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1 Introduction

Algebraic topology is the study of spaces and their shape. More specifically, it aims to determine when spaces
have the same shape. For example, we know that the spaces R™ and R™ are the same if and only if n = m,
but why do we know this? One could argue that they have different dimensions and thus are different, however,
for I C R™, there exists continuous surjective, so-called space-filling, maps f : I — I?. However, these maps do
not preserve all topological features, for instance, they are not injective, and thus we do not say that I and I?
are topologically equivalent. To argue that topological spaces X and Y are topologically equivalent we require
the existence of a homeomorphism. That is, a map f : X — Y that is continuous, bijective with f~! being
continuous. More generally, algebraic topology aims to understand topological spaces by studying their maps into
abstract objects. For example, one usually considers maps of the form G : X — G(X), where X is a topological
space and G(X) is an algebraic object, normally a group. Moreover, for a different topological space Y, algebraic
topology tries to understand conditions for the existence of a map f : X — Y such that fG(X) = Gf(X). That
is, an f such that the commutative diagram

X —%5 G(X)

b

Y -5 G(Y)

holds.

1.1 Continuous Functions on Topological Spaces

Throughout, let I := [0,1] € R with the subspace topology. More generally, for any topological space X, a
subset A C X will be endowed with the subspace topology. Moreover, as we will be constantly dealing with maps
we will abbreviate the notation for function composition with standard multiplication notation.

Definition 1.1.1. For topological spaces X and Y, a homotopy is a continuous map F' : X x I — Y such
that for every t € I the map Fy : X — Y given by F;(z) = F(x,t) is continuous.

One can think of a homotopy as a continuous deformation of a topological space X into a topological space Y.

Definition 1.1.2. Continuous maps f,qg : X — Y are homotopic if there exists a homotopy F' : X x I =Y
such that

Fo(z) := F(z,0) = f()

and
Fi(z) == F(x,1) = g(a)

for x € X. In such a case we write f ~ g.

Similarly, one can say that maps are homotopic if there exists a continuous deformation of one into the other.
Exercise 1.1.3. For topological spaces X and Y, show that ~ is an equivalence relation on the space of

continuous maps from X — Y.

Definition 1.1.4. For a subset A C X, a continuous map r : X — A such that r(X) = A and r|4 =id4 is
referred to as a retraction of X onto A.

Remark 1.1.5. Let r: X — A be a retraction of X onto A. Then as r(x) € A for all x € X, it follows that
r?(z) = r(x) asr|a = ida. Therefore, r> =r.



Example 1.1.6. Suppose X # 0 and consider p € X. Thenr : X — {p}, given by r(z) = p for all z € X,
retracts X onto p. Clearly, v,y = idy,y, and r is continuous as

r_l(A):{@ pé A
X peA

Definition 1.1.7. For A C X, a retractionr : X — A is a deformation retract if r ~ idx.

Remark 1.1.8. The use of r ~ idx is a slight abuse of notation as strictly speaking we haver : X — A and
idx : X — X. What we mean with this notation is that there exists a continuous map F : X x I — X such
that Fy = idx and Fy; = ir wherei: A — X s the inclusion map.

Example 1.1.9.

1. Themapr :D" :={x € R™: ||z|| < 1} — {0} given by x — 0 is a deformation retract, as F; : D™ — D"
given by x — t - x is such that Fy = r and Fy = idp~. That is, the n-dimensional disk deformation
retracts to a point.

2. The mapr : R"T1\ {0} — S™ := oD" ! given by x > Tay is @ deformation retract as FY : R\ {0} —
R™1\ {0} given by x — (1 —t)x +t7%; is such that Fy = idga+1\(oy and Fy = ir. That is, the (n+1)-

=l
dimensional space excluding the origin deformation retracts to the surface of a (n + 1)-dimensional disk.

3. Themapr:S"xI — S™x{0} given by (z,y) — (x,0) is a deformation retract. As Fy : S" xI — S"x T
given by Fy(z,y) = (x, (1 — t)y) is such that Fy = idgn« and Fy = ir.

Definition 1.1.10. A continuous map f : X — Y is a homotopy equivalence if there is a continuous map
g:Y — X such that fg ~idy and gf ~ idx. If there exists a homotopy equivalence between X and Y then
the spaces are said to be homotopy equivalent.

