that
D* (/\1u + )\21}) = M\ D% 4+ Ny D%v.
In particular, this means that for |a| < k, the weak derivative D (Aju + A2v) exists. Moreover,
1D (e + 220 oy < Pl 1Dl oy + el 1D%0l] o) < 00,

which means that A\ju + A2v € WEP(U).
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3. Any ¢ € C(V) can thought of as ¢ € C°(U) by letting ¢(x) = 0 for x € U\ V. For a € N? with
la| <k, let D*u be the weak derivative of w on U. Then

/V(Dau)gadz:/U(Dau)godx
:(fl)la‘/UuDo‘cpdm

:(—1)|a‘/ uD%pdzx.
1%

Therefore, the a-order weak derivative of u|y is D®uly. Hence, as

||DauHLp(v) < HD“uHLP(U)

it follows that u|y € WFP(V).

4. Proceed by induction of |a/.
» For |a| =1, let ¢ € C2°(U). Then using the product rule of £, ¢ it follows that

[ cupode= [ up®(ge) ~ u(D€) oo
U U

—7/ (D% + uD“E) pdux.
U

Thus, D¥(¢u) = ED%u + uD®E.
<l < k. Let a € N? with

» Assume that (4.3.3) holds for all £ € C>*(U) and o € N¢ with |a|
|a| =1+ 1, such that a = B+~ for 8,7 € N? with || =1 and |y| = 1. Then for ¢ € C*(U) it

follows that

/ tuD%pdx = / ¢uDP (DY) dx
U U

- (_1)\B|/UZ (f)D”fDﬁ_”uD'ygadx

o<p

Ind Hyp. o\ [B]+1l
(-1) /U Zﬁ
Ind_Hyp. (_1)\a|/ Z

<f ) DY (D°¢DP~7u) pdx

(5 ) (D”“"’fDa_(”“"Y)u n D”§Da_"u) odz
Uop \7

:(—1)\a|/U Z(Z)D"fDa"u pdz,
o<l

where for the last equality we have used the fact that

(2)+(0)=C)

4.4 Approximations
To better understand the properties of Sobolev spaces, it will be useful to develop systematic procedures to

approximate Sobolev functions.

51



Theorem 4.4.1. Let u € W*P(U), for some p € [1,00), and set

Ue =N * U

Ue :={z € U : dist(z,0U) > €},
and where 1, is as given by for the standard mollifier (3.1.3). Then the following hold.
1. u. € C= (U,) for all € > 0.
2. IfV e U, then u. — u in WFP(V) as e \, 0.
Proof.
1. Fixx € U, i € {1,...,d} and take h sufficiently small such that = + he; € U.. Then

ue(:c+he}i) —uc(r) edlh/yeU (77 <x+h§i y> - <x€y>) uly) dy.
() (7)) 2

Dyt () = /U B, 11e(x — y)uly) dy.

Note

uniformly in U. Thus,

Similarly, we show that
(D) (@) = [ Do = yputs) dy
for all o € N¢.

2. Take x € U,, and note that

where (1) follows from the Definition and the fact that 7. is smooth. Hence,
D% () = (ne x D) (z).
e\0

Now take V' & U, then D®u, —% D% in LP(V) for all a € N¢ with |a| < k, by statement 2 of Lemma

3.1.10] Hence,

lue = wlfyrnqry = D> [ D% — D%l da
lal<k”V

= > D= D%ul},
lal<k

0
4.
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Remark 4.4.2. Note that from the proof of statement 2 of Theorem [4.4.1] we deduce the more general result
that for ¢ smooth and u weakly differentiable,

(@*u)xi = P FU= P X Ug,.

Theorem 4.4.3. Let U C R be open and bounded and let w € W*P(U) for k € N and p € [1,00). Then
there exists (U )men C C(U) N WF?(U) such that w, — u in WEP(U).

Proof. Note that U = |J;=, U;, where

7

1
U, = {:1:6 U : dist (z,0U) > }

Let V; :=U;43 \ Ui;+1 and choose Vi € U open such that

U=JV.

i>0

Now let (&;),cy be such that & € C2°(Vi) and » ;- & = 1 on U. Such a collection (&;);cy is referred to as
a partition of unity subordinate to the cover (V;);en. Note that on U the sum " .., & is always finite as each
&; has compact support. Then for u € W*P(U) we have &u € W*P(U), by statement 4. of Theorem m
and supp(&u) C Vi Fix 6 > 0, then for all i choose ¢; sufficiently small such that w; := 7., * (§u) satisfies
supp(u;) € Wi, where W; := U; 14 \ U;  V; and

9
i — fz‘U”wk.p(U) = fJui — fz‘U”wk,p(Wi) < Qi1

This can be done since u; — &u . Now write

v = E Ui

i>0

Observe that for V' € U, it follows for sufficiently large ¢ that supp(u;) € W; and W; NV = (. So on V the
function v is the sum of finitely many smooth functions, meaning v € C*°(V). In particular, as u = >, &u,
for each V&€ U we have -

v — ullwerry < Z llui = &ullwes o)
i>0

1
<> g

i>0
= 67
which is a bound independent on V. Therefore, taking the supremum over V' € U we conclude that
v = ullwre @) < 6.

O

Remark 4.4.4. Theorem provides a global approximation of Sobolev functions using smooth functions,
whereas, Theorem|4.4.1| only provides local approximations on compact subsets. Note that Theorem and
Theorem [4.4.1) only consider approximating functions defined on U. Under some conditions on the boundary

of U, it is viable to approximate Sobolev functions with smooth functions that are defined up to the boundary
of U.
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Definition 4.4.5. Let U C R¢ be open and bounded. Then OU is C*° if for all p € OU there exists an r > 0
and v € C¥9 (R?=1) such that, after possibly relabelling the axes, we have

UNB,.(p) ={(x1,...,%4-1,%q) := (', 24) € By(p) : zg > v (2')}.
Remark 4.4.6. Intuitively, a C*° boundary locally is the graph of a C*° function.

Lemma 4.4.7. Let p € [1,00) and g € L? (R?). Let (zj)jen C R? be a sequence such that z; — 0 as
j — 00. Then
Jj—o0

HTng_gHLP(Rd) — 0,

where T is the translation operator of statement 1 Definition[3.2.10,

Proof. Step 1: Let g = 1¢ where Q = (a1,b1) X - -+ X (agq,bq) with I, :== b, —a,, form=1,...,d.
Observe that

.....

Hence, lim;_, ||szg — g||Lp(Rd) =0.

Step 2: Let g = 14, where A is a measurable set of finite measure.

Fix € > 0. By the regularity of the Lebesgue measure, there exists a compact set K C A and an openset U O A
such that the measure of U \ K is less than e. Since U is open we can write it as a collection of boxes

U= U Q..

acA

Since, K is compact it is covered by finitely many of the boxes, more specifically,

-

=1

As K C BCU, we have that AAB =(A\B)U(B\ A) CU\ K. Thus, as p < oo, we have
114 — 1B||Lp(]Rd) = ||1AAB||Lp(Rd) <€
By step 1, we know there exists a J € N such that for all j > J we have
72,15 — 1BHLP(]Rd) A
Therefore,

72,14 = 1AHLP(Rd) < |14 - TZJ']‘BHLP(]Rd) + 718 - 1BHLP(Rd) + 1115 — Lall 1o (ga)
=214 — ]'B”LP(]Rd) + ||7'2le - lBHLP(]Rd)

< 3e

for all 7 > J. Therefore, lim;_, Hszg — gHLP(Rd) =0.

Step 3: Let g = Zil gila, for g; € C and A; measurable sets of finite measure.
Then

N

||szg - gHLp(]Rd) < Z |92| ||Tz7:1A,: — 1y,
i=1

Lr(R4)
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and so by step 2 we have that lim;_, Hszg — gHLP(Rd) =0.
Step 4: Let g € LP (Rd).
Fix € > 0. Recall, that there exists a simple function g such that

lg — 9||Lp(1Rd) <€

By step 3 there exists a J such that
1728 = 3ll o ey <€

for all 7 > J. Therefore,

72,9 — gHLp(Rd) <79 - TZJ'QHLP(]Rd) + 9 - gHLP(Rd) +119 = 9ll 1o (ra
=209 = 9o @y + 179 = 9ll o me)
< 3e.

Therefore, lim;_; oo HTng — gHLP(]Rd) = 0. 0

Theorem 4.4.8. Let U C R? be open and bounded, and suppose that dU is C°1, or in other words OU is
Lipschitz. Let u € W*P(U) for some p € [1,00). Then there exists (tm)men C C* (U) such that up, — u
in WP (U)).

Proof. Step 1: Approximate locally around each point on the boundary.

Fix zg € OU. Then, as OU is a Lipschitz boundary, there exists an r > 0 such that for some v € C%! (Rd’l) we
have

UNB(xg) = {(2',24) € By(m0) : zg > v (2')}.

Let V :=U N Bz (zo). For z € V and A, e > 0 consider the shifted point 2¢ := z + Aeeq. Fix A > 0 and € > 0
such that Be (z€) lies in UN B, (zo) for all x € V. Now let u.(x) := u (z¢) for z € V. That is, u. is a translation
of u by Ae in the e4-direction. Moreover, set

’Ue’g = MNe * Ue

for 0 < € < e. Note that v, € C*° (‘_/)

Figure 4.4.1: Moving away from the boundary, allowing us to mollify.

Fix 6 > 0. Note that

||Ue,€ - u”wk,p(v) = ||Ue,€ — Ue + Ue — u”wlc,p(v)

< lvee — uellwk,p(v) + [lue — unk,p(V) .

I 11
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For II, observe that u. is a translation of u in the eg4-direction, which from Lemma we know is a continuous
function in LP norm when p < oco. In particular, we can choose € > 0 such that

0

flue — u”wk,p(v) < 5

For I, with € > 0 sufficiently small for II, by statement 1 of Lemma [3.1.10] we can choose 0 < € < € such that
0

[[ve,e = “6||wk,p(v) < 5

Therefore,

[|ve,e — unk,p(v) <.

Note that the sets V for all zy € QU cover QU. Thus, since QU is compact, there exists (xg)fvzl C 9U, radii
(ri)ily € Rso and sets V; := U N By (x() such that

N
oU C U B% (336)
i=1

Moreover, we have the associated functions v; € C (V;) that satisfy

llvi — u”wk,p(vi) <6 (4.4.1)

foreachi=1,...,N.
Step 2: Use Theorem [4.4.3| to get an approximation of the interior.
Let Vo € U be an open set such that

N
veclJv
=0

Then by Theorem ‘ there exists a vy € C (Vp) such that

lvo = ullwrw vy <0 (4.4.2)

Step 3: Combine these approximations using a partition of unity.

Let (&)Y, be a partition of unity subordinate to the cover
1 N
{Vo, By (). Boy (a)) }

Let 95 := Zilio &v;, such that v € C*>* (U) Furthermore, note that for o € N? with |a| < k we have
N N

D (Z &%‘) - D* (Z Eiu>
i=0 i=0

N
< Cr Y _ID* (&vi) — D* (&) | o vy
=0
N
<Ok Y Nl = ullwra vy
=0
Ea1)Ea2)
< Cro(14+ N)

N0
™00

- (€]
D05 — D%ul| o1y =

Ly (U)

where (1) follows as ) .-, & = 1 on U, and C}, is some constant. Thus, the sequence (6;) cc> (U) converges

to u in WEP(U). O
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Proposition 4.4.9. Let u € W*? (R?). Then there exists a sequence (uy)nen C C° (RY) such that u, — u
in Wk (R?).

Proof. Let ¢ € C° (R?) be such that 0 < ¢(t) < 1 for all t € R with ¢(t) =1 for t € B1(0) and ¢(t) = 0 for
t € R%\ By(0). Let ¢, (t) := ¢ (%), so that ¢, (t) = 1 for t € B,(0) and supp(i,) C Ba,(0). From statement 4
of Theorem we have ¢,u € W*? (R?). For a € N? with |a| < k note that

D (pru—u) = <g) (DPp,) (D*Pu) — D,

B<la
Observe that this implies that D% (,u — u) is supported on R?\ B,.(0), thus
[oru — ullwk,p(Rd) = [lpru — ullwrr®a\B,(0)) < ullwer a5, (0))
where the last inequality follows as 0 < ¢(t) < 1. As u € W7 (R%) it follows that we can choose an 7, such

that
€

loru — u”wk,p(Rd) < 9

Since ¢, u has compact support it can be approximated by a sequence (u,)nen € C° (R?). In particular, there

exists an n € N such that c
ler,u— um”W’W(Rd) < bR

Therefore, by the triangle inequality it follows that

[um — ullwrr gy < €.

Exercise 4.4.10. Show that u € L? (Rd) belongs to H¥ (Rd) if and only if
(1+y/*) o e L* (RY),

where 1 denotes the Fourier transform of w.

4.5 Extensions

Previously, we investigated the approximation of Sobolev functions. Now we would like to extend a given Sobolev
function on some space U to a larger space, such as R%. To do so it will be necessary to work with the boundary
OU. Suppose that OU is a C*Y-boundary. That is, for all ¢ € OU there exists r > 0 and vy € C!*° (Rdil) such
that

UNB,(q) ={(z',2q) € B.(q) : g > v (2')}.
Consequently, we can straighten out the boundary. More specifically, let ® : RY — R? be given by ®(z) = y
where
yi = Ty i=1,...,d—1
’ g —y(21,...,2q-1) i=d.
Then, OU + {yq = 0} under ®. The inverse of ® is ¥ : R? — R? where ¥(y) = = is given by
Yi i=1,...,d—1
€Ty = .
yd+7(y17"'7yd71) 1 =d.
In particular, ® o ¥ = ¥ o & = id and
®(UN B (q) < {ya > 0}.
Note that ® and ¥ are C'-functions and as det(D®) = det(DW¥) = 1 the function ® is a C!-diffeomorphism.
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Exercise 4.5.1. Let U C R? with OU a C'-boundary given by ®. Then for u € W?(U)NC! (U) we have

w0 @llwirwwy) < cllullwirw),

where U := ®~! and c is a constant independent of u.

