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1 Rings
1.1 Basic Theory

Definition 1.1.1. A monoid (M, ·) is a set M equipped with a binary operation · : M × M → M and an
element 1M ∈ M , called the multiplicative identity, such that the following hold.

• · is associative, that is x · (y · z) = (x · y) · z for all x, y, z ∈ M .

• 1M ·m = m · 1M = m for all m ∈ M .

A monoid M is commutative if x · y = y · x for all x, y ∈ M .

Remark 1.1.2. Any group is a monoid as associativity and the identity element are group axioms. A group is
stronger than a monoid as it requires elements to have multiplicative inverses, whereas a monoid does not.

Example 1.1.3.

• The natural numbers N = {1, 2, 3, . . . } form a commutative monoid under multiplication, with the
multiplicative identity being 1N = 1.

• The non-negative integers Z≥0 form a commutative monoid under multiplication.

• The set of n×n real matrices Mn(R) form a monoid under matrix multiplication, with the multiplicative
identity being the identity matrix, I. For n > 1 the monoid Mn(R) is not commutative.

Definition 1.1.4. A ring is a set R together with operations + : R × R → R, · : R × R → R, and elements
0R, 1R ∈ R, such that the following hold.

• (R,+) is an abelian group with identity 0R.

• (R, ·) is a monoid with multiplicative identity 1R.

• The distributive properties a(b+ c) = ab+ ac and (b+ c)a = ba+ ca hold for all a, b, c ∈ R.

A ring R is commutative if (R, ·) is a commutative monoid.

Remark 1.1.5.

• + is a function R ×R → R so it would make sense to write +(x, y) for x, y ∈ R, but for sanity we will
write x+ y for +(x, y). Similarly, we will write x · y for ·(x, y).

• We refer to + as addition and · as multiplication.

• For r ∈ R, we write −r for the additive inverse of r in the group (R,+).

• We will often just write 1 = 1R and 0 = 0R.

Definition 1.1.6. A subset S ⊆ R is a subring if the following conditions are satisfied.

• 0R, 1R ∈ S.

• For all r, s ∈ S we have −r, r + s, rs ∈ S.

Namely, S is a ring with operations + and ·. We write S ≤ R to denote that S is a subring of R.
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Example 1.1.7.

• For the usual sets of numbers as rings with standard addition and multiplication, we have

Z ≤ Q ≤ R ≤ C.

However, N ̸≤ Z as −1 /∈ N.

• The set Z/2Z with standard addition and multiplication is a ring.

• The Gaussian integers Z[i] := {a+ ib : a, b ∈ Z} is a subring of C.

• The set Q
[√

2
]

:=
{
a+ b

√
2 : a, b ∈ Z

}
is a subring of R.

Proposition 1.1.8. Let R be a ring and r ∈ R. Then r · 0R = 0R · r = 0R.

Proof. As 0R is the identity element in the group (R,+) we have that 0R + 0R = 0R. Hence,

r · 0R = r · (0R + 0R)
= r · 0R + r · 0R.

Adding − (r · 0R) to both sides implies that r · 0R = 0R. Similarly,

0R · r = (0R + 0R) · r
= 0R · r + 0R · r

and so 0R · r = 0R.

Example 1.1.9. The trivial ring is the ring over the set R = {0} where 0 · 0 = 0 and 0 + 0 = 0. It is the only
ring with a single element.

Proposition 1.1.10. Let R be a ring. Then 1R = 0R if and only if R = {0} is the trivial ring.

Proof. (⇐). We must have 1R = 0R.
(⇒). Let r ∈ R. Then

r = r · 1R = r · 0R = 0.

Throughout we will assume rings are non-trivial.

Definition 1.1.11. An element u ∈ R is a unit if there is another element v ∈ R such that u · v = v · u = 1R.
We denote the set of units of R as R× ⊆ R.

Remark 1.1.12. With the notation of Definition 1.1.11 note that the element v is also a unit.

Definition 1.1.13. A ring R is a division ring if every non-zero element is a unit. That is, R× = R\{0}.

Definition 1.1.14. A field is a commutative division ring.
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Example 1.1.15.

• Z is not a field, as 2 is not invertible. In fact, Z× = {±1}.

• Q, R and C are all fields.

• Z[i] is not a field as 2 is not invertible in Z[i]. Indeed, suppose 1 = 2(a+ bi), then by equating real and
imaginary parts we have 1 = 2a and b = 0. No a, b ∈ Z satisfies these conditions, so 2 is not invertible.

• Q
[√

2
]

is a field.

• The quaternions H is the abelian group R4 with standard basis vectors labelled {1, i, j, k}. More specifi-
cally, H is a ring with 1 being the unit, and multiplication determined by ij = −ji = k, i2 = j2 = −1,
and (r · 1) · s = rs for any r ∈ R and s ∈ H. These conditions are sufficient to define multiplication in
H, for instance

k2 = (ij)(−ji)
= −ijji
= i2

= −1.

We similarly deduce that jk = i. Note that H is not commutative since ij ̸= ji. However, it is a division
ring since

(a1 + bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2

and so if a1 + bi+ cj + dk ̸= 0 it has an inverse

1
a2 + b2 + c2 + d2 · (a− bi− cj − dk) ∈ H.

Proposition 1.1.16. Multiplicative inverses are unique. That is, if r ∈ R× has inverses u and v, then u = v.

Proof. By assumption, we have that 1 = ru = rv and so r(u− v) = 0. Since ur = 1 we get that
0 = ur(u− v) = u− v.

Therefore, u = v.

Proposition 1.1.17. For any ring R, the set of units, R×, is a group under multiplication.

Proof. If a, b ∈ R×, then there are some c, d ∈ R× such that ac = ca = bd = db = 1. In particular,
(ab)(dc) = a(bd)c = ac = 1,

and similarly (dc)(ab) = 1. Hence, ab ∈ R× which means R× is closed under multiplication. Moreover,
the element 1 ∈ R× and R× is closed under inverses by Remark 1.1.12. Therefore, R× is a group under
multiplication.

1.2 Constructing Rings
Let R and S be rings. Then their product R× S is a ring with addition and multiplication given by

(r, s) + (r′, s′) := (r + r′, s+ s′)

and
(r, s) · (r′, s′) := (r · r′, s · s′) .

Moreover, 0R×S = (0R, 0S) and 1R×S = (1R, 1S). Note that R× S is commutative if and only if both R and S
are.
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Definition 1.2.1. Let R be a ring. Then a polynomial f with coefficients in R is a sequence f = (a0, a1, a2, . . . )
in R which is eventually zero. That is, ai ̸= 0 for finitely many i.

Remark 1.2.2. If ai = 0 for i > N then we can write

f = a0 + a1X + a2X
2 + . . .+ aNX

N .

The representation of f in this notation is not unique as

f = a0 + a1X + a2X
2 + . . .+ aNX

N + 0XN+1.

Definition 1.2.3. For f a non-zero polynomial with coefficients in R the degree of f is

deg(f) = max
({
i : ai ̸= 0

})
.

If ai = 0 for each i ∈ N, such that f = 0, then deg(f) := −∞.

Definition 1.2.4. Let R be a ring. Then its polynomial ring, R[X], is the set of polynomials with coefficients
in R with the following operations. For f = a0 + . . . an +Xn and g = b0 + . . . bmX

m, where we can assume
n = m by adding copies of 0Xi if necessary, let

f + g := (a0 + b0) + (a1 + b1)X + . . .+ (an + bn)Xn

and

f · g := (a0b0) + (a1b0 + a0b1)X + (a2b0 + a1b1 + a0b2)X2 + · · · + anbnX
2n

=
n+m∑
i=0

 i∑
j=0

ajbi−j

Xi.

The subset of constant polynomials, that is those with ai = 0 for i > 0, form a subring which we can identify
with R.

Exercise 1.2.5. For a ring R, show that R[X] is a ring which is commutative if and only if R is commutative.

Remark 1.2.6. We can take the polynomial ring of a polynomial ring, (R[X])[Y ]. We write R[X,Y ] :=
(R[X])[Y ] to conveniently iterate this notion to get

R [X1, . . . , Xn] := (. . . ((R [X1]) [X2]) . . . ) [Xn] .

Definition 1.2.7. If f = a0 + . . .+ anX
n is a polynomial of degree n, we say f is monic if an = 1.

Example 1.2.8. The polynomial f = 2 +X2 is monic whereas f = 2 is not.

A polynomial f = a0 + a1X + · · · + anX
n ∈ R[X] can be thought of as determining a function R → R, where

r 7→ f(r) := a0 + a1r + · · · + anr
n.

However, the polynomial f itself is just a sequence of elements of R, and X is some formal symbol. Thus,
we cannot identify the polynomial with the function. Different polynomials can have the same function. For
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example, let R = Z/2Z, and consider f = X ∈ R[X], g = X2 ∈ R[X]. Then f and g are distinct polynomials,
but f(r) = g(r) for all r ∈ R.

Definition 1.2.9. A Laurent polynomial f in R is a sequence f = (. . . , a−1, a0, a1, . . . ), with only finitely
many ai non-zero. A Laurent polynomial can be written in the form

f =
∑
i∈Z

aiX
i.

We let R
[
X,X−1] denote the set of Laurent polynomials on R and impose the same polynomial ring structure

as that on R[X].

Definition 1.2.10. A power series f in R is a sequence f = (a0, a1, . . . ) in R, where infinitely many ai can
be non-zero. We use R[[X]] to denote the ring of the power series in R.

The ring structure on R[]X]] is the same as that on R[X] and so R[X] ≤ R[[X]].

Definition 1.2.11. Let M be a monoid, and R a ring. The monoid ring of M over R denoted R[M ], is the
set of tuples f = (am)m∈M , where each am ∈ R, and only finitely many are non-zero. We write such a tuple
f in the form

f =
∑
m∈M

amm.

For f =
∑
m∈M amm and g =

∑
m∈M bmm in R[M ] we let

f + g :=
∑
m∈M

(am + bm)m

and

f · g :=
∑
m∈M

 ∑
k,l∈M
k·l=m

akbl

m.

Exercise 1.2.12. Check that R[M ] is a ring, which is commutative if and only if both R and M are.

If M is a group, then R[M ] is the group ring of M over R.

Example 1.2.13. Let M be the monoid Z≥0 of non-negative integers, with addition as the binary operation.
Then we can identify R[X] with R[M ], by identifying aXn with a · n, where a ∈ R and n ∈ M . If we take
M = Z, with addition, we can identify R

[
X,X−1] with R[M ] in a similar way.

If R is a ring and n ≥ 1, the set of n× n matrices Mn(R) forms a ring under the usual rules for matrix addition
and multiplication. When n = 2 the ring Mn(R) is not commutative as(

0 0
1 0

)(
0 1
0 0

)
=
(

0 0
0 1

)
whereas (

0 1
0 0

)(
0 0
1 0

)
=
(

1 0
0 0

)
.

More generally, Mn(R) is not commutative when n ≥ 2. However, we may identify M1(R) with R and so M1(R)
is commutative if and only if R is commutative.

1.3 Homomorphisms and Ideals
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Definition 1.3.1. Let R and S be rings. A function ϕ : R → S is a ring homomorphism if for all a, b ∈ R we
have

1. ϕ(a+ b) = ϕ(a) + ϕ(b),

2. ϕ(ab) = ϕ(a)ϕ(b),

3. ϕ(0R) = 0S , and

4. ϕ(1R) = 1S .

A ring isomorphism is a ring homomorphism that is bijective.

Exercise 1.3.2. Show that the inverse of an isomorphism is also an isomorphism.

Definition 1.3.3. Let ϕ : R → S be a homomorphism.

• The kernel of ϕ is
ker(ϕ) := {r ∈ R : ϕ(r) = 0} ⊆ R.

• The image of ϕ is
im(ϕ) := {s ∈ S : s = ϕ(r) for some r ∈ R} ⊆ S.

Proposition 1.3.4. Let ϕ : R → S be a homomorphism. Then im(ϕ) ⊆ S is a subring.

Proof. As a ring homomorphism is a group homomorphism it follows that (im(ϕ),+) is an abelian subgroup of
S. For s, s′ ∈ im(ϕ) we have that s = ϕ(r) and s′ = ϕ (r′) for some r, r′ ∈ R. Therefore,

s · s′ = ϕ(r) · ϕ (r′) = ϕ (r · r′) ∈ im(ϕ).

Meaning, (im(ϕ), ·) forms a monoid. Therefore, im(ϕ) ≤ S.

Remark 1.3.5. If R is non-trivial then since ϕ(1) = 1 we have that 1 /∈ ker(ϕ) meaning ker(ϕ) is not a subring
of R.

Proposition 1.3.6. A homomorphism ϕ : R → S is injective if and only if ker(ϕ) = {0}.

Proof. (⇒). As ϕ(0) = 0 it follows that ϕ(r) ̸= 0 for r ∈ R \ {0} and so ker(ϕ) = {0}.
(⇐). If r, r′ ∈ R are such that ϕ(r) = ϕ (r′), then ϕ (r − r′) = 0. Meaning r − r′ ∈ ker(ϕ) which implies that
r − r′ = 0 and so r = r′. Hence, ϕ is injective.

Definition 1.3.7. Let I ⊆ R.

• I is a left ideal if it is an additive subgroup of R such that for i ∈ I and r ∈ R we have ri ∈ I.

• I is a right ideal if it is an additive subgroup of R such that for i ∈ I and r ∈ R we have ir ∈ I.

• I is a two-sided ideal if it is an additive subgroup of R such that for i ∈ I and r ∈ R, we have ri ∈ I
and ir ∈ I.

We will normally use ideal to refer to a left ideal. Note that if R is commutative the different types of ideals
coincide.
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Example 1.3.8. For any ring R the subsets {0} and R are both ideals.

Suppose I ⊆ R is an ideal and 1 ∈ R. Then for any r ∈ R we have that r · 1 = r ∈ I which implies that I = R.
Hence, the only subring which is also an ideal is the whole of R. We call an ideal I ⊆ R such that I ̸= R a
proper ideal. More generally, if I ⊆ R is an ideal containing some unit u then I = R.

Lemma 1.3.9. Let ϕ : R → S be a homomorphism. Then ker(ϕ) ⊆ R is a two-sided ideal.

Proof. Since ϕ is a homomorphism of abelian groups, ker(ϕ) ⊆ R is a subgroup of R. Now suppose i ∈ ker(ϕ)
and r ∈ R. Then

ϕ(ri) = ϕ(r)ϕ(i) = ϕ(r) · 0 = 0,

so ri ∈ ker(ϕ). Similarly, ir ∈ ker(ϕ). Therefore, ker(ϕ) is a two-sided ideal.

Example 1.3.10. Let R = Z and n ∈ Z. Then nZ ⊆ Z is an ideal. Conversely, suppose that I is an ideal. If
I = {0} then I = 0Z. If I is not zero let n ∈ I be its smallest positive element. Then rn ∈ I for all r ∈ Z
and so nZ ⊆ I. For i ∈ I, using the Euclidean algorithm we can write

i = an+ b

for 0 ≤ b < n. As n ∈ I we have that an ∈ I, and as i ∈ I it follows that b = i − an ∈ I. Since n was the
smallest positive element of I, we must have b = 0, and so i ∈ nZ. We conclude that I = nZ. Therefore, all
ideals of Z are of the form nZ for some n ∈ N.

Lemma 1.3.11. Let ϕ : R → S and ψ : S → T be homomorphisms of rings. Then their composition ψ ◦ ϕ
is also a homomorphism of rings.

Definition 1.3.12.

1. The ideal generated by an element a ∈ R is

(a) := R · a = {ra : r ∈ R} ⊆ R.

2. An ideal I ⊆ R is principal if I = (a) for some a ∈ R.

3. If S ⊆ R is any subset, the ideal generated by S is

(S) := R · S =
{∑
s∈S

rss : rs ∈ R, with only finitely many rs are non-zero
}
.

Using Example 1.3.10 we can say that all the ideals of Z are principal.

Exercise 1.3.13. Show that

I := {f ∈ R[X] : the constant coefficient of f is zero}

is an ideal of R[X]. Moreover, show that I is a principal ideal generated by the polynomial X.

Lemma 1.3.14. Let R be a commutative ring, and consider r ∈ R\{0}. Then (r) = R if and only if r ∈ R×.

Proof. (⇒). As (r) = R, there exists an s ∈ R such that sr = 1. As R is commutative we also have that rs = 1,
which implies that s is the inverse of r and so r ∈ R×.
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(⇐). Let r ∈ R× with inverse s. Then 1 = sr ∈ (r). So for any r̃ ∈ R we have r̃ · 1 = r̃ ∈ (r). Therefore,
R ⊆ (r), implying that R = (r).

Definition 1.3.15. Let I ⊆ R be a two-sided ideal. The quotient ring R/I consists of additive cosets of the
form r + I, with 0R/I = 0R + I and 1R/I = 1R + I. Moreover, the operations are given by

(r + I) + (s+ I) := (r + s) + I

and
(r + I) · (s+ I) := (rs) + I.

Proposition 1.3.16. The quotient ring R/I is a ring and the map R → R/I given by r 7→ r+I is a surjective
ring homomorphism.

Proof. Addition is well-defined as (R/I,+) is the quotient of (R,+) by a normal subgroup. Let r, s ∈ R, and let
i ∈ I. Then r + I = r + i+ I, so that

(r + i+ I) · (s+ I) = rs+ is+ I

= rs+ I.

Similarly, (r + I)(s + i + I) = (rs + I) meaning multiplication is well-defined. Associativity and distributivity
follow from R. Moreover, 0 + I and 1 + I satisfy the requirements to be the additive and multiplicative identity
respectively.

Remark 1.3.17. Proposition 1.3.16 motivates the definition of a two-sided, as a two-sided ideal provides the
necessary conditions for R/I to be a well-defined ring.

Example 1.3.18. Consider the ideal nZ ⊆ Z. Elements of the quotient ring Z/nZ are cosets of the form
r + nZ for r = 0, . . . , n− 1. Operations in Z/nZ are addition and multiplication and addition modulo n.

Exercise 1.3.19. Let R be a ring and ϕ : G → H a group homomorphism. Then ϕ induces a ring homomor-
phism ϕ∗ : R[G] → R[H], given by

ϕ∗

∑
g∈G

agg

 :=
∑
g∈G

agϕ(g).

Note that N = ker(ϕ) ⊴ G is a normal subgroup of G. Consider the ideal (N − 1) ⊆ R[G] generated by
elements of R[G] of the form g − 1 for g ∈ N . Then ϕ∗(g − 1) = 0 for all g ∈ N and so (N − 1) ⊆ ker (ϕ∗).
Show that (N − 1) is a two-sided ideal, and ker (ϕ∗) = (N − 1).

Example 1.3.20. Let R be a commutative ring. Consider the ideal (X) ⊆ R[X]. Elements of this quotient
ring R[X]/(X) are of the form

a0 + a1X + . . .+ anX
n + (X).

Note that all terms apart from the constant term are in (X). More specifically, elements of R[X]/(X) are
uniquely represented as a0 + (X). Thus, there is an isomorphism R → R[X]/(X) given by a 7→ a+ (X).

To understand more elaborate quotient rings, such as R[X]/
(
X2 + 1

)
, we can utilise Proposition 1.3.21.
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Proposition 1.3.21. Let F be a field and f, g ∈ F [X], with g ̸= 0. Then there exist r, q ∈ F [X] such that

f = gq + r

with deg(r) < deg(g).

Proof. Let deg(f) = n and deg(g) = m. Then if m > n then we can choose q = 0 and r = f . Therefore, suppose
that m ≤ n and f =

∑n
i=0 aiX

i with an ̸= 0. We proceed by induction on n. Suppose that g =
∑m
i=0 biX

i and
let q = anb

−1
m Xn−m. It follows that

f = qg + f1 (1.3.1)
where deg(f1) ≤ n− 1. If n = m then deg(f1) < m = deg(g). Otherwise we can apply the induction hypothesis
to f1 to get that

f1 = gq1 + r1

where deg(r1) < deg(g) = m. Substituting this into (1.3.1) we see that

f = (q + q1) g + r1

completing the proof.

Remark 1.3.22.

1. Proposition 1.3.21 says that the Euclidean algorithm applies to polynomials over a field.

2. It is essential that F is a field. Indeed, if F = Z then with f = 3X+ 1 and g = 2X+ 1, one notes that q
must be zero so that r = 3X + 1. As deg(f) = deg(r) we see that the conclusion of Proposition 1.3.21
does not hold.

Example 1.3.23. Let R = R[X]/
(
X2 + 1

)
. Elements of R are of the form

a0 + a1X + . . .+ anX
n +

(
X2 + 1

)
.

Letting f = a0 + . . .+ anX
n, we can apply the Euclidean algorithm to find q, r ∈ R such that

f = q
(
X2 + 1

)
+ r

with deg(r) < 2. Which implies r = b0 + b1X for some b0, b1 ∈ R. So any element of R is of the form
a+ bX +

(
X2 + 1

)
for some a, b ∈ R. In particular, this representation is unique as if

a+ bX +
(
X2 + 1

)
= a′ + b′X +

(
X2 + 1

)
,

then
(a− a′) + (b− b′)X =

(
X2 + 1

)
g

for some g ∈ R. But if g ̸= 0 then deg
((
X2 + 1

)
g
)
> 1. So we must have g = 0 meaning a = a′ and b = b′.

Therefore, every element of R is of the form a+ bX +
(
X2 + 1

)
. Note that X +

(
X2 + 1

)
squares to −1 and

so the structure of the elements of R starts to resemble the complex numbers. Let ϕ : R → C be given by

ϕ
(
a+ bX +

(
X2 + 1

))
= a+ bi ∈ C.

The map ϕ is a well-defined, bijective ring homomorphism. Consequently, R = R[X]/
(
X2 + 1

) ∼= C.
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Theorem 1.3.24 (First Isomorphism Theorem for Rings). Let ϕ : R → S be a ring homomorphism. Then

R/ ker(ϕ) ∼= im(ϕ).

Proof. Let ψ : R/ ker(ϕ) → im(ϕ) be given by
ψ(r + ker(ϕ)) = ϕ(r).

This is well-defined, since if r + ker(ϕ) = r′ + ker(ϕ) then r − r′ ∈ ker(ϕ) and so ϕ(r) = ϕ (r′). Moreover, it is
a ring homomorphism as ϕ is a ring homomorphism. As it is bijective we conclude that

R/ ker(ϕ) ∼= im(ϕ).

Example 1.3.25. Let ϕ : R[X] → C be the homomorphism given by ϕ(f) = f(i). One can check that ϕ is
surjective and that ker(ϕ) =

(
X2 + 1

)
. Therefore, by Theorem 1.3.24 we have that C ∼= R(X)/

(
X2 + 1

)
.

Note how it is more efficient to establish this result using Theorem 1.3.24, than the approach used in Example
1.3.23.

Exercise 1.3.26. Let R be a ring with two-sided ideals I, J ⊆ R. Show that I ∩ J is a two-sided ideal.
Moreover, show that R/(I ∩ J) is isomorphic to a subring of R/I ×R/J .

Theorem 1.3.27 (Second Isomorphism Theorem for Rings). Let R and S be rings with R ≤ S. Let I ⊆ S
be a two-sided ideal. Then the following hold.

1. R+ I := {r + i : r ∈ R, i ∈ I} ≤ S.

2. I ⊆ R+ I and R ∩ I ⊆ R are two-sided ideals.

3. (R+ I)/I = {r + I : r ∈ R} ≤ S/I, and

R/(R ∩ I) ∼= (R+ I)/I.

Proof.

1. Since R ⊆ R+ I, it follows that 0, 1 ∈ R+ I. Let r, s ∈ R and i, j ∈ I, so that r+ i, s+ j ∈ R+ I. Then
(r + i) + (s+ j) = (r + s) + (i+ j) ∈ R+ I,

and
(r + i) · (s+ j) = (rs) + (is+ rj + ij)

which is in R+ I as the second term is in I since I is a two-sided ideal. Therefore, R+ I ≤ S.

2. Note that, I ⊆ R + I is a two-sided ideal since I ⊆ S is a two-sided ideal. Let ϕ : R → S/I be the
homomorphism given by ϕ(r) = r + I. Then ker(ϕ) consists of elements r ∈ R such that r + I = I, that
is, r ∈ I. So ker(ϕ) = R ∩ I which means that R ∩ I is a two-sided ideal in R.

3. With ϕ as given above, we have that
im(ϕ) = {r + I : r ∈ R} = (R+ I)/I ≤ S/I.

On the other hand, using Theorem 1.3.24 we have
im(ϕ) ∼= R/(R ∩ I).

Therefore,
R/(R ∩ I) ∼= (R+ I)/I.
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Theorem 1.3.28 (Third Isomorphism Theorem for Rings). Let R be a ring, and I, J ⊆ R two-sided ideals
such that I ⊆ J . Then J/I ⊆ R/I is a two-sided ideal and

(R/I)/(J/I) ∼= R/J.

Proof. Let ϕ : R/I → R/J be the homomorphism given by

ϕ(r + I) := r + J.

This is a well-defined and surjective ring homomorphism. Note that ker(ϕ) consists of elements r+I ∈ R+I such
that r + J = 0, that is, r ∈ J . Therefore, ker(ϕ) = J/I and so we conclude by applying Theorem 1.3.24.

Example 1.3.29. Applying Theorem 1.3.28 to R = Z[X], I =
(
X2 + 1

)
, and J =

(
n,X2 + 1

)
gives(

Z[X]/
(
X2 + 1

))
/(n) ∼= Z[X]/

(
n,X2 + 1

)
.

Therefore,
Z[i]/(n) ∼= Z[X]/

(
n,X2 + 1

)
,

where we have used that Z[X]/
(
X2 + 1

) ∼= Z[i]. On the other hand, applying Theorem 1.3.28 to R = Z[X],
I = (n), and J =

(
n,X2 + 1

)
we deduce that

(Z[X]/(n))/
(
X2 + 1

) ∼= Z[X]/
(
n,X2 + 1

)
.

Therefore,
Z[i]/(n) ∼= (Z/nZ)[X]/

(
X2 + 1

)
.

Proposition 1.3.30. Let R be a ring, and I ⊆ R a two-sided ideal. Then there is a bijection between the
two-sided ideals of R/I and the two-sided ideals of R containing I.

Proof. Let
α : {two-sided ideals of R/I} → {two-sided ideals of R containing I}

be given by
α(J) = {r ∈ R : r + I ∈ J}

and let
β : {two-sided ideals of R containing I} → {two-sided ideals of R/I}

be given by
β(K) = K/I.

These are well-defined maps. Moreover,

α(β(K)) = α(K/I)
= {r ∈ R : r + I ∈ K/I}
= K,

where the last equality follows as I ⊆ K. Similarly,

β(α(J)) = β({r ∈ R : r + I ∈ J})
= {r + I : r + I ∈ J}
= J.

Therefore, α and β are bijections.
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Let R be any ring. Then there is unique ring homomorphism ι : Z → R given by

ι(n) =


1R + . . .+ 1R︸ ︷︷ ︸

n

n ≥ 0

− (1R + . . .+ 1R)︸ ︷︷ ︸
|n|

n < 0.

This is a homomorphism by the distributivity property of R. It is unique, as any homomorphism Z → R must
send 1 to 1R and thus from the structure of Z one finds that any such homomorphism must be equal to ι. As
ker(ι) ⊆ Z is an ideal we have ker(ι) = nZ for some n ∈ Z.

Definition 1.3.31. The characteristic of R is the unique n ≥ 0 such that ker(ι) = nZ, where ι is the unique
ring homomorphism Z → R.

Example 1.3.32.

• The ring Q has characteristic zero since ι : Z → Q is injective which means that ker(ι) = {0}. Similarly,
R, C and Z[i] have characteristic zero.

• For any n ≥ 1, the homomorphism ι : Z → Z/nZ sends r to r + nZ and has kernel nZ. Meaning Z/nZ
has characteristic n.

Consequently, we see that any n ≥ 0 is the characteristic of some commutative ring.

1.4 Solution to Exercises
Exercise 1.2.5

Solution. (⇒). For f = a0 + · · · + anX
n and g = b0 + · · · + bmX

m in R[X] we have

f · g =
n+m∑
i=0

 i∑
j=0

ajbi−j

Xi

=
n+m∑
i=0

 i∑
j=0

bi−jaj

Xi

=
n+m∑
i=0

 i∑
j=0

bjai−j

Xi

= g · f.

(⇐). As any r, s ∈ R can be viewed as elements in R[X] we have that r · s = s · r.

Exercise 1.2.12

Solution. This follows similar arguments to the proof of Exercise 1.2.5.

Exercise 1.3.2

Solution. Let ϕ : R → S be an isomorphism. In particular, ϕ is bijective and so ϕ−1 : S → R is well-defined and
bijective. It is clear that ϕ−1(0S) = 0R and ϕ−1(1S) = 1R. Let s1, s2 ∈ S, then there exists r1, r2 ∈ R such
that ϕ(r1) = s1 and ϕ(r2) = s2. Consequently,

ϕ−1(s1 + s2) = ϕ−1(ϕ(r1) + ϕ(r2))
= ϕ−1(ϕ(r1 + r2))
= r1 + r2

= ϕ−1(s1) + ϕ−1(s2).
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Similarly,

ϕ−1(s1s2) = ϕ−1(ϕ(r1)ϕ(r2))
= ϕ−1(ϕ(r1r2))
= r1r2

= ϕ−1(s1)ϕ−1(s2).

Therefore, ϕ−1 is a homomorphism and thus an isomorphism.

Exercise 1.3.13

Solution. Clearly (X) ⊆ I. For f ∈ I we can write

f = a1X + · · · + anX
n =

(
a1 + · · · + anX

n−1)X,
where a1 + · · · + anX

n−1 ∈ R[X] and so f ∈ (X). Thus, we conclude that I = (X).