Exercise 1.1.11. Suppose that f : X — Y and g,h : Y — X are such that fg and hf are homotopy
equivalences. Show that f is a homotopy equivalence.

I Lemma 1.1.12. A deformation retraction r : X — A is a homotopy equivalence.
Proof. For A C X with the subspace topology let r : X — A be a deformation retract, and let ¢ : A — X be the

inclusion map. Then ri =id4 as r|4 = id4. Moreover, by the discussions of Remark we have ir ~idx. O

Remark 1.1.13. Note that if f : X — {p} for p € X is a homotopy then as f|(,, = idy,) it follows that f is
also a deformation retraction. Therefore, when A = {p} Lemma has a converse.

Definition 1.1.14. A topological space is contractible if it is homotopy equivalent to a point.

Definition 1.1.15. A continuous map is null-homotopic if it is homotopic to a constant map.



I Lemma 1.1.16. /f X is contractible then X is path-connected.

Proof. As X is contractible we have a map r : X — {p} with r ~ idx. More specifically, there exists a
continuous map F; : X — X such that Fy = idx and F; = ir where i : {p} — X is the inclusion map.
Therefore, for any x € X let f, : I — X be given by f,(t) = F;(z). This map is continuous and such that
fz(0) = Fy(z) = idx(x) =« and fy(1) = Fi(x) = ir(z) = r(x) = p. Therefore, we have a path between p and
any x € X, which implies that X is path-connected. O

Example 1.1.17. Every deformation retraction is a retraction, however, a retraction need not be a deformation
retraction. Take X = {0,1} with discrete topology, then x + 0 is a retraction. However, it cannot be a
deformation retraction as otherwise X would be path-connected by Lemma[I.1.16 which is not the case.

I Lemma 1.1.18. A topological space X is contractible if and only if idx is null-homotopic.

Proof. (=). For some p € X there exists continuous maps f : X — {p} and g : {p} — X such that gf ~idx
and fg = idyp,y. In particular, (9f)(z) = g(p) is a constant map which means idx is null-homotopic.

(«). We know that F': X x I — X exists such that F'(z,0) = idx and F(z,1) = p for some p € X. That
is, idx ~ id,). Let f : X — {p} be given by f(z) = p and g : {p} — X be the inclusion map. Then
fg:{p} — {p} is such that fg(x) = p for every x € X meaning fg = idy,,. Furthermore, gf : X — X is such
that gf(x) = p for every x € X meaning gf = idy,; ~ idy. Therefore, X is homotopy equivalent to a point
and thus contractible. O

Lemma 1.1.19. Let X be contractible. Then ifr : X — A is a deformation retract for A C X then A is
contractible.

Proof. Let X be a contractible space, that is there exist continuous maps f : X — {p} and g : {p} — X, for
some p € X such that fg ~idy,) and gf ~idx through F'. Let r : X — A be a retraction and suppose p € A.
Let f := f|4 and § = rg. As f§: {p} — {p}, it must be the case that f§ = idg,y. Let F, : A — A be given
by Fy(z) = (rF)(z). Then Fy = §f and Fy = id4. Therefore, jf ~ids. Thus A is homotopy equivalent to a
point and is thus contractible. If p € A, then choose a point ¢ € A. As X is path-connected there exists a path
~ from p to g. Then we let /' : X — {q} be given by f' =~f and ¢’ : {q} — X be given by ¢’ = g~. It follows
that g’ f' ~ g f through the homotopy g7|j0.¢/f¥|[0,s, and so ¢’ f' ~idx. Thus, we can proceed as before. O

1.2 Constructing Spaces
1.2.1 Quotient Topology

Let X be a topological space and consider an equivalence relation ~ on X. Then X/ ~ denotes the set of
equivalence classes and we have a map 7 : X — (X/ ~) given by z — [z], where [z] is the equivalence class
of . The most refined topology on X/ ~ such that 7 is continuous is where U C X/ ~ is open if and only if
7~ 3(U) C X is open. This is referred to as the quotient topology.

Proposition 1.2.1. Ifg: X — Z is a continuous map, where Z is a topological space, such that g(a) = g(b)
whenever a ~ b, then there exists a unique continuous map f : (X/ ~) — Z such that g = fn.

The quotient topology can be formulated from a partition. Namely, points are equivalent if they are within the
same partition of the topological space.

Example 1.2.2.