Theorem 4.5.2. Suppose U C R? is open and bounded, with OU a C'-boundary. Then for U € V and
p € [1,00] there exists a bounded linear operator E : W'P(U) — WU (RY) such that for all u € WP(U)
the following hold.

1. E(u)|lu = u almost everywhere.
2. supp(E(u)) C V.

3. |E(w)llwrr ey < cllullwre@y where c = (U, V,p).

Proof. Fix xg € OU. -
Step 1: Consider the case when 9U is flat near zg and u € C* (U).

As OU is flat near xg, it lies in the plane {x4 = 0}. Thus we may assume that there exists a 7 > 0 such that

By = B(zo)N{zy >0} CU

and
B_ := B,.(x) N {xq <0} CR\ U.
x4
1 TN Qv
& ™/
Figure 4.5.1
Consider
i(z) u(z) x € By
| S3u(a, —xg) + 4u (¢/,-%) zeB_.

Note that @ is continuous on {z; = 0}, namely %(z) = u(2’,0) on the boundary, thus @ € C° (B, (z0)).
Moreover, for 1 < k < d — 1 we have

i (Z) _ Ugy, ([L‘) T € B+
Tk =3y, (2" — z4) + dug, (x’, —%d) r € B_,

and for &k = d we have

i (2) = {uzd (x) x € By

3ug, (¢, —zq) —2u(2/,—%) z € B_,

which are continuous on {4 = 0} and so @ € C! (B,(z0)). Using these computations it follows that

||ﬂ||w1,p(BT(x0)) < cllullwre(m,)

for some ¢ > 0 independent of u. Hence, in this case, one can take F(u) = 1.
Step 2: Consider the case when QU is a C*-boundary near z and u € C* (U).

Since, OU is a C'-boundary there exists an open neighbourhood V' of x such that boundary AU is the graph
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of a function ®. In particular, the map ® is an open map as it has an inverse ¥, and so ®(V') is an open
neighbourhood of yy = ®(xg). Hence, there exists an r > 0 such that B,.(yo) C ®(V). As U is also open, the
set U (B,(yo)) is an open neighbourhood of . Let W := ¥ (B,.(yg)). Note that ®(W) = B,.(yo) and

®(UNW) = Br(yo) N {ya > 0}.

Let y = ®(x) and 2 = U(y). Consider @(y) := u (¥(y)), and the sets By and B_ for yo as constructed in step
1. As @ € C' (B,) we know from by step 1 that there exists an extension 4 € C' (B,.(yo)) such that @ extends
4 and
||ﬁHW1=P(B7,(yO)) <cllallwies,) - (4.5.1)
Let
u(x) == u(P(x)).

Note that 4 € C1(W) and extends u as ® o ¥ = id. Observe that

1l woury = @0 q)HWLP(\II(Br(yD))
Ex. ~
< c HUHWLP(BT(yO))

(4.5.1)

< Hanwl.,p(B”

=c|luo <D||W1,p(3+)

EED
< ullwrrw-rsy)

= CHHUHWLP(U)

where ¢ is some constant independent of u. Thus we have established local extensions at each point of the bound-
ary, therefore, we can use the compactness of OU to determine finitely many points 2, € OU with corresponding
sets W; such that u; € C1(W;) extends u and U C Uf\;l W;. Moreover, there exists Wy € U such that

N
UC U Wi.
1=0

Take (&)X, to be a partition of unity subordinate to (W;)X, and let & = Zf\io & u;, where ug = u. Observe
that on U we have 4 = w as u; = 0 on U for all 4 and ZZV:O & = 1. Moreover, 4 € C' (R?) since the & vanish
outside a compact set. Furthermore,

lallwr.pgay < cllullwrewy,
and so we can conclude by letting E(u) := 4.
Step 3: Consider the case when AU is a C! boundary and u € WP (U).
Take u € WLP(U) and find (up,)men € C* (U) converging to u in WP(U). Using step 2 we can consider the

sequence (E(um)),,cy € WP (R?). By linearity

£ (um) — E(“k)HW1~P(Rd) = | E(um — uk)HWLP(Rd)

< cHum - ukHWLP(U)7

where the inequality follows from step 2 which can be applied as u,, — uy € C* (U). As (U )men is Cauchy in
WEP(U) it follows that the sequence (E(urm)),,eny © WP (R?) is Cauchy and thus convergent as W2 (R?) is
complete. Hence, one can let

E(u):= lim E(up),

m—r oo

which is well-defined as limits are unique and so the limit is independent of the exact sequence chosen in C*° (U)
which converges to u. Using step 2 all the requirements of £ are satisfied and so this completes the proof. [
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Remark 4.5.3.

1. Theorem shows the existence of an operator that extends u to a larger region. Hence, E is referred
to as an extension operator.

2. An analogous result holds for extending functions on W*P(U). To prove this generalised result, in step
1 one would have to extend u on x4 < 0 with

k
Z cu (:c’ 7E>
2

=1

where the ¢; are such that Y% ¢; (-H)"=1forallm=0,1,....k—1.

4.6 Trace Operator

The restriction of a function v € C (U) to QU is well-defined as u has a pointwise construction. However, a
function u € WLP(U) is only defined almost surely, thus its restriction to OU has no meaning since U is a set
of measure zero. In particular, this means that there are no guarantees of continuity. This is an issue as the
boundary values for elliptic partial differential equations are important as they influence the solvability of such
equations. The trace operator resolves this issue.

Lemma 4.6.1 (Young's Inequality). /fp,q € (1,00) are such that  + ¢ =1, then

aP  b?
ab < — + —
p q

for all a,b > 0.

Proof. The function f(x) = e* is convex, hence
ab = f(log(a) + log(b))
=f <Zl)1og (aP) + ;log(bq)>
<~ F (og @)+~ (log ()

_ L og(a) | 1 jlogor)

p q
aP b4
p q

O

Remark 4.6.2. A convenient specification of Lemma arises when setting a = (ep)% a and b = (ep)_% b
for e > 0 to give

ab=ab < — + — = ea®? 4 C(e)bY,

S R
Q| T

where C(e) = () »

q

Theorem 4.6.3. Let p € [1,00). Let U C R? be an open and bounded set with OU a C'-boundary. Then
there exists a bounded linear operator T : WP (U) — LP(dU) such that the following hold.
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1. Tu = ulgy ifue WHP(U)NC (U).
2. || Tull o orry < cllullwro @y, foru € WLP(U) and ¢ = ¢(p,U).

Proof. Fix xg € OU. -
Step 1: Consider the case when U is flat near zy and u € C* (U).

As 9U is flat near z, it lies in the plane {z4; = 0}. Thus, we may assume that there exists a r > 0 such that

By := B.(zg)N{zq >0} CU
and
B_ = B,(0) N {xg <0} TR\ U.
Let B := By (xg). Let £ € C2°(B) be such that { > 0 on B and { =1 on B. Let I' := 9U N B. Then with

v = (z1,...,24-1) € R = {z4y = 0} it follows that

/|u|p da’ §/ &|ulP da’
T {Id:()}

DL e, drads
{zq=0} JO

@ p
=— [ (uP),, dz

B
— —/ [ulPE,, +p\u|pflsgn(u)umd§dx

By
Lem. 6.1 _P_
< cl/ \u|pdx+02/ (|u|p*1)f’fl + |ug,|” d

B+ B,

< c/ |ulP + |Dul? dz. (4.6.1)

where (1) is an application of the fundamental theorem of calculus, and the fact that « vanishes at oo. Similarly,
(2) holds as & vanishes outside of B. Hence, T'(u) := u|sy is bounded with

1T (W)l L ovy < ep, U)|lullwrr @)

for any u € C! (U)
Step 2: Consider the case when U is a C'-boundary and u € C! (U).

As done in the proof of Theorem [4.5.2} we straighten out the boundary and the use (4.6.1)) from step 1 to deduce
that

/stS c/ luf? + [Dul? dz (4.6.2)
N U

where I' C 9U is open and contains xg.
Step 3: Use the compactness of QU to find an estimate on the boundary.

Since QU is compact there exists finitely many points (:130

that OU = |J, T; and

)i\il with corresponding open sets (I';)~_, C dU such

lulle ) < cillullwre @)
fori=1,...,N by (4.6.2). Letting T'(u) := u|su we have

1Tullr o0y < cllullwrew),

where ¢ is a constant independent of wu.
Step 4: Consider u € Wh?(U).

There exists a sequence of function (u,)men € C* (U) converging to u in WP (U). Using (4.6.2) from step 2
we have

1T wm — TUZHLF(@U) < cflum - ul”W“’(U)-
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Hence, (T'u,,) C LP(9U) is a Cauchy sequence, and thus we can let

meN =

T(u) := lim T(up),

m—r oo

where the limit is taken LP(0U). Observe that,

| Tul e (our) 1T umll e (ou)

lim
m—r 00

AN

< lim cflumllwrre @)
m—0o0
= cllullwrr@)-

We note by (4.6.2) that T'(u) is independent of the chosen sequence of smooth functions.
Step 5: Consider u € WhP(U)NC (U).

Using Theorem |4.4.8/ one can choose a sequence converging to u in C (U) thus T'(u) = ulsy. O

Remark 4.6.4.

1. The operator T of Theorem is referred to as the trace operator, with T (u) referred to as the trace
of u on OU. Similar trace operators exists for u € W*?(U).

2. Note how statement 2 of Theorem effectively says that T' is continuous, since bounded operators
are continuous. In particular, this means that foru € W #(U), as C (U) "W*P(U) is dense in W' (U)
we can first define u|py for u € C (U) N WP (U) using statement 1 of Theorem . Then, we can
uniquely extend u to the boundary by taking a convergent sequence in C (U) NWLYP(U) and defining u

on QU as the limit of T' applied to the convergent sequence. We can do this uniquely as T' is continuous
by statement 2 of Theorem

Theorem 4.6.5. Let p € [1,00). Let U C RY be an open and bounded set with OU a C'-boundary. Then for
u e WH2(U) we have u € WP (U) if and only if T(u) = 0 on OU.

Proof. (=). By construction there exists a sequence of function (tm)men C C°(U) such that u,, — w in
WHP(U). Note each u,, is compactly supported so that T'(u,,) = 0 and so as T : WYP(U) — LP(9U) is a
bounded linear operator, it follows that Tu = 0 on JU.

(«<). Using a partition of unity and flattening the boundary, we may assume without loss of generality that
u € Whp (Ri) has compact support [n Ri and T(u) = 0 on aRi = R?I!. Consequently, there exists a
sequence of functions (um)men € C' (RL) that converges to u in W7 (R%) and T(um) = tpmlga—1 — 0 in
LP (R%71). Observe that if 2/ € RY"! and x4 > 0, then

Td
(' 20)| < s @0+ [, (2, 0)]
0
thus

za
/ [t (2, 29)|" da’ < ¢ (/ [, (27,0)[" da’ + ngl/ / | Dy, (2, 1)7 da’ dt) .
Rd—1 Rd—1 0 Rd—1

Letting m — oo we deduce that

Td
/ lu (2, 24)|" da’ < czs_l/ / |DulP dz’ dt (4.6.3)
Rd—1 0 Rd—1
for almost every x4 > 0. Now consider £ € C*™° (Ry) suchthat§ =1on[0,1], £ =00on R \[0,2] and 0 < ¢ < 1.
Moreover, let

Em(7) = E(ma)
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for z € RY and
W 1= u()(1 = &n).

Then
wm,zd == urd(l - fm) - mufl
and
Dywy, = Dypu(l — &)
Thus,

2
/ | Dw,, — Dul? dz < c/ |&m || Dul? dz + cmp/ / / |ulP dz’ dt
RY Re 0 Jra-1

¢
= A+ B. (4.6.4)

. Similarly,

2
— m

@53) = =
B < cemP / e / / |Dul? dz’ dzq
0 0 Jri-1

2
< C/ / |Dul? dz'dzg
0 Jri-1
0

m— oo

-

Note that A — 0 as m — oo since &, # 0 if and only if 0 < x,, <

Hence, from (4.6.4) it follows that Dw,,, — Du in LP (R%). As we also have w,,, — u in L? (R%) it follows that
Wy, — u in WP (R%). Therefore, as wy, = 0 if 0 < 24 < =, we can mollify the w,, to construct a sequence

m'

of functions u,, € C° (R‘i) such that u,, — w in WbHP (Rff_). Hence, u € W(l)’p (R‘i). O

4.7 Sobolev Inequalities

It will be interesting now to understand how Sobolev spaces are embedded into one another. To do so we will
develop Sobolev inequalities. In particular, we consider u € W?(U) and understand when it lies in other spaces.

Lemma 4.7.1. Let 1 < py,...,pm < 00 be such that 1%1 + -+ i = 1. Then with ux, € LP*(U) for
k=1,...,m we have

m
/ g | Az < T T Nkl s )-
U k=1

Proof.

= For m =1 we have p% =1, thus

[ hurldz = sl o
U

= Suppose the result holds form > 1. Then for 1 < p1,...,Pm,Pma1 < 0o such that p%+~ 41—
consider ug, € LP=(U) for k=1,...,m+ 1. Let

1 1 1
=44 =
q P1 Pm
such that
1 1
+ -+ =1.
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Then note that

q — q % d PR
Ml . = () o)
= (/ |u|pk dx) "
U

= ||uk||%pk(U)7

which implies that |ug|? € Lka(U) for each k = 1,...,m. Therefore, applying the inductive hypothesis we

have
q q
[t o < 1 (A
m
= H ||uk||%Pk(U)'
k=1
Therefore,
Hoélder's q q q
/ |ug oo Ut |de < (/ [lut]®. .. |wm|?] dx) ||Um+1||me+1(U)
U U
1
< (H ||uk||ka(U > ||um+1HL1’m+1(U)
= (H ||Uk||LPk(U)> ||um+1||me+1(U)
k=1
m4+1
k=1
O
Lemma 4.7.2. Ford >2let f1,..., fq € L1 (R?"1). Then set
d
fla) =] fi @)
i=1
where for x = (x1,...,24) € R? we let &; = (1,...,%i—1,Ti41,...,%a). It follows that f € L* (R?) with

d
I fll ey < H | fill La—1 (ma—1y-

i=1
Proof. We proceed by induction on d.
» For d = 2 we have f(x1,22) = fi(x2)fa(x1). Thus,

Il fllzr ey = /RZ |f(x1,22)| day dao

" el daa [ faGen)] dar
R R
= [lfillr @l f2l 22 ®)-
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» Suppose that the result holds for d > 2. For the case d + 1 we have f(z) = fqt1 (Za1+1) F(z) where
F(z):= f1(Z1)... fa(Zq). Observe that

..........