Exercise 1.3.19

Solution. Let f ∈ (N − 1) with f =
∑
i∈I gi(ni − 1) where gi ∈ R[G] and ni ∈ N for each i ∈ I. Then

ϕ∗(f) =
∑
i∈I

ϕ∗(gi)ϕ(ni − 1) =
∑
i∈I

ϕ∗(gi)(1 − 1) = 0.

Therefore, f ∈ ker(ϕ∗) and thus (N − 1) ⊆ ker(ϕ∗). Now let f ∈ ker(ϕ∗) and be of the form f =
∑
g∈G agg.

Note that if ϕ(g) = ϕ (g′) then ϕ
(
g−1g′) = e so that g ∈ g′N . Suppose that G/N = (giN)i∈I , then we can

write

ϕ∗(f) =
∑
i∈I

 ∑
g∈giN

ag

 gi.

As ϕ∗(f) = 0 by assumption it must be the case that∑
g∈giN

ag = 0 (1.4.1)

for each i ∈ I. For each h ∈ giN we can write h = ginh for some nh ∈ N . Therefore,

f =
∑
g∈G

agg

=
∑
i∈I

 ∑
h∈giN

ahginh


=
∑
i∈I

 ∑
h∈giN

ahnh

 gi

(1.4.1)=
∑
i∈I

 ∑
h∈giN

ah(nh − 1)

 gi ∈ (N − 1).

Therefore, ker(ϕ∗) = (N − 1). As ϕ∗ is a homomorphism, it follows that (N − 1) is a two-sided ideal.

Exercise 1.3.26

Solution. The intersection of additive groups is also an additive group and so I ∩ J is an additive group. Next,
let r ∈ R and i ∈ I ∩ J , then ri, ir ∈ I as I is a two-sided ideal and ri, ir ∈ J as J is a two-sided ideal. Hence,
ri, ir ∈ I ∩ J meaning I ∩ J is a two-sided ideal of R. Now consider the map φ : R → R/I × R/J given by
φ(r) = (r + I, r + J). Recall, that I = 0R/I and 1R + I = 1R/I and similarly for J . In particular, we have that
0R/I×R/J = (I, J) and 1R/I×R/J = (1R + I, 1R + J). Using this we make the following observations.
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• φ(0R) = (0R + I, 0R + J) = (I, J) = 0R/I×R/J .

• φ(1R) = (1R + I, 1R + J) = 1R/I×R/J .

• For r, s ∈ R we have

φ(r + s) = (r + s+ I, r + s+ J)
= (r + I, r + J) + (s+ I, s+ J)
= φ(r) + φ(s).

• For r, s ∈ R we have

φ(rs) = (rs+ I, rs+ J)
=
(
rs+ rI + Is+ I2, rs+ rJ + Js+ J2)

= (r + I, r + J)(s+ I, s+ J)
= φ(r)φ(s).

Therefore, φ is a ring homomorphism. With φ(r) = 0R/I×R/J if and only if r + I = I and r + J = J which
happens if and only if r ∈ I ∩ J . Therefore, ker(φ) = I ∩ J . Hence, using the Theorem 1.3.24 we conclude that

R/(I ∩ J) ∼= im(φ),

where im(φ) is a subring of R/I ×R/J by Proposition 1.3.4.
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2 Integral Domains
The integers as a ring have properties, such as unique factorisation, that we would like to study in a more general
context. In this section, we will assume all rings are commutative and non-trivial.

2.1 Integral Domains and Ideals

Definition 2.1.1. Let R be a commutative ring. An element r ∈ R is a zero divisor if r ̸= 0 and there is some
s ̸= 0 such that rs = 0.

Definition 2.1.2. A ring R is an integral domain if it contains no zero divisors. That is, if rs = 0 then either
r = 0 or s = 0.

Example 2.1.3.

• The ring of integers Z is an integral domain.

• Any field is an integral domain. Indeed, if rs = 0 with r ̸= 0, then letting r−1 be the multiplicative
inverse of r we see that

0 = r−1rs = s.

Meaning no element of a field is a zero divisor.

• The ring Z/6Z is not an integral domain, since 2 + 6Z and 3 + 6Z are non-zero but their product is

(2 + 6Z)(3 + 6Z) = Z.

Lemma 2.1.4. Let n ≥ 1. Then Z/nZ is an integral domain if and only if n is prime.

Proof. (⇒). Suppose n | rs for some r, s ∈ Z. Then

(r + nZ)(s+ nZ) = nZ.

Since Z/nZ is an integral domain, either r+nZ = nZ or s+nZ = nZ. Hence, n | r or n | s meaning n is prime.
(⇐). Suppose that (r + nZ)(s+ nZ) = 0. Then rs+ nZ = 0 meaning n | rs. Which implies that n | r or n | s
and so r + nZ = 0 or s+ nZ = 0.

Example 2.1.5. If R is an integral domain and S ≤ R, then S is also an integral domain since a zero divisor
in S would be a zero divisor in R. Therefore, as C is an integral domain we deduce that Z[i] ≤ C is an integral
domain.

Lemma 2.1.6. Let R be an integral domain. Then R[X] is also an integral domain.

Proof. Let f, g ∈ R[X] be non-zero with

f = a0 + . . .+ anX
n

and
g = b0 + . . .+ bmX

m

for an, bm ∈ R \ {0}. Then n = deg(f) and m = deg(g). Moreover, the coefficient of Xn+m in fg is anbm ̸= 0
since R is an integral domain. Therefore, deg(fg) > 0 meaning fg ̸= 0.
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Remark 2.1.7. Iterating Lemma 2.1.6 we see that if R is an integral domain, then R [X1, . . . , Xn] is an integral
domain for all n ∈ N.

Lemma 2.1.8. A non-trivial, commutative ring R is a field if and only if its only ideals are {0} and R.

Proof. (⇒). Suppose R is a field and I ⊆ R is a non-zero ideal, such that it contains some non-zero element r.
Then since R is a field, r is a unit, which implies I = R.
(⇐). Let r ∈ R be non-zero. Then (r) ⊆ R is a non-zero ideal, and so must be R by assumption. Consequently,
there is some s such that rs = 1, and so r is a unit. Therefore, every non-zero r ∈ R is a unit, or in other words,
R is a field.

Remark 2.1.9. Since {0} and R are always ideals in R, the statement of Lemma 2.1.8 is equivalent to saying
that R only has two ideals.

Exercise 2.1.10. Suppose R is a finite and commutative integral domain. Show that R is a field.

Definition 2.1.11. A proper ideal I ⊆ R is maximal if any proper ideal J ⊆ R containing I is equal to I.

Lemma 2.1.12. A proper ideal I ⊆ R is maximal if and only if R/I is a field.

Proof. (⇒). Suppose I is maximal. Then the only ideals in R containing I are I and R. As we have a bijection
between such ideals and ideals in R/I, we see that the only ideals in R/I are {0} and R/I. Therefore, R/I is a
field by Lemma 2.1.8.
(⇐). Suppose R/I is a field, and suppose J ⊆ R is a proper ideal containing I. Then J/I ⊆ R/I is a proper
ideal of a field, and so J = {0}. Therefore, J = I meaning I is a maximal ideal.

Definition 2.1.13. A proper ideal I ⊆ R is prime if whenever there are r, s ∈ R such that rs ∈ I, we either
have r ∈ I or s ∈ I.

Example 2.1.14. Let n ∈ Z be non-zero. Then the ideal nZ ⊆ Z is prime if and only if n is prime. Indeed,
suppose n is prime. If rs ∈ nZ, then n | rs. So n | r or n | s, that is, r ∈ nZ or s ∈ nZ. Conversely, suppose
nZ is prime, and for contradiction that n = uv where u, v ̸∈ {0,±1}. Then uv ∈ nZ but u, v /∈ nZ, since
0 < |u|, |v| < |n|. This contradicts nZ being prime and so n itself must be prime.

Lemma 2.1.15. A proper ideal I ⊆ R is prime if and only if R/I is an integral domain.

Proof. (⇒). Suppose that I ⊆ R is prime and r + I, s + I ∈ R/I are such that (r + I)(s + I) = 0 + I. This
means rs ∈ I. Since I is prime, one of r and s is in I meaning one of r + I and s+ I is zero.
(⇐). Suppose R/I is an integral domain, and r, s ∈ R are such that rs ∈ I. Then (r + I)(s + I) = 0 + I, so
r + I or s+ I is I. Meaning r or s is in I.

Corollary 2.1.16. If I ⊆ R is a maximal ideal then it is a prime ideal.

Proof. Since I is maximal we have that R/I is a field thus an integral domain. Therefore, I is a prime ideal.
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Remark 2.1.17. The converse of Corollary 2.1.16 is not true in general. Take (0) ⊆ Z, which is a prime ideal
that is not maximal. However, if R is a finite, commutative ring, then for an ideal I we have that R/I is a
finite, commutative ring. Therefore, if I is prime we additionally have that R/I is an integral domain. Thus,
using Exercise 2.1.10 we deduce that R/I is a field and hence I is also a maximal ideal.

Example 2.1.18. Let R be a ring. Then R[X]/(X) ∼= R and so the ideal (X) ⊆ R[X] is prime if and only if
R is an integral domain, and it is maximal if and only if R is a field.

Lemma 2.1.19. Let R be an integral domain. Then its characteristic is either zero or prime.

Proof. Let ι : Z → R be the unique ring homomorphism, with ker(ι) = nZ, where n ≥ 0 is the characteristic of
R. Then by Theorem 1.3.24 we have that

im(ι) ∼= Z/nZ.

Since R is an integral domain and im(ι) ≤ R it follows that Z/nZ is an integral domain. Therefore, using Lemma
2.1.4, if n > 0 then n is prime. As Z is an integral domain we can also have n = 0.

2.2 Factorisation
Throughout this subsection, rings will be integral domains.

Definition 2.2.1. Let R be an integral domain with r, s ∈ R.

• We say that r divides s, written r | s, if there is some u ∈ R such that s = ru. Equivalently, (s) ⊆ (r).

• We say r and s are associates if there is some unit u ∈ R× such that s = ru. Equivalently, (r) = (s) or
r | s and s | r.

Example 2.2.2. Elements r, s ∈ Z are associates if and only if r = ±s. However, this is not true in general as
2i, 2 ∈ Z[i] are associates.

Definition 2.2.3. Let R be an integral domain. An element r ∈ R is irreducible if the following statements
hold.

1. r ̸= 0.

2. r is not a unit.

3. If r = uv then u or v is a unit.

Definition 2.2.4. Let R be an integral domain. An element r ∈ R is prime if the following statements hold.

1. r ̸= 0.

2. r is not a unit.

3. Whenever r | uv, either r | u, r | v, or both.

Example 2.2.5. An element being prime or irreducible is dependent on the ring and not just the element.

• Observe that 2 is prime in Z, but not in Q. In Q it is a unit.
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• The polynomial 2X is irreducible in Q[X], but not in Z[X].

In Z primality and irreducibility coincide, but this is not the case for general rings. Moreover, any n ∈ Z has an
essentially unique prime factorisation, up to reordering and signs, but again this is not true for general rings.

Example 2.2.6. Consider the ring

R = Z
[√

−5
]

=
{
a+ b

√
−5 : a, b ∈ Z

}
.

This is a subring of C so is an integral domain. Consider 3 ∈ R. Note that 2 and 3 both divide 6. However,
6 = (1 −

√
−5)(1 +

√
−5) with neither 2 nor 3 dividing either of the factors on the right-hand side. Therefore,

2 and 3 cannot be prime. Now suppose that 3 =
(
a+ b

√
−5
) (
c+ d

√
−5
)

for a, b, u, v ∈ Z. Applying | · |2 to
both sides, we see that

9 =
(
a2 + 5b2) (c2 + 5d2) .

The only solutions to which are a + b
√

−5 = ±3 and c + d
√

−5 = ±1, or the other way around. Hence, 3 is
irreducible. A similar argument shows that 2 and 1±

√
−5 are irreducible. So 6 can be factored into irreducibles

in distinct ways.

Lemma 2.2.7. For R an integral domain, the principal ideal (r) is a prime ideal if and only if r = 0 or r is
prime.

Proof. (⇒). Suppose (r) is a prime ideal. If r = 0, then we are done. So assume r ̸= 0. Since prime ideals are
proper ideals, r cannot be a unit. If r | uv then uv ∈ (r). Since (r) is prime we have u ∈ (r) or v ∈ (r). That
is, r | u or r | v. Hence, r is prime.
(⇐). If r = 0, then the ideal (r) = {0} is prime since R is an integral domain. Suppose r ̸= 0 is prime. If
uv ∈ (r), this means r | uv and so r | u or r | v. Meaning u ∈ (r) or v ∈ (r). Hence, (r) is prime.

Lemma 2.2.8. For an integral domain R, if r ∈ R is prime then r is irreducible.

Proof. Let r ∈ R be prime, and suppose r = uv. As r | uv and r is prime, we have r | u or r | v. Without loss
of generality assume r | u. Then there is some s ∈ R such that rs = u. Hence, r = uv = r(sv). Since R is an
integral domain, this implies sv = 1 meaning v is a unit and thus r is irreducible.

In Example 2.2.6 we saw that 3 ∈ Z
[√

−5
]

was irreducible but not prime, hence, the converse of Lemma 2.2.8
is not true.

Definition 2.2.9. An integral domain R is a Euclidean domain if there is a function θ : R\{0} → Z≥0, called
a Euclidean function, that satisfies the following.

• θ(rs) ≥ θ(r) for all r, s ∈ R \ {0}.

• For all a, b ∈ R with b ̸= 0, there are q, r ∈ R such that

a = qb+ r

with r = 0 or θ(r) < θ(b).

Example 2.2.10.

1. Z is a Euclidean domain with θ(n) = |n|.

2. If F is a field, then F [X] with θ(f) = deg(f) is a Euclidean domain.

3. If F is a field, then F with θ(r) = 0 for all r ∈ F is a Euclidean domain.
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Exercise 2.2.11. Show that the converse to statement 3 of Example 2.2.10 is true. Namely, an integral domain
R that is a Euclidean domain with Euclidean function r 7→ 0 is a field.

Proposition 2.2.12. The Gaussian integers Z[i] is a Euclidean domain with θ(r) = |r|2.

Proof. Note that θ(rs) = θ(r)θ(s). Moreover, if r ∈ Z[i] \ {0} then θ(r) ≥ 1. So if r, s ̸= 0 we have that
θ(rs) ≥ θ(r). Now let a, b ∈ Z[i] with b ̸= 0. Choose q ∈ Z[i] such that

∣∣a
b − q

∣∣ < 1. We can do this as every
complex number has a distance of at most one from a Gaussian integer. In particular, we can write

a

b
= q + c

where c ∈ Q[i] is such that |c| < 1. Multiplying by b and setting r = bc = a− bq ∈ Z[i], we have

a = qb+ r.

Since |c| < 1 and r = bc we either have r = 0 or θ(r) = |r|2 < θ(b).

This strategy of proof for Proposition 2.2.12 works for any R ≤ C where for any r ∈ C, there is a point in R of
distance less than one from r. This does not hold for Z

[√
−5
]
, and in fact, Z

[
−

√
5
]

is not a Euclidean domain.

Exercise 2.2.13. Show that Z
[√

2
]

is a Euclidean domain.

Definition 2.2.14. Let R be an integral domain. Then R is a principal ideal domain if every ideal is principal.
That is, for any ideal I ⊆ R we have I = (r) for some r ∈ R.

We have already seen in Example 1.3.10 that Z is a principal ideal domain.

Theorem 2.2.15. Let R be a Euclidean domain. Then R is a principal ideal domain.

Proof. Let θ be the Euclidean function for R. Let I ⊆ R be an ideal, which we can assume to be non-zero.
Choose b ∈ I \ {0} such that θ(b) is minimised, and consider a ∈ I. Then there are q, r ∈ R such that a = qb+ r
with r = 0 or θ(r) < θ(b). Since I is an ideal and a, b ∈ I we observe that r = a − qb ∈ I. We cannot have
θ(r) < θ(b) and r ̸= 0, by construction of b, so r = 0. Hence, a = qb meaning a ∈ (b). Since a ∈ I was arbitrary
we have that I = (b).

Example 2.2.16. Recall that for a field F , the polynomial ring F [X] is a Euclidean domain. Therefore, by
Theorem 2.2.15 we have that F [X] is a principal ideal domain. Similarly, we deduce that Z[i] is a principal
ideal domain.

Proposition 2.2.17. The ideal (2, X) ⊆ Z[X] is not generated by a single element.

Proof. Suppose there is some f ∈ Z[X] such that (2, X) = (f). Then as 2 ∈ (f), there is some g ∈ Z[X]
such that fg = 2. So f must have degree zero, which implies f is ±1 or ±2. We know f ̸= ±1 as 1 /∈ (2, X).
Similarly f ̸= ±2 since 2 does not divide X. Therefore, (2, X) cannot be a principal ideal.

Remark 2.2.18. Proposition 2.2.17 tells us that Z[X] is not a principal ideal domain, and hence not a Euclidean
domain.
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Example 2.2.19. Let F be a field and A ∈ Mn(F ). Consider the set

I := {f ∈ F [X] : f(A) = 0} ⊆ F [X].

If f, g ∈ I then (f + g)(A) = f(A) + g(A) = 0. If f ∈ I and h ∈ F [X] then (fh)(A) = f(A)h(A) = 0.
Therefore, I is an ideal. Since F [X] is a principal ideal domain we have that I = (m) for some m ∈ F [X]. In
particular, m(A) = 0 and for any f ∈ F [X] such that f(A) = 0 we have m | f . The polynomial m is called
the minimal polynomial of A.

Definition 2.2.20. An integral domain R is a unique factorisation domain if the following statements hold.

• Every non-unit r ∈ R \ {0} is a product of irreducibles.

• If p1 . . . pn = q1 . . . qm with each pi, qj ∈ R irreducible, then n = m. In particular, they can be reordered
such that each pi is an associate of qi.

A unique factorisation domain ensures the factorisation of elements into irreducibles exists and is unique up to
associates.

Lemma 2.2.21. Let R be a principal ideal domain. Then a non-zero principal ideal (r) ⊆ R is maximal if
and only if r is irreducible, or r = 0 when R is a field.

Proof. (⇒). Suppose (r) is a maximal ideal with r not being irreducible. If r = 0, then as R/(r) is a field we
have that R is a field. Otherwise, we can assume that r = xy for x, y ∈ R non-units such that (r) ⊆ (x) ⊆ R.
Since x is not a unit we have that (x) ̸= R. Since (r) is maximal it follows that (r) = (x). Meaning r = xz for
some unit z ∈ R×. Hence, r = xz = xy which implies that x(z − y) = 0 and so z = y, by using the fact that
x ̸= 0 and R is an integral domain. However, y is not a unit whereas z is and thus we arrive at a contradiction.
(⇐). If r = 0 and R is a field, then (r) is maximal. So we instead assume r is irreducible and that (r) is not
maximal. Meaning there exists some proper ideal (r) ⊆ I ⊆ R such that I ̸= (r). Since R is a principal ideal
domain we have I = (s) for some non-unit s ∈ R. Since (r) ⊆ (s) we have that r = sz for some non-unit z ∈ R,
which contradicts the irreducibility of r.

Lemma 2.2.22. Let R be a principal ideal domain. If r ∈ R is irreducible then it is prime.

Proof. If r ∈ R is irreducible, then (r) ⊆ R is a maximal ideal, by Lemma 2.2.21. Therefore, it is also a prime
ideal. Since the ideal (r) is prime and r ̸= 0, Lemma 2.2.7 implies that r is prime.

Remark 2.2.23. Primes are irreducible in any integral domain. In Example 2.2.6 we showed that 2 was
irreducible but not prime. So Lemma 2.2.22 shows Z

[√
−5
]

cannot be a principal ideal domain.

Corollary 2.2.24. Let R be a principal ideal domain. Then every non-zero prime ideal is maximal.

Proof. Let I ⊆ R be a non-zero prime ideal. Since R is a principal ideal domain, we know I = (r) for some
r ∈ R. Since I ̸= 0 is a prime ideal, we know r is prime by Lemma 2.2.7. Therefore, r is irreducible as all primes
are irreducible in integral domains. Therefore, by Lemma 2.2.21 (r) is maximal.

In general rings, maximal ideals are prime. Therefore, Corollary 2.2.24 says that in a principal ideal domain,
non-zero prime ideals and maximal ideals are equivalent. Except for the zero ideal which is always prime if R is a
principal ideal domain, but maximal if and only if R is a field.

Exercise 2.2.25. Let R be an integral domain. Suppose that (In)n∈N is a family of increasing ideals of R.
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Show that
I =

⋃
n∈N

In ⊆ R

is an ideal of R.

Proposition 2.2.26. Let R be a principal ideal domain, and I1 ⊆ I2 ⊆ · · · ⊆ R an increasing sequence of
ideals in R. Then (In)n∈N is eventually constant. That is, there is some integer N such that In = In+1 for
all n ≥ N .

Proof. Let I =
⋃
n∈N In ⊆ R. Using Exercise 2.2.25 we have that I is an ideal of R. Since R is a principal ideal

domain it follows that I = (r) for some r ∈ I =
⋃
n∈N In. Hence, there is some N ∈ N such that r ∈ IN . Then,

(r) ⊆ IN ⊆ IN+1 ⊆ · · · ⊆ I = (r).

which implies that for n ≥ N we have In = (r).

Example 2.2.27. Let In =
(
2n, 2n−1X, . . . , 2Xn−1, Xn

)
. Note that In contains polynomials such that

• the X0 coefficient is divisible, by 2n,

• the X1 coefficient is divisible by 2n−1,

•
...

• the Xn−1 coefficient is divisible by 2, and

• higher-order coefficients being arbitrary.

Note that In+1 ⊆ In as ideals. By the third isomorphism theorem In/In+1 ⊆ Z[X]/In+1. Let f ∈ In/In+1
where f = a0 + a1X + · · · + anX

n + . . . , such that 2n|a0 . . . , 2|an−1. Let ãk be the representation of ak in
In/In+1. Observe that for k = 0, . . . , n if 2n−k+1|ak then ãk = 0, otherwise ãk = 2n−k. Consider the map
φ : In → (Z/2Z)n+1 where

f 7→
(
1 − 12n+1|a0 , . . . , 1 − 12|an

)
.

Note φ(f) = 0 if and only if 2n−k+1|ak for each k = 0, . . . , n, which happens if and only if f ∈ In+1. Clearly,
the map is surjective. Therefore,

In/In+1 ∼= (Z/2Z)n+1
.

Observe that (Z/2Z)n+1 has n + 1 generators. Therefore, In/In+1 also has n + 1 generators which implies
that In has n+ 1 generators. In particular, this means that the increasing sequence of ideals (In)n∈N ⊆ Z[X]
is not eventually constant. Indeed, from Proposition 2.2.17 we know that Z[X] is not a principal ideal domain,
and so this example does not contradict Proposition 2.2.26.

Remark 2.2.28. A ring R with the property that any increasing sequence of ideals is eventually constant is
referred to as a Noetherian ring. Thus, Proposition 2.2.26 says that every principal ideal domain is a Noetherian
ring.

Theorem 2.2.29. Suppose R is a principal ideal domain. Then R is a unique factorisation domain.

Proof. Consider statement 2 of Definition 2.2.20. Suppose p1 . . . pn = q1 . . . qm, where each pi, qj ∈ R is
irreducible. Without loss of generality suppose that n ≥ m. In particular, p1 | q1 . . . qm. Since p1 is irreducible, it
is prime and so p1 | qj for some j ∈ {1, . . . ,m}. Reordering if necessary, we can assume that p1 | q1, so ap1 = q1
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for some a. Since q1 is irreducible, a must be a unit meaning p1 and q1 associates. Since R is an integral domain,
we can cancel p1 to give

p2 . . . pn = (aq2) q3 . . . qm,

and replacing q2 with aq2 we get
p2 . . . pn = q2 . . . qm.

Repeating the process m times, we find that, possibly after reordering, pi and qi are associates for each i =
1, . . . ,m and

pm+1 . . . pn = 1.
If n > m then this would imply that pn is a unit giving a contradiction. Therefore, n = m. Now consider statement
1 of Definition 2.2.20. Suppose r ∈ R is a non-unit that cannot be factored as a product of irreducibles. In
particular, r cannot be irreducible. So we can write r = r1s1, with r1, s1 ∈ R non-units. Since r is not a product
of irreducibles, at least one of r1 and s1 cannot be a product of irreducibles either. Without loss of generality
suppose that r1 cannot be factored into irreducibles. Then we can write r1 = r2s2 with r2, s2 ∈ R non-units.
Again, suppose that r2 is not a product of irreducibles so that we can write r2 = r3s3 with r3, s3 ∈ R non-units.
By assumption, we can continue this process indefinitely. Consequently, we can construct an increasing sequence
of ideals,

(r) ⊆ (r1) ⊆ (r2) ⊆ · · · ⊆ R.

Since R is a principal ideal domain we can apply Proposition 2.2.26 to find an N ∈ N such that

(rN ) = (rN+1) = (rN+2) = . . . .

Since, (rN ) = (rN+1) and rN = rN+1sN+1 we have that sN+1 must be a unit, which is a contradiction. So r
must be a product of irreducibles. Therefore, we can conclude that R is a unique factorisation domain.

Example 2.2.30. Recall, that Z[i] is a Euclidean domain meaning it is a principal ideal domain and thus a
unique factorisation domain.

Definition 2.2.31. Let R be a ring. An element d ∈ R is a greatest common divisor of a finite sequence
a1, . . . , an ∈ R if d | ai for each i = 1, . . . , n, and if for any other d′ ∈ R such that d′ | ai for each i = 1, . . . , n
it follows that d′ | d.

In general, the greatest common divisor may not exist, however, if it does exist then it is unique up to multiplication
by units.

Proposition 2.2.32. Let R be a unique factorisation domain. Then any a1, . . . , an ∈ R that are not all zero
have a greatest common divisor d, and any other greatest common divisor d′ is an associate of d.

Proof. Let p1, . . . , pm ∈ R be a collection of irreducibles in R such that any irreducible factor of any ai is an
associate of some pj . Moreover, for i ̸= j the irreducibles pi and pj are not associates. Consequently, for each
i = 1, . . . , n we can write

ai = ui

m∏
j=1

p
kij

j

where each kij ∈ Z≥0 and each ui is a unit. For each j = 1, . . . ,m let lj = mini∈{1,...,n} (kij) and let

d :=
m∏
j=1

p
lj
j .

Since lj ≤ kij for each i = 1, . . . , n, it follows that d | ai for each i = 1, . . . , n. Suppose d′ ∈ R also satisfies
d′ | ai for each i = 1, . . . , n. Then we can write

d′ = v

m∏
j=1

p
cj

j
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for some unit v, and some cj ∈ Z≥0. Since d′ | ai for each i = 1, . . . , n we must have cj ≤ lj for each
i = 1, . . . ,m. So d′ | d, and hence d is a greatest common divisor. Suppose d and d′ are both greatest common
divisors of a1, . . . , an. Then they must divide each other and hence are associates.

We can summarise the main relationships we have established so far with the following hierarchy. Where implica-
tions go down the order.

1. Z.

2. Euclidean domains.

3. Principal ideal domains.

4. Unique factorisation domains.

5. Integral domains.

6. Commutative rings.

7. Rings.

However, we have no implications going up the hierarchy.

1. Q and Z[i] are Euclidean domains but are not isomorphic to Z as rings.

2. Z
[

1+
√

−19
2

]
. One can check this is a principal ideal domain but not a Euclidean domain.

3. Z[X] is not a principal ideal domain, but we will see it is a unique factorisation domain.

4. Z
[√

−5
]
, is an integral domain but not a unique factorisation domain.

5. Z/6Z, is a commutative ring but not an integral domain.

6. M2(R), is a ring that is not commutative.

2.3 Localisation

Definition 2.3.1. Let R be a commutative ring and (S, ·) ⊆ (R, ·) a submonoid. The localisation S−1R is the
set of equivalence classes of pairs (r, s) with r ∈ R and s ∈ S where (r, s) ∼ (r′, s′) if and only if there exists
a t ∈ S such that t(rs′ − r′s) = 0.

Remark 2.3.2. A pair (r, s), as in Definition 2.3.1, is often denoted as r
s .

If R is an integral domain we add the condition that 0 ̸∈ S to Definition 2.3.1. So that t ̸= 0 which implies that
(r, s) ∼ (r′, s′) if and only if rs′ − r′s = 0 which happens if and only if rs′ = r′s. If we did not add the condition
that 0 ̸∈ S then (r, s) ∼ (0, 0) for all r ∈ R and s ∈ S so that S−1R = 0. Henceforth, we assume that R is an
integral domain with S a multiplicative submonoid with 0 ̸∈ S.

Lemma 2.3.3. Show that the relation ∼ given in Definition 2.3.1 is an equivalence relation.

Proof. Symmetry and reflexivity are straightforward. For transitivity, suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
This means ad = bc and cd = de. Multiplying these equations by f and b respectively, tells us that adf = bcf
and bcf = bde. So adf = bde. Since d ̸= 0 and R is an integral domain, we can cancel d to find that af = be
which means (a, b) ∼ (e, f).

On the localisation S−1R, we define the following operations.

• (r, s) + (r′, s′) := (rs′ + r′s, ss′).
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• (r, s) · (r′, s′) := (rr′, ss′).

Notice how the notation (r, s) = r
s is justified.

• r
s + r′

s′ = (r, s) + (r′, s′) = (rs′ + r′s, ss′) = rs′+r′s
ss′ .

• r
s · r

′

s′ = (r, s) · (r′, s′) = (rr′, ss′) = rr′

ss′ .

Let (a, b), (c, d), (e, f) ∈ S−1R. Then

0
1 + a

b
= 0 · b+ 1 · a

1 · b
= a

b

and so 0S−1R = 0
1 . Similarly,

1
1 · a

b
= 1a

1b
= a

b
,

means 1S−1R = 1
1 . Furthermore, (a

b
· c
d

)
· e
f

=
(ac
bd

)
· e
f

= ace

bdf

= a

b
·
(
c

d
· e
f

)
and so · on S−1R is associative.