1. Consider the torus T = S' x S'. Then S' C T can be thought of as a ring at a particular point along a
torus. One can then partition T into rings at different points along the torus. In particular, by identifying



the points at which rings are defined with S' we see that T/S' = S'. See Figure for an illustration.

2. The Mébius strip M is homeomorphic to ([0,1] x [0,1])/ ~, where (0,y) ~ (1,1 —y).
3. The Klein bottle K is homeomorphic to ([0,1] x [0, 1])/ ~, where (z,0) ~ (z,1) and (0,y) ~ (1,1 —y).

Figure 1.2.1: The quotient of a torus by the circle.

Exercise 1.2.3. Show that S' is a deformation retract of the Mdbius strip M.

1.2.2 Cell Complexes
Cell complexes are also referred to as CW (closure-finite weak-topology) complexes.

Example 1.2.4. Topological spaces can be constructed using a collection of cells. The torus S' x S', is the
union of a point, two open intervals, and a two-dimensional open disc, see Figure[1.2.2

Figure 1.2.2: The torus can be viewed as a collection of cells glued together.

Definition 1.2.5. A CW complex is a topological space X = |J,,cy X" with X™ inductively constructed as

follows.

1. The set X° is a discrete set.

2. Forn > 1 let (DY) be a collection of n-dimensional disks, with corresponding continuous maps ¢, :
oD" — X"~1. Then
xm=x""ul JD/ ~),

(e

where ~ identifies an x € OD? with its image ¢ (x) for every .

A subset U C X is open if and only if U N X™ is open for every n € N.

Remark 1.2.6.



For n > 1, as sets one can write
xm=x""1ul Jep
«
where e} is homeomorphic to an open n-dimensional disk. The el are referred to as the n-cells of X.

Each cell €} has a characteristic map ®, given by the composition

D2 < X" Lu| D2 £ X" o X.

This map is continuous as in addition to ¢, being continuous, the first inclusion map is continuous and
the second is also continuous by the fact that X =, .y X"

If X = X™ for some m € N, then X is finite-dimensional, with the minimum such m being referred to
as the dimension of X.

In the finite-dimensional case statement 3 of Definition [I.2.5 is not necessary as the quotient already
constructs the topology on X. When X is infinite-dimensional then statement 3 is necessary to construct
the topology of X.

Lemma 1.2.7. Let X be a CW complex. Then U C X is open if and only if ®_1(U) is open for each
characteristic map @, .

Proof. (=). If U is open then U N X™ is open for every n € N. Therefore, @1 (U N X") = oL ({U)Nd L (X™)
is open. Therefore, as ®_ ! (X™) is open it must be the case that ®_1(U) is open.
(«). Since ®_1(U) is open in D for all «, it follows that U N X™ is open with X™ in the quotient topology.

Hence, as
U=Unx=Un|Jx"=JUnX",
neN neN
we have that U is open in X. O
Example 1.2.8.
1. The topological spaces I, R and S* are CW complexes. Refer to Figure Figure|1.2.3b, and Figure

respectively.

The topological space S™ is a CW complex with a 0-cell and an n-cell. More specifically, the n-cell is
attached through the constant map S"~! — € and can be identified with D™ /0D"™. To gain a geometrical
intuition consider S2, which is the two-dimensional surface of a sphere embedded in three-dimensional
space. In this case, D™ is a two-dimensional disk and OD" is its perimeter. Thus S™~! — €° connects
the open boundary of the disc to a point to form the surface of a sphere.

The cell structure of a topological space need not be unique. The space S™ can also be constructed from
the space S™=1. For instance, S? can be constructed using a 0-cell, one 1-cell and two 2-cells. Here the
0-cell and the 1-cell are used to construct S', and then the two 2-cells form hemispheres that join to form
s2.

The torus can be constructed as a 0-cell, two 1-cells and a 2-cell.
The Mébius strip can be constructed as two 0-cells, three 1-cells and one 2-cell.
The Klein bottle can be constructed as one 0-cell, two 1-cells and one 2-cell.