< ”fd-&-l”Ld'(]R")||F||L%(Rd)a
where the inequality comes from an application of Holder's inequality with p = d and ¢ = %. Recall that
F(2,2401) ™7 = f1 (2,000 77 ... fa (2, 2401) 77,
and so by applying the inductive assumption it follows that
a1

d
Ldl(Rdl)>

d
= I far1ll oy [TIF Co2arn)ll pagary -
=1

_d_
fi(xap1) T

d
/ |f(@,za41)|dzr .. dza < (| fav1 || Lagrey <H‘
L1y, Td =1

Now integrating over x4 it follows that

d

sy < W allingesy [ TLIS G lasqaas, doasa
i=1

d d
| favll pagay 1T (/R 1 fi ('axd+1)||%d(Rd—1) dmd+1>
=1
4 3
S s (G R
i=1
d

= |l farill poggay [T 1fill oo -

LemZ 701
<

i=1
O
4.7.1 Gagliardo-Nirenberg-Sobolev Inequality
Example 4.7.3. For p € [1,d) there are specific values g € [1,00) such that an inequality of the form
[ull Lo (ray < el Dullpe(ra) (4.7.1)

could hold for all u € C2° (R?) and some constant ¢ independent of u. Indeed, let u € C2° (R?) with u % 0
and let
ux(z) = u(Ax)

for A > 0. Then (4.7.1)) implies that

urllpamay < cllDuallLe ey

/ a2 e / ()| de = — / ()| dy
Rd Rd )\ Rd'

AP
[ pur ds=35 [ 1Duw)l” .
Ra R4

and,
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it follows that

1 A
3z |l Laray < CTHDUHLP(R‘!)

Thus, L
|l Lo @ay < X2 F 4| Dull o ga).-

Hence, if 1 — g + g < 0, then by sending A — oo we deduce that uw = 0. Similarly, if 1 — % + % > 0, then
by sending A\ — 0 we deduce that u = 0. These are contradictions since we assume u % 0, therefore, it must
be the case that 1 — % + g = 0. In particular, if an inequality such as (4.7.1)) exists, it must be the case that

_ dp
9= 3>

Definition 4.7.4. For p € [1,d), the Sobolev conjugate of p is

« dp
p = T >
Remark 4.7.5. Note that
1_1 1
pr p d

meaning p* > p.

Theorem 4.7.6 (Gagliardo-Nirenberg-Sobolev Inequality). OnR?, let p € [1,d). Then there exists a constant
¢(p, d) such that
|l Lo* (ray < cll Dull Lo gay

for all u € WP (R?). That is,
Whe (RY) < LP" (RY).

Proof. Step 1: Consider the case when p = 1.
Let u € C2° (R?). Since u has compact support, by the fundamental theorem of calculus we have

x4
U(I):/ Uy, (Ilﬂ"'axi—hyiaxi-&-la-"axd) dy1

for each i =1,...,d and = € R%. Hence,

@)l < [ 1DuCers i)l v = £ (5)

— 00

fori=1,...,d. Therefore,

d
jue)| 7 < (ul . Ju) ™7 < ] fi @)™
v i=1
Integrating with respect to = and applying Lemma it follows that
4 N
[ e @ < [T |57
R4 =1 La-1(Ri-1)
d
H HDUHLl(Rd)
=1
= ||DU||L1 (R)"
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Hence,
Il oy = lull ity g < 103 -

Now using the density of C° (R?) it follows that
[ull o* ey < 1Dl L1 (mey (4.7.2)

for all w € Wh1 (RY).
Step 2: Consider the case when p € (1,d).

Let v = p(%? > 1. Then

x> = -z
ulP” dz = ulP” dz ulP" da
Pd P d P d
Rd R R
a1 _
~d d ~d
R R
@72) L -5
2 / Dl da (/ |u|dldx)
R¢ R
= ’y/ |u|" "t Du| dz (/ |u\% dx)
R R

Holder's 1)_» p;1 % ~d
< v </ lu| V55T d:c) (/ |Dupdx> (/ |u|@=T dm)
Rd Rd Rd
1
=7 </ | Dul|P dx)
Rd

Remark 4.7.7.

1. In words, Theorem says that if a function is weakly differentiable and is in some W'* (R%), for
p < d, then it represents some function LP" (R?), where p* > p. However, Theorem does not
guarantee differentiability in LP" (R?), it only guarantees that the function is LP" -integrable. Hence,
Theorem can be seen as trading differentiability for integrability.

2. Often one writes the embedding of Theorem as Wi (RY) — " (R?), to make explicit the fact
that the embedding is continuous.

Corollary 4.7.8 (Poincaré’s Inequality). Let U C R be open and bounded. Let u € Wy (U) for p € [1,d).
Then,
[ull Lo (uy < ellDullzr )

for all ¢ € [1,p*] where p* is the Sobolev conjugate of p.
Proof. As u € Wy (U), there exists a sequence (ty, )nen C C2°(U) such that u,, — u in Wh?(U). In particular,
u, — u in LP(U), and so as U is bounded it follows by Hoélder's inequality that w, — u in LP (U) where

p* = ddTpp > p. We can view u,, € C° (Rd) by taking it to be zero on R%\ U. Thus, applying the Gargliardo-
Nirenberg-Sobolev inequality it follows that

HunHLP*(U) = ”un”LP*(Rd) < C”DunHLP(Rd) = CHDun||LP(U)7
where ¢ > 0 is some constant independent of u. Passing to the limit it follows that

[l o 0y < ellDull L y- (4.7.3)
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For g € [1,p*) let § = —=2— > 1 so that % = - + 5. Then, by applying Holder's inequality it follows that

P*—q

Q=

lullLaqry < llullpes @) Itla@wy < éllDullrr s

where we have used the fact that [|1]| sy < oo since U is bounded. We note that ¢ is independent of u, as for
fixed ¢ the value of ||1| La(y is constant. O

Corollary 4.7.9. Let U C R? be open and bounded with a C'-boundary. Then for p € [1,d) and p* its
Sobolev conjugate, we have
WhP(U) C LP (U).

In particular, there exists a constant c such that
lwll Lo= oy < ellullwe @y

for all u € WHP(U).

Proof. By the Theorem there exists 4 := E(u) € WP (R?), such that u has compact support, @ = u on
U and

4]l y1.pray < cllullwre@- (4.7.4)

Since, % has compact support, using Theorem there exists a sequence of functions (up)nen C C2° (R?)
such that u,, — @ in W% (R%). Thus,

[[wn | Lo* (R4) < éHDUnHLP(JRd)-

In particular,
=t o gty < €Dty = Dt .

Which implies that u,, — u in Ly (Rd) as well. Therefore,

[all o= (may < E[|DU| Lo (ra)- (4.7.5)
Hence,
_ . ) ETa
lull o @y < Nullzer @y < EllDUllLora) < clluflwierey < ellullwiew)-
O
Exercise 4.7.10. Suppose there exists a function u € C> (0) vanishing on OU, for which
Vu|*(z)d
Jy Vul*(@) dz (4.7.6)

Joy u?(z) dz
attains its minimum value \. Then w is an eigenfunction with eigenvalue \, namely
—Au = du

in U. Moreover, X is the smallest such eigenvalue with eigenfunction in C (U).

Remark 4.7.11. From Corollary[4.7.8 we know that

lullZz @y < CollVullZa ),

68



or equivalently
S 1Vul? dz o1

fU lul2dz — Cp’
Therefore, from Exercise it follows that C, > /\% where )1 is the smallest eigenvalue of —A.

4.7.2 Morrey’s Inequality
Theorem deals with the case when p € [1,d). Now we will understand the case p € (d, c0).

Exercise 4.7.12. Show that C%2(R) C H'(R). In particular, show that there exists a ¢ > 0 such that

lellgo. gy < el -

Theorem 4.7.13 (Morrey's Inequality). On R?, let p € [d,00). Then there exists a constant ¢ = c(p,d) such
that

”uHCOW(Rd) < C||u||W1.p(Rd)

for all u € C° (R?), where vy =1 — %.

Proof. Let ) be an open cube of side length r containing the origin. Then let

_ 1/
U= — u(x) dx
QI Jq

_'IQ/ 0)de
IQI/ ful) =~ u(0)] de-

As u € C2° (R?), we can use the fundamental theorem of calculus to observe that

Note that

d

u(@) — u(0) = /O &u(tx)dt

Oou

Since |z;| < r, for x € Q, we have

dt.

8;51

Therefore,

fu() — u(0 \<r/
dtdzx

5~ '—Km/p/ Eﬂ
(%)[62'/0 (/ > g;@)\tddy) at
uQﬁ>dt
Lr(tQ)

d
Holder's ¢~
< -
= 1k (Z

1

8:51
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where in (1) we have changed the order of integration and set y = tx, and ¢ is conjugate to p. Since [tQ| = t%r9,
we can write

1

@ — u(0)] < er'™ T | Dull Lo oy / 4G dt
0

&

1—4
P

_d
r' 7% || Dul| po gay
= CTWHDUHLP(Rd)v

where c is some constant. Take z,y € R? with |z — y| = 5. Then pick a box of side length r containing = and
y. By shifting the above result, and applying the triangle inequality, it follows that

lu(z) —u(y)| < |u—u(@)| + @ —u(y)| < e[| Dull Lo ra).-
Hence,

u(z) — u(y)|

|§C7y|7 < CQWHDUHLp(]Rd).

Taking the supremum over x # y it follows that
[ulco.rray < capllDull L (ra)- (4.7.7)
Next note that any 2 € R? belongs to some cube @ of side length 1, thus

lu(@)] <[] + @ = u(2)| <[] + || Dull Lo @)

B Holder's
jal < /Q (@) dz S ol o 1Lz

we have that
lu(z)| < & (lull o gay + [ Dull Lo ra))

for some constant ¢ independent of x. Hence,

[ulleo@ey = sup [u(@)] < é&luflwrr@a)- (4.7.8)

z€RY
From (4.7.7)) and (4.7.8)) it follows that
[ullco ray < ellullwrp(gay-

O

Remark 4.7.14. The fundamental theorem of calculus is critical for Sobolev embeddings as it relates a function
to the integral of its derivative, thus trading differentiability for integrability.

Corollary 4.7.15. Suppose u € WHP(U) for U C R? open and bounded with C*-boundary. Let p € (d, c0)

andy=1-— %. Then there exists a u* € C%7(U) such that u = u* almost everywhere and

[ [l o @y < ellullwrrw)
for some constant c independent of u. That is, there exists a continuous embedding W1?(U) < C%7(U).

Proof. As dU is C', using Theorem there exists an extension Eu = u € W' (R?) such that 4|y = u, @
has compact support and

il ygs.r ey < ellllwrn) (4.7.9)
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Then since u has compact support, it follows by Theorem there exists a sequence of functions (un)nen C
€2 (R?) such that

T— (4.7.10)
in Wh? (R?). From Theorem [4.7.13| we have that
[tall - g < oy (47.11)
for all n > 1. In particular,
Hun - Um”Co,l_%(Rd) < CHun - umel,p(Rd)

4 4

for all n,m > 1. Hence, by the completeness of C*!™» (R?) there exists a u* € col=% (R?) such that

Up —> u* (4.7.12)

in %1% (R?). From (4.7.10) and (4.7.12) it follows that u* = u almost everywhere on U. Moreover, from

(4.7.11)) we have

[l gy < Ny
Therefore using ((4.7.9)) we conclude that,
147 1 g < il o,

For U C R? open and bounded with a C!-boundary we have thus far shown the following statements.

1. If p € [1,d) then WP (U) < LP" (U) is a continuous embedding, where 1% +3i= 1%

2. If p € (d,00) then WhP(U) — C%7(U) is a continuous embedding, where v = 1 — % <1

Applying these embeddings iteratively establishes similar embeddings for higher-order Sobolev spaces. As p* > p,
the embedding WP (U) < LP"(U) trades integrability for differentiability. However, if there is some differentia-
bility remaining we can continue to trade it away. In particular, if a function is in W*?, for k sufficiently large,
then eventually p* > d, at which point we can use the embedding WHP(U) < C%7(U) to arrive at a Hélder
continuous, and thus continuous, function. Applying the same procedure for the derivatives, it may be that the
resulting embedding is also C2, provided k is sufficiently large. Hence, we can arrive at classical solutions to partial
differential equations. Thus, if we can show the integrability of a solution to a partial differential equation, we
can then use Sobolev embeddings to show that they are regular and classical solutions to the partial differential
equation.

4.7.3 General Sobolev Inequality

We can generalise and consolidate the previous inequalities with Theorem [4.7.16

Theorem 4.7.16. Let U C R? be an open and bounded set with C' boundary. Let v € W*P(U).

1 Ifk < % then w € L1(U) where é == — %. Moreover,

1
P
[ull ey < Cllullwsrw)
where C = C(k,p,d,U).
2. Ifk > % then u € C*~ 151717 where [-] denotes the integer part and
413

’y =]
{any positive number less than 1

¢ 7
€ Z.

hSHISHLSHI~H
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Moreover,
[l )1 ) < Cllulhnrco
for C = C(k,p,d,~,U).
Proof.

1. Since, D?u € LP(U) for |a] < k — 1, it follows by Theorem that

I1D%ull o= (1) < Cllullwrr @y

which implies that u € W*=12"(U). Similarly, u € W*=22""(U') where o = e —
we deduce that u € W94(U) = LI(U) where % = % — % with an estimate

—1_2
=--3 Eventually,

Ul

[ull ey < Cllullwer @)
holding for C = C(k,p,d,U).