Exercise 2.3.4. Show that the operations + and · on S−1R are well-defined. That is, they respect the
equivalence relation ∼.

Proposition 2.3.5. The map ι : R → S−1R given by ι(r) = (r, 1) is injective.

Proof. If ι (r′) = ι(r) then (r′, 1) = (r, 1) which happens if and only if r′ = r. Therefore, ι is injective.

Corollary 2.3.6. If R is an integral domain R then R ≤ S−1R.

Proof. Let ι : R → S−1R be the map of Proposition 2.3.5. For r1, r2 ∈ R we have

ι(r1 + r2) = (r1 + r2, 1) = (r1, 1) + (r2, 1) = ι(r1) + ι(r2),

and
ι(r1r2) = (r1r2, 1) = (r1, 1)(r2, 1) = ι(r1)ι(r2).

Therefore, ι is a homomorphism with ker(ι) = {0} by Proposition 2.3.5. Therefore, by Theorem 1.3.24 we have

R ∼= im(ι) ≤ S−1R.
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Definition 2.3.7. If R is an integral domain and S = R \ {0}, then S−1R is a field, and is referred to as the
field of fractions of R denoted Frac(R).

Remark 2.3.8. Equivalently, for R an integral domain, its field of fractions is

Frac(R) = {(a, b) ∈ R×R : b ̸= 0}/ ∼

where (a, b) ∼ (c, d) if and only if ad = bc.

Remark 2.3.9. Referring to Frac(R) as a field can be justified.

• The inclusion Frac(R)× ⊆ Frac(R) \ {0} is clear as 0 ̸∈ Frac(R)×.

• Let (r, s) ∈ Frac(R) \ {0}, then by construction r, s ∈ R \ {0} so that (s, r) is also in Frac(R) \ {0}.
Therefore,

(r, s) · (s, r) = (rs, sr) = (1, 1)

which implies that Frac(R) \ {0} ⊆ Frac(R)×.

Example 2.3.10. The field of fractions of Z is Q. As expected from Corollary 2.3.6 we have that Z is a subring
of Q. The field of fractions of C[X] is {

p

q
: p, q ∈ C[X], q ̸= 0

}
.

In general, if F is a field, we write F (X) for the field of fractions of the polynomial ring F [X].

Proposition 2.3.11. If A is a commutative ring and φ : R → A is a ring homomorphism such that φ(S) ⊆ A×,
then there exits a unique φ̃ : S−1R → A such that φ = φ̃ ◦ ι. Where ι is the map given in Proposition 2.3.5.

Proof. Let φ̃ : S−1R → A be given by φ̃((a, b)) = φ(a)φ(b)−1. Suppose (a, b) = (c, d), then ad = bc. Applying
φ it follows that φ(a)φ(d) = φ(b)φ(c), as φ is a homomorphism. Therefore, φ(a)φ(b)−1 = φ(c)φ(d)−1,
which implies that φ̃((a, b)) = φ̃((c, d)). That is, φ̃ respect conjugacy classes and so is well-defined. Let
(a, b), (c, d) ∈ S−1R. Then

φ̃((a, b) + (c, d)) = φ̃((ad+ bc, bd))
= φ(ad+ bc)φ(bd)−1

= (φ(a)φ(d) + φ(b)φ(c))φ(b)−1φ(d)−1

= φ(a)φ(b)−1 + φ(c)φ(d)−1

= φ̃((a, b)) + φ̃((c, d)).

Similarly,

φ̃((a, b)(c, d)) = φ̃((ac, bd))
= φ(ac)φ(bd)−1

= φ(a)φ(b)−1φ(c)φ(d)−1

= φ̃((a, b))φ̃((c, d)).

Therefore, φ̃ is a homomorphism. Suppose that ψ̃ is a homomorphism with the property that φ = ψ̃ ◦ ι. Then

φ(b)ψ̃((1, b)) = ψ̃((b, 1))ψ̃((1, b)) = ψ̃((1, 1)) = 1.
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Therefore, ψ̃((1, b)) is the inverse of φ(b), which is unique. Thus using the homomorphism properties of ψ̃ it
follows that ψ̃((a, b)) = φ(a)φ(b)−1 = φ̃((a, b)). Hence, φ̃ is the unique homomorphism such that φ = φ̃◦ ι.

Definition 2.3.12 provides an alternative, but equivalent, definition of localisation.

Definition 2.3.12. For R a commutative ring and S ⊆ R a multiplicative submonoid. The localisation, S−1R,
is the unique ring R′ such that there exists a map ι : R → R′ with the following properties.

1. ι(S) ⊆ (R′)×.

2. For all commutative rings A, and maps φ : R → a with φ(S) ⊆ A×, there exists a unique map φ̃ : R′ → A
such that φ = φ̃ ◦ ι.

Corollary 2.3.13. Let R be an integral domain, F a field and φ : R → F an injective homomorphism. Then
φ = φ̃ ◦ ι, with ι : R → Frac(R), the canonical map and φ̃ : Frac(R) → F injective. That is φ factors
through the field of fractions of R.

Proof. Let S = R\{0} and A = F in the context of Proposition 2.3.11. Then as φ is an injective homomorphism
we have that φ(S) ⊆ F \ {0} = F×. So we can apply the statement of Proposition 2.3.11 to obtain a
homomorphism φ̃ : Frac(R) → F such that φ = φ̃ ◦ ι. As Frac(R) and F are both fields and φ̃ is non-zero, it
must be the case that φ̃ is injective.

Corollary 2.3.14. If F is a field of characteristic zero, it contains a subfield isomorphic to Q. If F is a field
of characteristic p, it contains a subfield isomorphic to Fp.

Proof. The characteristic of F is zero if and only if the kernel of the unique ring homomorphism Z → F is
trivial. Using Corollary 2.3.13 it follows that the unique ring homomorphism factors through Q, which implies
that Q ≤ F . If the characteristic of F is a prime p, then the kernel of the unique homomorphism Z → F is pZ.
Therefore, by the first isomorphism theorem we conclude that Fp ∼= Z/pZ ∼= F .

Lemma 2.3.15. Let R be a ring and F a field such that F ≤ R. Then R is a vector space over F .

Proof. Observe that R is an abelian group with a notion of scalar multiplication by F coming from the multipli-
cation of R. Using the axioms of the ring one can check that the scalar multiplication by F satisfies the vector
space axioms.

Corollary 2.3.16. If F is a field of characteristic zero then it is a vector space over Q. If F is a field of
characteristic p then it is a vector space over Fp.

Proof. This follows directly from Lemma 2.3.15 and Corollary 2.3.14.

Note that for a commutative ring with a prime ideal I the set S = R \ I is a multiplicative submonoid. The
localisation S−1R is denoted RI .

Example 2.3.17. Recall, that for a prime p the ideal (p) ⊆ Z is a prime ideal, and so we can consider Z(p).
We can think of this as a subset of Q generated by numbers of the form qp, where q is either

1. a prime number, or

2. the reciprocal of a prime number not equal to p.
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Definition 2.3.18. A local ring is a ring with a unique maximal ideal.

Lemma 2.3.19. A commutative ring R is local if and only if there is an ideal I such that all r ∈ R \ I are
units.

Proof. (⇒). Let I be the unique maximal ideal of R. Consider r ∈ R \ I and suppose for contradiction that
(r) ̸= R. As I is a maximal ideal it follows that (r) ⊆ I which implies that r ∈ I, which is a contradiction.
Therefore, (r) = R, which in particular means that r is a unit by Lemma 1.3.14.
(⇐). Let J ⊆ R be a proper ideal. Therefore, by Lemma 1.3.14, all j ∈ J are not units and so j ∈ I.
Consequently, J ⊆ I which implies that I is maximal and moreover unique.

Proposition 2.3.20. Let R be a commutative ring and let I ⊆ R be a prime ideal. Then RI has a unique
maximal ideal given by

Ī = {(r, s) : r ∈ I, s ∈ R \ I}.

Proof. If a /∈ Ī, then a = (r, s) for s /∈ I. Therefore, a is invertible in RI , and so we can conclude using Lemma
2.3.19.

Definition 2.3.21. For a commutative ring R, an ideal I ⊆ R, and a multiplicative submonoid S ⊆ R, the set

S−1I =
{
i

s
: s ∈ S, i ∈ I

}
⊆ S−1R

is an ideal referred to as the image of I under the localisation.

Proposition 2.3.22. Every ideal I ⊆ S−1R is of the form S−1J for some ideal J ⊆ R.

Proof. For r ∈ R and s ∈ S note that (r, s) ∈ I if and only if (r, 1) ∈ I. Let

J := {r ∈ R : (r, 1) ∈ I}.

Then J ⊆ R is an ideal and S−1J = I.

2.4 Polynomial Rings
Recall that if R is an integral domain then so is R[X]. An important case of this is F [X] when F is a field
as then F [X] is also a Euclidean domain and therefore a principal ideal domain and thus a unique factorisation
domain. Consequently, we deduce the following.

1. If I ⊆ F [X] is a non-zero ideal, then I = (f) for some non-zero f ∈ F [X], and I is maximal if and only if
I is prime.

2. An element f ∈ F [X] is irreducible if and only if it is prime.

Moreover, for f ∈ F [X] the following are equivalent.

1. f is irreducible.

2. f is prime.

3. F [X]/(f) is an integral domain.

4. F [X]/(f) is a field.
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Example 2.4.1.

1. F2[X]/
(
X2 + 1

)
is not an integral domain as (X + 1)2 = X2 + 1 = 0, but X + 1 ̸= 0.

2. Since X2 +X + 1 has no roots in F2 it is irreducible, and thus F2[X]/
(
X2 +X + 1

)
is a field.

Definition 2.4.2. If R is a ring, and f ∈ R[X], then f is monic if f = a0 + a1X + . . . an−1X
n−1+ 1 · Xn.

That is, f ∈ R[X] is monic if the coefficient of the highest order term is one.

Definition 2.4.3. Let R be a unique factorisation domain, and f = a0 + . . . + anX
n ∈ R[X]. Then the

content of f , written c(f), is the greatest common divisor of the set {a0, . . . , an}.

The content of a polynomial is only well-defined up to associates, though the ideal it generates, (c(f)), is well-
defined.

Definition 2.4.4. Let R be a unique factorisation domain. Then f ∈ R[X] is primitive if c(f) is a unit. In
other words, the coefficients of f are all coprime.

Example 2.4.5.

• Let f = a0 ∈ R[X] be a constant polynomial. Then c(f) = a0, up to associates.

• Let f = 2 + 3X + 4X2 ∈ Z[X]. Then c(f) is a unit meaning f is primitive.

• Let g = 2 + 4X+ 6X2 ∈ Z[X]. Then c(f) = 2, up to associates, so g is not primitive in Z[X]. However,
2 is a unit in Q and so g is primitive in Q[X].

Lemma 2.4.6. Let R be a unique factorisation domain, and f ∈ R[X]. Then f = c(f) · f ′ for some primitive
f ′ ∈ R[X].

Proof. If f = a0 + · · · + anX
n then c(f) | ai for each i = 0, . . . , n. Therefore, ai = c(f)bi for some bi ∈ R. In

particular, the greatest common divisor of {b1, . . . , bn} is one. Let f ′ = b0 + . . . bnX
n. Then f ′ is primitive and

f = c(f) · f ′.

Lemma 2.4.7. Let R be a unique factorisation domain. If f, g ∈ R[X] are primitive, then f ·g is also primitive.

Proof. Let f = a0 + . . . anX
n and g = b0 + . . . bmX

m, with an, bm ̸= 0, be primitive in R[X]. Suppose fg is
not primitive so that c(f · g) is not a unit. Since R is a unique factorisation domain, there is some irreducible
p ∈ R with p | c(f · g). As c(f) and c(g) are units we know that p does not divide c(f) or c(g). Therefore, p
does not divide all ai or all bj , meaning there exists k, l ≥ 0 with the following properties.

1. p divides a0, . . . , ak−1 but not ak.

2. p divides b0, . . . , bl−1 but not bl.
Consider the Xk+l coefficient in f · g which is given by∑

i+j=k+l
aibj = (ak+lb0 + · · · + ak+1bl−1)︸ ︷︷ ︸

(1)

+akbl + (ak−1bl+1 + · · · + a0bl+k)︸ ︷︷ ︸
(2)

.

We know p divides (1) as p divides each bj . Similarly, we know p divides (2) as p divides each ai. Hence, as
p divides the Xk+l coefficient, it must be that p divides akbl. Since p is irreducible and hence prime, p | ak or
p | bl, either of which provides a contradiction. So c(f · g) is a unit which implies that f · g is primitive.
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Corollary 2.4.8. Let R be a unique factorisation domain. Then for f, g ∈ R[X] the content c(f · g) is an
associate of c(f) · c(g).

Proof. Using Lemma 2.4.6, we can write f = c(f) · f ′ and g = c(g) · g′ for f ′, g′ ∈ R[X] primitive. Then
f · g = c(f)c(g) (f ′ · g′). As f ′ and g′ are primitive it follows by Lemma 2.4.7 that f ′ · g′ is primitive. Therefore,
c(f)c(g) is a greatest common divisor of the coefficients of f · g meaning it is an associate of c(f · g).

Remark 2.4.9.

• Note that Corollary 2.4.8 implies Lemma 2.4.7. However, Corollary 2.4.8 is derived from Lemma 2.4.7.

• We cannot say c(f · g) = c(f) · c(g), since both are only well-defined up to associates.

Lemma 2.4.10 (Gauss’ Lemma). LetR be a unique factorisation domain and f ∈ R[X] a primitive polynomial.
Let F be the field of fractions of R. Then f is irreducible in R[X] if and only if it is irreducible in F [X].

Proof. Let R be a unique factorisation domain, with F its field of fractions, and f ∈ R[X] a primitive polynomial.
(⇐) Suppose f is reducible in R[X]. Then f = gh where g, h ∈ R[X] are both non-units. As f is primitive both
g and h are also primitive. Therefore, if g had degree zero it would be a unit and so under our assumptions, we
have deg(g) > 0. Similarly, deg(h) > 0. Consequently, g and h cannot be units in F [X]. Writing f = gh and
viewing f , g and h as elements of F [X], we see that f is reducible in F [X]. It follows that if f is irreducible in
F [X] then it ought to be irreducible in R[X] too.
(⇒) Suppose f is reducible in F [X] with f = gh, for g, h ∈ F [X] non-units. As before we must have
deg(g),deg(h) > 0. We can clear denominators by choosing a, b ∈ R\{0} such that ag and bh lie in R[X].
For example, a can be taken to be the product of all denominators of coefficients of g and similarly for b. Let
g′ = ag and h′ = bh and note these lies in R[X]. However, h may not be in R[X] and so h′ = bh is not
necessarily a factorisation in R[X]. Similarly, g′ = ag is not necessarily a factorisation in R[X]. Using f = gh we
see that

abf = g′h′ ∈ R[X] (2.4.1)
where each factor lie in R[X]. Hence, we can write g′ = c (g′) · g′′ and h′ = c (h′) · h′′ for g′′, h′′ ∈ R[X]
primitive. Since f is primitive we note that c(abf) = ab which, by (2.4.1), is an associate of c (g′h′) and thus also
an associate of c (g′) c (h′) by Corollary 2.4.8. That is, uab = c (g′) c (h′) where u ∈ R×is some unit. Therefore

abf = g′h′

= c (g′) c (h′) g′′h′′

= uabg′′h′′.

Since R[X] is an integral domain and ab ̸= 0, we get

f = u · g′′ · h′′,

where u ∈ R× is a unit and g′′h′′ ∈ R[X]. Moreover, as g′′ and h′′ have positive degrees they are non-units
which means that f is reducible in R[X]. Therefore, we conclude that if f is irreducible in R[X] then it ought to
be irreducible in F [X] too.

Corollary 2.4.11. Let R be a unique factorisation domain, and let F be the field of fractions R. If p
q ∈ F ,

with p and q coprime, is a root for f = a0 + a1X + · · · + anX
n ∈ R[X], then p|a0 and q|an.

Proof. Let f = c(f1)f1, where f1 is primitive. Then p
q is a root of f , hence, f1 = (qX−p)g for some g ∈ F [X] as

F [X] is a Euclidean domain. Therefore, by Lemma 2.4.10, f1 is reducible over R[X]. In particular, f1 = (qX−p)g
for g ∈ R[X]. Writing g = b0 + · · · + bnX

n it follows that f1 has X0 coefficient −pb0 and Xn coefficient qbn−1.
Thus, −b0|a0 and qbn−1|an, which implies that p|a0 and q|an.
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Lemma 2.4.10 is useful as checking irreducibility in F [X] is generally harder than checking it in R[X].

Example 2.4.12.

1. Let f = 1+X+X3 ∈ Z[X]. Note that f is primitive as c(f) = 1. Suppose f is reducible in Q[X]. Then
by Lemma 2.4.10 we have that f is reducible in Z[X]. Let f = g · h for g, h ∈ Z[X] non-units. As the
coefficients of f are ones, if g and h were constants then they would have to be ±1 or 0. However, this
would mean that g and h were either units or zero, which is not the case and so deg(g),deg(h) > 0. As
deg(g)+deg(h) = deg(f) = 3 we can suppose without loss of generality that deg(g) = 1 and deg(h) = 2
and write g = b0 + b1X and h = c0 + c1X + c2X

2, where bi, cj ∈ Z. Since f = g · h, the X0 coefficient
of f is

1 = b0c0

and the X3 coefficient is
1 = b1c2.

As bi, cj ∈ {±1} for each i and j we have g = ±1 ±X meaning ±1 is a root of f . However, computing
f(1) and f(−1) we see that they are both non-zero, giving a contradiction. Therefore, f is irreducible
in Z[X] and thus irreducible in Q[X]. Consequently, Q[X]/(f) is a field. The utility of Lemma 2.4.10
for this problem was in restricting the possible coefficients of g and h.

2. The polynomial f in Lemma 2.4.10 needs to be primitive. Indeed, take f = 2X + 2 ∈ Z[X]. Then
f = 2(X + 1) is reducible, however, as 2 ∈ Q[X] is a unit the polynomial f is not reducible in Q[X].

Theorem 2.4.13. Let R be a unique factorisation domain. Then R[X] is a unique factorisation domain.

Proof. Consider statement 1 of Definition 2.2.20. Let f ∈ R[X] be non-zero and not a unit. Write f = c(f) · f1,
with f1 ∈ R[X] a primitive polynomial. Since R is a unique factorisation domain we can factor the content as

c(f) = p1 . . . pn

where each pi ∈ R is irreducible in R. As R ⊆ R[X] each pi is also irreducible in R[X]. Next, suppose f1 is not the
product of irreducibles. In particular, f1 itself is not irreducible and so we can write f1 = f2g2 with f2, g2 ∈ R[X]
non-units. Since f1 is primitive we must have that f2 and g2 are primitive, and so they cannot be constants. Hence,
deg (f2) ,deg (g2) > 0. Since deg (f1) = deg (f2) + deg (g2), we must also have deg (f2) ,deg (g2) < deg (f1). If
f2 and g2 were products of irreducibles then f1 would be too. Assume without loss of generality that f2 is not a
product of irreducibles. Apply the same argument to f2 to write f2 = f3g3 as a product of non-units. Continuing
gives a sequence (fn)n∈N ⊆ R[X] of non-zero elements, with deg (f1) > deg (f2) > . . . > 0. However, we cannot
have an infinite sequence of positive integers which is strictly decreasing, and so we arrive at a contradiction.
Therefore we can write f1 = q1 . . . qm, with each qi ∈ R[X] irreducible. Thus,

f = p1 . . . pn · q1 . . . qm,

where all the pi are irreducible constant polynomials, and all the qj are irreducible non-constant polynomials. We
conclude that factorisations into irreducibles exist. Next, consider statement 2 of Definition 2.2.20. Let f ∈ R[X]
be non-zero and not a unit. Let c(f) = p1 . . . pn be a factorisation of c(f) into irreducibles of R. This is unique
up to reordering and associates since R is a unique factorisation domain. Consequently, it suffices to consider
primitive polynomials. Suppose f ′ ∈ R[X] is primitive and that we have factorisations

f ′ = q1 . . . qm = r1 . . . rl

where each qi, rj ∈ R[X] is irreducible. Each c (qi) and c (rj) is a factor of the unit c (f ′) and so each qi and rj
must be primitive. Let F be the field of fractions of R, and consider qi, rj ∈ F [X]. By Lemma 2.4.10 each qi and
rj is irreducible in F [X]. As F is a field we have that F [X] is a Euclidean domain, meaning it is also a principal
ideal domain and hence a unique factorisation domain. So by the uniqueness of factorisation in F [X], we find
that m = l, and possibly after reordering we find that ri and qi are associates in F [X] for each i = 1, . . . ,m.
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That is, ri = uiqi for some unit ui ∈ F [X]. In particular, each ui must be a constant polynomial and thus
ui ∈ F , that is, ui = ai

bi
, for some elements ai, bi ∈ R \ {0}. Meaning airi = biqi, where all factors are in R[X].

Recall that ri and qi are primitive, and so by taking the content of both sides we find that ai, bi are associates.
Hence we can write bi = viai, for some unit vi ∈ R×. Therefore,

airi = viaiqi.

Cancelling the ai factor, which we can do as it is non-zero, we find that ri = vi · qi, where vi is a unit in R and
hence a unit in R[X]. Consequently, ri and qi are associates in R[X] for each i = 1, . . . ,m, implying that the
factorisation into irreducibles is unique up to associates and reordering.

Remark 2.4.14. There are some comments to be made regarding the proof of Theorem 2.4.13.

1. Showing the existence of factorisations was similar to showing that a principal ideal domain is a unique
factorisation domain.

(a) Find factorisations f1 = f2g2, f2 = f3g3, . . . into non-units.
(b) Show this sequence terminates.

2. Showing uniqueness involved taking factors out of the contents to reduce everything to the primitive case,
and then using Lemma 2.4.10 to argue in F [X] which is known to be a unique factorisation domain.

3. Iterating Theorem 2.4.13 we deduce that if R is a unique factorisation domain then R [X1, . . . , Xn] is a
unique factorisation domain, for n ∈ N.

4. Theorem 2.4.13 shows that Z[X] is a unique factorisation domain which we know is not a principal ideal
domain.

Proposition 2.4.15 (Eisenstein’s criterion). Let R be a unique factorisation domain, and let f = a0 +a1X+
. . .+ anX

n ∈ R[X] be a primitive polynomial with an ̸= 0. Let p ∈ R be irreducible such that

• p does not divide an,

• p divides ai for each 0 ≤ i < n, and

• p2 does not divide a0.

Then f is irreducible in R[X].

Proof. Suppose that f is reducible in R[X], that is f = gh for g, h ∈ R[X] non-units. Let

• g =
∑m
i=1 biX

i, and

• h =
∑l
i=1 ciX

i.

As f is primitive, g and h are primitive. Note that m + l = n. Moreover, m, l ≥ 1 as if m = 0 then g would
be a constant. Thus as g is primitive it follows that g ∈ R× ⊆ R[X]×, which is a contradiction. Let f̃ be the
transportation of f ∈ R[X] to R[X]/(p). In other words, f̃ is f with each coefficient reduced modulo p, similarly
let ã = a + (p) for a ∈ R. By assumption we have that f̃ = ãnX

n. Moreover, f̃ = g̃h̃. Looking at the X0

coefficient we see that p|b0c0. As p2 does not divide a0 it must be the case that p divides exactly one of b0 or
c0. Without loss of generality suppose that p|c0 and p does not divide b0, that is c̃0 = 0 and b̃0 ̸= 0. As h̃ is not
zero, there is some 0 < j < l such that p|c0, . . . , p|cj−1 but p ∤ cj . Consequently, the Xj coefficient of f̃ is given
by b0cj mod p. We know that j ̸= n as l < n, and so 0 = b0cj mod p. However, this implies that p|b0 or p|cj ,
which is a contradiction.
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Example 2.4.16.

• Consider f = Xn − p ∈ Z[X], where p ∈ N is prime. The conditions for Eisenstein’s criterion hold and
so f is irreducible in Z[X]. Therefore, by Lemma 2.4.10, it is also irreducible in Q[X]. Consequently, we
deduce that Xn − p has no rational zeroes. That is, n

√
p is irrational for n > 1.

• Let f = Xp−1 +Xp−2 + · · · + 1 ∈ Z[X], for p ∈ N prime. Note that

f = Xp − 1
X − 1 .

Since the coefficients in f are ones, Eisenstein’s criterion cannot currently be applied. Instead, we let
Y = X − 1 so that f(X) = f̂(Y ) where f̂ ∈ Z[Y ] is given by

f̂ = (Y + 1)p − 1
Y

= Y p−1 +
(
p

1

)
Y p−2 +

(
p

2

)
Y p−3 + . . .+

(
p

p− 1

)
.

Now Eisenstein’s criterion can be applied with p as f̂ is primitive and p |
(
p
i

)
for 1 ≤ i ≤ p− 1 but p2 ∤(

p
p−1
)
. Therefore, f̂ ∈ Z[Y ] is irreducible. Thus, f = gh in Z[X] would mean f̂(Y ) = g(Y + 1)h(Y + 1)

which contradicts f̂(Y ) being irreducible. Hence f ∈ Z[X] is irreducible. This is to be expected as we
know the roots of f are e

2πik
p for 1 ≤ k ≤ p− 1, none of which are rational, or even real.

Proposition 2.4.17 (Generalised Eisenstein’s Criterion). Let R be a commutative ring, and let f = a0 +
a1X + · · · + anX

n ∈ R[X] be a primitive polynomial with an ̸= 0. Let P ⊆ R be a prime ideal such that

• an ̸∈ P ,

• ai ∈ P for each 0 ≤ i < n, and

• a0 ̸∈ P 2.

Then f is irreducible in R[X].

Remark 2.4.18.

1. In Proposition 2.4.17, P 2 denotes the ideal generated by elements of the form p1p2 where p1, p2 ∈ P .

2. In Proposition 2.4.17, since we are not assuming R is a unique factorisation domain, the greatest common
divisor of the coefficient need not exist. Proposition 2.4.17 only applies to f where the greatest common
divisor exists.

2.5 Noetherian Rings
Recall that a commutative ring R is Noetherian if for a chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ R

there is some N for which IN = IN+1 = . . . .

Definition 2.5.1. An ideal I ⊆ R is finitely generated if there exists a set {r1, . . . , rn} ⊆ R such that
I = (r1, . . . , rn).
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Proposition 2.5.2. A ring is Noetherian if and only if every ideal is finitely generated.

Proof. (⇒). Let R be a Noetherian ring. Suppose that an ideal I ⊆ R is not finitely generated. Let i1 ∈ I, it
follows that (i1) ⊆ I, with (i1) ̸= I as I is not finitely generated. Consequently, we can choose i2 ∈ I \ (i1).
Then the ideal (i1, i2) is such that (i1) ⊆ (i1, i2) ⊆ I where (i1) ̸= (i1, i2) as i2 /∈ (i1) and (i1, i2) ̸= I as I is
not finitely generated. Continuing in the was we generate a chain of ideals

(i1) ⊆ (i1, i2) ⊆ (i1, i2, i3) ⊆ · · · ⊆ I

which is not eventually constant. This contradicts R being Noetherian.
(⇐). Let R be a ring for which every ideal is finitely generated. Let

I1 ⊆ I2 ⊆ I3 · · · ⊆ R

be an ascending chain of ideals. By Exercise 2.2.25 we have that

I =
∞⋃
i=1

Ii ⊆ R

is an ideal and thus must be finitely generated. Suppose that

(i1, . . . , in) = I

and let M be the minimum number such that ik ∈ IM for each k ∈ {1, . . . , n}. Consequently, ik ∈ Im for each
k ∈ {1, . . . , n} and m ≥ M . Therefore, as ideals are additive groups it follows that

I = (i1, . . . , in) ⊆ Im

for every m ≥ M . However, as Im ⊆ I for all m ≥ M we conclude that IM = IM+1 = . . . . Therefore, R is
Noetherian.

Remark 2.5.3. Using Proposition 2.5.2 we deduce the following statements.

• Any principal ideal domain is Noetherian.

• Any field is Noetherian.

• Any finite ring is Noetherian.

• For Z[X1, X2, . . . ] the chain of ideals

(X1) ⊆ (X1, X2) ⊆ (X1, X2, X3) ⊆ . . .

is not eventually constant and so Z[X1, X2, . . . ] cannot be a Noetherian ring.

Proposition 2.5.4. Let R be a commutative Noetherian ring and let I ⊆ R be an ideal. Then R/I is
Noetherian.

Proof. Let π : R → R/I be given by x 7→ x + I. Let J ⊆ R/I be an ideal. Then π−1(J) ⊆ R is an ideal.
Therefore, π−1(J) is finitely generated by Proposition 2.5.2, that is

π−1(J) = (r1, . . . , rn)

for some r1, . . . , rn ∈ R. Consequently,
J = (π(r1), . . . , π(rn))

and so R/I is Noetherian by Proposition 2.5.2.
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Exercise 2.5.5. Let R be a ring and let I ⊆ R[X] be an ideal of R[X]. For n ∈ N let

In := {r ∈ R : there exists f ∈ I such that f = rXn + . . . } ∪ {0} ⊆ R.

Show that In is an ideal of R.

Theorem 2.5.6 (Hilbert Basis Theorem). Let R be a Noetherian ring. Then so is R[X] is a Noetherian ring.

Proof. Let I ⊆ R[X] be an ideal. For n ∈ N let

In := {r ∈ R : there exists f ∈ I such that f = rXn + . . . } ∪ {0}.

By Exercise 2.5.5 we know that In ⊆ R is an ideal of R. In particular, as Xf ∈ I for every f ∈ I it follows that
(In)n∈N ⊆ R is an increasing sequence of ideals. Therefore, as R is Noetherian there exists a N ∈ N such that
IN = IN+1 = . . . . Furthermore, as R is Noetherian, we can use Proposition 2.5.2 to write

In =
(
r

(n)
1 , . . . , r

(n)
k(n)

)
for 0 ≤ n ≤ N . For each r(n)

i there exists some f (n)
i ∈ I with f (n)

i = r
(n)
i Xn + . . . .