RP" js the space of lines through the origin in R"*1. A non-zero vector determines a line up to scalar
multiplication. RP™ is topologized as the quotient space R™"*1\ {0} under the equivalence relation that



identifies vectors with their non-zero multiples. If we restrict ourselves to vectors of unit norm, then we
can equivalently state that RP"™ js the quotient space S™ /(v ~ —v). Which is equivalent to the quotient
of the hemisphere D™ with the antipodal points of OD™ identified, which is just RP"~! with an n-cell
attached along the quotient map S"~! — RP"~!. By induction we conclude that RP™ has the CW
structure

fuelU.--Uer,

where €' is an i-cell.

< ¥
o

X' ={o,\

AR
x°= 1o}

(a) CW complex structure of I.

s - ap— - T,
— — S
——— (- F X =R

(b) CW complex structure of R.

VB D
| t_/‘v o - —~> °
| e X VS O

(c) CW complex structure of S*.

Figure 1.2.3: CW complex structures of topological spaces.

RS 5

Figure 1.2.4: The different cell structures for S2. The top illustration corresponds to statement 1 of Example
[1.2.8] and the bottom illustration corresponds to statement 2 of Example

Exercise 1.2.9. Construct a CW complex structure on S? with the north and south poles identified.

I Proposition 1.2.10. A compact subspace of a CW complex is contained in a finite subcomplex.

Proof. Let X be a CW complex and consider a compact set C' C X. Suppose for contradiction that C intersects
with infinitely many cells of X. Then there exists a sequence S := (x;);en € C where each z; lies in a distinct
cell. Suppose that SN X" ! is closed for some n. Then, for each cell e” of X, the set ¢_'(S) is closed in HD7,



and ®.1(S) consists of at most one more point in D? which implies that ®_*(S) is closed in D?. Consequently,
SN X™is closed in X™. Therefore, by induction, it follows that S N X™ is closed for every n € N, which means
that S is closed in X. A similar argument shows that any subset of S is closed in X, and thus S has the discrete
topology. Therefore, as S is a closed subset of a compact set C' it must be finite, which is a contradiction.
Thus, we have that C' is contained in a finite union of cells. Observe that for a single cell €]l the image of the
corresponding attracting map ¢, is compact. Through induction on the dimension of the image, it follows that
the image of ¢,, lies in a finite subcomplex A C X"~ Hence, the cell e? is contained in the finite subcomplex
AUel. As the finite union of subcomplexes is a finite subcomplex it follows that a finite union of cells is contained
in a finite subcomplex. Therefore, C' is contained in a finite subcomplex. O

Let X be a CW complex and A C X. Let ¢ = (e,), where ¢, > 0. Then we can inductively construct an open
neighbourhood of A, which we denote N.(A). More specifically, suppose that N’*(A) is an already constructed
open neighbourhood of AN X", starting with N2(A) := AN X°. Then let ' (N1(A)) be the union of an
€a-neighbourhood of ®1(A4)\ 9D+ C D1\ 9D, and (1 — €,] x @1 (N7*(A)) in the spherical coordinates
of D"*1. Using these construction let N.(A) := [J,, o N (A).

I Proposition 1.2.11. A CW complex X is Hausdorff.

Proof. A point in X is pulled back to a point in X™ under an injective map, then for all o the pullback of this
point is a closed set as ¢, is continuous, and then this closed set is pulled backed to a closed set D under
an injective map. Therefore, the pullback of a point in X under ®] for any « is a closed set. Thus, using
Lemma it follows that points in a CW complex are closed. Let A and B be disjoint closed sets in X. As
A and B are disjoint, the sets N2(A) = AN X° and N?(B) = BN X° are disjoint. Assume that N*(A) and
NI(B) are disjoint. Consider the sets ® ' (N"(A)) and ®;1(B) in D"*1. These pre-images are disjoint by
the inductive assumption but suppose for contradiction that they have zero distance between them. Then by
the compactness of D" there exists a sequence in ®_!(B) that converges to a point in ®,1(B) in D!
that is distance zero from ®_ 1 (N(A)). However, ®_1 (N"(B)) is an open-neighbourhood of ®_!(B)NoD" 1
disjoint from ®_1 (N"*(A)). Therefore, ®_! (N"(A)) and ®_1(B) are at a positive distance apart. Similarly, the
sets &1 (N"(B)) and ®_'(A) are a positive distance apart. Consequently, ®,1(A) and ®_,1(B) are a positive
distance apart, and so there exists a sufficiently small €, that will ensure that @' (NT1(A)) is disjoint from
@1 (N2TH(B)) in D™F1. Hence, through induction, we conclude that there exist disjoint open neighbourhoods
N(A) and N(B) for disjoint closed subsets A, B C X. In other words, the CW complex X is Hausdorff. O

I Corollary 1.2.12. The topological space X = {0, 1} with the trivial topology is not a CW complex.