2. = Suppose % ¢ 7. Then as above, u € WKL (1) where % = % — é provided Ip < d. In particular, let

[ = %} so that [ < % <l+1, thenr = df—‘il > d. Therefore, as u € Wk*l’T(U) and using Theorem
4.7.13] we deduce that D%y € 91—+ (U) for every a € N such that || < k —1 — 1. Moreover,

1d1d+zm+1d.
r p p

Thus, u € cr-l3l-ulsl+-3 (U) with the required estimate.

= Suppose % €7Z. Letl= % — 1. Then as above, u € WF=LT(U) for r = d’i—‘;l = d. Using Theorem

we have that D*u € L9(U) for g € [d,00) and all [a] <k —1—1=k — 2. Therefore, from
Theorem 4.7.13| we have Do € %'~ % (U) for all ¢ € (d,00) and |a| < k — % — 1. Therefore,

we ki (U) for v € (0,1) with the required estimate.
O

Moreover, Proposition deals with the case when d = p.
Proposition 4.7.17. For d = p, we have
WP (RY) C L9 (R?)
for all g € [p,00). In particular, for fixed q there exists a ¢, > 0 such that

[ull Laey < cqllullwrea)-

Remark 4.7.18. In Proposition[4.7.17 it is important that q # oco. Indeed, consider

u(z) = log <10g <1 e |i|>) .

Then u € Wh4(U), where U = B1(0), however, u & L>=(U).

4.8 Solution to Exercises
Exercise @.1.10l
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Solution. Let A € R, then

|(Au) (z) = () (y)|

[)‘U]CO,V(

[l

) = sup

z,yelU |z —y|"
s 12 =)
z,ycU |£U - y|'y
= [Mluleon (-

Moreover, for u,v € C% ([_]) we have

|(u+v)(2) = (u+v)(y)l

[u+ U}COW(U) = sup

z,ycU |£C - y|'y
< 1) = W)+ (@) — o)
z,yeU |z —y|"

= [U]CO,’V([}) + [’U]COW(U)'

Therefore, HCOW(U) is a semi-norm on C%7 (U). It is not a norm as for u = ¢ € R?\ {0} we have [u]cm((j) =
0. O

Exercise [4.4.10]

Solution. (=»). If u € C¥ (R?). Then, Dew = (iy)*a. Thus, by approximating u € H* (R?) by compactly
supported functions it follows that Doy = (iy)*a for u € HF (]Rd). In particular,

/ ly|?* |af® dy = 27r/
Rd Rd

/ (1+ 1) af? dy < e / (1+ 1) [af? dy
Rd Rd

<c (||U||L2(Rd) + HDkuHm(Rd))

2
D(k’o’“"o)u‘ da < c/ ’Dku|2 dx.
Rd

Hence,

= C||“HHk(Rd)
< 00.
Therefore, (1+ |y|*)a € L? (R?).
(«<). Note that
YT V2 ~
i) 0l ey < e | (0 + 1), o (48.1)

Let uo = F 1 ((iy)™a). For ¢ € C° (R?) we have

/ﬂaapdw:/ Uopdz
Rd Rd



Where the bar notation is complex conjugation. It follows that u, = D%u in the weak sense. Thus since
luallp2®ey = 27 |(iy) * A 12 (ga) ,

it follows by that D%u € L? (R?). Therefore, u € H*(U). O

Exercise [4.5.1]

Solution. Using the change of variables formula it follows that

oo @l uiey = | ePlD¥|dz
< sup | D ulf} 0. (48.2)
Through the chain rule we have
D(uo ®)(z) = Du(®(x)) DD (x),

thus
[D(uo ®)(2)] < [Du(®(x))][|[D®]| < c[Du(®(z))|.

Therefore,

ID@o )y <c [ IDed)pPds
v(U)

- c/ |\Dul’| D] dz
U

< C||D“||I£p(U) Sgp\D‘I’l (4.8.3)

Combining (4.8.2) and (4.8.3) it follows that

lu o @[|wrrewy) < cllullwre@)

for some constant dependent only on ® and W. Note that we have implicitly used the fact that U is bounded,
®,U are C! and ®, ¥, D® and DV are bounded on U. Moreover, we have used the fact that w o ® € C! (U) -
Whe(U). O

Exercise [4.7.10]
Proof. Fix ¢ € C°(U). Consider ¥ : (—¢,€) — R given by

_ Jy IV (u+te) da
U(t) = UfU(u+t¢)2dx

For sufficiently small € > 0 the function u+ t¢ is non-zero and so W is well-defined. Moreover, VU is differentiable.
In particular, the minimum of W is achieved at ¢t = 0 with ¥(0) = A. Therefore,

o4 (fU IV (u+tg)|? dx)

i\ s )|
6) 2fU<Vu,V¢> dx 2fU |Vul* dz [, updx
o N 2
Jyu?da ([ u?dz)
_ (Ve Ve de | [ dugda
- Jyu?dx Jyy u?dx
@ —ZfU Augdr [, dupdz
T purde T [puPde
- 2fU(Au + \u)¢dz
B Jyu?dz
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where in (1) we have used the quotient rule, and in (2) we have integrated by parts. Since ¢ € C°(U) was
arbitrary, it follows that
Au+Au=0

as required. Suppose that there exists a 1 < A such that

Au+pu=0 (4.8.4)
and u € C? (U) is non-zero and vanishing on 9U. Then, multiplying (4.8.4)) by w and integrating by parts it
follows that

/ |Vul? dz = u/ u?(r)da,
U U
which contradicts that the quotient (4.7.6)) has minimum value A. O
Exercise [4./.12)

Solution. Let u € C°(R). Then (u|u])’ = 2|u|u’ and so

x

() ) = 2 / ()l () dy

— 00

which implies that
w(@)? < llullpz ey 10/]] Lo gy -

Hence, using Lemma it follows that

Nl=

2
lulle gy S (lullfey + 1912w ) = lullin -

Moreover, as

u(z) —u(y) = /y o' (t) dt

we get that )
u(@) —u(y)| S 1o —yl* ']l 2, -
Hence,
|u(z) = u(y)|
— S Il
Viz =yl
which upon taking supremums means that
u(z) — u(y)|
[U]CO=%(R) = sup S ||U/||L2(R) S e gy

z,yER,z#y \l‘ - y|

Thus, it follows that
HUHCO,%(R) < lulla w)-

Using the density of C2°(RR), the result holds for u € H!(R). O
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5 Second-Order Elliptic Boundary Value Problems

Throughout, U C R? will be open with C! boundary.

5.1 Elliptic Operators

With u € C? (U) let
d d

Lu:=— Aiillg. ). + biug, + cu, 5.1.1
J i/xy i

i,j=1 i=1
where a;;,b, c are given. Without loss of generality, we can assume that a;; = a;; for all 4, j.
Remark 5.1.1.

1. A partial differential equation in the form of (j5.1.1)) is said to be in divergence form as the highest order
term is of the form V - (AVu).

2. Ifa;; € C(U), then (5.1.1)) can be written as

d d
Lu=— Z D Vi = Z Ezuz + cu. (5.1.2)
i=1

ij=1

In such a case, the partial differential equation in non-divergence form.

Definition 5.1.2. Let L be a partial differential operator.

1. L is elliptic if

d
> ay(@)ég; >0
ig=1
for every x € U and ¢ € R\ {0}.
2. L is uniformly elliptic if

d

> aij(@)&; = BlIEI

ig=1

for every v € U, ¢ € R?\ {0} and 6 > 0 independent of x.

Remark 5.1.3. Ellipticity means that the matrix A(x) = (a;;(x)) is positive definite, and uniformly elliptic if
the smallest eigenvalue is strictly greater than zero. Indeed, statement 2 of Definition|5.1.2 can be re-written
as

Q&) == T AL > 0)|€°.

5.2 The Weak Formulation

Consider

Lu=j U (5.2.1)
ulpy =0 OU.
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Let uw € C? (U), and assume u solves (5.2.1)). Take any v € C? (U) with v|py = 0, then

/fvdx:/Lu-vdx
U U

d d
:/ v — Z (aijuxi)gﬂj "‘Zbiuri +cu| do
v 3,7=1 i=1
d d d
:/ v| — Z iU, +/ Z iU, Vg, + Zbiumiv + cuv dx
ou ij=1 i,j=1 =1
d d
:/ Z AUy, Vg, + Zbiumiv + cuv dx.
Ui =1 i=1

Hence,

d d
/ fvdx = / Z QijUg, Ve, + Zbiumiv +cuv | dz, (5.2.2)
U U

ij=1 i=1

for all v € C2 ((_]) with v|gy = 0. Let

d d
Blu,v] ::/ fvdzx :/ Z iUz, Va; + Zbiumv + cuv | dz. (5.2.3)
U U

i,j=1 i=1

Conversely, if u € C? (U) with u|gy = 0 is such that (5.2.2) holds for all v € C% (U) with v|sy = 0, then
/(f—Lu)vda: =0
U

for all v € C? (U) with v|sy = 0. Thus, Lu = f and so u solves (5.2.1).

Remark 5.2.1. Equation (5.2.2) is referred to as the weak formulation of (5.2.1)). In particular, we have shown
that u € C* (U) satisfies (5.2.1)) if and only if u satisfies the weak formulation (5.2.1)). This is useful, as (5.2.2)
makes sense for u € Hy(U) = WH2(U).

Definition 5.2.2. A function u € H{(U) is a weak solution to (5.2.1)) if f € L*>(U), and
Blu,v] = (f,v)2v)

for all v € H{(U).

5.3 Existence of Weak Solutions
5.3.1 Lax-Milgram

Let H be a real Hilbert space with norm || - || and inner product (-,-). With (-,-) we denote the pairing of H
with its dual space. Where we recall that the dual space of H, denoted H*, is the collection of all bounded linear
functionals on H.

Theorem 5.3.1 (Riesz Representation). Let H be a Hilbert space. Then for all f € H* there exists a unique
@ € H such that
(f;2) = f(z) = (¢, 2)
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| forallzen.

Theorem 5.3.2 (Lax-Milgram). Let B : H x H — R be a bilinear map for which there exists a constant
o > 0 such that
| Blu, v]| < afjull[|v]| (5.3.1)

for every u,v € H. Moreover, there exists a constant 3 > 0 such that
| Blu, u]| > Bl|ull? (5.3.2)

for all w € H. Then if f € H*, there exists a unique uw € H such that

Blu,v] = {f,v)
for allv € H.

Remark 5.3.3.

1. Equation (5.3.1)) says that B is bounded, and (55.3.2)) says it is coercive.

2. Since B is a pairing of H with itself, we can consider the map ® : H — H* given by v — Blv,-|. By
Theorem for all f € H* we can write f(-) = (w,-) for some w € H. Thus if ® is bijective there
exists a v € H such that Blv,-] = (w,-) = f(-) for some w € H. Hence, w is a weak solution. This
means that to determine the existence of solutions it suffices to understand when the map is bijective.

3. Theorem is a generalisation of Theorem as B[, -] is not necessarily an inner product, indeed
it does not have to be symmetric. If B were symmetric, then

((u,v)) := Blu,v]

is an inner product on H. Applying Theorem[5.3.1 to (H, Bl-,-]) yields Theorem|[5.3.2

5.3.2 Energy Estimate

To leverage Theorem to determine when weak solutions (5.2.2)), it is necessary to verify its assumptions for
B[, -].

Theorem 5.3.4. Assume a;; = aj;, b;,c € L>(U) and L is uniformly elliptic. Then for B as given by ([5.2.3),
there exists o, B > 0 and v > 0 such that

| Blu,v]| < aflullm @) llvllaw)

and
Bllullfn wy < Blu,u] + 7z (5.3.3)

for all u,v € H{(U).

Proof. Observe that,

d d
Bluoll < 3 llagloe o) /U Dul|Dvldz + 3 [l o) /U |Duljo] dz + ez (o) /U v daz

ig=1 =1
Holder's

< allDullL @)l Doz @y + callDull L2y l|vll 2y + esllullzz @y lvll 2 0y
< é(ull 2wy + I1DullL2w)) (vl 2@y + 1Dv] L2 wry)
< aflullm @y lvllm @)
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Using the ellipticity assumption, we have

d
9/ \Du|2dx§/ Zaijuwiumj dz
U UGS
d
= Blu, u] —/ Zbiuxiu—&—czf dz
Ui=1

d
< Blu,ul + Y- [ble=w) [ 1Dullulde + [el~w) [ v?do

i=1

d
1
<B > lbill Dufde+ = | w’d
< [UaU]Jri:lH ill (U)<E/U| ul x+4€/Uu Z>
Hlellw) [ u?da,
U

for € > 0, where the last inequality is an application of ab < % + % for a,b € R. Choosing € such that

d

0
> IbillL() < 5

i=1

it follows that 0

f/ |Dul? dz < Blu,u] + 6/ u? dz
2 Ju U
for some ¢ > 0. Therefore,

0
2

0
sl = 5 (lulida) + 1Dullew) ) < Blu,ul + luldz)

as required.

Remark 5.3.5.
1. Inequality (5.3.3)) is known as Géarding's inequality.

2. Note that when b; =0 for all i € {1,...,d} and ¢ > 0, we have

0| Dul| %2y < Blu,ul.

So that by Corollary[4.7.8 we get (5.3.3)) with v = 0. Consequently, we can apply Theorem|[5.3.2 to solve

(5.2.1f), which in this case reduces to Laplace’s equation.

Theorem 5.3.6. Let U C R? be open with C'-boundary and let L be as given by (5.1.2). Then there exists

a~y > 0 such that for any 1 > v and f € L*(U) there exists a unique weak solution u € Hy(U) to

Lu+pu=f U
u=0 au.