Claim 1: The ideal generated by the polynomials
(
f

(n)
i

)
0≤n≤N,1≤i≤k(n)

, which we denote J , equals I.

Proof of Claim 1. Proceed by contradiction and let g ∈ I with g = rXm + . . . be of minimal degree such that
g /∈ J .

1. If m ≤ N , then r ∈ Im and so

r =
k(m)∑
i=1

λir
(m)
i

for some λi ∈ R. Consequently,

g̃ :=
k(m)∑
i=1

λif
(m)
i = rXm + · · · ∈ I.

Therefore, if g /∈ J then g − g̃ /∈ J . However, deg (g − g̃) < m which is a contradiction.

2. If m > N , then we know that r ∈ IN by construction of N . Therefore, we can write

r =
k(N)∑
i=1

λir
(N)
i .

Consequently,

g̃ := Xn−N
k(N)∑
i=1

λir
(N)
i = rXm + · · · ∈ I.

Therefore, if g /∈ J then g − g̃ /∈ J . However, deg (g − g̃) < m which is a contradiction.

With Claim 1 we deduce that I is a finitely generated ideal, and so R[X] is Noetherian.

Let F be a field and consider a set of equations E ⊆ F [X1, . . . , Xn]. Let I be the ideal (E). As F is Noetherian
the polynomial ring F [X1, . . . , Xn] is also Noetherian by applying an induction argument to the Theorem 2.5.6.
Hence, every ideal of F [X1, . . . , Xn] is finitely generated meaning

(f1, . . . , fk) = I
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for some f1, . . . , fk ∈ F [X1, . . . , Xn]. For α = (α1, . . . , αn) ∈ Fn consider the homomorphism ϕα : F [X1, . . . , Xn] →
F defined by

ϕα(Xi) = αi

for 1 ≤ i ≤ n. Then α is a solution to the equations E if and only if (ϵ) ⊆ ker(ϕα) which happens if and only if
(f1, . . . , fk) ⊆ ker(ϕα). Remarkably, what we observe is that we can solve the potentially infinite set of equations
E by determining whether α solves the finite set of equations f1, . . . , fk.

2.6 Algebraic Integers
Previously, we encountered rings such as Z[i] and Z

[√
−5
]
. We want to generalise these ideas to define rings

such as Z
[
e

2πi
n

]
.

Definition 2.6.1. A complex number α ∈ C is an algebraic integer if it is the root of some monic polynomial
f ∈ Z[X]. That is, f(α) = 0.

Example 2.6.2.

1. α = i is an algebraic integer as f(i) = 0 for f(X) = X2 + 1.

2. α =
√

2 is an algebraic integer as f
(√

2
)

= 0 for f(X) = X2 − 2.

Remark 2.6.3. There are only countably many polynomials with integer coefficients, and as each of these
can only have finitely many roots we deduce that the set of algebraic integers is countable. Therefore, not all
complex numbers can be algebraic integers as C is uncountable.

Definition 2.6.4. For α ∈ C an algebraic integer, we write Z[α] ≤ C for the smallest subring containing α.
More specifically,

Z[α] :=
⋂

S≤C,α∈S

S

where the intersection is over subrings S ≤ C containing α.

Equivalently, we can let ϕα : Z[X] → C be the homomorphism sending f to f(α), and let Z[α] = im (ϕα) ≤ C.
By Theorem 1.3.24 we have that

Z[α] ∼= Z[X]/ ker (ϕα)

where ker (ϕα) is non-empty by construction.

Proposition 2.6.5. Let α ∈ C be an algebraic integer, and let ϕα : Z[X] → C be the homomorphism sending
f to f(α). Let I = ker (ϕα) ⊆ Z[X]. Then the ideal I is principal with I = (fα), for some fα ∈ Z[X] which
is irreducible and monic.

Proof. As α is an algebraic integer, there is some monic f ∈ Z[X] such that f(α) = 0 and so I ̸= 0. Let fα ∈ I
be a non-zero polynomial of minimal degree in I. If fα is not primitive, we can write fα = c (fα) · f ′

α for some
primitive f ′

α ∈ I and thus we can assume that fα is primitive. Let h ∈ I. By the Euclidean algorithm in Q[X],
we can write

h = fα · q + r

for some q, r ∈ Q[X], with r = 0 or deg(r) < deg (fα). By clearing denominators we know there is some
a ̸= 0 ∈ Z such that aq, ar ∈ Z[X] with

ah = fα · (aq) + (ar).
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Evaluating at α shows that ar(α) = 0 and so ar ∈ I. Since fα has a minimal degree among non-zero elements
in I, we must have ar = 0 which implies that r = 0. Hence, ah = (aq) · fα is a factorisation in Z[X]. Taking
contents we get

ac(h) = c(ah)
= c (fα) · c(aq)
= c(aq),

where equality is only up to associates. So a | c(aq) which implies aq = aq̄, for some q̄ ∈ Z[X]. Since a ̸= 0 we
must have q = q̄ ∈ Z[X]. Therefore, h = fα · q ∈ I and so it follows that I = (fα). Since Z[α] ≤ C and Z[X]/I
is an integral domain we know that I is a prime ideal and hence fα is prime which implies it is irreducible. Since
I contains some monic polynomial f and fα | f , the leading coefficient of fα must be a unit in Z, that is ±1. If
it is −1, we take −fα. Either way, we may assume fα is monic.

Remark 2.6.6. Requiring fα to be monic in Proposition 2.6.5 ensures that fα is determined uniquely.

Definition 2.6.7. For α ∈ C an algebraic integer, we call the polynomial fα of Proposition 2.6.5 the minimal
polynomial of α.

Example 2.6.8.

1. α = (1 + i)
√

3 is an algebraic integer as f
(
(1 + i)

√
3
)

= 0 for f(X) = X4 + 36. In particular, the
linear factors of f over C[X] are

(
X − (±1 ± i)

√
3
)
. As C[X] is a unique factorisation domain, fα is a

product of some of these linear factors. The only combination leading to an integer polynomial gives rise
to f . Therefore, f is the minimal polynomial of α.

2. α = i+
√

3 is an algebraic integer as f(α) = 0 for f(X) = X4 − 4X2 + 16. Using similar arguments as
to those made in statement 1 we deduce that f is the minimal polynomial of α.

Exercise 2.6.9. Show that 2 cos
( 2π

7
)

is an algebraic integer, and find its minimal polynomial.

Lemma 2.6.10. Let α ∈ Q be an algebraic integer. Then α ∈ Z.

Proof. Let fα ∈ Z[X] be the minimal polynomial of α. Then fα is irreducible and primitive. Hence, by Lemma
2.4.10 we have that fα is irreducible in Q[X]. Since fα(α) = 0 and α ∈ Q we know that X − α | fα in Q[X].
Since fα is irreducible and monic this implies that fα = X − α. Since fα ∈ Z[X] we must have α ∈ Z.

Example 2.6.11.

1. α = 1
2
(
1 +

√
3
)

is not an algebraic integer. Suppose it were an algebraic integer with f(α) = 0 for
f ∈ Z[X]. As f(X(1 − X)) is monic it follows that α(1 − α) = − 1

2 is an algebraic integer. However,
this contradicts Lemma 2.6.10.

2. α =
√

5√
7 is not an algebraic integer. Suppose it were an algebraic integer with f(α) = 0 for f ∈ Z[X]

monic. As f
(
X2) ∈ Z[X] is monic it follows that α2 = 5

7 is an algebraic integer. However, this
contradicts Lemma 2.6.10.

Remark 2.6.12. The set of algebraic integers is a subring of C.
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We now turn our attention to a specific subring of algebraic integers, namely Z[i]. This is a unique factorisation
domain for which we will characterise its prime, and hence irreducible, elements.

Proposition 2.6.13. Let p ∈ N be a prime number. Then p is prime in Z[i] if and only if p cannot be written
as a2 + b2 for a, b ∈ Z \ {0}.

Proof. (⇒). If p = a2 + b2, then p = (a+ ib)(a− ib). Meaning p is not irreducible and so it is not prime.
(⇐). Suppose p is reducible in Z[i]. That is, p = uv with u, v ∈ Z[i] non-units. Taking the norm squared, we
find that p2 = |u|2|v|2. Since u, v are not units, we must have that |u|2, |v|2 ̸= 1 and so |u|2 = p and |v|2 = p.
If u = a+ ib, this says that p = a2 + b2.

Lemma 2.6.14 is a technical lemma that will allow us to say more about the primes in Z[i].

Lemma 2.6.14. Let p ∈ N be a prime number, and let Fp = Z/pZ be the field with p elements. Then
F×
p

∼= Cp−1 is cyclic of order p− 1.

Proof. Note that F×
p has order p− 1, and is abelian. From the classification of finite abelian groups, if F×

p is not
cyclic then it contains a subgroup isomorphic to Cm×Cm for some m > 1. Consider the polynomial f = Xm−1.
All elements of Cm × Cm are roots of f , so f has at least m2 roots and hence it has at least m2 distinct linear
factors. However, Fp[X] is a unique factorisation domain so it cannot have more than m distinct linear factors.
Therefore, F×

p is cyclic and of order p− 1 meaning F×
p

∼= Cp−1.

Theorem 2.6.15. The primes in Z[i] are one of the following, up to associates.

1. Prime numbers p ∈ N ⊆ Z[i] which are equal to 3 mod 4.

2. z ∈ Z[i] such that |z|2 = p, with p ∈ N a prime number which is either 2 or 1 mod 4.

Proof. If p ∈ N is prime and equal to 3 mod 4, then p ̸= a2 + b2 for any a, b ∈ Z as any square number is always
0 or 1 mod 4. Therefore, using Proposition 2.6.13 it follows that p is prime in Z[i]. Similarly, if |z|2 = p is prime
and z = uv, then |u|2|v|2 = p. Without loss of generality suppose that |u|2 = 1 which implies it is a unit. Hence,
z is irreducible and thus prime in Z[i]. Now we show that irreducibles, and thus prime, elements of Z[i] satisfy
statement 1 or statement 2. Let z ∈ Z[i] be irreducible. It cannot be a unit and so |z|2 > 1. Moreover, z̄ is also
irreducible. So |z|2 = zz̄ is a factorisation of |z|2 into irreducibles. Let p ∈ N be a prime factor of |z|2 > 1. Then
p | zz̄ in Z[i].

1. If p is 3 mod 4, then p is prime in Z[i]. So p | z or p | z̄. Noting p = p̄, either way, we must have p | z.
Since both p and z are irreducible, they must be associates. So z satisfies statement 1.

2. If p is 1 mod 4, then p − 1 = 4k for some k ∈ Z and so F×
p

∼= C4k by Lemma 2.6.14. Let a ∈ F×
p be an

element of order 4. Then a2 is an element of order 2, of which there is only one, namely a2 = −1. So there
is some a ∈ Z with p | a2 + 1. In other words, p | (a + i)(a − i) = a2 + 1. If p = 2, we also note that
p | (a+ i)(a− i) for a = 1. As, p ∤ a+ i for any prime p we note p is not prime in Z[i]. Thus we can write
p = z1z2, with z1, z2 ∈ Z[i] non-units. Taking the norm squared we deduce that

p2 = |z1|2 |z2|2 .

Since z1, z2 are not units, we must have |z1|2 = |z2|2 = p. Therefore, p = z1z̄1 = z2z̄2 = z1z2 which
implies that z1 = z̄2. So p = z1z̄1 divides |z|2 = zz̄. As z is irreducible and Z[i] is a unique factorisation
domain we must have that z = z1 or z = z̄1. Either way |z|2 = p. and z satisfies statement 2.

Remark 2.6.16. The upshot of Theorem 2.6.15 is that the problem of finding primes in Z[i] is made equivalent
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to finding sums of two squares which are prime.

Corollary 2.6.17. An integer n ∈ N is a sum of two squares, n = x2 + y2, if and only if when we write
n = pn1

1 . . . pnk

k as a product of powers of distinct primes, ni is even whenever pi is 3 mod 4.

Proof. (⇒). Suppose n = x2 + y2 so that n = |x + iy|2. Let z = x + iy. Write z = α1 . . . αq, where each
αi ∈ Z[i] is irreducible. Then n = zz̄ = |α1|2 . . . |αq|2. By Theorem 2.6.15 each |αi|2 is either p2 for p equal to
3 mod 4, or is a prime p which is 2 or equal to 1 mod 4. Consequently, each prime which is 3 mod 4 appears an
even number of times in the prime factorisation of n.
(⇐). Write n = pn1

i . . . pnk

k as a product of powers of distinct primes. If p1 is 2 or equal to 1 mod 4, then
pi = |αi|2 for some αi ∈ Z[i] which implies that pni

i = |αni
i |2. If pi is 3 mod 4, then pni

i =
∣∣∣pni

2
i

∣∣∣2. Since | · |2 is
multiplicative, we find that n = |β|2 for some β ∈ Z[i]. That is, n is the sum of two squares.

Example 2.6.18. Consider 65 = 5 × 13. As 5 and 13 are both congruent to 1 mod 4, Corollary 2.6.17 tells us
that 65 is a sum of two squares. Moreover, the proof of Corollary 2.6.17 gives us a way to write 65 as the sum
of two squares. First, we factor 5 and 13 into irreducibles in Z[i] as

5 = (2 + i)(2 − i)

and
13 = (2 + 3i)(2 − 3i).

Then we can write

65 = |2 + i|2 · |2 + 3i|2 = |(2 + i)(2 + 3i)|2 = |1 + 8i|2 = 12 + 82

and
65 = |(2 + i)(2 − 3i)|2 = |7 − 4i|2 = 42 + 72.

As Z[i] is a unique factorisation domain we know these are the only ways of writing 65 as a sum of two squares.

2.7 Solution to Exercises
Exercise 2.1.10

Solution. Let R = {r0, r1, . . . , rn} be a ring where r0 = 0 and r1 = 1. For r ∈ R \ {0} consider the map
φr : R → R given by φr(ri) = rri. If φr(ri) = φr(rj) then rri = rrj which implies that r(ri − rj) = 0 meaning
ri = rj as R is an integral domain. Therefore, φr is injective and thus surjective as R is finite. In particular, φr
is a bijection. Therefore, there exists an ri such that φr(ri) = 1 which implies that rri = 1. Moreover, as R is
commutative we have that rri = 1, hence ri is the unique multiplicative inverse of r. Repeating this for each
r ∈ R \ {0} we conclude that each non-zero element has a multiplicative inverse and hence R is a commutative
division ring, namely R is a field.

Exercise 2.2.11

Solution. Let p ∈ R \ {0}. Then 1 = qp + r for some q, r ∈ R with θ(r) < θ(1) or r = 0. Since θ(s) = 0 for
every s ∈ R it follows that r = 0. Therefore, 1 = qp which means that p ∈ R×. It follows that R = R×{0}
which means that R is a field.

Exercise 2.2.13

Solution. Let ϕ : Z
[√

2
]

→ Z≥0 be given by

a+ b
√

2 7→
∣∣a2 − 2b2∣∣ .
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For a, b, c, d ∈ Z we have

ϕ
((
a+ b

√
2
)(

c+ d
√

2
))

= ϕ
(
ac+ 2bd+ (ad+ bc)

√
2
)

=
∣∣(ac)2 + 4abcd+ 4(bd)2 − 2

(
(ad)2 + 2abcd+ (bc)2)∣∣

=
∣∣(ac)2 + 4(bd)2 − 2(ad)2 − 2(bc)2∣∣

=
∣∣(a2 − 2b2) (c2 − 2d2)∣∣

= ϕ
(
a+ b

√
2
)
ϕ
(
c+ d

√
2
)
.

Moreover, if ϕ
(
a+ b

√
2
)

= 0 then a2 = 2b2. We can assume that a, b are positive, as if a, b is a solution then so
are −a, b and a,−b and −a,−b. Similarly, we can assume that a, b are non-zero, as if a = 0 then b = 0 and vice
versa. So 2|a meaning a = 2k, which implies that 4k2 = 2b2 which implies 2k2 = b2. Therefore, b = 2p which
implies that k2 = 2p2. As k < a and p < b we get ever smaller solutions which is a contradiction. Therefore, for
a+ b

√
2 ̸= 0 we have ϕ

(
a+ b

√
2
)
> 0, and as it is an integer it must be greater than equal to one. Therefore,

ϕ(zw) ≥ ϕ(w) for all z, w ∈ Z
[√

2
]

\ {0}. Next, let a+ b
√

2, c+ d
√

2 ∈ Z
[√

2
]
. Then

a+ b
√

2
c+ d

√
2

= (ac− 2bd) + (bc− ad)
√

2
c2 − 2d2 =: r1 + r2

√
2 ∈ Q

[√
2
]
.

We can find q1, q2 ∈ Z such |r1 − q1| ≤ 1
2 and |r2 − q2| ≤ 1

2 . Then let

r̃ = (r1 − q1) + (r2 − q2)
√

2

so that
a+ b

√
2 =

(
q1 + q2

√
2
)(

c+ d
√

2
)

+
(
c+ d

√
2
)
r̃.

Note that
(
c+ d

√
2
)
r̃ ∈ Z

[√
2
]

as the two other terms in the above expression are in Z
[√

2
]
. Moreover,

ϕ
((
c+ d

√
2
)
r̃
)

= ϕ
(
c+ d

√
2
)
ϕ (r̃)

= ϕ
(
c+ d

√
2
) ∣∣(r1 − q1)2 − 2(r2 − q2)2∣∣

≤ ϕ
(
c+ d

√
2
)(1

4 + 21
4

)
< ϕ

(
c+ d

√
2
)
.

Therefore, Z
[√

2
]

is a Euclidean domain.

Exercise 2.2.25

Solution. As I1 is an abelian group we have 0R ∈ I1 which implies that 0R ∈ I. For x, y ∈ I, we have that
x ∈ Ii and y ∈ Ij for some i, j ∈ N. Suppose without loss of generality that i ≤ j, then as Ii ⊆ Ij we have
x ∈ Ij . As Ij is an abelian group we have x + y ∈ Ij which implies that x + y ∈ I. Therefore, I is an abelian
group. Similarly, let r ∈ R, then for x ∈ I we have that x ∈ Ii for some i ∈ N. As Ii is an ideal we have rx ∈ Ij ,
which implies that rx ∈ I. Therefore, I is an ideal.

Exercise 2.3.4

Solution. Suppose that (a1, b1) ∼ (a2, b2) such that a1b2 = a2b1. It follows that

(a1, b1) + (c, d) = (a1d+ b1c, b1d)
= (b2a1d+ b2b1d, b2b1d)
= (a2b1d+ b2b1d, b2b1d)
= (a2d+ b2d, b2d)
= (a2, b2) + (c, d).
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Similarly,

(a1, b1)(c, d) = (a1c, b1d)
= (b2a1c, b2b1d)
= (a2b1c, b2b1d)
= (a2c, b2d)
= (a2, b2)(c, d).

Exercise 2.6.9

Solution. Let γ = cos
( 2π

7
)

+ i sin
( 2π

7
)

and α = 2 cos
( 2π

7
)
. Note that

γ3 + γ2 + γ + 1 + 1
γ

+ 1
γ2 + 1

γ3 = 0.

As

• α = γ + 1
γ ,

• α2 = γ2 + 1
γ2 + 2, and

• α3 = γ3 + 1
γ3 + 3α

we deduce that
α3 + α2 − 2α− 1 = 0,

which implies that α is an algebraic integer. Moreover, this tells us that fα|X3+X2−2X−1. As X3+X2−2X−1
is irreducible in Z[X] it follows that

fα = X3 +X2 − 2X − 1.
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3 Modules
3.1 Definition and Examples
A module to a ring is similar to what a vector space is to a field. Various parts of the theory of vector spaces will
carry over, but many will not. In this section, we will consider a ring R that is not necessarily commutative.

Definition 3.1.1. An R-module is a set M with operations + : M×M → M , · : R×M → M and an element
0M ∈ M such that (M,+) is an abelian group with additive identity 0M ∈ M . Moreover, for all r, r′ ∈ R and
m,m′ ∈ M the following statements are satisfied.

1. (r + r′) ·m = r ·m+ r′ ·m.

2. r · (m+m′) = r ·m+ r ·m′.

3. r · (r′ ·m) = (r · r′) ·m.

4. 1R ·m = m · 1R = m.

Remark 3.1.2. In Definition 3.1.1 we multiply elements of M by elements of R on the left. Consequently,
we refer to such modules as left modules. There is an analogous notion of a right module, whose theory is
essentially the same.

An alternative characterisation of modules is given by homomorphisms. Recall that for an abelian group A, the
set End(A) is the set of group homomorphisms A → A. In particular, End(A) is a ring.

Definition 3.1.3. An R-module is an abelian group M equipped with a ring homomorphism ϕ : R → End(M).

Given such a ϕ, for r ∈ R and m ∈ M we write r ·m for (ϕ(r))(m).

Proposition 3.1.4. Definition 3.1.1 and Definition 3.1.3 are equivalent.

Proof. Suppose that R × M 7→ R satisfies the structure of a left R-module as given in Definition 3.1.1 and
consider φ : R → End(M) where φ(r)(m) = r ·m.

• By the structure of a R-module we know that

φ(r)(m1 +m2) = r · (m1 +m2) = r ·m1 + r ·m2 = φ(r)(m1) + φ(r)(m2).

Moreover, φ(r)(0) = r · 0 = 0. Therefore, φ(r) : M → M is a homomorphism, and thus φ is well-defined.

• By the structure of a R-module it follows that

φ(r1 + r2)(m) = (r1 + r2) ·m = r1 ·m+ r2 ·m = φ(r1)(m) + φ(r2)(m).

Moreover,
(φ(r1) ◦ φ(r2))(m) = r1 · (r2 ·m) = (r1 · r2) ·m = φ(r1 · r2)(m).

So, φ is a homomorphism.

Conversely, it is clear that if we have a homomorphism φ : R → End(M) then M possess the structure of
an R-module due to the properties of φ. Moreover, constructing the homomorphism on the R-module that
φ represents is the same as φ which shows there is a one-to-one correspondence between Definition 3.1.1 and
Definition 3.1.3.

One can think of an R-module as an R-action on an abelian group.
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Example 3.1.5.

• Let F be a field. Then an F -vector space is a F -module.

• Let I ⊆ R be an ideal. Then I is an R-module, through the R-action r ·a := r ·R a, for r ∈ R and a ∈ I.

• R is an R-module. More generally, for n ≥ 1 we have that Rn is an R-module through the R-action

r · (r1, . . . , rn) := (r · r1, . . . , r · rn) .

• If I ⊆ R is a two-sided ideal, then R/I is an R-module through the R-action r · (a+ I) := (r · a) + I.

• A Z-module is equivalent to an abelian group. Let A be an abelian group. For n ∈ Z and a ∈ A we let

n · a =


a+ · · · + a︸ ︷︷ ︸

n

n ≥ 0

(−a) + · · · + (−a)︸ ︷︷ ︸
|n|

n < 0.

Alternatively, there is a unique ring homomorphism Z → End(A) and so we can use this to endow A
with the structure of a Z-module.

3.2 Constructions

Definition 3.2.1. Let M1, . . . ,Mk be R-modules. Their direct sum written M1 ⊕ . . . ⊕ Mk, is the abelian
group M1 × · · · ×Mk with

r · (m1, . . . ,mk) := (r ·m1, . . . , r ·mk) .

Example 3.2.2. As R is an R-module we can let Rn = R⊕ · · · ⊕R︸ ︷︷ ︸
n

.

Definition 3.2.3. A subset N ⊆ M is an R-submodule if it is a subgroup of M such that for r ∈ R and n ∈ N
we have r · n ∈ N . In such a case, we write N ≤ M .

Example 3.2.4.

1. For an R-module M , the sets {0} and M are submodules M .

2. A subset I ⊆ R is a submodule if and only if I is an ideal.

3. If F is a field, submodules and sub-vector spaces coincide.

Definition 3.2.5. Let N ≤ M be a submodule. The quotient module M/N is the abelian group M/N , with
R-action r · (m+N) := (r ·m) +N .

Remark 3.2.6. Groups have both subgroups and normal subgroups. Normal subgroups are a special type of
the former that ensures quotient groups are well-defined. Similarly, rings have subrings and ideals, neither of
which is a special type of the other but ideals ensure quotient rings are well-defined. Modules have submodules,
which are sufficient to ensure that quotient modules are well-defined.
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Definition 3.2.7. Let R,R′ be rings, with M an R-module and M ′ an R′-module. Then M × M ′ is an
R×R′-module, with action

(r, r′) · (m,m′) := (r ·m, r′ ·m′) .

Definition 3.2.8. Let R be a commutative ring with S ⊆ R a multiplicative submonoid and M an R-module.
The localisation of M by S denoted S−1M , is the set of equivalence classes of pairs (m, s) for m ∈ M and
s ∈ S where (m, s) ∼ (m′, s′) if and only if there is a t ∈ S such that t(ms′ −m′s) = 0.

Remark 3.2.9. With the natural structure of the abelian group and the S−1R-action (r, t) · (m, s) = (rm, ts)
for (r, t) ∈ S−1R and (m, s) ∈ S−1M the localisation of M by S is a S−1R-module.

3.3 Homomorphisms

Definition 3.3.1. A map ϕ : M → N between R-modules is an R-module homomorphism if it is a homomor-
phism of abelian groups, and ϕ(r ·m) = r · ϕ(m) for all r ∈ R and m ∈ M .

An isomorphism is a bijective homomorphism.

Proposition 3.3.2. The composition of R-module homomorphisms is an R-module homomorphism.

Example 3.3.3. The ideals (2), (3) ⊆ Z are distinct as ideals of Z. However, through the map ϕ : (2) → (3)
given by 2k 7→ 3k we see that (2) and (3) are isomorphic as R-modules. More generally, if R is an integral
domain and r ∈ R \ {0}, then R and (r) are isomorphic as R-modules.

Many proofs for this section are omitted as they follow analogous arguments as those made for rings.

Theorem 3.3.4 (First Isomorphism Theorem for Modules). Let ϕ : M → N be an R-module homomorphism.
Then the following statements hold.

1. ker(ϕ) ≤ M .

2. im(ϕ) ≤ N .

3. M/ ker(ϕ) ∼= im(ϕ).

Definition 3.3.5. The cokernel of an R-module homomorphism ϕ : M → N , written coker(ϕ), is the quotient
module N/im(ϕ).

Remark 3.3.6. The image of a ring homomorphism is not necessarily an ideal, similarly, the image of a
group homomorphism is not necessarily a normal subgroup. Therefore, the cokernel for these objects is not
well-defined.

Theorem 3.3.7 (Second Isomorphism Theorem for Modules). Let M be an R-module and consider A,B ≤ M .
Then the following statements hold.

1. A+B := {a+ b : a ∈ A, b ∈ B} ≤ M .

2. A ∩B ≤ M .
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3. (A+B)/A ∼= B/(A ∩B).

Remark 3.3.8. More generally, for S ⊆ N, if (Ai)i∈S is a collection of submodules, then∑
i∈S

Ai ≤ M,

where the left-hand side is the set of finite sums of elements of the Ai. Similarly⋂
i∈S

Ai ≤ M.

Theorem 3.3.9 (Third Isomorphism Theorem for Modules). For M and R-module consider N ≤ L ≤ M .
Then the following statements hold.

1. L/N ≤ M/N .

2. M/L ∼= (M/N)/(L/N).

Proposition 3.3.10. For M an R-module let N ≤ M . Then there is a bijection between submodules of
M/N and submodules of M that contain N .

3.4 Generating Modules

Definition 3.4.1. Let M be an R-module and consider m ∈ M . The submodule generated by m is

Rm := {r ·m : r ∈ R} ≤ M.

Alternatively, one can consider the homomorphism ϕm : R → M given by r 7→ r ·m. Then

Rm := im(ϕm).

Using this we have ker(ϕm) ≤ R which is referred to as the annihilator of m, in particular,

Ann(m) := {r ∈ R : r ·m = 0} = ker (ϕm) .

As Ann(m) ≤ R, it follows that it is a two-sided ideal of R. Moreover, by the first isomorphism theorem for
modules we have that

Rm ∼= R/Ann(m).

Definition 3.4.2. An R-module M is finitely generate if there are elements {m1, . . . ,mn} ⊆ M , such that

M = Rm1 + · · · +Rmn

= {r1m1 + · · · + rnmn : r1, . . . , rn ∈ R} .

Example 3.4.3. If F is a field and M is an F -module, then M is finitely generated as an F -module if and
only if it is finite-dimensional as an F -vector space.

Lemma 3.4.4. An R-module M is finitely generated if and only if there is a surjective R-module homomor-
phism Rn → M .
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Proof. (⇒). Suppose M = Rm1 + · · · +Rmn and let ϕ : Rn → M be the R-module homomorphism given by
(r1, . . . , rn) 7→ r1m1 + · · · + rnmn.

Note that ϕ is surjective by assumption.
(⇐). Suppose ϕ : Rn → M is a surjective R-module homomorphism. Let

mi := ϕ((0, . . . , 0, 1R︸ ︷︷ ︸
i

, 0, . . . , 0)).

Then M = Rm1 + · · · +Rmn as ϕ is surjective.

Corollary 3.4.5. Let M be a finitely generated R-module. If N ≤ M then M/N is finitely generated.

Proof. By Lemma 3.4.4 there exists ϕ : Rn → M a surjective R-module homomorphism. As the quotient map
ψ : M → M/N is surjective, the composition ϕ ◦ ψ : Rn → M/N is also surjective. Therefore, by Lemma 3.4.4
it follows that M/N is finitely generated.

Proposition 3.4.6. Let R = Z [X1, X2, . . . ] and let I be the ideal I = (X1, X2, . . . ) ⊆ R. Then I ≤ R is
not a finitely generated R-module.

Proof. We note that I ≤ R as I ⊆ R is an ideal of R. Suppose I = (f1, . . . , fk) is finitely generated. Let p ∈ N
be the largest number such that Xp appears in any of the fi. Then Xp+1 ∈ I but Xp+1 /∈ (f1, . . . , fk) which
contradicts (f1, . . . , fk) generating I.

Remark 3.4.7. The converse of Corollary 3.4.5 does not hold. That is if M is a finitely generated R-module
and N ≤ M , then it is not necessarily the case that N is finitely generated. An explicit example is given by
Proposition 3.4.6 as R = R1 is a finitely generated R-module.

3.5 Free modules

Definition 3.5.1. Let S be a set. The free module over S, written R(S), is

R(S) =
⊕
i∈S

R :=
{

(xi)i∈S : xi ∈ R, xi = 0 for all but finitely many i
}

with coordinate-wise addition and R-action.

Proposition 3.5.2. For a ring R and a set S, the free module R(S) is finitely generated if and only if S is
finite.

Proof. (⇐). If |S| = n, then R(S) ∼= Rn, so there is a surjective homomorphism Rn → R(S). Therefore, by
Lemma 3.4.4 it follows that R(S) is finitely generated.
(⇒). Suppose S is infinite and R(S) = Rm1 + · · · +Rmn. Write each mk =

(
x

(k)
i

)
i∈S

∈ R(S) and consider

T :=
{
i ∈ S : x(k)

i ̸= 0 for some 1 ≤ k ≤ n
}

⊆ S.

Note that T is a finite set, however, S is infinite and so we can find some s ∈ S\T . Let a = (ai)i∈S ∈ R(S) be
the element where

ai :=
{

1 i = s

0 i ̸= s.

Then a /∈ Rm1 + · · · + Rmn, which contradicts {m1, . . . ,mn} generating R(S). Therefore, if R(S) is finitely
generated it must be the case that S is finite.
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Theorem 3.5.3. Let R be a non-trivial commutative ring. Then R is a field if and only if every finitely
generated R-module is free.

Proof. (⇒). Let R be a field and let M be a finitely generated R-module. Let n be the minimum size of a
generating set for M .
Claim 1: If S ⊆ M is linearly independent then |S| ≤ n.
Proof of Claim 1: If |S| > n then {v1, . . . , vn+1} ⊆ S is linearly independent. Suppose M is generated by
{m1, . . . ,mn}. The for 1 ≤ i ≤ n+ 1 we can write

vi =
n∑
j=1

aijmj .

Let A = (aij) ∈ M(n+1)×n(R), where recall R is a field. For x ∈ Rn problem A⊤x = 0 is a system of n + 1
equations in n variables and so there exists a non-zero solution x ∈ Rn \ {0}. Hence,

n+1∑
i=1

xivi =
n∑
j=1

(
A⊤x

)
j
mj = 0,

which contradicts the linear independence assumption.
Claim 2: If S ⊆ M is linearly independent and v ̸∈ span(S), then S ∪ {v} is linearly independent.
Proof of Claim 2: Suppose that S ∪ {v} is not linearly independent such that exists a, ai ∈ R, with at least one
being non-zero, such that

av +
n∑
i=1

aivi = 0.

Since S is linearly independent it must be the case that a ̸= 0. Since R is a field we have a ∈ R× and so

v = −a−1
n∑
i=1

aivi

which contradicts v not being in the span of S.
If M = {0} then M is free. If M ̸= {0} let S1 = {v1} for some v1 ̸= 0. Then S is linearly independent as R
is a field meaning it has no non-zero zero divisors. If S1 spans M then S1 is a basis for M and we are done. If
not, using Claim 2, we can extend S1 to and linearly independent set S2 = {v1, v2} where v2 ̸∈ span(S1). We
can continue this process, which must terminate by Claim 1. Therefore, M has a basis and is thus free.
(⇐). Suppose that R is not a field. Then there exists an a ∈ R \ {0} that is not a unit. Consider the R-module
M = R/(a). Let m ∈ M , then a ·m = 0. Thus if f : M → R(S) is an isomorphism it follows that a ·m = 0 for
all m ∈ R(S).
Claim 3: If r ·m = 0 for all m ∈ R(S) then r = 0.
Proof of Claim 3: If S = ∅ then the claim is true. Suppose S ̸= ∅. Let s ∈ S and let m = (xi)i∈S be such that
xs = 1. Restricting r ·m = 0 to the sth coordinate gives r = r · 1 = 0 ∈ R.
Using Claim 3 it follows that a = 0 which is a contradiction. Therefore, R is a field.

Remark 3.5.4. Theorem 3.5.3 is equivalent to the axiom of choice.

Definition 3.5.5. A subset S ⊆ M generates M freely if the following statements hold.

1. S generates M as an R-module, namely

R · S :=
{∑
s∈S

rss : rs ∈ R with only finitely many non-zero
}

= M
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2. For any R-module N , a map ψ : S → N can be extended to an R-module homomorphism ϕ : M → N .

Remark 3.5.6. Suppose that S ⊆ M generates M freely as formulated in Definition 3.5.5 and suppose that
ϕ, ϕ′ : M → N are extensions of the map ψ : S → N . Then ϕ− ϕ′ : M → N is a homomorphism sending all
of S to zero, meaning S ⊆ ker (ϕ− ϕ′). Since S generates M , this implies ker (ϕ− ϕ′) = M . In other words,
ϕ = ϕ′ and so the extension of ψ to an R-module homomorphism is unique.

Definition 3.5.7 provides an alternative, but equivalent, definition for a free module.

Definition 3.5.7. An R-module M is free if it is freely generated by some subset S ⊆ M . Such a subset
S ⊆ M is called a basis for M .

Proposition 3.5.8. Definition 3.5.1 and Definition 3.5.7 are equivalent.

Proof. Suppose that M ∼= R(S). Note that we can identify S as a subset of M by considering the elements
(xsi )i∈S where

xsi =
{

1 i = s

0 otherwise.
Then (xsi )i∈S generates M as an R-module. Let N be an R-module and let ψ : S → N be a map. Then the
map ϕ : M → N given by

(xi)i∈S 7→
∑
i∈S

xi · ψ(i)

is a homomorphism extending ψ. Therefore, S generates M freely. Conversely, suppose that S ⊆ M freely
generates M . Let ψ : S → R(S) be given by s 7→ (xsi )i∈S . This extends to a homomorphism ϕ : M → R(S)

which is an isomorphism as the map (xi)i∈S 7→
∑
i∈S xi · i is its inverse. Therefore, M ∼= R(S).

Lemma 3.5.9. Suppose M and N are R-modules where M is free with a basis S ⊆ M and N is free with a
basis T . If there is a bijection between S and T then M ∼= N as R-modules.

Proof. Consider the injective functions iM : S → M , given by the inclusion map, and iN : S → N , given
by composing the bijection from S to T with the inclusion map of T into N . Since S generates M freely it
follows that iN extends to a R-module homomorphism θN : M → N . Similarly, iM extends to a R-module
homomorphism θM : N → M . Note that θM ◦ θN ◦ iM = iM and idM ◦ iM = iM . Hence, iM : S → M extends
to θM ◦ θN : M → M and idM : M → M . As the extension is unique, by the arguments of Remark 3.5.6, it
follows that θM ◦ θN = idM . Similarly, we have θN ◦ θM = idN and so M ∼= N .

Definition 3.5.10. A set of elements {m1, . . . ,mn} ⊆ M is linearly independent, if whenever

r1 ·m1 + · · · + rn ·mn = 0

for ri ∈ R we have r1 = · · · = rn = 0.

Proposition 3.5.11. For a subset S = {m1, . . . ,mn} ⊆ M the following statements are equivalent.

1. S generates M freely.

2. S generates M and S is linearly independent.

3. For every m ∈ M we can write
m = r1 ·m1 + . . .+ rn ·mn
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uniquely for ri ∈ R.

Example 3.5.12.

1. Consider Z/2Z as a Z-module. Suppose Z/2Z were freely generated by S ⊆ Z/2Z, then S = {1} since
any set containing zero cannot be linearly independent. But S is not linearly independent as 2 · 1 = 0
with 2 ̸= 0. Therefore, Z/2Z is not freely generated as a Z-module.

2. The subset {2, 3} ⊆ Z generates Z, however, it is not linearly independent as 3 · 2 + (−2) · 3 = 0.
Therefore, {2, 3} does not generate Z freely. For an F -vector space V recall that if S spans V but is not
linearly independent, then one can discard elements of S to arrive at T ⊆ S that is linearly independent
whilst still spanning V . However, no subset of {2, 3} freely generates Z.

Definition 3.5.13. For a finitely generated R-module M , there exists a surjective R-module homomorphism
φ : Rn → M for some n ∈ N by Lemma 3.4.4. The relation module for those generators is ker(φ).

Definition 3.5.14. A finitely generated R-module M is finitely presented if there exists a surjective homomor-
phism Rn → M that has a finitely generated kernel.

Remark 3.5.15.

1. Equivalently, we can say that an R-module M is finitely presented if M is isomorphic to the cokernel of
some homomorphism ϕ : Rm → Rn. To see this we note that a surjective homomorphism φ : Rn → M
exists as M is finitely generated. Similarly, for some m there exists surjective homomorphism ϕ : Rm →
ker(ϕ). As ker(ϕ) ≤ Rn we have that ψ : Rm → Rn. In particular, by the first isomorphism theorem,
we have that

coker(ϕ) = Rn/ ker(φ) ∼= M.

2. Note that a finitely presented module is finitely generated, however, a finitely generated module is not
necessarily finitely presented.

Proposition 3.5.16. Let M be an R-module with N ≤ M . If M/N is free then M ∼= N ⊕M/N .

Proof. As M/N is free it has a basis S = (si + N)i∈I ⊆ M/N . Let π : M → M/N be the map given by
m 7→ m+N . Let T = (ti)i∈I ⊆ M be such that π(ti) = si +N .
Claim 1: M = N ⊕R · T .
Proof of Claim 1: Suppose m ∈ N ∩ R · T , so that m =

∑
i∈I riti for some ri ∈ R with only finitely many ri

non-zero. Then π(m) =
∑
i∈I ri(si+N). As m ∈ N we also know that π(m) = 0, and so 0 =

∑
i∈I ri(si+N).

Hence, by the linear independence of the basis, we deduce that m = 0. Now for any m ∈ M we can write
π(m) = m+N =

∑
i∈I ri(si +N). Let m′ =

∑
i∈I riti. Then as

π (m−m′) = π(m) − π (m′) = N,

it follows that m−m′ ∈ N , which implies that m−m′ = n for some n ∈ N . Therefore, m = n+
∑
i∈I riti. In

conclusion, we have that M = N ⊕R · T .
As R · T ∼= M/N we deduce that M ∼= N ⊕M/N .

Example 3.5.17. Let M and M ′ be R-modules with N ≤ M and N ′ ≤ M ′ where N ∼= N ′. One can use
Proposition 3.5.16 to deduce that M ∼= M ′ when M/N is free. However, knowing only that N is free is
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insufficient to deduce that M ∼= M ′. Indeed, let M = Z × Z/2Z be the Z-module with Z-action given by

r · (a, b) = (r · a, r · b).

Then, N = 3Z×{0} is a submodule of M with M/N = Z/3Z×Z/2Z. Similarly, let M ′ = Z×Z/3Z be the Z-
module with the same Z-action as M . Then, N ′ = 2Z×{0} is a submodule of M ′ with M ′/N ′ = Z/2Z×Z/3Z.
Observe that N is a free module as it is generated by the set {(3, 0)} which is also a linearly independent set
in Z. Moreover, N and N ′ are isomorphic as Z-modules through the map (3k, 0) 7→ (2k, 0). Similarly, M/N
is isomorphic to M ′/N ′ as Z-modules through the map (a, b) 7→ (b, a). However, M = Z × Z/2Z and
M ′ = Z × Z/3Z are not isomorphic. Suppose that such an isomorphism φ : M → M ′ existed and suppose
that φ(0, 1) = (a, b). Then

(a, b) = φ(0, 1) = 3 · φ(0, 1) = 3 · (a, b) = (3a, 0)

which implies that b = 0 and a = 3a. Thus, φ(0, 1) = (0, 0) which contradicts injectivity as we must have
φ(0, 0) = (0, 0) for φ to be a homomorphism.

Let u1, . . . , um ∈ Rm and v1, . . . , vn ∈ Rn be the standard basis elements. Let ϕ : Rm → Rn be an R-module
homomorphism. We can write

ϕ(uj) =
n∑
i=1

aijvi

for each j = 1, . . . ,m. Let A = (aij) ∈ Mn×m(R), then we can write

ϕ(r) = ϕ

 m∑
j=1

rjuj

 =
m∑
j=1

rjϕ(uj) =
m∑
j=1

n∑
i=1

rjaijvi = A · r.

Thus, ϕ is given by right-multiplication by an appropriate matrix. If R is commutative, then we would equally
have ϕ(r) = r · B. Hence, we arrive at a bijection between Mn×m(R) and the set of R-module homomorphism
Rm → Rn. Recall that from linear algebra, for a field F is Fm ∼= Fn it follows that m = n. We will see that the
same is true from commutative rings.

Theorem 3.5.18. Any commutative ring contains a maximal ideal.

Theorem 3.5.18 is equivalent to the axiom of choice.

Theorem 3.5.19. Let R be a commutative ring, and suppose that Rn ∼= Rm as R-modules. Then n = m.

Proof. Using Theorem 3.5.18 we can consider I ⊆ R a maximal ideal so that F = R/I is a field. For M an
R-module, consider

IM := {i1 ·m1 + · · · + ik ·mk : ij ∈ I, mj ∈ M} ≤ M.

Then M/IM is an R-module. In particular, M/IM is an F -module, where for r+I ∈ F and m+IM ∈ M/IM ,
we let

(r + I) · (m+ IM) := (r ·m) + IM.

If Rn ∼= Rm as R-modules, it follows that

Rn/IRn ∼= Rm/IRm (3.5.1)

as F -modules. For k ∈ N let ψ : Rk/IRk → F k = (R/I)k be given by

(r1, . . . , rk) + IRk 7→ (r1 + I, . . . , rk + I) .

It turns out that ψ is an isomorphism, meaning Rk/IRk ∼= F k. Consequently, from (3.5.1) we get that Fn ∼= Fm

as F -modules. Since F is a field, this implies that n = m.
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Exercise 3.5.20. Let R be a ring and M the free R-module with basis (xi)i∈N. Let S = EndR(M). Show
that S ∼= S2 as S-modules.

Remark 3.5.21. The assumption that the rings are commutative is necessary for Theorem 3.5.19. Indeed
Exercise 3.5.20, shows that without this assumption the result no longer holds.

Definition 3.5.22. An R-module is stably free if M ⊕Rn is a free module for some n.

Definition 3.5.23. An R-module M is projective if M ⊕N is a free R-module for some R-module N .

Example 3.5.24. Let R1 and R2 be non-trivial rings. Let R = R1 × R2. Then R1 is an R-module with
R-action r · (r1, r2) = (r · r1, r2). Similarly, R1 is an R-module with R-action r · (r1, r2) = (r1, r · r2). As
R modules we have that R1 ⊕ R2 ∼= R meaning R1 and R2 are projective R-modules. However, neither R1
nor R2 is free as R-modules. As an explicit example consider Z/6Z ∼= Z/2Z × Z/3, where Z/2Z and Z/3Z
are projective modules by our above arguments. However, they are not stably free. To see this note that any
stably free Z/6Z must have order 6n for some n. However, Z/2Z and Z/3Z are both finitely generated with
orders 2 and 3 respectively.

3.6 Noetherian Modules

Definition 3.6.1. For a ring R and an R-module M , we call M Noetherian if every increasing chain

N0 ⊆ N1 ⊆ N2 ⊆ . . .

of R-submodules of M is eventually constant.

Remark 3.6.2. Note that R-submodules correspond to ideals of the ring R. Hence, a ring R is Noetherian if
and only if it is a Noetherian as an R-module.

Theorem 3.6.3. An R-module M is Noetherian if and only if every R-submodule of M is finitely generated.

Proof. (⇒). Let N be an R-submodule of M . Let n0 ∈ N and let N0 be the R-submodule of N generated by
n0. If N0 = N then N is finitely generated. Otherwise, let n1 ∈ N \ N0 and let N1 be the R-submodule of N
generated by n1. If N is not finitely generated we can continue this process to generate R-submodules Nk of N
that are generated by nk ∈ N with nk /∈ Nk−1. Consequently, we obtain a strictly increasing infinite chain

N0 ⊆ N1 ⊆ . . .

of R-submodules of M which contradicts M being Noetherian.
(⇐). Let

N0 ⊆ N1 ⊆ . . .

be an increasing chain of R-submodules of M . Let N =
⋃∞
i=1 Ni, which we note is also an R-submodule and

thus must be finitely generated. Let
N = Rn0 + · · · +Rnr.

Each ni ∈ Nji for some ji. Let j = maxi∈{1,...,n}(ji). Then {n0, . . . , nr} ⊆ Ni for i ≥ j and so N ⊆ Nj which
implies that Ni = N for all i ≥ j. Therefore, the chain is eventually constant meaning N is Noetherian.
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Corollary 3.6.4. Every principal ideal domain R as an R-module is Noetherian.

Proof. As R-submodules are ideals of R as a ring. Every R-submodule is finitely generated as the ideal is a
principal ideal. Therefore, by Theorem 3.6.3 we have that R is Noetherian.

Proposition 3.6.5. If M is a Noetherian R-module, then a submodule N ≤ M is Noetherian and the quotient
M/N is Noetherian.

Proof. Since M is Noetherian, any R-submodule is finitely generated by Theorem 3.6.3. Therefore, any R-
submodule of N is also finitely generated meaning N is Noetherian by Theorem 3.6.3. Let J be an R-submodule
with J̃ its pre-image in N under the map φ : M → M/N given by m 7→ m + N . Then J̃ is finitely generated,
with the image of the generating set of J̃ under φ being a generating set for J . Meaning J is finitely generated
and so we conclude that M/N is Noetherian using Theorem 3.6.3.

Proposition 3.6.6. Let M be an R-module. If there exists a Noetherian submodule N such that M/N is
Noetherian then M is Noetherian.

Proof. Let J ≤ M , then J ∩N ≤ N and so it is finitely generated by Theorem 3.6.3. Let {j1, . . . , jn} generated
J ∩ N . Let φ : M → M/N be given by m 7→ m + N and consider J̄ := φ(J). As J̄ ≤ M/N it follows by
Theorem 3.6.3 that J̄ is finitely generated. Let

{
j̄n+1, . . . , j̄m

}
generate J̄ and let jk ∈ J , for k ∈ {n+1, . . . ,m},

be such that φ(jk) = j̄k. Now for any j ∈ J , let j̄ := φ(j). Then as j̄ ∈ M/N we can write

j̄ =
m∑

k=n+1
rk j̄k

for some rk ∈ R. Observe that for j′ := j− j̄ we have φ (j′) = 0 and so j′ ∈ J ∩N . Consequently, we can write

j′ =
n∑
k=1

rkjk

for some rk ∈ R. Therefore,

j =
m∑
k=1

rkjk,

which shows that J is finitely generated. Using Theorem 3.6.3 we conclude that M is Noetherian.

Corollary 3.6.7. If M and N are Noetherian R-modules, then M ⊕N is a Noetherian R-module.

Proof. The map φ : M ⊕N → N given by (m,n) 7→ n is a surjection. It is clear that

ker(φ) = {(m, 0) : m ∈ M} ∼= M,

and so ker(φ) is Noetherian. As
(M ⊕N)/ ker(φ) ∼= N,

by the first isomorphism theorem, and N is Noetherian, it follows that (M ⊕ N)/K is Noetherian. Therefore,
using Proposition 3.6.6 we have that M ⊕N .

Remark 3.6.8. Using Corollary 3.6.7 it is clear that if R is a Noetherian then so is Rn for any n ∈ N.
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Theorem 3.6.9. Any finitely generated module over a Noetherian ring is Noetherian.

Proof. Let M be a finitely generated R-module with a generating set {m1, . . . ,ms}. Let F be a free R-module
of rank s with a generating set {e1, . . . , es}. Then φ : F → M with ei → mi for each i is a surjection. In
particular,

F/ ker(φ) ∼= M.

With Corollary 3.6.8 we have that F is Noetherian. Thus, with Proposition 3.6.5 we have that ker(φ) is Noetherian
as it is a submodule of F . Therefore, with Proposition 3.6.5 we have that M is Noetherian.

Corollary 3.6.10. For a Noetherian ring R, every finitely generated R-module is finitely presented.

Proof. Let M be a finitely generated R-module, such that there exists a surjective map f : Rn → M for some
n. Since R is Noetherian it follows that Rn is Noetherian by Remark 3.6.8. Therefore, with Proposition 3.6.5
we have that ker(f) is Noetherian as it is a submodule of Rn. Thus ker(f) is finitely generated, using Theorem
3.6.3, which means it is finitely presented.

3.7 Modules over Principal Ideal Domains
Theorem 3.7.15 generalises the classification theorem for finitely generated abelian groups, which are just Z-
modules. An outline for the proof Theorem 3.7.15 is as follows.

1. For R a commutative principal ideal domain let M be a finitely generated R-module.

2. Show that M is finitely presented, with M ∼= coker (ϕA : Rn → Rm) for some matrix A ∈ Mn×m(R),
where ϕA(x) := A · x.

3. Show that if B = PAQ, for invertible matrices P and Q, then ϕA and ϕB have isomorphic cokernels.

4. Show that for any matrix A over R, there are invertible matrices P and Q such that PAQ is a rectangular
diagonal matrix.

5. Combine these steps to prove Theorem 3.7.15.

Lemma 3.7.1. Let R be a principal ideal domain and N ≤ Rn as R-modules. Then N ∼= Rk for some k ≤ n.
In particular, N is finitely generated and free.

Proof. We proceed by induction on n.

• If n = 0 then R0 = {0} and so N = {0} ∼= R0. If n = 1, the N ⊆ R is an ideal and so N = (α) for some
α ∈ R. Recall that a principal ideal domain is an integral domain, and so using Example 3.3.3 we have that{

N ∼= R1 α ̸= 0
N ∼= R0 α = 0.

• Suppose the result holds when N ≤ Rn−1. Now let N ≤ Rn and consider the homomorphism πn : Rn → R
where

(r1, . . . , rn) 7→ rn.

Then πn(N) ≤ R as R-modules, and hence πn(N) = (α) for some α ∈ R. Moreover, note that ker(πn) ∼=
Rn−1.

1. If α = 0, then N ≤ ker (πn) ∼= Rn−1, so by the induction hypothesis we are done.
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2. If α ̸= 0, we can pick some β ∈ N such that πn(β) = α. By the induction hypothesis, there
exist {x1, . . . , xk} ⊆ N ∩ ker (πn) which freely generate N ∩ ker (πn), with k ≤ n − 1. Let S =
{x1, . . . , xk, β} ⊆ N . Let y ∈ N . Then πn(y) = rα, for some r ∈ R which implies that y − rβ ∈
N ∩ ker (πn). Consequently, we can write

y − rβ =
k∑
i=1

rixi

and thus

y = rβ +
k∑
i=1

rixi,

which means that S generates N ∩ ker(πn). Now suppose
0 = r1x1 + · · · + rkxk + rβ,

for ri, r ∈ R. Then
0 = πn(r1x1 + · · · + rkxk + rβ) = rα

which implies that r = 0. Since {x1, . . . , xk} is linearly independent, we must have r1 = · · · = rk = 0
and hence S is linearly independent. Therefore, N is finitely generated and free.

Corollary 3.7.2. Let M be a finitely generated module over a principal ideal domain R. Then M is finitely
presented.

Proof. As M is finitely generated there exists a surjective homomorphism ϕ : Rn → M. As ker(ϕ) ≤ Rn as
R-modules we can apply Lemma 3.7.1 to deduce that ker(ϕ) ∼= Rk for some k ∈ N. Let ψ : Rk → Rn have
image ker(ϕ), then

M ∼= Rn/ ker(ϕ) = coker(ψ),
which shows that M is finitely presented.

Definition 3.7.3. Let R be a ring. Matrices A,B ∈ Mm×n(R) are equivalent if there are invertible matrices
P ∈ GLn(R) and Q ∈ GLm(R) such that B = PAQ.

For a matrix A ∈ Mm×n(R) we can consider the corresponding homomorphism ϕA(x) = A · x. With this view
Definition 3.7.3 is equivalent to say that there are isomorphisms f = ϕP : Rn → Rn and g = ϕQ : Rm → Rm

such that f ◦ ϕB = ϕA ◦ g.

Exercise 3.7.4. Let A,B ∈ Mm×n(R). Show that the relation A ∼ B if and only if A and B are equivalent,
as formulated in Definition 3.7.3, is an equivalence relation.

Proposition 3.7.5. Let A,B ∈ Mm×n(R). If A and B are equivalent, then coker (ϕA) ∼= coker (ϕB) are
isomorphic R-modules.

Proof. Let f : Rn → Rn and g : Rm → Rm be isomorphisms such that f ◦ ϕB = ϕA ◦ g. Then
im (ϕA) = im (ϕA ◦ g) = im (f ◦ ϕB) = f (im (ϕB)) . (3.7.1)

Let
ψ : coker (ϕB) = Rn/im (ϕB) → coker (ϕA) = Rn/im (ϕA)

be given by
x+ im (ϕB) 7→ f(x) + im (ϕA) .

This is a well-defined homomorphism by (3.7.1) and in particular an isomorphism as f is an isomorphism.
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Remark 3.7.6. When R = F is a field, the result of Proposition 3.7.5 is an established result in linear algebra.
More specifically, in this case, equivalent matrices have the same rank. Hence, coker (ϕA) and coker (ϕB) have
the same dimension meaning that they are isomorphic.

Definition 3.7.7. Let A ∈ Mn×n(R). Then A is an elementary matrix if it is of one of the following forms.

1. A is the identity matrix, with Aij = c ∈ R for some i ̸= j.

2. A is the identity matrix, with Aii = Ajj = 0 and Aij = Aji = 1 for some i ̸= j.

3. A is the identity matrix, with Aii = c ∈ R× for some 1 ≤ i ≤ n.

Let A ∈ Mm×n. Then an elementary row (column) operation on A is given by left (right) multiplying A by an
elementary matrix P .

• Elementary matrices of type 1 correspond to adding c ∈ R times the ith row (column) to the jth row
(column).

• Elementary matrices of type 2 correspond to swapping the ith and jth rows (columns).

• Elementary matrices of type 3 correspond to multiplying the ith row (column) by c ∈ R×.

Remark 3.7.8. Note that elementary matrices are invertible.

Proposition 3.7.9. Let A,B ∈ Mm×n(R). If B is obtained from A by row and column operations, then A
and B are equivalent matrices. In particular, coker (ϕA) ∼= coker (ϕB).

Definition 3.7.10. A matrix A ∈ Mm×n(R) is in Smith normal form if A is a rectangular diagonal matrix,

A =



d1 0
. . .

dr
0

. . .
0 0


with all di ̸= 0 and d1| . . . |dr.

Example 3.7.11. The matrix 1 0 0 0
0 2 0 0
0 0 6 0


is in Smith normal form.

As R is a principal ideal domain it is also a unique factorisation domain and so the greatest common divisors
exist. However, it is only defined up to units.

Theorem 3.7.12. Let A ∈ Mm×n(R) be a matrix over a principal ideal domain R. Then A is equivalent to
a matrix in Smith normal form.

Proof. Let A = (Aij) ∈ Mm×n(R). If A = 0 then we are done, and so assume that A ̸= 0.
Claim 1: Given entries Aij and Akl in the same row, i = k, or column, j = l, we can modify A so that
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gcd (Aij , Akl) appears in A.
Proof of Claim 1. Assume the entries are in the same column. Since invertible 2 × 2 matrices can be extended to
invertible m × m matrices, it suffices to prove the claim when m = 2. Consider a vector

(
a
b

)
∈ R2. As R is a

principal ideal domain we know that (a, b) = (d) ⊆ R as ideals for some d ∈ R. It follows that d = gcd(a, b) and
there are some x, y ∈ R such that xa + yb = d. Since gcd(a, b) = d, we must have that gcd(x, y) = 1. Hence,
there exist elements u, v ∈ R such that xu+ yv = 1. Let

P :=
(
x y

−v u

)
.

Note that det(P ) = xu+ yv = 1 and so P is invertible. Moreover,

P ·
(
a
b

)
=
(
x y

−v u

)
·
(
a
b

)
=
(
xa+ yb

−va+ ub

)
=
(

d
−va+ ub

)
.

If instead Aij and Akl are in the same row then(
a b

)
· P⊤ =

(
d −va+ ub

)
.

Claim 2: We can modify A so that A11 divides the rest of the first row and column, that is, A11 | Ai1, A1j for all
i, j.
Proof of Claim 2. For r ∈ R\{0}, let δ(r) ∈ Z≥0 be the number of, possibly repeated, irreducible factors of
r. Note that r is a unit if and only if δ(r) = 0. As R is a unique factorisation domain δ(·) is well-defined.
Suppose A is not of the required form. As A is non-zero it must contain some non-zero entry, Aij say. Using
row and column operations, we can move this entry to the top left. So α1 = A11 ̸= 0. If A still is not of the
required form, there are some 1 ≤ i, j ≤ n, not both equal to 1, such that A11 ∤ Aij . By Claim 1, we can modify
A so that α2 := gcd (A11, Aij) appears in our matrix. Using row and column operations, we can assume this
entry is in the top left. Note that α2 | α1, but α2 and α1 are not associates since α2 | Aij but α1 ∤ Aij . So
δ (α2) < δ (α1). Hence, when A is not of the required form we can modify it so that the top left entry has strictly
lower δ. Repeating this process it must eventually terminate with A11 | Aij whenever i = 1 or j = 1.
Returning to our original A we can modify it to be of the form stated in Claim 2. Since A11 | A1j for all j > 1,
subtracting multiples of the first column from the other columns, we can modify A to be of the form

A =


A11 0 . . . 0
A21 A22 . . .