Moreover,
ullm @y < el fllzzwy
for some ¢ = ¢(L,U) > 0.
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Proof. Using Theorem there exists a,, 5 > 0 and v > 0 such that
|Blu, ]| < allullis @) ol o) (535)

and
Bllullf wy < Blu, ul +~llull 720y (5.3.6)

For >~y let L, = L + p and consider the bilinear form

By [u,v] := Blu,v] + p(u,v) L2(0y-

Then,
|BM[u’ UH < |B[uav]| + |M(U7U)L2(U)‘
(15.3.5)
< allullm ol wy + p(u,v)Lzw)
Hoélder's
< allullm oy llvllaw) + pllellc@o)lvlieew)
< allullg @y vl @y + pllwlla o l[vlla @)
= allullg o llvlla @)
Similarly,
Bllullfey < Blu,ul +7llullz2
w2y
< Byulu,ul. (5.3.7)

Therefore, B,[-,] satisfies the conditions of Theorem m In particular, fix f € L?(U) and set (f,v) =
(fsv)r2(u). This is a bounded linear functional on L?*(U), and thus a bounded and linear functional on H(U).
Applying Theorem [5.3.2] there exists a unique u € H{(U) such that

Bll«[u7 } = <f7 >
on H}(U). That is, u is the unique solution to (5.3.4)). Moreover, using

o0 B
BHUHHl(U) = M[U,U]

=(f U)L?(U)
Hélder's
< e llwll 2wy,

therefore,
Bllulla @y < Ifllz@y-

Remark 5.3.7.

1. Theorem provides a solution to a boundary value problem, however, the solution is only in H{(U).
Improving the regularity of the solution requires elliptic regularity.

2. Moreover, Theorem[5.3.4 introduces a yu into the boundary value problem which is not ideal. To fix this
one uses compactness arguments.

5.3.3 Fredholm Alternative

The Fredholm alternative is another method by which the existence of weak solutions may be established. Devel-
oping Fredholm's theory requires the introduction of compact notions on Hilbert spaces.
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Definition 5.3.8. Suppose that H is a Hilbert space with inner product (-,-). Let (un)ney € H. Then
(un)nen converges weakly to uw € H, denoted u,, — u, if

(un,w) = (u,w)

for every w € H.

Remark 5.3.9.

1. As H* can be identified with {(-,w) : w € H}, we see the resemblances of weak convergence in Hilbert
spaces to notions of weak convergence encountered previously.

2. Strong convergence implies weak convergence.

I Lemma 5.3.10. Weak limits are unique when they exist.
Proof. Suppose for (un)nen € H we have u,, — u and u,, — «’. Then for any w € H we have

AN _ . _ . _

(w,u") — (w,u) nl;rréo(w,un) nl;rréo(w,un) 0.
Therefore, (w,uw’ —u) = 0 for all w € H which implies that «' = u due to the non-degeneracy of the inner
product. O

Theorem 5.3.11. Let H be a separable Hilbert space, and suppose that (u,)nen € H is a bounded sequence,
that is
lunll < K

for alln € N. Then (u,,)nen has a weakly convergent subsequence. That is, there exists (umj)jeN C (Un)pen
such that u,,; — u for some u € H with |lu| < K.

Proof. Since H is separable there exists an orthonormal basis (e;)7°; C H. Consider the sequence ((e1,un))nen C
R. By Cauchy-Schwartz we have
(e, un)| < lealflunl < K,

that is ((e1, un))nen is a bounded sequence in R. Therefore, by the Bolzano-Weierstrass theorem, there exists a
convergent subsequence (e1, Uy, ) — ¢1 for some |¢;| < K. Consider the sequence (1L17n)neN where uy p = U,
for n € N. Replicating the argument for the sequence (e2,u1,,),y C R yields a subsequence (e2, u1,m,,)

neN
such that (e2,u1,m,) — ca with [co| < K. In particular, as (e2,u1,m,,),cny € (€1, %m, ),en We also have that
(e2,u1,m, ) — c1. Then set (uzm)neN with ug ,, = (€2, U, ) for n € N. Proceeding inductively, for all [ € N we
construct a subsequence (ulm)neN such that for each 7 = 1,...,] we have that
k—oo

(ej,urp) — ¢j
for some c; with [c;| < K. Now take the diagonal (v;)ien where vy := u;;. Note that (v;)ien € (un),, ey and

!
(ej,v) == ¢;
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for all j € N. Observe that

where (1) is justified as the sum is finite and (2) is an application of Bessel's inequality. Now taking p — o it
follows that

o0
Z|Cj|2 < K? < 0.
j=1
This implies that u := ), ¢;e; converges in H as its partial sums are Cauchy and H is complete. In particular,

we have
ull < K.

Moreover, as (ej,v;) — ¢; = (e;,u) for all j, the weak convergence conditions holds on an orthonormal basis.

Thus, fix w € H and write
p

w = Z(ei, w)e; + wp.

i=1
Then as (e;);en is an orthonormal basis we know that

P

Z(ei,w)ei — w,

i=1
that is w, — 0 in H as ||w|| < co. Note that since w — w,, is a finite linear combination of the e;'s and we know
that (ej,v; —u) — 0 as [ — oo, we can choose L large enough such that

(w — wp, v — )] <§ (5.3.8)
for all I > L. Similarly,
|(wp, e = w)| < flwpl[lve — ull
< lJwpll (lull + l[oel])
< 2K [Jwp |
Z30.
Thus, we can choose a p such that
€
[(wp, v —u)| < 3 (5.3.9)
Therefore, for [ > L and p sufficiently large we have
[(w, vr) = (w,w)] < [(w — wp, v — w)| + [(wp, vr — )|

€

G33E3D ¢
< 5
22

Hence, we can conclude that v; — u in H. O
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Proposition 5.3.12. Suppose u € H' (R?). Let Q = ngl[ﬁi, & + L] be a box of side length L. Then

1 ? o dr?
el < g (f wde) + G 1Dz cor

Proof. Through approximation arguments it suffices to consider u € C*° (Q) Let =,y € @ and observe that

Xy d o d
u(z) — u(y) :/ —u(t,xg,...,a:d)dt—F/ —u(y1,t,x3,...,2q)dt
g, dt g, dt

Td
++/ Eu(y1,y27~-~7yd—lat)dt'
y t

d

Squaring this expression and applying Cauchy-Schwartz it follows that

w(@)? + u(y)? — 2u(z)uly) gd( ( /y x %u(t, To.. . ) dt) :

Tq d 2
ye dt

Integrating the left-hand side of ((5.3.10)) over @ yields

/Q/Qu(ac)2 +u(y)? — 2u(x)u(y) de dy = 2|Q|[ul72q) — 2 (/Q u(x) dx>2 :

2
Letting I := (f;ll %U(t,(ﬂg, e 7:cd)d75) we can use Cauchy-Schwartz to write

Xy d 2
Il S |y1 75E1| <du(t,z2,...,xd> dt
Y1 t

&1+L d 2
< L/1 ((Ru(t,xg,...wd)) dt.

Which is a bound on I; independent of z; and y, meaning

//AM®§BMWM@@7
QJIQ

where the extra L factor comes from the independence from z; and the |Q| comes from the independence from
2

y. Bounding each I; := (ff: %u(yl, coyty o, q) dt) in similar ways, then

d
dL*|QIY | Diullfe(q) = dL?|QI||Dulf2 ()
i=1

is a bound on the integral over @ of the right-hand side of (5.3.10)). Therefore,

2
Qa2 ( /Q u(z) dw) < dZ?(Q||Dulla g,

which completes the proof. O
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Remark 5.3.13. Suppose ¢ is some smooth function in H' (R?) which vanishes outside a compact set con-

taining Q and is 1 on Q. With ¢ = ﬁ fQ wdz and applying Proposition to u — cC it follows that

dL?
[ — el 22(q) < 7||DU||2L2(Q)~

That is, we can use Proposition [5.3.17 to bound the difference between u and its average with its derivative.

Definition 5.3.14. Let X and Y be normed vector spaces with norms || - || x,
Then X is compactly embedded in'Y', denoted X — Y, if the following hold.
C

- |ly respectively and X C Y.

1. X is continuously embedded in Y. That is, there exists a constant ¢ > 0 such that

[ully < cflullx
for all u € X.

2. The embedding is a compact operator. Namely, the embedding of every bounded sequence admits a
strongly convergent subsequence in || - ||y .

Theorem 5.3.15 (Rellich-Kondrachov). Let U C RY be bounded with C*-boundary. Let (t,)men € HY(U)
be a bounded sequence with
umlla @) < K

such that w,,, — u in H*(U) and

for all m € N. Then there exists u € H'(U) and a subsequence (umj)j .

L2 (U).

Proof. By Theorem it suffices to consider u,, € H}(Q) for some large cube @ such that U @ Q. Note that
H{(U) is separable as LP(U) is separable for all p < oo which implies that WHP(U) is separable for all p < cc.
Therefore, by Theorem [5.3.11| there exists a u € H}(U) and subsequence (umj)jeN such that w,,, — u. Set

Um, = w; for each j € N and fix 6 > 0. Note that Q) can be covered by taking k = k(&) cubes of side-length
L < ¢ such that the cubes only intersect at their boundaries. Denote this cover of cubes by {Ql}le. Using

Proposition [5.3.12| we have

1 2 ds?
2 2
iy =l < g (] (0 =)@ )+ G0, — )l

Summing over [ it follows that
k
lw; = ullz2g) =Y llwj — ullz2(qy)
1=1

ol 2 ds? ,
< ;@ (/Ql(wj —u)(z) dx) + = I1D(w; = w)72(q): (5.3.11)

As u,w; € H{(U) we have
|Dw; — Dulfiag) < K-

Hence, for any € > 0 there exists a § > 0 such that

ds? €
THD(W - U)||2L2(Q) <3

5 (5.3.12)
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for all j € N. Moreover, since the map u — fQ u(z) dz is linear and bounded in H!(Q), the weak convergence
of (wj) en to u implies that
/ (w; —u)(z) de 220
1

for each 1 <11 < k. In particular, j can be chosen large enough such that

" ® e
y L (/ (w; — u) () dx) <c (5.3.13)
210 \Jo,
Returning to (5.3.11)) with (5.3.12)) and (5.3.13]) it follows that
oy —ull <
0

Remark 5.3.16.

1. In other words, Theorem says that HY(U) < L?(U). Consequently, we can improve the regularity
of the weak solutions provided by Theorem[5.3.2

2. A similar result holds for H}(U) that does not require the assumption on the boundary.

3. More generally, one can show that WP < LP for p € [1,00).

Definition 5.3.17. Let H be a Hilbert space. Then a bounded operator K : H — H is compact if for each

bounded sequence (un)nen C H, there exists a subsequence (K (unj))j N which converges strongly in H.

Remark 5.3.18. Compact operators are a generalisation of finite rank operators, such as matrices.

Example 5.3.19.

1. Let K : L*(U) — HY(U) be a bounded linear operator. We know that H'(U) C L?(U) and so we can
view K as an operator K : L*(U) — L?(U). Let (un)nen C L?(U) be a bounded sequence. Then since
K is bounded we have
1 o)y < 1K Mmooy <

Using Theorem [5.3.15 we can extract a subsequence (unj)jeN such that K (uyn,) — K(u) in L*(U).
Thus, K : L*(U) — L*(U), and in particular K : L*(U) — HY(U) is compact.
2. A k" order elliptic problem can be formulated as

Lu=f (5.3.14)

where f € L2(U) and L : H*=Y(U) — L?(U). Focusing on the case when k = 2 we have L : H*(U) —
L2(U). To solve one can find an inverse map L' : L>(U) — HY(U). From statement 1 of this
example, one can apply Theorem to deduce that L™ is a compact operator. In particular, we will
see that this will let us apply Theorem|[5.3.22 to deduce information about the solutions of (5.3.14).

Exercise 5.3.20. Let K be a compact linear operator, and let T be a bounded linear operator. Show that
K oT is a compact linear operator.
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Lemma 5.3.21. Let H be a Hilbert space. Then the identity operator I : H — H is a compact operator if
and only if H is finite-dimensional.

Proof. (<). Let (up)nen € H be a bounded sequence. Then by Theorem there exists a weakly convergent
subsequence. Since strong convergence is equivalent to weak convergence in finite dimensions, it follows that this
subsequence converges strongly. Therefore, I is compact.

(=). In infinite dimensions, the closed unit ball in H is not compact. Therefore, I : H — H cannot be compact.
Therefore, if I : H — H is compact it must be the case that dim(H) < co. O

Theorem 5.3.22 (Fredholm Alternative). Let H be a Hilbert space and K : H — H a real compact operator.
Then the following hold.

1. ker(I — K) is finite-dimensional.

im(I — K) is closed.

im(I — K) = ker (I — K*)".

ker(I — K) = {0} if and only ifim(I — K) = H.

o~ W N

dim(ker(I — K)) = dim (({ — K*)) < 0.
Here I : H — H s the identity operator and K* is the adjoint operator of K.

Proof. See [3]. O

Remark 5.3.23. From statement 4 of Theorem[5.3.22 we see that either
1. (I - K)u=u— Ku = f has a unique solution for all f € H, or
2. (I — K)u = 0 has solutions non-zero solutions.

Case 1 is the inhomogeneous case and case 2 is the homogeneous case. In the homogeneous case, the space of
solutions is finite-dimensional by statement 1 of Theorem Furthermore, in case 2 the inhomogeneous
formulation has a solution if and only if f € ker (I — K*)J‘ by statement 3 of Theorem

Consider

where
d d

Lu = - Z (i (z)u%)x] + Z bi(x)uy, + c(x)u.

i,j=1 i=1

Assume that L is uniformly elliptic on U, which is an open bounded set with C!-boundary. The associated bilinear
form is given by

Blu,v] = /U zd: a1y @)tz vp, da + /U izi;bi(x)umvdm—&— /U c(@)u(@)o(z) da.

ij=1

We would like to understand the boundary value problem

Lu=f U
u=0 oU.
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To do so we consider the formal adjoint of L given by

d d d
L'y = — Z (aijvzj)m — Zbﬂ’m + (C — Z(bl)L) V.
ij=1 i=1 i=1

provided b; € C! (U)
Exercise 5.3.24. Show that for ¢, € C°(U) we have

(Lo, ¥)r2w) = (0, L") 2y -

Remark 5.3.25. From Exercise[5.3.24 it follows through density arguments that
(Lu, )2y = (U, L™0) 12y
for every u,v € H}(U).
Let the adjoint bilinear form B*[-; -] be given by
B*[v,u] := Blu,v]. (5.3.15)

Note that when b; € C! (U) the bilinear form B* can be equivalently defined as the bilinear form corresponding
to L*. Indeed,

However, the defining equation ((5.3.15]) does not require L* and thus makes sense even when b; € L*°(U).
Definition 5.3.26. A function v € Hy(U) is a weak solution to the adjoint problem
Lv=f U
v=0 ou
if
B*[-,v] = (f, )2 )

as maps on H{(U).