... . . .
0 Amn

 .

Similarly since A11 | Ai1 for all i > 1, we can modify A to be of the form

A =


A11 0 . . . 0
0 A22
... . . .
0 Amn

 .

In other words, we have that

A =


d1 0 . . . 0
0
... A′

0


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for some smaller matrix A′ ∈ M(m−1)×(n−1). We can apply the same process to A′ without changing the
equivalent class. By repeatedly applying the process, we eventually arrive at a matrix of the form

A =



d1 0
. . .

dr
0

. . .
0 0


.

It remains to show that d1| . . . |dr. For the case r = 2, note that gcd(d1, d2) = xd1 + yd2 for some x, y ∈ R.
Moreover, d2 = λ · gcd(d1, d2) for some λ ∈ R. Consequently,(

d1 0
0 d2

)
R1 7→R1+λyR2∼

(
d1 yd2
0 d2

)
C2 7→xC1+C2∼

(
d1 gcd(d1, d2)
0 d2

)
R2 7→R2−λR1∼

(
d1 gcd (d1, d2)

−λd1 0

)
C1↔C2∼

(
gcd (d1, d2) d1

0 −λd1

)
R1 7→R1+λR2∼

(
gcd (d1, d2) 0

0 −λd1

)
R2 7→−R2∼

(
gcd (d1, d2) 0

0 λd1

)
.

Now let α1 = d1. If d1 ∤ di for some i ≥ 2, let α2 = gcd (d1, di) and use row and column operations to move it to
the place of d1. Now α2 | α1 but α1 ∤ α2, so we have that δ (α2) < δ (α1). Once again this process terminates,
and we find that d1 | di for all i ≥ 2. Repeating, we can modify A so that d2 | di for all i ≥ 3 whilst preserving
d1 | di for i ≥ 2. Iterating this gives the required result.

Remark 3.7.13. For the proof of Claim 1 made in the proof of Theorem 3.7.12, we multiplied A by a matrix that
is not the product of elementary matrices when defined over an arbitrary principal ideal domain. Therefore,
over a general principal ideal domain, we cannot transform a matrix into Smith normal form just by using
elementary row or column operations. However, over a Euclidean domain, we can transform any matrix into
Smith normal form just by using elementary row and column operations. Consequently, we have that for a
Euclidean domain every matrix in GLn(R) is the product of elementary matrices. More generally, we say that
a ring R is generalised Euclidean if every matrix GLn(R) is the product of elementary matrices.

Proposition 3.7.14. Let A ∈ Mm×n(R) be in Smith normal form, that is,

A =



d1
. . .

dr
0

. . .
0


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with d1, . . . , dr ∈ R non-zero and d1| . . . |dr. Then there is an isomorphism of R-modules

coker (ϕA) ∼=
R

(d1) ⊕ · · · ⊕ R

(dr)
⊕Rm−r

where ϕA : Rn → Rm is given by left multiplication by A.

Proof. Let ψ : Rm → R
(d1) ⊕ · · · ⊕ R

(dr) ⊕Rm−r be the homomorphism given by

(x1, . . . , xm) 7→ (x1 + (d1) , . . . , xr + (dr) , xr+1, . . . , xm) .

Then
im (ϕA) = ker(ψ) = (d1) ⊕ · · · ⊕ (dr) ⊕ 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸

m−r

.

Therefore,
coker (ϕA) = Rm/im(ϕA) = Rm/ ker(ϕ)

Thm 3.3.4∼=
R

(d1) ⊕ · · · ⊕ R

(dr)
⊕Rm−r.

Theorem 3.7.15. Let R be a commutative principal ideal domain and M a finitely generated R-module.
Then

M ∼= Rn ⊕R/ (d1) ⊕ · · · ⊕R/ (dr)

for some d1, . . . , dr ∈ R non-zero, with d1| . . . |dr.

Proof.

1. Since R is a principal ideal domain it follows by Corollary 3.7.2 that M is finitely presented. So M ∼=
coker (ϕB) for some B ∈ Mm×n(R).

2. By Theorem 3.7.12, B is equivalent to a matrix A that is in Smith normal form. Let

A =



d1
. . .

dr
0

. . .
0


where d1| . . . |dr are all non-zero.

3. Using Proposition 3.7.14 it follows that

coker (ϕA) ∼=
R

(d1) ⊕ · · · ⊕ R

(dr)
⊕Rm−r.

4. By Proposition 3.7.9 we know coker (ϕA) ∼= coker (ϕB) and so

coker (ϕB) ∼=
R

(d1) ⊕ · · · ⊕ R

(dr)
⊕Rm−r.

5. Consequently,
M ∼= Rn ⊕R/ (d1) ⊕ · · · ⊕R/ (dr) .
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Remark 3.7.16. Another type of decomposition is known as the prime decomposition and represents M in the
form,

M ∼= Rn ⊕ R

(pn1
1 ) ⊕ · · · ⊕ R

(pnk

k )
for ni ∈ N and pi ∈ R irreducible. This follows from Theorem 3.7.15, along with the fact that if d =
pn1

1 · · · · · pnk

k , then
R

(d)
∼=

R

(pn1
1 ) ⊕ · · · ⊕ R

(pnk

k ) .

Note that if we know how to compute the greatest common divisors, the proof of Theorem 3.7.15 is constructive.

Example 3.7.17. Let A be the abelian group generated by the elements a, b and c with relations
2a+ 3b+ c = 0
a+ 2b = 0
5a+ 6b+ 7c = 0.

Then
A = Z3〈2

3
1

 ,

1
2
0

 ,

5
6
7

〉 = coker (ϕX)

where

X =

2 1 5
3 2 6
1 0 7


We can put X into Smith normal form in the following way2 1 5

3 2 6
1 0 7

 ∼

1 2 5
2 3 6
0 1 7


∼

1 2 5
0 −1 −4
0 1 7


∼

1 0 0
0 −1 −4
0 1 7


∼

1 0 0
0 1 4
0 1 7


∼

1 0 0
0 1 4
0 0 3


∼

1 0 0
0 1 0
0 0 3

 .

Therefore,
A ∼=

Z
1Z ⊕ Z

1Z ⊕ Z
3Z

∼= C3.
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Corollary 3.7.18. Let R be a principal ideal domain. Then finitely generated projective R-modules are free.

Proof. Let M be a finitely generated R-module. Using Theorem 3.7.15 we have

M ∼= Rn ⊕R/(d1) ⊕ . . . R/(dr)

for some d1, . . . , dr ∈ R \ {0} with d1| . . . |dr. As M is projective, there exists an R-module N such that
M ⊕ N ∼= R(S) for some set S. If d1, . . . , dr ∈ R×, then M ∼= Rn, and thus it is free. Otherwise, for some j
there exists an injective R-module homomorphism i : R/(dj) → R(S). Let i(1) = (xi)i∈S . Then as i(1) ̸= 0,
as i is injective, it follows that there exists an s ∈ S such that xs ̸= 0. Since, dji(1) = i(dj) = 0 we have that
djxs = 0 ∈ R. As R is an integral domain it must be the case that dj = 0 which is a contradiction.

3.8 Jordan Normal Form
In this section, we will study modules over polynomial rings using Theorem 3.7.15. Amongst other things, we will
deduce the Jordan normal form. Let F be a field, V an F -vector space and α : V → V a linear map. Then we
can make V into a F [X]-module by defining the action

f · v := (f(α))(v)

for f ∈ F [X] and v ∈ V . Note that when f = X we recover α. We write Vα when we view V as a F [X]-module
in this way. The structure of Vα as a F [X]-module will help us study the linear map α.

Lemma 3.8.1. If V is a finite-dimensional F -vector space, then Vα is a finitely generated F [X]-module.

Proof. Let v1, . . . , vn ∈ V be a basis for V as a vector space. Then they generate Vα as an F [X]-module.

Example 3.8.2.

1. Suppose Vα ∼= F [X]/ (Xr) as F [X]-modules. Then they are isomorphic as F -vector spaces. Note that
1, X, . . . ,Xr−1 ∈ F [X]/ (Xr) is a basis for which multiplication by X is represented by the matrix

0 0

1
. . .
. . . . . .

0 1 0

 .

Hence, as α(v) = f · v for f = X, in Vα the linear map α is represented by the same matrix with respect
to the corresponding basis.

2. Suppose that Vα ∼= F [X]/ ((X − λ)r), as F [X]-modules, for some λ ∈ F . Consider the linear map
β : V → V where β = α − λI. Then Vβ ∼= F [Y ]/ (Y r), for Y = X − λ. So by statement 1 there is a
basis for V such that β is given by the matrix

0 0

1
. . .
. . . . . .

0 1 0

 .
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Hence, α = β + λI has matrix 
λ 0

1
. . .
. . . . . .

0 1 λ

 ,

which is called a λ Jordan block.

3. Suppose Vα ∼= F [X]/(f), for f = a0 + · · · + ar−1X
r−1 +Xr ∈ F [X] some monic polynomial. Then Vα

has an F -basis given by 1, X, . . . ,Xr−1, in which α is given by

C(f) :=



0 0 −a0

1
. . . −a1
. . . . . .

...
. . . . . .

0 1 −ar−1


.

The matrix C(f) is called the companion matrix of f .

Theorem 3.8.3 (Rational Canonical Form). Let F be a field, V a finite-dimensional F -vector space, and
α : V → V a linear map. Then

Vα ∼=
F [X]
(f1) ⊕ · · · ⊕ F [X]

(fr)
with f1| . . . |fr all non-zero polynomials over F . In particular, there is a basis for V in which α is given by the
block diagonal matrix C (f1) 0

. . .
0 C (fr)

 .

Proof. As F [X] is a principal ideal domain, by Theorem 3.7.15 we have

Vα ∼=
F [X]
(f1) ⊕ · · · ⊕ F [X]

(fr)
⊕ F [X]n

with f1| . . . |fr. Since F [X] is not a finite-dimensional F -vector space, but Vα is, we must have n = 0. Let
bi := deg (fi), and consider the basis{

X0
1 , X1, . . . , X

b1−1
1 , . . . , X0

r , . . . , X
br−1
r

}
where Xj is the X in the jth term on the direct sum. Then α is represented byC (f1) 0

. . .
0 C (fr)


with respect to this basis. Requiring the fi to be monic ensures this representation is unique.

We now focus in on the case F = C.

Lemma 3.8.4. The primes in C[X] are, up to associates, X − λ, for λ ∈ C.
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Proof. If X − λ|fg for f, g ∈ C[X] then X − λ|f or X − λ|g and so X − λ ∈ C[X] is prime. Now let f ∈ C[X]
be prime. As f is non-zero and not a unit it is non-constant, so by the fundamental theorem of algebra f has
a root λ ∈ C, which implies that X − λ | f . Since f is also irreducible, we must have that X − λ and f are
associates.

Theorem 3.8.5 (Jordan Normal Form). Let α : V → V be a linear map, where V is a finite-dimensional
complex vector space. Then there is an isomorphism of C[X]-modules

Vα ∼=
C[X]

((X − λ1)n1)
⊕ · · · ⊕ C[X]

((X − λr)nr )

for some ni ∈ N and λi ∈ C. Furthermore, there is a C-basis for V in which α has the form of the block
diagonal matrix Jn1 (λ1) 0

. . .
0 Jnr

(λr)


where Jn(λ) is the n× n Jordan block

Jn(λ) :=


λ 0

1
. . .
. . . . . .

0 1 λ

 .

Proof. Using Remark 3.7.16 on Vα, and Lemma 3.8.4 it follows that

Vα ∼=
C[X]

((X − λ1)n1)
⊕ · · · ⊕ C[X]

((X − λr)nr )

for some ni ∈ N and λi ∈ C. Then taking a basis as in the proof of Theorem 3.8.3, and noting that

C ((X − λ)n) = Jn(λ)

we note α has a representation Jn1 (λ1) 0
. . .

0 Jnr
(λr)

 .

Lemma 3.8.6. Let V be a finite-dimensional F -vector space, and let α, β : V → V be linear maps. Then
Vα ∼= Vβ are isomorphic as F [X]-modules if and only if α and β are conjugate. That is, there is some
isomorphism γ : V → V such that γ ◦ α = β ◦ γ.

Proof. (⇒). Let γ : Vα → Vβ be an F [X]-module isomorphism, so in particular it is an isomorphism of F -vector
spaces. Then for v ∈ V we have β(v) = X ·Vβ

v, where ·Vβ
denotes the F [X]-module action on Vβ , and similarly

α(v) = X ·Vα
v. Then,

(β ◦ γ)(v) = X ·Vβ
γ(v)

= γ (X ·Vα
v)

= (γ ◦ α)(v)
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and so β ◦ γ = γ ◦ α. That is, α and β are conjugate.
(⇐). Suppose α and β are conjugate, so there is an isomorphism γ : V → V such that β ◦ γ = γ ◦ α. Note that
γ ◦ αi = βi ◦ γ for all i ≥ 0, so for f ∈ F [X] and v ∈ V we have

γ (f ·Vα v) = γ(f(α)(v))
= f(β(γ(v))
= f ·Vβ

γ(v).

So γ is an F [X]-module homomorphism and a bijection since it is an F -linear isomorphism.

Reinterpreting this with Theorem 3.8.3 we obtain a classification result for square matrices over a field. It is a
weaker classification than Theorem 3.8.5 form but it works over any field.

Corollary 3.8.7. Let F be a field. There is a bijection between conjugacy classes of n × n matrices over F
and sequences of monic polynomials f1, . . . , fr ∈ F [X], such that d1| . . . |dr, and

∑r
i=1 deg (fi) = n.

Proof. Let A be an n × n matrix over F , let V = Fn and let α : V → V send v to A · v. Then by Theorem
3.8.3 we know that

Vα ∼=
F [X]
(f1) ⊕ · · · ⊕ F [X]

(fr)
for some unique sequence fi ∈ F [X], with f1| . . . |fr all non-zero monic polynomials in F [X]. By counting
dimensions of both sides we note that

∑
i deg (fi) = n. Furthermore, if A and B are conjugate matrices, then

Vα and Vβ are isomorphic F [X] modules, by Lemma 3.8.6, and so they correspond to the same sequence of
polynomials. If f1| . . . |fr is any sequence of monic polynomials in F [X] with

∑
i deg (fi) = n, then

V := F [X]
(f1) ⊕ · · · ⊕ F [X]

(fr)

is an n-dimensional F -vector space, with a linear map α : V → V sending v to X · v, which determines a matrix,
up to conjugation, upon by fixing a basis.

Example 3.8.8. Let us consider the conjugacy classes in M2×2(F ). This corresponds to classifying F [X]-
modules of the form

F [X]
(f1) ⊕ · · · ⊕ F [X]

(fr)

with f1| . . . |fr a sequence of monic polynomials with
∑r
i=1 deg (fi) = 2. So either r = 1 and deg (f1) = 2,

or r = 2 and deg (f1) = deg (f2) = 1. In the latter case, since f1 | f2 and both are monic we must have
that f1 = f2 = X − λ for some λ ∈ F . Since the companion matrix of X − λ is the 1 × 1 matrix

(
λ
)
, the

corresponding matrix in M2×2(F ) is (
λ 0
0 λ

)
.

In the former case, we write f1 = X2 + aX + b for some a, b ∈ F and so

C (f1) =
(

0 −b
1 −a

)
.

If f1 is irreducible, we cannot simplify this any further for an arbitrary field F . However, if for example
F = Z/3Z then we could find all irreducible degree 2 polynomials, and arrive at a more detailed classification.
If f1 is reducible then f1 = (X − λ)(X − µ), for some λ, µ ∈ F . If λ = µ, then f1 = (X − λ)2 and so the
matrix is conjugate to the Jordan block (

λ 0
1 λ

)
.
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If λ ̸= µ, the matrix (
0 −λµ
1 λ+ µ

)
has distinct eigenvalues and so it is conjugate to (

λ 0
0 µ

)
.

Exercise 3.8.9. Find the conjugacy classes, along with a representative, in M10×10(Q) with minimal polynomial
X7 − 4X3.

3.9 Solution to Exercises
Exercise 3.5.20

Solution. Note that for s ∈ S, the action of s on {xi : i ∈ N} fully determines s by the fact that s is a
homomorphism and {xi : i ∈ N} generates M . Therefore, we can define s1, s2 ∈ S by

s1(xi) =
{
x i

2
i even

0 otherwise

and

s2(xi) =
{
x i+1

2
i odd

0 otherwise.

For s ∈ S we can write s = α1 ◦ s1 +α2 ◦ s2 where α1(xi) = s (x2i) and α2(xi) = s (x2i+1). Moreover, suppose
that for α1, α2 ∈ S we have

α1 ◦ s1 + α2 ◦ s2 = 0.

Then for all i ∈ N it follows that

0 = (α1 ◦ s1)(x2i) + (α2 ◦ s2)(x2i)
= α1(xi).

Hence, α1 = 0. Similarly, by considering x2i+1 we deduce that α2 = 0. Therefore, {s1, s2} are linearly independent
and hence are a basis for S as an S-module. On the other hand, {1}, where 1 ∈ S is such that 1(xi) = xi
for all i ∈ N, generates S as an S-module. Therefore, we can construct an isomorphism φ : S → S2 where
s 7→ (α1, α2). We conclude that S ∼= S2.

Exercise 3.7.4

Solution.

• With P = Q = I we have that A ∼ A.

• Suppose A ∼ B with B = PAQ for P ∈ GLn(R) and Q ∈ GLm(R). Then as P and Q are invertible we
have that A = P−1BQ−1 which implies that B ∼ A.

• Suppose A ∼ B and B ∼ C with B = P1AQ1 and C = P2BQ2 for P1, P2 ∈ GLn(R) and Q1, Q2 ∈
GLm(R). It follows that

C = (P1P2)A(Q1Q2)

for P1P2 ∈ GLn(R) and Q1Q2 ∈ GLm(R), which implies that A ∼ C.
Therefore, ∼ is reflexive, symmetric and transitive making it an equivalence relation.

Exercise 3.8.9
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Solution. Let A ∈ M10×10(Q), and let α : V → V be its corresponding linear map. Then from Theorem 3.8.3
we have that

Vα ∼=
Q[X]
(f1) ⊕ · · · ⊕ Q[X]

(fr)

for f1, . . . , fr ∈ Q[X] monic, such that f1| . . . |fr, and
∑r
k=1 deg(fk) = 10. The possibilities of such {f1, . . . , fr}

are in bijection with the conjugacy classes. Note that g(A) = 0 if and only if fk|g for k = 1, . . . , r. Therefore, fr
is the minimal polynomial of A, and so in this case fr = X7 − 4X3. Noting that fr = X3 (X2 − 2

) (
X2 + 2

)
,

the following represent the only possible cases for {f1, . . . , fr}.

1.
{
X3, X7 − 4X3}.

2.
{
X
(
X2 − 2

)
, X7 − 4X3}.

3.
{
X
(
X2 + 2

)
, X7 − 4X3}.

4.
{
X,X2, X7 − 4X3}.

5.
{
X,X,X,X7 − 4X3}.

The conjugacy classes above have the following corresponding representatives.

1.
(
C
(
X3) 0
0 C

(
X7 − 4X3)).

2.
(
C
(
X
(
X2 − 2

))
0

0 C
(
X7 − 4X3)).

3.
(
C
(
X
(
X2 + 2

))
0

0 C
(
X7 − 4X3)).

4.

C(X) 0
C
(
X2)

0 C
(
X7 − 4X3)

.

5.


C(X)

C(X)
C(X)

0 C
(
X7 − 4X3)

.
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4 Matrix Lie Groups
We intend to investigate matrices over R or C. For ease of notation, we will write F to mean either R or C.

4.1 Matrix Groups
Let R be a commutative ring. Recall that Mn(R) is the ring of n×n matrices over R, which is not a commutative
ring for n ≥ 2. Note that we may identify Mn(R) with Rn2 .

Definition 4.1.1. The general linear group over R denoted GLn(R), is the unit group of Mn(R). That is,
GLn(R) := Mn(R)×.

The determinant function det : Mn(R) → R is thought of as in the usual sense of linear algebra.

Exercise 4.1.2. For M ∈ Mn(R), show that if M is invertible then det(M) ∈ R×.

Proposition 4.1.3. The centre of GLn(R) is the set of matrices of the form λI, for some λ ∈ R×.

Proof. Note that if A = λI for λ ∈ R× then A ∈ GLn(R) with AM = MA for all M ∈ GLn(R). Hence,
A ∈ Z(GLn(R)). Instead, let A ∈ Z(GLn(R)). For 1 ≤ u, v ≤ n distinct, let Euv ∈ GLn(R) be the matrix

(Euv)ij = δij + δuiδvj =


1 i = j

1 i = u, j = v

0 otherwise.
By assumption we have AEuv = EuvA, and so for all 1 ≤ i, j ≤ n, we have

0 = (EuvA−AEuv)ij
= Euvik Akj −AikE

uv
kj

= δuiAvj − δvjAui.

If u = i ̸= v = j, this tells us Aii = Ajj . If i = j = u ̸= v, this tells us Avj = 0. Therefore, A = λI, so by
Exercise 4.1.2 we know that for A ∈ GLn(R) we need λ ∈ R×.

When R = F we can discuss the topological properties of GLn(R). In particular, we endow Mn(F) with the
Euclidean topology and GLn(F) ⊆ Mn(F) with the subspace topology. In doing so, topological properties can be
considered in the natural sense with the subspace topology on Fn2 .

Definition 4.1.4. Let (Am)m∈N ∈ Mn(F) be a sequence of matrices. Then Am converges to a matrix A if
each entry of Am converges to the corresponding entry of A.

Proposition 4.1.5. The set GLn(R) is not path-connected.

Proof.

• For n = 1, consider −1 and 1 in GL1(R) = R×. Suppose they are connected by γ : [0, 1] → R×. Then by
the intermediate value theorem, there exists a t ∈ [0, 1] such that γ(t) = 0, but 0 ̸∈ R× and so we get a
contradiction.

• For n ≥ 2 consider

A :=


−1 · · · 0
... 1

. . .
0 1


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and I. Suppose γ : [0, 1] → GLn(R) is a path from I to A. Then det ◦γ : [0, 1] → R is continuous,
and such that (det ◦γ)(0) = 1 and (det ◦γ)(1) = −1. By the intermediate value theorem, there exists a
t ∈ [0, 1] such that (det ◦γ)(t) = 0. However, γ(t) is an invertible matrix, so we get a contradiction.

Proposition 4.1.6. The set GLn(C) is path-connected.

Sketch. Let A ∈ GLn(C). We can write A = PBP−1, where B is in Jordan normal form. We assume for
simplicity that B is a single Jordan block, that is

B =

λ 1 0
. . . 1

0 λ

 .

As A is invertible we know that λ ̸= 0, and thus we can write λ = ez for some z ∈ C. Let γ : [0, 1] → GLn(C)
be given by

γ(t) =

e
tz t 0

. . . t
0 etz

 .

Note that γ(t) is invertible for all t ∈ [0, 1] and so γ is well-defined. Moreover, γ is continuous with γ(0) = I
and γ(1) = B. Therefore, Pγ(t)P−1 is a path between I and A, meaning that GLn(C) is path-connected.

4.2 Topological Groups

Definition 4.2.1. A topological group is a group G with a topology, such that the multiplication map G×G →
G and the inverse map G → G are continuous. Moreover, G is Hausdorff.

Definition 4.2.2. A homomorphism of topological groups is a continuous group homomorphism.

An isomorphism of topological groups is an isomorphism of groups which is a homeomorphism.

Lemma 4.2.3. The composition of topological group homomorphisms is a homomorphism of topological
groups.

Proof. Since the composition of continuous functions is continuous, and the composition of group homomorphism
is a group homomorphism, the composition of topological group homomorphisms is a homomorphism of topological
groups.

Example 4.2.4.

1. Any group G equipped with the discrete topology is a topological group.

2. (R,+) is a topological group.

3. (Q,+) is a topological group, and the inclusion Q ↪→ R is a homomorphism of topological groups.

4. (R×, ·) and (C×, ·) are topological groups. The map t 7→ e2πit is a continuous homomorphism (R,+) →
(C×, ·).

Lemma 4.2.5. The group GLn(F) is a topological group.

67



Proof. Matrix multiplication Mn(F) × Mn(F) → Mn(F) is polynomial in each entry, and therefore continuous.
For an invertible matrix M , the matrix det(M)M−1 has entries which are polynomials in the entries of M and
so is a continuous function of M . As det(M) is a continuous function of M , the quotient M−1 is a continuous
function of M .

Remark 4.2.6. For a subgroup G ≤ GLn(F), the multiplication and inverse maps are the restrictions of those
on GLn(F), and so are also continuous. Hence, a subgroup G ≤ GLn(F) is also a topological group.

Lemma 4.2.7. Let G be a topological group. Any subgroup H ≤ G, when equipped with the subspace
topology, is a topological group.

Proof. The product H ×H → H is the restriction of the product G×G → G, so is continuous in the subspace
topology. Similarly, the inverse is continuous, meaning H is a topological group.

4.3 Matrix Lie Groups

Definition 4.3.1. A matrix Lie group is a topological group G, which is isomorphic, in the sense of topological
groups, to a closed subgroup H ≤ GLn(F) for some n ∈ N.

Since GLn(F) is Hausdorff it is metrizable. Thus any subspace is also metrizable meaning a matrix Lie group is
also Hausdorff.

Remark 4.3.2. An equivalent definition of a matrix Lie group is to say that any convergent sequence (Am)m∈N ⊆
G either converges to a matrix A ∈ G or converges to a matrix that is not invertible. That is, if the limit is in
GLn(F) then it is in G. Convergence of matrices is in the sense of Definition 4.1.4.

Example 4.3.3.

1. The topological group (R×, ·) = GL1(R) is a matrix Lie group.

2. Note Q× ⊆ R× is a subgroup but it is not a closed subgroup. However, this does not immediately imply
Q× is not a matrix Lie group, since it could be isomorphic to a closed subgroup of GLn(F) for some
other n ∈ N. We will see later that Q× is not a matrix Lie group.

Exercise 4.3.4. Show that the following are matrix Lie groups.

1. The special linear group SLn(F) := {M ∈ GLn(F) : det(M) = 1} ≤ GLn(F).

2. The set of diagonal matrices in GLn(F).

3. The orthogonal group O(n) :=
{
M ∈ GLn(R) : M⊤M = I

}
≤ GLn(R).

4. The special orthogonal group SO(n) := {M ∈ O(n) : det(M) = 1} ≤ GLn(R).

5. The unitary group U(n) :=
{
M ∈ GLn(C) : M†M = I

}
≤ GLn(C).

6. The special unitary group SU(n) := {M ∈ U(n) : det(M) = 1} ≤ GLn(C).

7. Z or any finite group equipped with the discrete topology.

8. The projective general linear group PGLn(F) := GLn(F)/Z(GLn(F)) with the quotient topology.
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9. The Heisenberg group

Hn(F) :=

M ∈ GLn(F) : M =

1 ×
. . .

0 1


 .

Example 4.3.5. Note that

SO(2) =
{(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
: θ ∈ R

}
.

Let φ : SO(2) → U(1) be given by A 7→ eiθ. Clearly, φ continuous. Moreover, if z ∈ U(1), it follows that
|z| = 1 which implies that z = eiθ = cos θ + i sin θ for some θ ∈ R. Hence, φ is also surjective. Now let

A =
(

cos θ1 sin θ1
− sin θ1 cos θ1

)
and

B =
(

cos θ2 sin θ2
− sin θ2 cos θ2

)
.

Then as
AB =

(
cos(θ1 + θ2) sin(θ1 + θ2)

− sin(θ1 + θ2) cos(θ1 + θ2)

)
we see that φ(AB) = ei(θ1+θ2) = eiθ1eiθ2 = φ(A)φ(B). Hence, φ is a homomorphism. If φ(A) = φ(B)
then eiθ1 = eiθ2 , which implies that θ1 − θ2 = 2kπ for some k ∈ Z. Which implies that A = B. Hence, φ is
injective, and thus SO(2) and U(1) are isomorphic as topological groups.

Lemma 4.3.6. Let G be a topological group, and let H ≤ G. Then the closure H̄ of H in G is a closed
subgroup.

Proof. Clearly, H̄ ⊆ G is closed. Let g, h ∈ H̄. Then there are sequences (gn)n∈N ⊆ H and (hn)n∈N ⊆ H, such
that gn → g and hn → h. As multiplication is continuous it follows that gn · hn → g · h. Since gn · hn ∈ H for
every n ∈ N, we have that g · h ∈ H̄. Similarly, as g−1

n ∈ H for every n ∈ N we get that g−1 ∈ H̄. Therefore, H̄
is also a subgroup.

Remark 4.3.7. As a consequence of Lemma 4.3.6 we have that the closure of G ≤ GLn(F) is a matrix Lie
group.

Example 4.3.8. The closure of Q×in R× is R×, which is a matrix Lie group as expected.

Proposition 4.3.9. The group GLn(R) is a closed subgroup of GLn(C).

Proof. Consider the continuous map f : GLn(C) → Mn(R) given by A 7→ Im(A). As GLn(R) = f−1({0})
it follows that GLn(R) ⊆ GLn(C) is a closed subset. As it is a subgroup we conclude that it is a closed
subgroup.

Proposition 4.3.10. The group GLn(C) is isomorphic to a closed subgroup in GL2n(R).
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Proof. Let ϕ : GLn(C) → GL2n(R) be given by

M 7→
(

Re(M) Im(M)
−Im(M) Re(M)

)
∈ GL2n(R).

As ϕ is polynomial in its entry it is continuous. Moreover, ϕ is injective with ϕ(I) = I. Let M,N ∈ GLn(C)
with M = A+ iB and N = C + iD for A,B,C,D ∈ Mn(R). Then,

ϕ(M)ϕ(N) =
(
A B

−B A

)(
C D

−D C

)
and

ϕ(MN) = ϕ((AC −BD) + i(BC +AD)).

Expanding these out we see that ϕ(M)ϕ(N) = ϕ(MN). Thus ϕ is a homomorphism. Let

J =
(

0 I
−I 0

)
∈ GL2n(R).

Claim: im(ϕ) = {M ∈ GL2n(R) : MJ = JM}.
Proof. Writing M = A+ iB ∈ GLn(C) with A,B ∈ Mn(R) we see that

ϕ(M)J − Jϕ(M) =
(
A B

−B A

)(
0 I

−I 0

)
−
(

0 I
−I 0

)(
A B

−B A

)
= 0.

Now suppose that P ∈ GL2n(R) satisfies PJ = JP . Then P is of the form

P =
(
A B

−B A

)
for some A,B ∈ Mn(R). Let M = A+ iB ∈ Mn(C). Multiplying PJ = JP on the left and right by P−1 gives
P−1J = JP−1. Therefore, P−1 is of the form

P−1 =
(
C D

−D C

)
for some C,D ∈ Mn(R). Let N = C + iD ∈ Mn(C). We can check that N is an inverse to M . Hence, ϕ(M)
is well-defined meaning P ∈ im(ϕ). Therefore, im(ϕ) = {M ∈ GL2n(R) : MJ = JM}.
Consequently we have that im(ϕ) is the pre-image of {0} under the continuous map M 7→ MJ − JM , so
im(ϕ) ⊆ GL2n(R) is closed. Therefore, we have that ϕ is isomorphic onto its closed image, implying that
GLn(C) is isomorphic to a closed subgroup of GL2n(R).

Exercise 4.3.11. Let M ∈ GLn(C) with M = A+ iB for A,B ∈ Mn(R). Show that it is not necessarily true
that A,B ∈ GLn(R).

Lemma 4.3.12. Let G ≤ GLn(F) be closed and let H ≤ G be closed. Then H ≤ GLn(F) is closed.

Proof. Being a subgroup is a transitive property and so H ≤ GLn(F). Similarly, closed subsets of closed subsets
are closed subsets, meaning H ≤ GLn(R) is closed and thus a closed subgroup.

Corollary 4.3.13.

1. Any G ≤ GLn(R) that is closed is also a closed subgroup of GLn(C).

2. Any H ≤ GLn(C) that is closed is isomorphic to a closed subgroup of GL2n(R).
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Proof.

1. Let G ≤ GLn(R) be closed. Since GLn(R) ≤ GLn(C) is closed by Proposition 4.3.9, by Lemma 4.3.12 we
have that G ≤ GLn(C) is closed.

2. Let H ≤ GLn(C) be closed. By Proposition 4.3.10 there exists an isomorphism ϕ : GLn(C) → K where
K ≤ GL2n(R) is closed. In particular, H ∼= ϕ(H) with ϕ(H) ≤ K. So by Lemma 4.3.12 we have that
H ∼= ϕ(H) ≤ GL2n(R) where ϕ(H) ≤ GL2n(R) is closed.

Corollary 4.3.14. A closed subgroup of a matrix Lie group is itself a matrix Lie group.

Proof. Suppose that G ≤ GLn(F) is a matrix Lie group and let H ≤ G be closed. Then by Lemma 4.3.12 we
know that H ≤ GLn(F) is closed and so H is a matrix Lie group.

Suppose that G ≤ GLn(F) is a matrix Lie group. Then to be compact, we can apply the Heine-Borel conditions
by thinking of Mn(F) as Fn2 . That is, G is compact if it is a closed subset of Mn(F) and it is bounded. Where
being bounded amounts to there existing a constant C such that for any A ∈ G the absolute value of its entries
is at most C.

Example 4.3.15.

1. Consider the set

U(1) :=
{(
z
)

∈ M1(C) :
(
z
)† (

z
)

= I =
(
1
)}

= {z ∈ C : z̄z = 1}
= {z ∈ C : |z| = 1} .

This is bounded as |z| ≤ 1. Note that | · | is a continuous function and {1} is a closed set. So as U(1)
is the pre-image of {1} under | · | we deduce that U(1) is closed in M1(C). Hence, U(1) is compact.

2. The set GLn(F) ⊆ Fn×n is not bounded, and hence it is not compact. To see this, consider the matrix
1 0 . . . k
0 1
...

. . .
0 1

 ∈ GLn(F)

for k ∈ N. As k → ∞, the norm of this matrix goes to infinity and so GLn(F) is not a bounded subset
of Mn(F).

4.4 Matrix Exponentiation

Definition 4.4.1. For A ∈ Mn(F), its exponential, written eA or exp(A), is

eA :=
∞∑
k=0

Ak

k! . (4.4.1)

Remark 4.4.2. For n = 1, Definition 4.4.1 coincides with the exponential on F.
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Theorem 4.4.3. Equation (4.4.1) converges for all A ∈ Mn(F). In particular, the following statements hold.

1. Equation (4.4.1) converges absolutely and uniformly on compact subsets of Mn(F).

2. The partial derivatives in the components of (4.4.1) converge absolutely and uniformly on compact
subsets of Mn(F).

Thus, exp : Mn(F) → Mn(F) is continuously differentiable.

Example 4.4.4.

1. If A = 0, then
eA = I + 0 + 0 + · · · = I.

2. If A = I, then
eA = I + 1

2I + 1
6I + · · · = eI.

3. If A =
(

1 1
0 1

)
, then

An =
(

1 n
0 1

)
so that

eA =
(∑∞

k=0
1
k!

∑∞
k=0

k
k!

0
∑∞
k=0

1
k!

)
=
(
e e
0 e

)
.

4. Let A = Jn(λ). Then, A = D +N where D = λI and

N =


0

1
. . .
. . . . . .

1 0

 .

Note that

Nk =



0
...

. . .

1
. . .

. . . . . .
1 k. . . 0


for 1 ≤ n− 1 meaning

eN =


1
1
2

. . .
...

. . . . . .
1

(n−1)! . . . 1
2 1

 .
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Therefore, as DN = ND it follows that

eA = eDeN = eλ



1

1
. . .

1
2

. . . . . .
...

. . . . . . . . .
1

(n−1)! . . . 1
2 1 1


.

Exercise 4.4.5. Using statement 4 of Example 4.4.4, show that any A ∈ GLn(C) can be written as the
exponential of a matrix.

Definition 4.4.6. For A ∈ Mn(F) its logarithm, log(A), is

log(A) :=
∞∑
k=1

(−1)k+1(A− I)k

k
. (4.4.2)

Equation (4.4.2) does not converge for all A ∈ Mn(F). However, for A sufficiently close to I similar results for
(4.4.2) hold as those detailed in Theorem 4.4.3 for (4.4.1).

Theorem 4.4.7. There is an open neighbourhood U of I in Mn(F) such that (4.4.2) converges for all A ∈ U .
In particular, the following statements hold.

1. Equation (4.4.2) converges absolutely on U , and uniformly on compact subsets of U .

2. The partial derivatives in the components of (4.4.2) converge absolutely on U and uniformly on compact
subsets of U .

Thus, log : U → Mn(F) is continuously differentiable.

Example 4.4.8.

1. When n = 1, Definition 4.4.6 coincides with the logarithm on F. In particular, for this case, log(z)
converges for |z − 1| < 1. Similarly, for n ≥ 1 we have that (4.4.2) is guaranteed to converge on

U =
{
M : |Mij − δij | <

1
n
, for each i, j = 1, . . . , n

}
.

2. Let A =
(

1 1
0 1

)
. Note that (A− I)k = 0 for k ≥ 2. Hence, (4.4.2) converges with

log(A) =
(

0 1
0 0

)
=: B.

Moreover, we can check that eB = A and so in this case elog(A) = A.

When exp and log converge they are inverses of each other.

Proposition 4.4.9. Suppose (4.4.2) is absolutely convergent for A ∈ Mn(F). Then exp(log(A)) = A.
Similarly, if the (4.4.2) converges for exp(B), where B ∈ Mn(F), then log(exp(B)) = B.

The proof of Proposition 4.4.9 amounts to writing the composition of exp(log(A)) as a double power series in A
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and showing that it simplifies to A.

Proposition 4.4.10. Let A,B ∈ Mn(F). If AB = BA then eA+B = eAeB .

Proof. Observe that

eA+B =
∞∑
k=0

(A+B)k

k!

(1)=
∞∑
k=0

k∑
l=0

1
k!

(
k

l

)
Ak−lBl

=
∞∑

i,j=0

1
i!

1
j!A

iBj

=
( ∞∑
i=0

Ai

i!

) ∞∑
j=0

Bj

j!


= eAeB ,

where in (1) we use the assumption that AB = BA. Moreover, when we rearrange the infinite series we use the
fact the series absolutely converges.

Remark 4.4.11. The requirement that AB = BA in Proposition 4.4.10 is necessary.

Exercise 4.4.12. Give an example of A,B ∈ Mn(F) where eA+B ̸= eAeB .

Corollary 4.4.13. For A ∈ Mn(F) we have that eAe−A = e0 = I. In particular, eA is invertible.

Proof. As A and −A commute we can use Proposition 4.4.10 to deduce that

eAe−A = eA−A = e0 = I.

Remark 4.4.14. Using Corollary 4.4.13, it makes sense to write exp : Mn(F) → GLn(F).

Example 4.4.15. As A and Ak always commute, we deduce that A and eA commute. Hence,

eA+eA

= eAee
A

.

Lemma 4.4.16. Let A,B ∈ Mn(F) with A ∈ GLn(F). Then,

eABA
−1

= AeBA−1.
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Proof. Note that
(
ABA−1)k = ABkA−1 for all k ∈ N. So,

eABA
−1

=
∞∑
k=0

(
ABA−1)k

k!

=
∞∑
k=0

ABkA−1

k!

= AeBA−1.

Lemma 4.4.17. For A ∈ Mn(F) we have that
(
eA
)⊤ = eA

⊤ .

Proof. Note that
(
A⊤)k =

(
Ak
)⊤ for all k ∈ N. So,

eA
⊤

=
∞∑
k=0

(
A⊤)k
k!

=
( ∞∑
k=0

Ak

k!

)⊤

=
(
eA
)⊤
.

Example 4.4.18. Consider the upper-triangular matrix

A =

λ1 ×
. . .

0 λn

 .

Then

Ak =

λ
k
1 ×

. . .
0 λkn

 .

Therefore,

eA =


∑∞
k=0

λk
1
k! ×

. . .
0

∑∞
k=0

λk
n

k!


which is also upper-triangular. From this, we observe that

det
(
eA
)

= eλ1 . . . eλn = etr(A).

Lemma 4.4.19. For A ∈ Mn(F) we have

det
(
eA
)

= etr(A).
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Proof. Write A = PBP−1 where P ∈ GLn(F), even for F = R we can do this, and B is in Jordan normal form.
Then

det
(
eA
)

= det
(
ePBP

−1
)

= det
(
PeBP−1)

= det
(
eB
)

and
etr(A) = etr(PBP−1)

= etr(B).

Using Example 4.4.18 we know that det
(
eB
)

= etr(B) and so det
(
eA
)

= etr(A).

Recall from Theorem 4.4.3 that exp : Mn(F) → GLn(F) is continuously differentiable. Thus, for any A ∈ Mn(F)
the function γA : R → GLn(F) given by γA(t) = etA is continuously differentiable.

Lemma 4.4.20. For any A ∈ Mn(F), let γA : R → GLn(F) be given by γA(t) = etA. Then γ̇A(0) = A.

Proof. Proceeding from first principles we get that

γ̇A(0) = lim
t→0

etA − e0

t

= lim
t→0

∑∞
k=0

tkAk

k! − I

t

= lim
t→0

∞∑
k=1

tk−1Ak

k!

= A.

Lemma 4.4.21. For A ∈ Mn(F) the map γA : R → GLn(F) given by γA(t) = etA is a continuous
homomorphism.

Proof. Since exp is continuous, γA is continuous. Let s, t ∈ R then
γA(s+ t) = e(s+t)A

(1)= esAetA

= γA(s)γA(t)

where in (1) we are using Proposition 4.4.10 as sA and tA commute. Therefore, γA is a continuous homomor-
phism.

Corollary 4.4.22. For A ∈ Mn(F) let γA : R → GLn(F) be given by γA(t) = etA. Then for any t0 ∈ R we
have that γ̇A(t0) = AγA(t0).

Proof. Since γA is a homomorphism,
γA(t) = γA(t− t0)γA(t0).

Differentiating both sides at t = t0 and using Lemma 4.4.20, it follows that
γ̇A(t0) = γ̇A(0)γA(t0) = Aet0A.

The derivative of exp at zero can be thought of as a linear map d exp0 : Mn(F) → Mn(F).
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Corollary 4.4.23. The map d exp0 : Mn(F) → Mn(F) is the identity map.

Proof. For A ∈ Mn(F), note that the chain rule shows that the derivative of γA at t = 0 is d exp0(A). Therefore,
using Lemma 4.4.20 we have that A = d exp0(A) for all A ∈ Mn(F) which implies that d exp0 is the identity
map.

Proposition 4.4.24. The map exp restricts to a continuously differentiable homomorphism from an open
neighbourhood of 0 ∈ Mn(F) to an open neighbourhood of I ∈ GLn(F), with a continuously differentiable
inverse.

Proof. Note that exp(0) = I. By Corollary 4.4.23 we know that exp is differentiable at zero with a derivative
that is an invertible linear map. Therefore, we conclude by applying Theorem 5.2.2.

Example 4.4.25. For n = 1 we can take U = (−1, 1) and observe that

exp |U : (−1, 1) →
(
e−1, e

)
is a homeomorphism with inverse being log, which is continuously differentiable.

Proposition 4.4.26. Any continuous homomorphism ψ : (R,+) → (R×, ·) is of the form ψ(t) = eλt for some
λ ∈ R.

Proof. Let ψ : (R,+) → (R×, ·) be a continuous homomorphism. Then ψ(1) = 1 > 0, and so by the intermediate
value theorem we know that ψ(t) > 0 for all t ∈ R as otherwise there would be some s ∈ R for which ψ(s) = 0.
Let ϕ : R → R be given by t 7→ log(ψ(t)). Note that ϕ is continuous and for s, t ∈ R we have that

ϕ(s+ t) = log(ψ(s+ t))
= log(ψ(s)ψ(t))
= ϕ(s) + ϕ(t)

and so ϕ is a homomorphism. As any continuous homomorphism (R,+) → (R,+) is of the form t 7→ λt for some
λ ∈ R, we deduce that ϕ(t) = λt which implies that ψ(t) = eλt.

Note that in the proof of Proposition 4.4.26 we use the fact that log is defined for all positive real numbers. This
is not the case for n > 0 and so studying homomorphism R → GL1(C) = C× requires extra care.

Theorem 4.4.27. Let γ : R → GLn(R) be a homomorphism of topological groups. Then γ(t) = etA for
some A ∈ Mn(F).

Proof. Using Proposition 4.4.24 we can choose open neighbourhoods U of zero in Mn(F) and V of I in GLn(F)
such that V = exp(U) and exp |U : U → V is a homeomorphism. By the continuity of γ, there is some δ > 0
such that γ([−δ, δ]) ⊆ V . Let β : [−δ, δ] → U be given by t 7→ exp−1 |U (γ(t)).
Claim 1: β(rδ) = rβ(δ) for all r ∈ [−1, 1].
Proof. Let r = p

q ∈ [0, 1] ∩ Q. Then

exp (β(δ)) = γ(δ)
(1)= γ

(
δ

q

)q
= exp

(
β

(
δ

q

))q
= exp

(
qβ

(
δ

q

))
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where in (1) we used the fact that γ is a homomorphism. As this equality holds in V we deduce that qβ
(
δ
q

)
=

β(δ). Similarly,

exp
(
β

(
pδ

q

))
= γ

(
pδ

q

)
= γ

(
δ

q

)p
= exp

(
β

(
δ

q

))p
= exp

(
p
β(δ)
q

)
and so

β

(
pδ

q

)
= p

q
β(δ).

This can be extended to any r ∈ [−1, 1] ∩Q. For r ∈ [−1, 1] we choose a sequence (rn)n∈N ⊆ [−1, 1] ∩Q, where
rn = pn

qn
, converging to r and use the continuity of β to deduce that β(rnδ) → β(rδ). As β(rnδ) = rnβ(δ) and

rnβ(δ) → rβ(δ), it follows by the uniqueness of limits that β(rδ) = rβ(δ).
Claim 2: For any t ∈ R we have γ(t) = exp

(
tβ(δ)
δ

)
.

Proof. Let t ∈ R. Then there exists some integer N > 0 such that
∣∣ t
N

∣∣ ≤ δ. That is, t
N = rδ for some

r ∈ [−1, 1]. Therefore, by Claim 1 it follows that

γ

(
t

N

)
= γ(rδ) = erβ(δ).

Therefore,

γ(t) = γ

(
t

N

)N
= erNβ(δ)

= exp
(
tβ(δ)
δ

)
.

Theorem 4.4.27 shows that γ is continuously differentiable.

Corollary 4.4.28. Let G ≤ GLn(F) be a closed. Then any continuous homomorphism γ : R → G is of the
form γA for some A ∈ GLn(F).

Proof. Since G ≤ GLn(F), any continuous homomorphism γ : R → G is a continuous homomorphism R →
GLn(F). Hence, we can conclude by applying Theorem 4.4.27.

Example 4.4.29. For A ∈ Mn(R), we have that eA ∈ SLn(R) if and only if tr(A) = 0. Indeed, recall by
Lemma 4.4.19 we have that det

(
eA
)

= etr(A). So since tr(A) ∈ R it follows that det
(
eA
)

= 1 if and only
if tr(A) = 0. In particular, consider γ : R → SLn(R) a continuous homomorphism. Then γ = γA for some
A ∈ Mn(R). Hence, etA ∈ SLn(R) for all t ∈ R if and only if tr(tA) = 0 which happens if and only if
tr(A) = 0.

4.5 The Lie Algebra of a Matrix Lie Group
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Definition 4.5.1. Let G ≤ GLn(F) be closed and let A ∈ G. Then the tangent space TAG of G at A is

TAG := {γ̇(0) ∈ Mn(F) : γ : R → G continuously differentiable with γ(0) = A} .

Remark 4.5.2. The γ in Definition 4.5.1 need not be a homomorphism. A group homomorphism has to satisfy
γ(0) = I, whereas γ in Definition 4.5.1 is such that γ(0) = A.

Proposition 4.5.3. Let G ≤ GLn(F) be a closed subgroup. Then for any A ∈ G we have that

TAG = A · TIG = TIG ·A.

Proof. Let M ∈ TIG with M = γ̇(0) for γ : R → G a continuously differentiable function with γ(0) = I.
Consider the function A · γ : R → G given by t 7→ A · γ(t). This is continuously differentiable with γ(0) = A.
Therefore,

d
dt (Aγ(t))|t=0 = Aγ̇(0) ∈ TAG.

Hence, A · TIG ⊆ TAG. A similar argument with A−1 shows that

A−1 · TAG ⊆ TIG

which implies that TAG ⊆ A · TIG and so TAG = A · TIG. Similarly, one shows that TAG = TIG ·A.

Proposition 4.5.4. Let G ≤ GLn(F) be closed. Then for any A, the set TAG is a real vector space.

Proof. For A = I, let M,N ∈ TIG and λ ∈ R. Let α, β : R → G be continuously differentiable functions such
that α(0) = β(0) = I, α̇(0) = M and β̇(0) = N . Let γ(t) = α(λt). Then since γ : R → G is continuously
differentiable with γ(0) = I and γ̇(0) = λα̇(0) = λM it follows that λM ∈ TIG. Now let δ(t) = α(t)β(t). Then
δ : R → G is continuously differentiable with δ(0) = I. Using the product rule we deduce that

δ̇(0) = α̇(0)β(0) + α(0)β̇(0) = MI + IN = M +N ∈ TIG.

Therefore, TIG is a real vector space. We generalise the arguments to TAG by using Proposition 4.5.3.

Definition 4.5.5. The dimension of a closed subgroup G ≤ GLn(F) closed is given by the dimension of TAG
as a real vector space.

Recall that the commutator of A,B ∈ Mn(F) is

[A,B] = AB −BA. (4.5.1)

Proposition 4.5.6. Let G ≤ GLn(F) be closed, and let M,N ∈ TIG. Then [M,N ] ∈ TIG.

Proof. Let α, β : R → G be continuously differentiable with α(0) = β(0) = I, α̇(0) = M and β̇(0) = N . For
s, t ∈ R let δs(t) = α(s)β(t)α(s)−1. Note that δs(t) : R2 → G is a continuously differentiable function. In
particular, for fixed s the function δs : R → G is continuously differentiable with δs(0) = I and so δ̇s(0) ∈ TIG.
By the product rule we have that

δ̇s(0) = α(s)β̇(0)α(s)−1 = α(s)Nα(s)−1.

Letting s vary we observe that δ̇s(0) : R → TIG is a continuously differentiable path with δ̇0(0) = I. So its
derivative at zero lies in TIG, that is

d
ds δ̇s(0)

∣∣
s=0 ∈ TIG.
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Therefore, as
d
ds δ̇s(0)

∣∣
s=0 =

(
d
dsα(s)

∣∣
s=0

)
·N · α(0)−1 + α(0) ·N ·

(
d
dsα(s)−1∣∣

s=0

)
= α̇(0) ·N · α(0)−1 − α(0) ·N ·

(
−α̇(0)α(0)−2)

= M ·N · I − I ·N ·M
= [M,N ]

we deduce that [M,N ] ∈ TIG.

Proposition 4.5.7. For A,B,C ∈ Mn(F) and the commutator bracket [·, ·], as given in (4.5.1), the Jacobi
identity holds. That is,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Proof. Expanding the commutators we get that

[A, [B,C]] + [B, [C,A]] + [C, [B,A]] = ABC −ACB −BCA+ CBA

+BCA−BAC − CAB +ACB

+ CAB − CBA−ABC +BAC

= 0.

Definition 4.5.8. A real Lie algebra is a pair (V, [·, ·]), where V is a real vector space, and [·, ·] : V × V → R
is a bilinear map such that the following statements hold.

1. [·, ·] : V × V → R is anti-symmetric. That is, [A,B] = −[B,A] for all A,B ∈ V .

2. The Jacobi identity holds. That is,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

for all A,B,C ∈ V .

Remark 4.5.9. Often a Lie algebra will just be referred to as V , where the [·, ·] is dropped from the notation.

Definition 4.5.10. Let (V, [·, ·]V ) and (W, [·, ·]W ) be Lie algebras. Then f : V → W is a homomorphism of
Lie algebras if it is linear and

f ([A,B]V ) = [f(A), f(B)]W
for all A,B ∈ V .

Definition 4.5.11. For G ≤ GLn(F) closed, its Lie algebra is (TIG, [·, ·]) where [·, ·] is the commutator of
matrices as given in (4.5.1).

Remark 4.5.12.

1. Definition 4.5.11 makes sense as TIG is a real-vector space by Proposition 4.5.4, [·, ·] on TIG is well-
defined by Proposition 4.5.6 and satisfies the Jacobi identity by Proposition 4.5.7.

2. The convention is to denote Lie algebras using lowercase Franktur font. So GLn(R) as a Lie algebra is
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denoted gln(R), similarly SLn(R) is denoted sl(R).

Proposition 4.5.13. Let γ : R → GLn(F) be a continuously differentiable function with γ(0) = I. For t ∈ R
we have

etγ̇(0) = lim
n→∞

γ

(
t

n

)n
.

Proof. By the same arguments as those made at the beginning of the proof of Theorem 4.4.27, we can write
γ(t) = eβ(t) for |t| ≤ δ for some δ > 0 and β : [−δ, δ] → Mn(F) a continuously differentiable function. Recall
d exp0 : Mn(F) → Mn(F) is the identity map, so by the chain rule it follows that β̇(0) = γ̇(0). Therefore,

lim
n→∞

γ

(
t

n

)n
(1)= lim

n→∞

(
exp

(
β

(
t

n

))n)
(2)= lim

n→∞

(
exp

(
t

n
γ̇(0) + o

(
t

n

))n)
= lim
n→∞

exp
(
tγ̇(0) + no

(
t

n

))
= etγ̇(0)

where in (1) for have the fact that for large n we have
∣∣ t
n

∣∣ < δ, and in (2) we have used a Taylor expansion for
γ.

Remark 4.5.14. Note that if γ is additionally a homomorphism in the setting of Proposition 4.5.13, it follows
that etγ̇(0) = γ(t).

Example 4.5.15. For n = 1 and γ = 1 + t the result of Proposition 4.5.13 gives the expected

et = lim
n→∞

(
1 + t

n

)n
.

Proposition 4.5.16. Let G ≤ GLn(F) be closed, and let M ∈ g = TIG. Then eM ∈ G.

Proof. Let γ : R → G be a continuously differentiable curve with γ(0) = I, and γ̇(0) = M . Then by Proposition
4.5.13 the limit

eM = lim
n→∞

γ

(
1
n

)n
exists. Therefore, as γ

( 1
n

)n ∈ G and G ⊆ GLn(F) is closed, we deduce that eM ∈ G.

Corollary 4.5.17. For G ≤ GLn(F), the continuous homomorphism γ : R → G are exactly those given by
γA(t) = etA for some A ∈ g = TIG.

Proof. Any continuous homomorphism γ : R → G is also a continuous homomorphism into GLn(R). Hence,
γ(t) = γA(t) = etA for some A ∈ Mn(F) by Theorem 4.4.27. As γA is continuously differentiable it follows that
A = γ̇A(0) ∈ g. Conversely, if A ∈ g then tA ∈ g for all t ∈ R. Then, by Proposition 4.5.16 γA(t) = etA ∈ G for
all t ∈ R. Moreover, by Lemma 4.4.21, γA : R → GLn(F) is a continuous homomorphism. Since im(γA) ⊆ G
when A ∈ g it follows that γA : R → G is a continuous homomorphism.
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Remark 4.5.18.

1. From Corollary 4.5.17 we see that there is a bijection between g and the continuous homomorphism
R → G. Where A ∈ g is mapped to γA in one direction, and γ to γ̇(0) in the other.

2. Let γ, δ : R → G be continuous homomorphism with G ≤ GLn(F) being closed. Then they are continu-
ously differentiable with γ̇(0) + δ̇(0) ∈ g = TIG, which corresponds to some continuous homomorphism
ξ : R → G given by t 7→ exp

(
t
(
γ̇(0) + δ̇(0)

))
. Note that η(t) = γ(t) · δ(t) : R → G is a continuously

differentiable map with
η̇(0) = γ̇(0) + δ̇(0) ∈ g,

but η is not necessarily a homomorphism as G may not be abelian. Therefore, we cannot deduce that ξ
and η are equal, but by using Proposition 4.5.16 we can write

ξ(t) = etη̇(0)

= lim
n→∞

(
γ

(
t

n

)
δ

(
t

n

))n
.

Theorem 4.5.19. Let G ≤ GLn(F) be closed. Then there are open neighbourhoods U of zero in g and
V = exp(U) of I in G such that exp |U : U → V is a homeomorphism.

Proof. Let W ≤ Mn(F) be a subspace such that g ⊕ W = Mn(F). Let ẽxp : g ⊕ W → GLn(F) be given by
(X,Y ) 7→ eXeY . As X and Y might not commute this is not the modification of exp given by (X,Y ) 7→ eX+Y .
However, exp and ẽxp agree on g. Hence, it suffices to prove the statement for ẽxp.
Step 1: The derivative of ẽxp at zero dẽxp0 : Mn(F) → Mn(F), is the identity.
Let (X,Y ) ∈ g ⊕W . Let γ(t) = etXetY = ẽxp(tX, tY ). Then

γ̇(0) =
(

d
dte

tX
∣∣
t=0

)
e0·Y + e0·X

(
d
dte

tY
∣∣
t=0

)
= X · I + I · Y
= X + Y.

By the chain rule γ̇(0) = dẽxp0(X,Y ) and so dẽxp0(X,Y ) = X + Y .
Using step 1 we can apply Theorem 5.2.2 to obtain a neighbourhood Ũ of zero in Mn(F) and a neighbourhood
Ṽ = ẽxp

(
Ũ
)

of I in GLn(F) such that ẽxp|Ũ : Ũ → Ṽ is a homeomorphism.
Step 2: There is a neighbourhood Z of zero in Ũ ⊆ Mn(F) such that ẽxp−1(G) ∩ Z = g ∩ Z.
It suffices to show that for (X,Y ) ∈ Z ⊆ g⊕W we have ẽxp(X,Y ) ∈ G if and only if Y = 0. Suppose that this
is not true, so that for every neighbourhood of zero in Mn(F) there is some (X,Y ) ∈ g ⊕ W with Y ̸= 0 and
ẽxp(X,Y ) = eXeY ∈ G. Then there is a sequence of vectors ((Xi, Yi))i∈N ⊆ g ⊕W converging to 0 such that
Yi ̸= 0 and ẽxp(Xi, Yi) ∈ G for all i ∈ N. As −Xi ∈ g it follows that e−Xi ∈ G and so e−XieXieYi = eYi ∈ G.
Since each Yi ̸= 0 ∈ W we can consider

Yi
|Yi|

∈ Sd := {y ∈ W : |y| = 1}

the normalised Yi. By the sequential compactness of Sd we can pass to a convergent subsequence, such that
Yi

|Yi| → Y ∈ W for some Y ∈ Sd. In particular, Y ̸= 0. Now fix t ∈ R, and choose an integer mi such that

mi|Yi| ≤ t ≤ (mi + 1)|Yi|

for all i ∈ N. Note that emiYi =
(
eYi
)mi ∈ G. Moreover, as

miYi = (mi|Yi|)
Yi
|Yi|

→ tY
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we deduce that emiYi → etY . As G ⊆ GLn(F) is closed it follows that etY ∈ G for all t ∈ R which implies that
Y ∈ g. However, g ∩W = {0} and Y ̸= 0 and so we get a contradiction.
Assume U = g ∩ Z, where Z is given by step 1. Then by step 1 we have that ẽxp|Z : Z → im (ẽxp|Z) is a
homeomorphism to a neighbourhood of I in GLn(F). Restricting to U , which is an open neighbourhood of zero,
we see that

ẽxp|U : U → im (ẽxp|U )

is a homeomorphism. By step 2 we know that im (ẽxp|U ) = G ∩ im (ẽxp|Z) where im (ẽxp|Z) is an open
neighbourhood of I. Hence G ∩ im (ẽxp|Z) is an open neighbourhood of I in G.