Exercise 5.3.27. As usual, consider a;,b;,c € L*°(U) with the a;; satisfying the uniform ellipticity condition

d

Z aij (2)&:€; > 0|¢)

4,J=1

for all ¢ € R* and some 0 > 0 for almost every x € U. For v > 0 sufficiently large, let L * : L*(U) — Hy(U)
be the bounded linear operator which maps f € L*(U) to the weak solution u € H}(U) of the problem

Lu+~yu=f U
u=0 ou.
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Show that im (L3') is dense in Hi(U).

Theorem 5.3.28. For U an open and bounded set with C'-boundary, consider the boundary value problem

{L“ =1 v (5.3.16)
u=20 oUu

for L a uniformly elliptic operator. Then exactly one of the following holds.

1. For all f € L*(U) there exists a unique solution u € H}(U) to (5.3.16)).

2. There exists a non-zero weak solution u € H}(U) to the homogeneous formulation of (5.3.16)), that is
f=0.

In particular, if statement 2 holds then the dimension of N C H}(U) the subspace of weak solutions to
homogeneous formulation of (5.3.16)) equals the dimension of N* C H}(U) the subspace of weak solutions to

the adjoint formulation of the homogeneous formulation of ((5.3.16]). More specifically, dim(N) = dim (N*) <
.3.16

0o. Furthermore, the inhomogeneous formulation of (5.3.16]) has a unique weak solution if and only if

(f,v)L2y =0
for all v € N*.

Proof. Step 1: Apply Theorem [5.3.4]
Let

B’Y [u7 U] = B[U, U] + V(ua U)
be the bilinear form corresponding to L u := Lu + yu, where v comes from Theorem Then Theorem
tells us that for each g € L?(U) there exists a unique function u € H}(U) that solves
By[u,v] = (g,v) (5.3.17)

for all v € Hy(U). Let us write u = L7 'g to indicate when (5.3.17)) holds.
Step 2: Identify an equivalent condition for the solutions of (5.3.16]).

Note that u € H{(U) is a solution to (5.3.16)) if and only if Blu,v] = (f,v) 12 for all v € Hj(U). Hence,

By [u,v] = Blu,v] +v(u,v) L2y = (f +7u,0) 2
Thus, a u is a weak solution to (5.3.16]) if and only if u = L;l(wu + f). Which we can equivalently write as

u—Ku=nh
for Ku:=yL;'u and h:= L;'f.
Step 3: Show that K is a compact operator.
Note that from the choice of v
9 Thm 534
ﬁHU”Hé(U) < Byfu,y
E3.17)
= (9, u)r2v)

< gl 2 llull2 @)
< HgHLz(U)”uHHé(U)-
Hence,
1K gl = HVLv_lgHH}](U)
= [l )

v
< =llgllz2wy-
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Therefore, K : L?(U) — H}(U) is a bounded linear operator and thus compact by the same reasoning of
statement 1 of Example

Step 4: Apply Theorem [5.3.22

Applying Theorem [5.3.22] it follows that one of the following hold.

(a). For all h € L?(U) there exists a unique solution u € H}(U) to the equation u — Ku = h.
(B). The equation u — Ku = 0 has non-zero solutions in H}(U).

Step 5: Understand the different cases from step 4.

If () holds, then we can take h = L7 '(f) to note from step 2 that there exists a unique solution to (5.3.16)).
On the other hand, if (8) holds, then v — Ku = 0, thus,

Blu,v] +y(u,v) 2wy = (Yu,v) 2 (1)

for all v € HY(U). Thatis, Blu,v] = 0 for all v € H}(U), or in other words u € H}(U) solves the homogeneous

formulation of (|5.3.16]).

Step 6: Show that v — K*v =0 if and only if v € N*.
Note that v — K*v = 0 if and only if v = K*v which happens if and only if

(v7w)L2(U) = (K*U7w)L2(U) = (U7Kw)L2(U)
for all w € L2(U). Which is equivalent to
(v, w) 2y = (v,’nglw)Lz(U) (5.3.18)

for all w € L2(U). Recall that a weak solution to
Lyp = f U
=0 oU

where f € L2(U), satisfies

B[W? ’U} + 7(‘»0’ U)L2(U) = (f» 50) L2(U) "

Letting f = w we get that ¢ = L 'w and so

B Ly (w), o] 47 (L5 (),) 1o ) = (0, 0) 220, (5.3.19)

Using (5.3.18)) and (5.3.19) we deduce that v — K*v = 0 if and only if

(v, 7L§1(w))L2(U) =B [L;l(w), v] 4+ (L;l(w), U)LZ(U)

for all w € L?(U). Which is equivalent to B [L;'(w),v] = 0 and thus B* [v, L' (w)] = 0 for all w € L*(U).
However, we also know that v is a solution to the homogeneous adjoint formulation of if and only if
B*[v,u] = 0 for all uw € H{(U). But from Exercisewe know that im (L3 ') C H§(U) is dense. Thus, since
L7 is a continuous operator we get that B* [v, L' (w)] = 0 for all w € L*(U) if and only if B*[v,u] = 0 for
all w € H{(U). Therefore, v is a weak solution to the homogeneous adjoint problem of (5.3.16)), that is v € N*.
In particular, dim (N*) = dim (ker (I — K*)). Similarly, dim(N) = dim (ker(I — K)). Thus, from statement 5
of Theorem we have that dim(N) = dim (N*) < oo

Step 7: Show that has a weak solution if and only if (f,v)z2(y) = 0 for all v € N*.

Note that (5.3.16) has a solution if and only if (I — K)u = L;'(f), that is, if and only if LJ'(f) € im(] — K).

5
Using statement 3 of Theorem [5.3.22{this is equivalent to L '(f) € ker (I — K*)* which is in turn equivalent to

(UvL;l(f))Lz(U) =0
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for all v € ker (I — K*). Observe that
. 1
(U,L,Y (f))L2(U) =\v ;Kf

L2(U)

(v, Kf) 20

e

= — (K", f)L2(U)

(v, 2y

2=

where the last equality follows for v € ker (I — K*). Hence, we see that (v,L;lf)LQ(U) = 0 for all v €
ker (I — K*) if and only if (v, f) 2y = O for all v € ker (I — K*). From step 6 we know that v € ker (I — K*)

N*, and thus we are done.

Ol

Remark 5.3.29. Theorem is an analogous result to the case of the matrix equation Ax = b, where
either there exists a unique solution or ker(A) # 0.

5.3.4 Spectral Theory
Definition 5.3.30. For a real Hilbert space let T : H — H be a bounded linear operator. Then the resolvent

of T is
p(T) :={neR: (T —nl) is bijective} .

The real spectrum of T is o(T) := R\ p(T).

Remark 5.3.31. Ifn € p(T) then the closed graph theorem implies that (T —nI)~' : H — H is a bounded
linear operator.

Definition 5.3.32. A number u € o(T') belongs to the point spectrum of T', denoted o,(T), if

ker(T — ul) # {0}.

In such a case, w € ker(T — pI) \ {0} is an associated eigenvector.

Remark 5.3.33. The point spectrum consists of the eigenvalues of T'.

Lemma 5.3.34. Let H be a Hilbert space. Then for a linear, bounded and self-adjoint operator K : H — H
we have that o(K) C [m, M] with m, M € o(K) where

m:= inf (Ku,u)
weH,|u||l=1
and
M:= sup (Ku,u).
wEH, ||ul=1

Proof. Let n > M. Then,
(nu — Ku,u) > (n — M)|lul/?
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for uw € H. Therefore, using Theorem it follows that nI — K is bijective and thus n € p(K). Similarly, if
17 < m we have that n € p(K) and so o(K) C [m, M]. Note that [u,v] := (Mu — Ku,v) is self-adjoint with
[u,u] > 0 for all uw € H. So from the Cauchy-Schwartz inequality, we have that

|(Mu — Ku,v)| = HU,UH

< Vu, ul/[v,v]

= /(Mu — Ku,u)\/(Mv — Kv,v),

for all u,v € H. In particular,

[Mu — Kul| < Cv/(Mu— Ku,u) (5.3.20)
for all w € H. Let (ug)ken € H be such that |Jug|| = 1 and (Kug,ux) — M. Then from (5.3.20) it follows that
[[Muy, — Kugl| — 0. Therefore, if M € p(K) we would have

up = (MI — K)™ (Muy, — Kuy) — 0,

which is a contradiction as |jug|| = 1 for k € N. Therefore, M € o(K). Similarly, m € o(K). O

Theorem 5.3.35. Suppose that dim(H) = co and K : H — H is a compact operator. Then the following
statements hold.

1 0€o(K).
2. o(K)\{0} = o, (K) \ {0}

3. o(K)\ {0} is either finite or a sequence converging to zero. In particular, o(K) is countable.

What's more, if K is self-adjoint, and H is separable, then there exists a countable orthonormal basis of H
consisting of eigenvectors of K.

Proof.

1. Suppose 0 € o(K). Then K : H — H is bijective. In particular, K o K—! = I is compact by Exercise
5.3.20] However, this contradicts Lemma[5.3.21

2. Let n € o(K) \ {0}. Suppose ker(K — nl) = {0} then it follows from statement 4 Theorem [5.3.22 that
im(K —nl) = H. Thus, K — nl is bijective meaning 1 € p(K). However, this is a contradiction since
p(K) = R\ o(K). Therefore, ker(K — nI) # {0} which implies that n € 0,(K) and so o(K) \ {0} C
op(K) \ {0}. On the other hand, it is clear from Definition [5.3.32) that ¢,,(K) \ {0} C o(K) \ {0} and so
we conclude that o(K) \ {0} = 0,(K) \ {0}.

3. Let (nk)ken € o(K)\{0} be a sequence of distinct elements. Since K is compact this sequence is bounded,
by Lemma [5.3.34] and thus contains a convergent subsequence. Suppose without loss of generality that
Nk — N as k — oo. Moreover, for contradiction, suppose that 77 # 0. Since ny, € 0,(K) \ {0} there exists
a wy € H\ {0} such that

Kwk = N Wkg.
Let
Hj, := span ({wy, ..., wg}).
Since the wy, are non-zero and linearly independent we have that H, C Hj.1 is a strict inclusion for k > 1.
Moreover, for w; with i < k — 1 we

(K —miD)w; = nyw; — mpw; € H—q

and
(K —miD)wy, = nrwy, — newi, =0 € Hy_q.
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Hence,
(K —mpI)Hy € Hy—1.

Now let uy € Hy so that uy € Hi- | with |lug|| = 1. Then for k > [ we have
Hy—1 € H C Hi1 C Hy,

and so

1 1 1 1
’ —Kup, — —Ku|| = ||— (Kuk — nkuk) —— (Kul — mul) + ur — Y
Nk m Nk m ~~ ~~
€Hy 1 €H;_1CHi_1 EH;;I €Hp 1

1 1
= || (Kugx — nuk) (K —m)w —w|| +1

e Cm

> 1.
However, if n, — n # 0 then this contradicts the compactness of K as the sequence (K (%uj)) - is
Jje

bounded with no Cauchy, and thus convergent, subsequence. Therefore o(K) \ {0} is finite or a sequence

converging to zero.
Let (0k)ken € o(K)\{0} be the sequence of all distinct eigenvalues, set 19 = 0 and consider Hy, := ker(K —n;I).
Then, dim(Hy) € [0, 00] and dim(Hy) € (0,00) by statement 5 of Theorem [5.3.22| Let u € Hy, and v € H, for
k # 1. Then,

e (u,v) = (Ku,v) = (u, Kv) = ni(u, v),

which implies that (u,v) = 0 as ng # n;. Let H be the smallest subspace of H containing Hy, Hy, ..., that is

k=0

Note that K(ﬁ) C H. Moreover, if u € H* and v € H, then (Ku,v) = (u, Kv) = 0, which implies that
K (H*) C H*. The operator K := K|z, is also compact and self-adjoint. Moreover, o (K) = {0}. Then by
Lemma [5.3.34|it follows that (Ku,u) = 0 for all u € H*. However, this means that for u,v € H we have that

Q(f(u,v) = (f((u—l—v),u—&—v) - (f(u,u) - (f(v,v) =0.

This, K = 0 and so H' C ker(K) C H, which implies that H+ = 0. Therefore, H is dense in H. We can
choose an orthonormal basis for each Hy for k = 1,2,... and since H is separable we can choose a countable
orthonormal for Hj too. Consequently, we obtain an orthogonal basis of eigenvectors for H. O

Theorem 5.3.36. Let U be an open and bounded set with C'-boundary, and let L be a uniformly elliptic
operator.

1. Then there exists at most a countable set > C R such that

{Lu:Au+f U G am)

u=0 oUu
has a unique weak solution for each f € L?(U) if and only if \ & 3.
2. In particular, if ¥ is infinite, then ¥ = (\) wen IS @ non-decreasing sequence with A\, — oo.

3. For each \ € X, the space £(\) C H{(U) containing weak solutions to the homogeneous formulation

of (5.3.21)) is finite-dimensional.
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Proof.
1. Let 7y be the constant from Theorem then for A < —~ the problem

Lu— u=f U
u=0 oUu

has a unique weak solution for all f € L?(U) by Theorem Therefore, ¥ C {A > —v}. Hence, assume
that A > —~ and consider without loss of generality that v > 0. Then as noted in Remark [5.3.23] we know
that has a unique solution for each f € L?(U) if and only if u = 0 is the only weak solution to the
homogeneous formulation of . Equivalently, u = 0 is the only weak solution to

Lu+vyu=(y+Nu U
u=0 ou.

which holds exactly when

yHA

u = L;l(’y + MNu = Ku, (5.3.22)

where Ku := yL; " u. From the proof of Theorem [5.3.28| we note that K : L*(U) — L*(U) is a bounded,
linear and compact operator. Note that if u = 0 is the only solution to (5.3.22)) it follows that 77? is not

an eigenvalue of K. Therefore, we deduce that (5.3.21)) has a unique weak solution for each f € L?(U) if
and only if ,Y% is not an eigenvalue of K. In other words, we characterise 3 with A € X if and only if A’YTW
is an eigenvalue of K.

2. As K is compact we know from Theorem [5.3.35| that the set of eigenvalues of K is finite or a sequence
converging to zero. In the latter case, as A > —v and v > 0 it follows that (5.3.21)) has a unique weak
solution for each f € L*(U) except for a sequence (Ay),cy Where A — o0.

3. From Theorem [5.3.28] we know that £()) is finite-dimensional.

Remark 5.3.37.

1. A number \ € X, as given by Theorem is referred to as an eigenvalue of L with u € E()\) being
a corresponding eigenvector.

2. Statement 1 of Theorem tells us that the A for which (5.3.21)) does not have a weak solution for
any f is at most countable. In other words, we can almost always solve (|5.3.21]).

Theorem 5.3.38. Suppose

(5.3.23)

Lu=f U
u =20 oUu

has a weak solution u € H}(U) for all f € L*>(U). Then there exists a constant C such that
lullze@y < Cllfllz2
for f € L*(U) and solutions u € H}(U) to (5.3.23).

Proof. Suppose that there exists (un)nen € H5(U) and (fn)nen Cr2(u) such that

Lu, =f, U
Uy, =0 oUu
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with [[u, |2y = 0l fo || L?(U). Since L is linear, we can assume without loss of generality that [uy | 2y = 1
for n € N. Then || fy|l22() < % implying that f,, — 0 in L2(U). Using (5.3.3) we note that

BHunHHl(U) < B[Un7un] + 7||un||%2(U)
= (fn,un)LQ(U) +

Hélder's

< |fallezanllunllzz @y +

1
<—+y

n
<vy+ 1L

Therefore, (tn)nen € H(U) is bounded, and so using Theorem [5.3.15( we can extract a subsequence (un, ),y
such that u, — u in L?(U) to some u € HY(U). In particular,

Lu=0 U
u=20 oU

and thus u = 0 since solutions are unique. However, as [|un, 727y = 1 for k € N we must have [[u|[z2r) = 1.
Hence, we get a contradiction, thus there exists a constant C' such that

lull 2wy < Cllfllz2w)

for all f € L?(U) and u € H}(U) solving
Lu=f U
u=0 OU.

5.4 Elliptic Regularity

Our aim is to improve the regularity of our solutions from H}(U) to say H2(U). With u € H§(U) it is not clear
whether v € H?(U) and so Lu = f does not make sense. Moreover, even if u € H?(U) it does not mean that u
is differentiable in the classical sense, thus Lu = f may not hold in the strong sense. However, such conclusions

are possible under some assumptions on L.

Example 5.4.1. Consider the Poisson equation

—Au=f (5.4.1)

for f € C2° (R?) and u € C° (R?). Then
f(x)?dr = / (Au)? dz
R R

d
=y /Rd (D;Dju) (D;Dju) dz

7,j=1

d
0 3~ /R (DiD;u) (D;D;ju) dz

ij=1

d
R4

ij=1

2
= HD2“HL2(Rd) :

where (1) follows as u is smooth. Therefore, the L?-norm of the second derivatives of u can be estimated,
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exactly, by the L?-norm of f. Similarly, from differentiating (5.4.1]) we get that

foreachk =1,...,n. Applying similar reasoning we deduce that the L?-norm of the third derivatives of u can
be estimated by the first derivatives of f. More generally, the L?-norm of the (m + 2)* derivatives of u can
be controlled by the L?-norm of the m*"" derivatives of f form =0,1,....

Our aim is to extrapolate the ideas of Example using difference quotients.

Definition 5.4.2. Let U C RY be open with V € U. For 0 < |h| < dist(V,0U) let

u(z + heg) — u(x)
h

Aru(z) =
for k =1,...,d. Then the difference quotient is

Ahqy = (A’fu, cey Agu) .

Remark 5.4.3.
1. By construction x + he; € U.
2. Suppose u € L?(U), then Au € L*(V).
3. Suppose u € H'(U), then A"u € H (V) and D (AMu) = A™(Du).

Lemma 5.4.4. Let u,v € H}(U) be compactly supported in V. @ U. Then for sufficiently small h the
following statements hold.

1. fV n (AZ‘U) dz = — fV (A;hu) vdz.
2. Al(vu) = (t)v) Alu+ (Alv) u where 7)'v(z) := v(x + hey,) is the translation operator.
Proof.
1. Suppose v € C(U). Since V is open and v has compact, there exists 0 < 2|h| < dist(supp(v),dV).

Therefore,
/Vu(:v) (AZv(x)) dzr = /Vu(x) <U(:L‘—|—h€;;) — v(;v)) dzx

Sy R YU
supp(v)—he; h supp(v) h

:/ u(x — heg)v(zx) d:cf/ u(z)v(x) da
supp(v) h supp(v) h

o u(m—hek)—u(x)v 2 da
B /supp(v) (_h) ( )d

E—_— / (A;hu(as)) v(z) dz.
1%

Therefore, by density arguments, it follows that

/ u(x) (AZU) dz = —/ (A;hu(;v)) v(z)dz
U U

for every u,v € H}(U).
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2. Observe that

v(x + heg)u(z + heg) — v(x)u(x)
h
v(x + heg)u(x + he) — v(x + heg)u(z) + v(x + heg)u(z) — v(z)u(z)
h

B v(z + hey) — v(x)
= (T]?’U) A + u(x) A

A (vu) =

Lemma 5.4.5. Suppose u € L*>(U) and V € U. Then u € H' (V) if and only if

HAh“HLz(V) <C
for all h such that 0 < |h| < 2dist(V,dU), and some C' > 0. Moreover, there exists C' > 0 such that
1 ~
E”DUHLQ(V) < [|AM]| oy < CllDullL2gvy.

Proof. (=). Let w € C*°(U). Then for i € {1,...,d} using the fundamental theorem of calculus it follows that

h
d te;
/ u(z + e)dt
0

jula -+ hes) — u(z)| = -

h
S/
0

h
< / | Du(z + te;)|dt
0

du(x + te;)

dt
dt

1
f::’”/ \Du( + she;)||h] ds.
0

Thus,
/V|Ahu(:v)|2dx:/ i\A?u(xn da
_Z/ Iuﬂchh;;| —u(@)]
<;/V/O |Du(z + she;)| ds dx
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Therefore, applying Fubini's theorem

8%y, = [ |AMu)* e

d 1

SZ// | Du(x + she;)|? ds dz
=17V 70
d 1

:Z/ /|Du(x+shei)|2da:ds
=170 JV
d 1

SZ/O |1 Dul| 7217y ds
i=1

= d||Dull2 ).
Hence,
1A% 2y < VallDullp20)-
For u € HY (V) there exists a sequence (uy,)nen € C°°(U) such that u, — u in HY(V). Hence,
A"

uH[}(v) < \/a”Du”Lz(U)

for all u € HY(V).

(«<). Let (hy),cn be such that 0 < 2|h,| < dist(V,0U) and h, — 0 as n — oco. Note that the sequence

(A.’h"u> . is bounded by C'in L?(V). Therefore, as L?(V) is a Hilbert space it follows from Theorem [5.3.11
ne

?

that there exists a subsequence (hy, ), ¢y such that (A;hku)k C L%(V) converges weakly to some v; € L?(V)
eN

where ||v;[| 12y < C. For ¢ € C°(U) we have that u(z)Al¢(x) is integrable on V since u € L2(V) and ¢ is
continuous with compact support. Therefore, by the dominated convergence theorem we have that

lim [ u(z) (Alg(z)) do = / u(z) lim (Al¢(z)) da

h—0 Jy v h—0
= / w(z)¢' (x) da.
1%
From statement 1 of Lemma [5.4.4] we know that

lim (A;hu(x)) ¢(z)dx = / v;¢(z) d.

Hence,
/ w(z)¢'(z)dz = lim [ u(z) (Al¢(z)) da
1% h—0 1%
=—1 ATh
tim [ (A7 (@) o(a) da
= —/vigb(x) dex.
Therefore, D;u = v; in the weak sense. Thus, as ||v;]|12() < C it follows that u € H' (V). O

Remark 5.4.6. From Lemma we see that A" is equivalent, in terms of the norm, to the weak derivative
on compact subsets of U. Hence, establishing results for the difference quotients allows us to infer results about
w and H2 (U).
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Theorem 5.4.7. Let U C R? be a bounded and open set. Let u € H'(U) be a weak solution to
Lu=f

on U where
d d

Lu = — Z (aij(x)ua:i)xj + Zbl(x)uw + c(z)u

i,j=1 i=1
is a uniformly elliptic operator with a;; € C*(U), b;,c € L>(U) for each i,j = 1,...,d and f € L*(U).
Then, u € H} (U) and for each V € U we have
lullazevy < C (1fllL2@) + lullz2wy)
for C =C (Vv, U, Qjj, bi7C).

Proof. Step 1: Reformulate the problem.
Fix VU and let W besuchthat VeW € U. Let £ € CP(W), with0 < <1, £=1onV and £ =0on
OW. As u is a weak solution, Blu,v] = (f,v) for all v € H{(U). In particular,

Z AjjUy, Vg, A = / fodz (5.4.2)

7,7=1
for all v € Hy(U) where
d
= Z U‘ZL —_
For some k= 1,...,d take v = —A;" (2A}), with A := Zi,j:l Ji @ije,v., dz and B := [, fodz.

Step 2: Bound A.
Observe that

Z/a”ugg §2A ) . dz

zgl

é /Ah (@ijug,) (§ Al ) _dx

zjl

(2) Z / T, alekuz (Akaw) Ug; ) (5 Akum + 2§§£_1AZU) dz

1,7=1

where (1) is an application of statement 1 of Lemma [5.4.4] and for (2) we have used statement 2 of Lemma

and the product rule for weak derivatives which can be applied as £ is smooth. In particular, one can write
A= A + Ay where

A = Z / 52 Tkaw (AkuT ) (AkuT)

7,7=1
and

As = Z / (Alai;) ug, §2Akuwj + (Alaij) ug, (2§§xjAZu) + (riai;) (Afug,) (2§§$jA’,§u) dz,

1,j=1

<C1¢| AL (Du)||Dul <C2¢| Dul | Afu <Cs¢| A (Du)||Afu

where the inequalities arise as a;; € C*(U) and € is supported on the compact set W. By uniform ellipticity we

know that
d

> (rhaij) GG > 0¢)?

ij=1
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for all ¢ € R?. Letting ¢; = Aju,, = (Afu) it follows that

Ay > 9/ & |AkDu)[* da. (5.4.3)
U

A <C [ ¢|ALDu)|1Dul + ¢|Dul |AlLul + € | AL Dw) A d,
w
we can apply Lemma [4.6.1] to deduce that
2 AR 2 C 9 ho(2
Az < e [ € |AR(Du) dx—l—? |Du|” + |Aful|” da (5.4.4)
w w

for all € > 0. From Lemma [5.4.5 we have that

/ |A2u’2 dz < C'/ | Dul? dz,
W w

thus setting € = % in (5.4.4)) and using (5.4.3)) it follows that
A=A+ Ay

29/ &AL Du)|* dz — |4y

w

> Q/ £2|AZ(DU)|2 dx—C’/ |Du|? dz
2 Jw w

for some C > 0.
Step 3: Bound B.
Observe that

BI<C [ (514 1Dul + ul) A" (€2k) do (5.4.5)
U
for some constant C' = C'(b, ¢). Using Lemma it follows that
_ 2 2
/U A" (AR dz < C/U |D (€Aw)|" da
< 0/265;” Abuf* + €2 |AL(Dw)[ da
< C’/ | Du|? d + C'/ 2 ’AZ(Du)|2 dz.
U U
where we have used (a + b)? < 2a? + 2b%. Thus, applying Lemma to (5.4.5) we deduce that
|B| < e/ £2 |A§;(Du)|2 dz + C/ |12 + |ul* + | Duf? dz (5.4.6)
U w
for all € > 0.

Step 4: Form bound.

Recall from (5.4.2)) that A + B = 0 which implies that |A| = | B|. Using this, step 2 and setting ¢ = 2 in (5.4.6)
we deduce that

/§2|AZ(Du)| dmgC/ IfI? 4 [ul* + | Dul? dz.
U w

Since { =10on V €U we get that

/ AL (Dw)[* do < c/ FI2 + [ul? + |Duf? dz < oo
1% w
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for u € HY(V) and with C independent of h. Therefore, by Lemma we have that Du € H'(U) so that
u € HE_(U). In particular, let A\, 0 to deduce that

loc
D%l agy <€ [ 197+ 1uP + [Duf? da, (5.4.7)

Step 5: Refine bound.
Let £ € C®(U) with 0 <€ <1and £ =1o0n W. Set v = &2u in the we weak formulation Blu,v] = (f,v) to

deduce that ., J
|3 wn (€0), + 3 b ut ctudo = [ feuda
U, (et U

i.j=1

Using similar steps as those made to show (5.3.3) it follows that
| Dul| 2wy < C ([1fll 22wy + lull2@w))
for some C' > 0. Therefore, using (5.4.7)) and noting that || - ||z2w) < || - ||z2(v) we deduce that
lullmzey < C(If 2@ + lullz2@)

for some constant C' > 0. O

Remark 5.4.8.

1. Note we are not requiring u = 0 on AU, in the trace sense, namely we only require u € H'(U) rather
than HY(U).

2. Letv € C>(U), then Blu,v] = (f,v). Since, u € H% _(U) we can integrate by parts to get that
Blu,v] = (Lu,v).
Thus, (Lu — f,v) =0 for all v € C2°(U). Consequently, Lu = f almost everywhere in U.

3. Theorem|5.4.7]is a local result. Namely, it says that if f behaves well in a region then so will u. That is,
singularities do not propagate in from the boundary or from regions where f is not well behaved.

4. As we only require uniform ellipticity on compact subsets, there can be degeneracy near the boundary
ouU.

Exercise 5.4.9. Let U CR% ford > 3 and OU a C2-boundary. Consider

—Autu+up=f U
u=0 ou

for p > 1. Show that if f € L*>(U) so that || |12y < €, then there exists a solution u € H*(U).