Corollary 4.5.20. Let G ≤ GLn(F) be closed. Then for all A ∈ G there is an open neighbourhood U of A
in G which is homeomorphic to an open subset of Rd, where d is the dimension of G.

Proof. When A = I this follows from Theorem 4.5.19 since g is homeomorphic to Rd. When A ̸= I we note
that multiplication by A is a homeomorphism, and sends an open neighbourhood of I, which is homeomorphic
to an open subset of Rd, to an open neighbourhood of A in G.

Corollary 4.5.21. Let G ≤ GLn(F) be closed. Then G is a discrete topological space if and only if its
dimension is zero.

Proof. (⇐). If the dimension of G is zero, then every A ∈ G has a neighbourhood homeomorphic to R0 by
Corollary 4.5.20, which is just a point. Hence, all points in G are open, implying that G has the discrete topology.
(⇒). As there is an open neighbourhood U of I in G that is homeomorphic to an open neighbourhood of Rd,
where d is the dimension of G, it follows that G is discrete as U is discrete. Hence, d = 0.

Example 4.5.22.

1. For G ≤ GLn(F) closed, there is an open neighbourhood U of I in G which is homeomorphic to a ball
in Rd. We can say this as we can restrict open sets to open balls. In particular, this implies that U is
path-connect. For the topological group (Q,+), no open neighbourhood of zero in Q is path-connected.
So (Q,+) is not isomorphic to a closed subgroup of any GLn(R). This shows that (Q,+) is not a matrix
Lie group.

2. Let
G := U(1) × U(1) =

{(
z 0
0 w

)
: z, w ∈ C, |z| = |w| = 1

}
.

Let γ : R → G be the continuous homomorphism given by

t 7→
(
eit 0
0 ei

√
2t

)
.

Then γ is injective, but no open neighbourhood of I ∈ im(γ) is path-connected, due to the zeros on the
cross-diagonal. Hence, im(γ) ≤ G is a subgroup but cannot be closed as it cannot be a matrix Lie group.
Hence, images of homomorphism are not necessarily matrix Lie groups, which differs from the theory
of other abstract objects we have discussed so far. Note that injectivity follows for any other irrational
number in the position of

√
2.

Example 4.5.23.

1. From Example 4.4.29, we see that

sln(R) = {A ∈ Mn(R) : tr(A) = 0} .
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2. Consider the Lie algebra of O(n), namely o(n) = TIO(n). Let A ∈ o(n), then tA ∈ o(n) for all t ∈ R.
Hence, etA ∈ O(n) for all t ∈ R which implies that

etA
(
etA
)⊤ = I.

As etA⊤ =
(
etA
)⊤ and we know that e−tA⊤ is the inverse of etA⊤ , it follows that etA = e−tA⊤ . As exp

is not injective we cannot immediately deduce that tA = −tA⊤. However, for sufficiently small t > 0,
we have that tA and −tA⊤ lie in an open neighbourhood of zero in Mn(F) on which exp is injective.
Hence, tA = −tA⊤ and so A = −A⊤ which says that A is skew-symmetric. Conversely, suppose that A
is skew-symmetric. Then as A and A⊤ = −A commute we have that

etA
(
etA
)⊤ = etAe−tA

= e0

= I

for all t ∈ R. Hence, etA ∈ O(n). Letting γA : R → O(n) be the continuous homomorphism given
by t 7→ etA it follows that A ∈ o(n). In conclusion, we have shown that o(n) ≤ Mn(R) is the set of
skew-symmetric matrices.

• In particular, we can say that O(n) and O(m) are isomorphic if and only if n = m, as o(n) has
dimension 1

2n(n− 1).

3. As SLn(R) = O(n) ∩ SLn(R) it follows that

so(n) = o(n) ∩ sln(R) =
{
A ∈ Mn(R) : A = −A⊤, tr(A) = 0

}
.

Definition 4.5.24. Let G ≤ GLn(F) and H ≤ GLn(F) be closed, and let ϕ : G → H be a continuous
homomorphism. Let ϕ∗ : g → h be defined as follows. For A ∈ g, let γA(t) : R → G be the continuous
homomorphism given by γA(t) = etA. Then ϕ ◦ γ : R → H is also a continuous homomorphism and so
(ϕ ◦ γ)(t) = etB for some unique B ∈ h. Consequently, we let

ϕ∗(A) = B.

Equivalently, ϕ∗(A) is characterised by the equation

γϕ∗(A) = ϕ ◦ γA. (4.5.2)

Remark 4.5.25. Letting t = 1 in (4.5.2) we deduce that

(exp ◦ϕ∗) (A) = (ϕ ◦ exp)(A).

Lemma 4.5.26. The map ϕ∗ : g → h, as given in Definition 4.5.24, is linear.

Proof. Let A,B ∈ g and λ ∈ R. Then for any t ∈ R we have that

etϕ∗(λA) = ϕ
(
etλA

)
= e(tλ)ϕ∗(A)

= et(λϕ∗(A)).
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Since this holds for all t ∈ R we deduce that ϕ∗(λA) = λϕ∗(A). Note that for any t ∈ R we have

γA+B(t) = et(A+B)

= lim
n→∞

(
γA

(
t

n

)
γB

(
t

n

))n
where we have used Proposition 4.5.16 and that fact that if δ(t) = γA(t)γB(t) then δ̇(0) = A+B. Hence,

γϕ∗(A)+ϕ∗(B) = lim
n→∞

(
γϕ∗(A)

(
t

n

)
γϕ∗(B)

(
t

n

))n
= lim
n→∞

(
ϕ

(
γA

(
t

n

))
ϕ

(
γB

(
t

n

)))n
(1)= lim

n→∞
ϕ

((
γA

(
t

n

)
γB

(
t

n

))n)
(2)= ϕ

(
lim
n→∞

(
γA

(
t

n

)
γB

(
t

n

))n)
= ϕ (γA+B(t))
= γϕ∗(A+B)(t),

where in (1) we use the fact that ϕ is a homomorphism, and in (2) we use the continuity of ϕ.

Lemma 4.5.27. Let G ≤ GLn(F) and H ≤ GLn(F) be closed, and let ϕ : G → H be a continuous
homomorphism. Then ϕ∗ : g → h satisfies

ϕ∗([A,B]) = [ϕ∗(A), ϕ∗(B)]

for all A,B ∈ g. In other words, ϕ∗ is a homomorphism of Lie algebras.

Proof. Let
δs(t) = γA(s)γB(t)γA(−s)

so that δ̇s(0) = esABe−sA. As s varies, δ̇s(0) traces a continuously differentiable path in g. More specifically,

d
ds
(
δ̇s(0)

) ∣∣∣
s=0

= d
ds
(
esA
) ∣∣∣
s=0

Be−sA + esAB
d
ds
(
e−sA) ∣∣∣

s=0

= ABI − IBA

= AB −BA

= [A,B].

Similarly, let
βs(t) = γϕ∗(A)(s)γϕ∗(B)(t)γϕ∗(A)(−s)

so that as s varies β̇s(0) traces a continuously differentiable path in h. As before, we note that

d
ds
(
β̇s(0)

) ∣∣∣
s=0

= [ϕ∗(A), ϕ∗(B)] .

Since, ϕ ◦ δs = βs it follows that ϕ
(
δ̇s(0)

)
= β̇s(0). Taking the derivative with respect to s and evaluating it at

zero gives
ϕ∗([A,B]) = [ϕ∗(A), ϕ∗(B)]

for all A,B ∈ g. In conjunction with Lemma 4.5.26 we conclude that ϕ∗ is a homomorphism of Lie algebras.
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Lemma 4.5.28. Let G, H and K be closed subgroups of GLn(R). Let ϕ : G → H and ψ : H → K be
continuous homomorphism. Then ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗.

Proof. Let A ∈ g. Recall that ϕ∗(A) is determined by the (4.5.2). Consequently, ψ∗(ϕ∗(A)) is determined by
the equation

γ(ψ∗◦ϕ∗)(A) = ψ ◦ γϕ∗(A) = ψ ◦ ϕ ◦ γA.
Similarly, (ψ ◦ ϕ)∗(A) is determined by the equation

γ(ψ◦ϕ)∗(A) = ψ ◦ ϕ ◦ γA.

Therefore, (ψ ◦ ϕ)∗(A) = ψ∗(ϕ∗(A)) for all A ∈ g.

Corollary 4.5.29. If G,H ≤ GLn(F) are closed and isomorphic as topological groups, then their respective
Lie algebras g and h are isomorphic as Lie algebras.

Proof. As G and H are isomorphic as topological groups, there exists continuous homomorphisms f : G → H
and g : H → G that are inverses to each other. Using Lemma 4.5.28 it follows that

f∗ ◦ g∗ = (f ◦ g)∗ = (IdH)∗ = Idh.

Similarly, g∗ ◦ f∗ = Idg. Hence, f∗ and g∗ are inverses to each other. Thus, as f∗ is a Lie algebra homomorphism
by Lemma 4.5.27, it follows that g and h are isomorphic as Lie algebras.

4.6 Solution to Exercises
Exercise 4.1.2

Solution. Suppose M is invertible, with inverse M−1. Then MM−1 = I which implies that 1 = det
(
MM−1) =

det(M) det
(
M−1). Therefore, det(M) ∈ R× with inverse det

(
M−1).

Exercise 4.3.4

Solution.

1. Let M1,M2 ∈ SLn(F), then
det(M1M2) = det(M1) det(M2) = 1,

which implies that M1M2 ∈ SLn(F). Moreover, for M ∈ SLn(F) we have
1 = det(I) = det

(
MM−1) = det(M) det

(
M−1)

and so 1 = det
(
M−1) meaning M−1 ∈ SLn(F). Therefore, as I ∈ SLn(F) we conclude that SLn(F) ≤

GLn(F). Moreover, as det(·) is continuous and SLn(F) is the pre-image of {1} under this map we deduce
that SLn(F) is closed. Therefore, SLn(F) is a matrix Lie group.

2. Let
Dn = {M ∈ GLn(F) : M diagonal}.

Consider M ∈ Dn given by M = diag(λ1, . . . , λn). As M ∈ GLn(F), it follows that λk ̸= 0 for k =
1, . . . , n. In particular,

Mdiag
(

1
λ1
, . . . ,

1
λn

)
= I.

Therefore, M−1 ∈ Dn. Similarly, forM1,M2 ∈ Dn withM1 = diag(λ1, . . . , λn) andM2 = diag(µ1, . . . , µn)
we have

M1M2 = diag(λ1µ1, . . . , λnµn).
Hence, M1M2 ∈ Dn. As I ∈ Dn we have that Dn ≤ GLn(F). Note that matrices converge if and only
if each of the entries converges to the entries of the corresponding limit matrix. Hence, a sequence in Dn

converges to an element of GLn(F) if and only if that element is in Dn. Therefore, Dn ≤ GLn(F) is closed
and thus a matrix Lie group.
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3. Let M1,M2 ∈ O(n). Note that

(M1M2)⊤(M1M2) = M⊤
2 M

⊤
1 M1M2 = M⊤

2 M2 = I.

Moreover, if M ∈ O(n) then M−1 = M⊤ which implies that MM⊤ = I. Hence, O(n) is a subgroup of
GLn(R). It is closed as M 7→ M⊤M is a continuous map and O(n) is the pre-image of the closed set {I}
under this map. Therefore, O(n) is a matrix Lie group.

4. SO(n) is a subgroup of O(n). It is closed as det(·) is a continuous map. Therefore, SO(n) is a matrix Lie
group by Corollary 4.3.14.

5. U(n) is a matrix Lie group by similar arguments as made for O(n).

6. SU(n) is a subgroup of U(n). It is closed as det(·) is a continuous map. Therefore, SU(n) is a matrix Lie
group by Corollary 4.3.14.

7. Let G be a finite group of cardinality n ∈ N. Then by Cayley’s theorem, G is isomorphic to a subgroup
of Sn. Let ϕ : G → Sn be an injective homomorphism. This is continuous on the discrete topology. Let
ψ : Sn → GLn(R) be given by σ 7→ Pσ where Pσ is the corresponding unique permutation matrix. Note
that P−1

σ = Pσ−1 . Suppose ψ(σ1) = ψ(σ2), then Pσ1 = Pσ2 and so

I = P−1
σ2
Pσ1 = Pσ−1

2
Pσ1

which implies that σ−1
2 ◦ σ1 = e meaning σ1 = σ2. Hence, ψ is injective, and it is also continuous on the

discrete topology. Therefore, φ = ψ ◦ ϕ : G → GLn(R) is an injective and continuous homomorphism.
Therefore, G is isomorphic to a subgroup of GLn(R). Moreover, this subgroup is closed as all discrete
groups in the discrete topology are closed.

8. Recall from Proposition 4.1.3 that

Z (GLn(F)) =
{
λI : λ ∈ F×} .

As the centre of a group is a normal subgroup, we have PGLn(F) = GLn(F)/Z (GLn(F)) is well-defined
and in particular a group. With Z (GLn(F)) being closed it follows that PGLn(F) is closed in the quotient
topology. Therefore, PGLn(F) is a matrix Lie group.

9. The determinant of any matrix in Hn(F) is one, and so Hn(F) ⊆ GLn(F). Clearly, Hn(F) is closed under
matrix multiplication. Let A ∈ Hn(F), then we know that A−1 exists and is upper triangular as A is upper
triangular. Moreover, as AA−1 = I it is clear that the diagonal of A−1 must contain all ones and so
A−1 ∈ Hn(F). Thus, Hn(F) is closed under inverses. As I ∈ Hn(F) we deduce that Hn(F) ≤ GLn(F) is a
subgroup. Now let (Am)m∈N ⊆ Hn(F) be a sequence converging to A ∈ Mn(F). Then it must be the case
that (Am)ij → Aij for 1 ≤ i, j ≤ n and so A ∈ Hn(F) meaning Hn(F) ≤ GLn(F) is a closed subgroup.
Therefore, Hn(F) is a matrix Lie group.

Exercise 4.3.11

Solution. Consider M =
(

1 0
0 i

)
. Then M is invertible as(

1 0
0 i

)(
1 0
0 −i

)
=
(

1 0
0 1

)
.

However,
A = Re(M) =

(
1 0
0 0

)
and

B = Im(M) =
(

0 0
0 1

)
are not invertible.
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Exercise 4.4.5

Solution. For A ∈ GLn(C) we can write it in Jordan normal form as

A = P (Jn1(λ1) ⊕ · · · ⊕ Jnr (λr))P−1

for some λ1, . . . , λr ∈ C, P ∈ GLn(C) and with Jni(λi) denoting the ni×ni λi-Jordan block. As A is invertible,
each λi ̸= 0 and so we can write λi = ezi for some zi ∈ C. By statement . of Example 4.4.4 we have

eJni
(zi) =



λi

λi
. . .

λi

2
. . . . . .

... . . . . . . . . .
λi

(n−1)! . . . λi

2 λi λi


.

As the minimal polynomial of eJni
(zi) is (X −λi)ni we deduce that it has Jordan normal form Jni

(λi) and so we
can write Jni

(λi) = Pi exp (Jni
(zi))P−1

i = exp
(
PiJni

(zi)P−1
i

)
for some Pi ∈ GLn(C). Therefore,

A = P
(
exp

(
P1Jn1(z1)P−1

1
)

⊕ · · · ⊕ exp
(
PrJnr

(zr)P−1
r

))
P−1

= exp
(
P
(
P1Jn1(z1)P−1

1 ⊕ · · · ⊕ PrJnr (zr)P−1
r

)
P−1) .

Hence, we conclude that any A ∈ GLn(C) is the exponential of some matrix.

Exercise 4.4.12

Solution. Let A =
(

0 0
1 0

)
and B =

(
0 1
0 0

)
. Then

eA =
(

1 0
1 1

)
and

eB =
(

1 1
0 1

)
,

so that
eAeB =

(
1 1
1 2

)
.

On the other hand,

(A+B)k =
(

0 1
1 0

)k
=
{
I k even
A+B k odd.

Therefore,
eA+B =

(
cosh(1) sinh(1)
sinh(1) cosh(1)

)
̸= eAeB .

Indeed
AB =

(
0 0
0 1

)
̸=
(

1 0
0 0

)
= BA.
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5 Appendix
5.1 Topology
Throughout let F be R or C.

Definition 5.1.1. A topology T on a set X is a collection of subsets of X, which are called the open subsets,
such that the following statements hold.

• ∅, X ∈ T .

• If (Ui)i∈I ⊆ T is a collection of open subsets of X, where I is a possibly infinite set, then⋃
i∈I

Ui ∈ T .

• If {U1, . . . , Un} ⊆ T are open, then
n⋂
i=1

Ui ∈ T .

A subset C ⊆ X is said to be closed if X \ C ∈ T .

Example 5.1.2. The Euclidean topology on Fn says that U ⊆ X is open if, for all x ∈ X, there is some ε > 0
such that for any y ∈ X with |y−x| < ε it follows that y ∈ U . Henceforth, any topological reference involving
Fn will implicitly endow Fn with the Euclidean topology.

Definition 5.1.3. A function f : X → Y between topological spaces is continuous if for any open set U ⊆ Y
the set f−1(U) is open in X.

Note that if f : X → Y is continuous and C ⊆ Y is closed, then f−1(C) ⊆ X is closed.

Definition 5.1.4. Let (X, T ) be a topology. Then for V ⊆ X the collection

TV := {V ∩ U : U ∈ T }

defines the subspace topology on V .

Lemma 5.1.5. If X ⊆ Fn and Y ⊆ Fm have the subspace topology, then f : X → Y is continuous if and
only if for all x ∈ X and ε > 0, there is some δ > 0 such that whenever y ∈ X is such that |x− y| < δ, we
have |f(x) − f(y)| < ε.

Remark 5.1.6. The notion of continuity established in Lemma 5.1.5 is the ϵ-δ definition of continuity. Intu-
itively, it says that f is continuous at x if f(y) is close to f(x) for y sufficiently close to x.

Lemma 5.1.7. The composition of continuous functions is continuous.

Lemma 5.1.8. A function f = (f1, . . . , fn) : Fm → Fn is continuous if and only if each component fi :
Fm → F is continuous.
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Example 5.1.9. Projection maps πj : Fn → F, given by (x1, . . . , xn) 7→ xj are continuous. Moreover, if
f, g : Fn → F are continuous, then so are f + g and f · g. Combining these observations, we deduce that any
polynomial, in multiple variables, is continuous. Hence, µ : Mn(F)×Mn(F) → Mn(F) given by (A,B) 7→ A ·B
is continuous, since each entry of A ·B is a polynomial in the entries of A and B.

Definition 5.1.10. Let Y ⊆ Fn have the Euclidean topology and consider X ⊆ Y . We say X is dense in Y
if X̄, the closure of X in Y , is equal to Y . Equivalently, we have that for all y ∈ Y and for all ε > 0, there is
some x ∈ X with |x− y| < ε.

Example 5.1.11.

1. Q ⊆ R is dense.

2. Q[i] ⊆ C is dense.

Definition 5.1.12. A topological space X is path-connected if for all x, y ∈ X, there is a path from x to y.
Where a path is a continuous function f : [0, 1] → X such that f(0) = x and f(1) = y.

Lemma 5.1.13. Let x, y, z ∈ X. If there is a path γ from x to y and a path δ from y to z, then there is a
path from x to z.

Proof. Let ξ : [0, 1] → X be given by

ξ(t) =
{
γ(2t) t ≤ 1

2
δ(2t− 1) t ≥ 1

2 .

This is a path from x to z.

Definition 5.1.14. A set X ⊆ Fn is bounded if there is some C > 0 such that for all x ∈ X we have |x| ≤ C.

Definition 5.1.15. A set X ⊆ Fn is compact if it is a closed and bounded subset of Fn.

5.2 Differentiability

Definition 5.2.1.

• A function γ : R → Fm is continuously differentiable, written γ ∈ C1, if its derivative γ̇(t) : R → Fm
exists and is continuous for all t ∈ R.

• A function f : Rm → Rn is continuously differentiable, written f ∈ C1, if all partial derivatives ∂fi

∂xj
exist

and are continuous. The derivative at p is the matrix

Df(p) =
(
∂fi
∂xj

(p)
)
ij

.

Theorem 5.2.2 (Inverse Function Theorem). Let f : Rm → Rm be continuously differentiable. Suppose
x0 ∈ Rm is such that Df(x0) is an invertible matrix. Then there exists an open neighbourhood U ⊆ Rm of
x0 such that f |U : U → f(U) is a homeomorphism, and is continuously differentiable with a continuously
differentiable inverse.
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Remark 5.2.3. Theorem 5.2.2 says that if the derivative of f is invertible at x0 then f is also invertible in a
neighbourhood of x0.

Example 5.2.4.

1. Consider exp : R → R given by x 7→ ex. This is not a homeomorphism as it is not surjective. However,
the derivative at zero is 1 ∈ M1(R), which is invertible. Hence, using Theorem 5.2.2 we can find an open
neighbourhood, say (−1, 1) such that

exp|(−1,1) : (−1, 1) →
(
e−1, e1)

is a homeomorphism. Namely, it is continuously differentiable and its inverse, log, is continuously differ-
entiable.

2. Consider exp : C → C, sending z 7→ ez. The derivative at zero is the identity matrix, I =
(

1 0
0 1

)
,

which is invertible. It turns out, in this case, we can take U =
{
z ∈ C : |z|2 = 1

}
.

5.3 Abelian Matrix Lie Groups
Just as we can classify finitely generated abelian groups, we can also classify connected abelian matrix lie groups.

Lemma 5.3.1. Let ϕ : G → H be a homomorphism between matrix Lie groups. Then ker(ϕ) is a closed
topological subgroup of G, meaning ker(ϕ) is itself a matrix lie group. Moreover,

TI ker(ϕ) = ker (ϕ∗ : TIG → TIH) .

Proof. Let (xn)n∈N ⊂ ker(ϕ) be a sequence converging to x in G. As ϕ is continuous it follows that ϕ(x) = I
which implies that x ∈ ker(ϕ), meaning ker(ϕ) is a closed subgroup of G. Recall, that we have a bijection
between TIG and continuous homomorphism γ : R → G. Note that ker(ϕ∗) consists of the γ for which ϕ ◦ γ
is constant, which holds if and only if im(γ) ⊆ ker(G), and so γ : R → ker(ϕ) is a continuous homomorphism.
Therefore, using the associated bijection, this happens if and only if γ ∈ TI ker(ϕ).

Lemma 5.3.2. Let G be a matrix Lie group with K◁G a discrete normal subgroup. Then G/K is a topological
group. In particular, the quotient map π : G → G/K is a continuous homomorphism, for which there exists
an open neighbourhood U of I ∈ G such that π|U is a homeomorphism into its image.

Proof. Note that multiplication, G×G → G, when restricted to K ×K maps K ×K → K as K is a subgroup.
Therefore, (G×G)/(K ×K) → G/K defines a continuous map. As (G/K) × (G/K) = (G×G)/(K ×K) it
follows that the product on G/K is continuous. Similarly, one argues that the inverse is continuous meaning that
G/K is a topological group. Now as K is discrete, we can choose a compact neighbourhood C of I ∈ G such
that π|C is an injective. Then π|C is a continuous bijection onto its image. As C and π(C) are both Hausdorff we
have that π|C is homeomorphic onto its image. Taking U to be the interior of C we find an open neighbourhood
U of I ∈ G such that π|U is homeomorphic onto its image.

For each of the abstract objects we have considered, there have been corresponding isomorphism theorem. Similar
isomorphism results hold for matrix Lie groups.

Proposition 5.3.3. Let ϕ : G → H be a surjective homomorphism of matrix Lie groups, with a discrete
kernel. Then G/ kerϕ and H are isomorphic topological groups. In particular, G/ kerϕ is a matrix Lie group.

Proof. Note that ϕ respects the equivalence classes of G/ ker(ϕ). Hence, ϕ can be restricted to a continuous
homomorphism ϕ̃ : G/ ker(ϕ) → H. In particular, ϕ̃ is injective and surjective. Since ker(ϕ) is discrete it follows
that ϕ∗ is injective. Moreover, since ϕ is surjective it follows that ϕ∗ is surjective and thus defines an isomorphism.
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Therefore, there exists a neighbourhood U of I ∈ G such that ϕ|U is homeomorphic onto its image. Using Lemma
5.3.2 we have a neighbourhood V of I ∈ G/ ker(ϕ) such that ϕ̃|V is homeomorphic onto its image. Implying
the ϕ̃−1 is continuous in an open neighbourhood of I. Let A ∈ H. As multiplication by A is homeomorphic, it
follows that ϕ̃−1 is continuous in a neighbourhood of A. Thus ϕ̃ is a homeomorphism meaning G/ ker(ϕ) and H
are isomorphic topological groups.

Example 5.3.4. Let G = R2/Z2 and ϕ : R → G be given by t 7→ (t, πt). One can associate G with
[0, 1)2, where (x, y) ∈ R is represented by (x mod 1, y mod 1. It is clear then that ϕ is injective due to the
irrationality of π. Specifically if (t1, πt1) ∼ (t2, πt2) it follows that t1 − t2 ∈ Z and π(t1 − t2) ∈ Z, which is
clearly a contradiction. Moreover, ϕ is a continuous homomorphism, however, ϕ is not a homeomorphism. To
see why it is not a homeomorphism, take U as an open neighbourhood of 0 ∈ im(ϕ). Then U contains no
path-connected neighbourhood of 0 due to the lattice lines. However, every neighbourhood of 0 ∈ R contains
a path-connected neighbourhood of 0. Therefore, these spaces cannot even be homeomorphic. Therefore, it is
not always true that G/ ker(ϕ) is isomorphic to im(ϕ) when ker(ϕ) is discrete.

Lemma 5.3.5. Let G be an abelian matrix Lie group. Then the commutator vanishes on g. Furthermore,
exp : g → G is a homomorphism of topological groups.

Proof. Let A,B ∈ g and let δs(t) = esAetBe−sA be a path in G for each s. Recall that δ̇s(0) ∈ g for all s, and
is differentiable in s with derivative

d
ds δ̇s(0)

∣∣∣
s=0

= [A,B].

As G is abelian it is clear that δs(t) = etB and so we also have that δ̇s(0) = B for all s which implies that

[A,B] = d
ds δ̇s(0)

∣∣∣
s=0

= 0.

In particular, this means that A and B commute and so we can write eA+B = eAeB . Meaning exp is a
homomorphism as we already know it is continuous.

Lemma 5.3.6. Let G be a connected abelian matrix Lie group. Then exp : g → G has a discrete kernel.

Proof. Suppose that the kernel is not discrete. Then there exists a sequence (xi)i∈N ⊆ ker(exp) such that
xi → x ∈ ker(exp) with xi ̸= x for any i ∈ N. By replacing xi with xi − x we can suppose without loss of
generality that x = 0. As xi ∈ ker(exp) we have exp(xi) = I for all i ∈ N, with the added property that
xi → 0. However, as exp is injective on some open neighbourhood of 0. Therefore, for some i, j ∈ N large
enough the points xi and xj lie in this neighbourhood and it follows that xi = xj by the injectivity of exp, which
is a contradiction.

Lemma 5.3.7. Let G be a connected abelian matrix Lie group. Then exp : g → G is surjective.

Proof. Since G is connected, for any g ∈ G we can write g = eA1 . . . eAk for some A1, . . . , Ak ∈ g. As exp is a
homomorphism it follows that g = eA+1+···+Ak ∈ im(exp). Hence, exp : g → G is surjective.

Definition 5.3.8. For a finite-dimensional real vector space V , a lattice is a discrete subgroup Λ.

Lemma 5.3.9. Let Λ ≤ V be a lattice. Then there is a basis {ei}di=1 of V such that

Λ = Ze1 + · · · + Zek
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for some k ≤ d. In particular, Λ is finitely generated.

Proof. We proceed by induction on the dimension of V . The case for dim(V ) = 0. Moreover, the case for Λ = 0
is clear, so we assume Λ ̸= 0. Define some inner product on V and let e ∈ Λ\{0} be an element which minimises
|e|. We can do this as Λ is discrete. Now consider V ′ := V/⟨e⟩, the quotient map π : V → V ′ and Λ′ = π(Λ). It
is clear that Λ′ is a subgroup of V ′. Suppose that Λ′ is not discrete. Then there is some sequence (λ′

i)i∈N ⊆ V ′

such that λ′
i → 0 and λ′

i ̸= 0 for any i ∈ N. For i ∈ N, let λi ∈ Λ be such that π(λi) = λ′
i. By adding multiples

of e where necessary we can assume that λi → 0. However, this contradicts the existence of e. Therefore, Λ′ is
discrete. So by the inductive hypothesis, there is a basis {e′

i}
d
i=1 of V ′ such that

Λ′ = Ze′
1 + · · · + Ze′

k.

For each i let ei be such that π(ei) = e′
i. Then {e} ∪ {ei}di=1 is a basis for V such that

Λ = Ze+ Ze1 + · · · + Zek.

Theorem 5.3.10. Let G be a connected abelian matrix Lie group. Then G is isomorphic to (R/Z)i × Rj for
some i, j ≥ 0. Moreover, G is compact if and only if j = 0.

Proof. Consider the homomorphism exp : g → G. This is a surjective homomorphism with a discrete kernel, and
so it follows that G is isomorphic to g/ ker(exp). As ker(exp) is a lattice in g we can choose a basis {ei}di=1 ⊆ g
such that

ker(exp) = Ze1 + · · · + Zek
for some k ≤ d. Therefore, G is isomorphic to Rd/Zk which is isomorphic to (R/Z)k ×Rd−k. Moreover, we note
that (R/Z)i × Rj is compact if and only if j = 0 to complete the proof.
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