Theorem 5.4.10. Let U C R? be a bounded and open set. Let u € H'(U) be a weak solution to
Lu=f

on U where
d d

Lu= - Z (asj(@)ug,), + Zbi(x)uxi + c(z)u

J
i,j=1 i=1

is a uniformly elliptic operator with a;;,b;,c € C™"TY(U) for each i,j = 1,...,d and f € H™(U). Then,
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u € HP-"2(U) and for each V € U we have

loc

lullam+zqry < C (I1f lam @) + llullzz@) (5.4.8)
for C =C (‘/7 U, Qjj, bi,C).
Proof.

= The case m = 0 is the statement of Theorem [5.4.7]

» Assume that for uniformly elliptic operators L with a;;,b;,c € C™ 1 (U) and f € H™(U), weak solutions u
are Hr;1c+2(U) regular and such that for any V€ W € U (5.4.8]) holds. Now suppose that L is a uniformly

elliptic operator with a;j,b;,c € C™™2(U), f € H™"}(U) and fix V. € W & U. In particular, note that we
can apply the inductive assumption to deduce that

[ullnszvy < C (Iflamw) + lullzw)) - (5.4.9)

Consider |a| =m + 1 and let © € C3°(W). For a weak solution u we have that Blu,v] = (f,v) for any v.
In particular, let v := (—=1)!*/D*% and perform integration by parts to deduce that

B[D, | = (f,)

where
d d
f=Df— > |-> (Dafﬁaijpﬁum)wj +Y Db, DPu,, + D*FeDPu (5.4.10)
p<a,f#a ij=1 i=1
and B[, -] is the bilinear operator corresponding to a uniformly elliptic operator L satisfying the conditions

of Theorem ‘5.4.71 Moreover, note that @ := D% € Hl(W).~ Hence, @ is a weak solution to L& = f in W.
From (5.4.10)), our assumptions and ((5.4.9) it follows that f € L?(W) with

1F 1| ey < C (I llamer @y + ull 2wy - (5.4.11)

So using Theorem we get that % € H?(V) along with the estimate

sy < € (1 oy + Nl z2or

(5.4.11)
< C(Ifllam+rwy + lull2wy)

which holds for all & € N¢ with |a| = m + 1. Thus, as @ = D%u it follows that u € H™+3(V) with
[ullam+svry < C (I f llm+r @y + lull 2 @y) -
We conclude by induction. O

Corollary 5.4.11. Let U C R be a bounded and open set. Let u € H'(U) be a weak solution to
Lu=f

on U where
d d

Lu=— Z (aij(x)uxi)zj + Zbi(x)uxi + c(z)u

i,j=1 i=1

is a uniformly elliptic operator with a;;,b;,c € C*(U) for each i,5 = 1,...,d and f € C®(U). Then
u € C=(U).

Proof. Using Theorem [5.4.10| it follows that u € H{? (U) for every m € N. Thus, from Corollary [4.7.15( we have
that u € C¥(U) for every k € N and thus u € C>®(U). O
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Remark 5.4.12.

1. There is an equivalent form of Theorem for Holder spaces. Namely, for 0 <~ < 1 if f € C*7(U)
then u € CF+27(U).

2. Combining Theorem[5.4.10 with Sobolev embeddings, we deduce that form € N large enough, a;j, b;, c €

C™*! and f € H™ we have thatu € H;ZCJFQ — C2(U). That is, we eventually recover a classical solution.

Provided QU is regular enough, we can extend regularity results up to the boundary.

Theorem 5.4.13. Let U C R? be a bounded open set with C-boundary. Let uw € H}(U) be a weak solution

to
Lu=f U
u=20 ouU,

where a;; € C* (U), b;,c € L>°(U) and f € L*>(U). Thenu € H?(U) and
lulltz @y < C (IIfll2wy + lull2wy) -
Moreover, if u is the unique weak solution, then
lullaz@wy < Cllflle2@wy = ClliLull 2 ).
Proof (Sketch). Let us restrict to the case of a flat boundary, namely,
U = B1(0) N {zq = 0}.
Let V= B1(0) N{zq > 0}, and £ € C2° (B1(0)) where 0 < £ <1 with { =1 on V. For u a weak solution, we
have
d ~
Z / QijUz, Vg, d2 = / fodx (5.4.12)
ij=1"U v

where

d
f=7F- szuz —cu
i=1
for all v € Hy(U). For fixed k € {1,...,d — 1} and h small enough let

vi= —A,:h (ﬁzAZU)
1

- hA’;h (£%(2) (u(z + hey) — u(z)))

1
=3 (&%(x — hex) (u(x) — u(z — heg)) — E*(x) (u(z + hey) — u(x)))
for x € U. Since u = 0 along {xq = 0}, in the trace sense, and £ = 0 near the boundary it follows that

v € HY(U). Thus, we can substitute this v into (5.4.12)) and deduce in the same way as in the proof of Theorem
E47] that

[ 18k0wf az < ¢ [ (241 + Dup) a. (5.413)
Thus, we can control D;Dyu for all i,k € {1,...,d — 1}, that is the directions tangent to the boundary. From
statement 2 of Remark [5.4.8 we recall that Lu = f holds pointwise almost everywhere in U. Hence,
d d
- Z (aijue,), + Zbium +eu=f
i,j=1 i=1
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almost everywhere in U. This implies that

d
AddUz gy = — § iUz, a; + E bzuml +eu—f=F,

i,jyi+j<2d i=1

where we note F' € L?(U). Using the uniform ellipticity of L we know that azq > 0 almost everywhere which
implies that u,,,, € L?>(U). From (5.4.13) we have

| DeDiul[ 2y < C (IF 22wy + Nl wy)

which implies that
1Fll 2y £C (1f 1220y + Nlulla @)

and so ||tz a,12(1,) can be bounded by a similar expression. Therefore,
lullzvy < C (1flle2wy + llullm @) -

Using similar arguments as those made in the proof of (5.3.3), we can replace the ||u||g1 () on the right-hand
side with |lu||L2(1) to conclude that

lullmzay < C ([Iflle2w) + lullz@y) -

If u is additionally the unique weak solution, then we can apply Theorem [5.3.38| to deduce that

lullez@wy < Cllfllz2wy = CllLul L2 ).

5.5 Solution to Exercises
Exercise [5.3.20

Solution. Let (un)neny € H be a bounded sequence. Then since T is a bounded linear operator, the sequence
(T'(un)),en € H is also bounded. Thus, as K is compact, the sequence, (K (T'(u))), ey = (K 0 T)(un))
has a strongly convergent subsequence in H. Therefore, K o T is a compact linear operator.

Exercise

neN

Solution. Through repeated applications of integration by parts, it follows that

d d

i,j=1 i=1
d d
,j=1 i=1

d d
= [ = 2 @@n),, o= 3 (e + (ula), ) o+ clohipda

ij=1 i=1

- [ @

= (¢, L*w)Lz(U) :

Exercise 5.3.27
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Solution. Take ¢ € C2°(U), then a;j¢,, is compactly supported and in L?(U). Consequently, fori =1,...

can convolve a;;¢,; with a mollifier to construct a sequence (¢},) . € C°(U) such that
4 1
=D _aijoa, < om-
= L2(U)
Let

d
fn == (¢4, -+Zb 2)bw, + (c() +7)9,
i=1

which we note is in L?(U) and has compact support. Let ¢y, := L' (fmn). Consider u € Hj(U) and let

B"/['a ] = B[7 ] + 7(7 ')L2(U)
where B is the bilinear operator associated to L. Then

By (6, 0] = (s ) oo

/Zd)l Ug, +Zb Yz, u + (c() + v)puda.

Hence,

B’y [¢m - ¢> ¢m - ¢] = B'y [¢m7 ¢m] - B’y[¢> ¢m} - Bv [¢m7 ¢] + B'y [¢a (b}
d d
= /U Z d)in (d)m)wb + Z bi(2)Pw, dm + (c(2) + 7)PPm da
i=1 i=1

d d
- /U S e, + 3 bi(@)des 6+ () + )b
z;1 =1 )
-/ > 0isn, (Bm)., + 3 e, b + (ela) +2)0m o

i=1

/Zazjd)z ¢mj+zb ¢x ¢+ ()+’Y)¢(,Z5d:17

Ui=1 j=1

<d 7811,1p Zaz]¢m7 b — d)”Hl(U)
T L2(U)
d
< om ||¢m - ¢||H1(U)

Recall from (j5.3.3)) that
By [v,v] > Bllollf o

for some 3> 0 and all v € H{(U). Hence, using (5.5.1) we get that

d
Blim = bl wy < 5o llom = Sl )

thus,
d 77L—>OO 0

[Pm — Ol < 3
Therefore, ¢,,, — ¢ in HY(U) and so we conclude by recalling that ¢ € C°(U) is dense in H{(U).
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Exercise [5.4.9
Solution. Let T' : H*(U) — H}(U) take w € H?(U) to a solution u € H}(U) of

—“Au+u=f—|wP U
u=0 ou.

Consider By, := {u € H3(U) : ||ullg2(r) < b} for some b > 0. Note that (By, | - [lu2(r)) is a complete metric
space as it is a closed ball in a Banach space.

Step 1: The map I' : B, — By is well-defined.

Let w € By. Then by Theorem [4.7.13]it follows that w € C%% (U) and there exists a constant Cy = C;(U) such
that

||w|\co,%(,7) < Gi|lwllaz@w) < Cib. (5.5.2)

By Holder's inequality it follows that

Pl < (supl) ([ o)
U U

1 1 1
< Ml N g Nl ) 1013
1
= [lwlPll oo 0y U2
< |U|7 (C1b)?
=: prQ
Moreover, by Theorem [5.4.7| given g € L?(U) the linear elliptic problem
—Au+u=g U
u=0 ou
admits a unique solution H}(U) N H2(U) and there exists a constant C3 such that
lull2 ) < CsllgllLzvy-
Applying this to g = f — |w|? it follows that
lullmz@y < CslIf = [wlPll g2y
< Oz (e+ CrbP).

So letting b7~ 1 < (205C3) " and € < b(2C3) ™" it follows that ||T'(w)||g(or) < b.
Step 2: The map I' : B, — By is a contraction.
Let u; = I'(w;) for i = 1,2. By linearity it follows that u = u; — up € H{(U) N HY(U) is the unique solution of

{—Au+u = |we|P — |un|P U

u=0 ou.
Using Theorem [5.4.7| we have

[ur — w2 |lm2(y = IT(w1) — T'(w2) luz(v)
< G [lwn]” = Jwa|"ll L2y - (5.5.3)

Using

b q
P _ — P
aP — bP| /adt(t)dt

b
= / pt?tdt
a

< |a — b| max (a?~*,pP71)
<la—bl(a" '+ 1)
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with a = |wy(2)|P and b = |wy(z) P, it follows that
s ()P~ w2 (@)[P| < [Jwn ()] ~ [wa(@)]] (Jwr (@) + wa(2)P )
< Nlwr(@)] = fwa(@) | () + ezl o)
< Jun (2) = wa(@)]| (w520 + ol ) -
Therefore,

e l? = fwa Pl 2y < lhws = wallzay (ko @50 + el <)
1
< lwy — wall L2y (2(C10)P71)
where in (1) we have used (5.5.2)) to note that

e (0) < 0l oy ) < Cab
Returning to (5.5.3) it follows that

IT(w1) = T(wa) 2wy < <C32 (Clb)pfl) w1 — wa|| L2

Provided b is sufficiently small, we have (C’32 (C’lb)pfl) < 1 and thus I' : B, — By is a contraction.

Step 3: Apply Banach'’s fixed point theorem.

As By, is a Banach space and I' is a contraction, it follows that I" has a unique fixed point in B,. That is, there
exists a u € By such that

—Au+u=f—|uf U
u=0 ou

and thus w is a solution to our problem. O

106



References

[1]
2]
[3]

Lawrence C. Evans. In: Partial Differential Equations. Second Edition. Vol. 19. Graduate Studies in Mathe-
matics. Providence, Rhode Island: American Mathematical Society, 2010. 1SBN: 978-0-8218-4974-3.

Clément Mouhout. Analysis of Partial Differential Equations. 2016. URL: https://cmouhot . wordpress.
com/1900/10/25/analysis-of-partial-differential-equations-graduate-course/.

Thomas Walker. “Theory of Partial Differential Equations”. In: (Dec. 2024), p. 42. URL: https://
thomaswalkerl.github.io/notes.html|

107


https://cmouhot.wordpress.com/1900/10/25/analysis-of-partial-differential-equations-graduate-course/
https://cmouhot.wordpress.com/1900/10/25/analysis-of-partial-differential-equations-graduate-course/
https://thomaswalker1.github.io/notes.html
https://thomaswalker1.github.io/notes.html

	Introduction
	Ordinary Differential Equations
	Partial Differential Equations

	Ordinary to Partial Differential Equations
	Analyticity
	General Theorems of Ordinary Differential Equations
	Local and Global Solutions

	Cauchy-Kovalevskaya Theorem for First-Order Partial Differential Equations
	Majorants
	Cauchy-Kovalevskaya Theorem

	Cauchy-Kovalevskaya Theorem for Quasi-Linear Partial Differential Equations
	Hypersurfaces
	Quasi-Linear Partial Differential Equations
	The Cauchy-Kovalevskaya Theorem
	Characteristic Form

	Solutions to Exercises

	Distributions
	Functions
	Differentiability
	Support and Convolution
	Convergence

	Linear Forms
	Convergence and Differentiability

	Solution to Exercises

	Sobolev Spaces
	Hölder Spaces
	Construction
	Properties
	Approximations
	Extensions
	Trace Operator
	Sobolev Inequalities
	Gagliardo-Nirenberg-Sobolev Inequality
	Morrey's Inequality
	General Sobolev Inequality

	Solution to Exercises

	Second-Order Elliptic Boundary Value Problems
	Elliptic Operators
	The Weak Formulation
	Existence of Weak Solutions
	Lax-Milgram
	Energy Estimate
	Fredholm Alternative
	Spectral Theory

	Elliptic Regularity
	Solution to Exercises