Proof. The topological space X is not Hausdorff and so cannot be a CW by Proposition [1.2.11 O

Definition 1.2.13. For a CW complex X with finitely many cells, its Euler Characteristic is

X(X) := |{Even Cells}| — |{Odd Cells}|.
Remark 1.2.14. The Euler characteristic of a CW complex is independent of the cell structure.
Example 1.2.15. Using the CW complex structure of S™ given in statement 2 of Example[I.2.8, it follows that

. 0 n odd
X (S") = {2
n even.



1.3

Solution to Exercises

Exercise [[.1.3]

Solution.

For f : X — Y a continuous map let F; : X — Y be given by x — f(x) for every t € I. Then,
Fy(z) = f(z) and Fi(z) = f(x) for every x € X. We note that F} : X — Y is continuous for every t € T
as f is continuous, therefore, we conclude that f ~ f which means that ~ is reflexive.

Suppose f,g : X — Y are continuous maps such that f ~ g. Then there exists a continuous map
F:XxI— Y suchthat Fyp = fand F} =g. Let G: X x I — Y be given by G = F o ¢ where
¢: X xI— X x1Iisgiven by (z,t) — (z,1—1t). As F and ¢ are continuous, G is continuous. Moreover,
Gy =F) =g and G; = Fy = f. Therefore, g >~ f meaning ~ is symmetric.

Suppose f,g,h : X — Y are continuous maps with f ~gand g~ h. Let F': X x I — Y be a continuous
map such that Fy = f and F} = g. Let G : X x I — Y be a continuous map such that Gy = ¢ and
Gi=nh. Let H: X x I — Y be given by

- th(ﬁ) te [
Ht(ﬂ?) - {Gztl(x) te [

(=)
—_ N

]
].

Clearly, H is continuous and such that Hy = Fy = f and H; = Gy = h. Therefore, f ~ h meaning ~ is
transitive.

)

N|—=

O

Exercise I.1.11]

Solution. As fg:Y — Y is a homotopy equivalence there exists a ¢; : Y — Y such that ¢1 fg ~ fgq1 ~ idy.
Similarly, there exists a ¢3 : X — X such that gohf >~ hfqo ~idx. Let § := goh : Y — X. We note that

g = q2h
= (q2h)idy
~ (g2h)(f9q1)
= (g2hf)(9q1)
~idxgq
= 941-
Thus,
f9=~ fgq ~idy
and
9f = @:hf ~idx.
Therefore, f is a homotopy equivalence. O
Exercise [1.2.3]

Solution. The Mébius strip is given by M = ([0,1] x [0,1]) / ~ where (0,y) ~ (1,1 —y). Note that S! is
homeomorphic to A := ([0,1] x {3})/ ~. Let F': I x M — M be given by

Flle.) = (5.5 + 0= o).

10



Note that

- 1,;+(1—t)(1—y)>

= F((1,1-y)),
and F, is well-defined. Moreover, it is continuous with Fy((z,y)) = idy and so Fi((z,y)) = (z,3) = ida.
Hence, S! is a deformation retract of the Mébius strip. O
Exercise

Solution. Start with a O-cell € and attach a 1-cell e!. Then attach a 2-cell €2 to e! by mapping the first half of
its boundary to e! and the second half of its boundary to —e'. O

11



2 The Fundamental Group

2.1 Intuition for the Fundamental Group

Consider two loops A and B which can be linked in different ways. To distinguish between linking mechanisms,
suppose A has a front and back. Some examples of ways that A and B could interact include the following.

1. Loops and A and B could be separated.

2. Loop B could pass through A once. Either through the front or through the back of A.
3. Loop B could pass through the front of A twice.

4. Loop B could pass through the front of A and then through the back of A.

Note how in example 4 the loops cancel each other out, meaning A and B remain separated. We observe that
there is an additive structure to linking mechanisms. Furthermore, it is clear that for any one of these examples,
we can continuously deform the loops whilst maintaining the linking structure. Henceforth, let B,, denote a loop
that has n-forward links with A, and let B_,, denote a loop with n-backward links with A, with B, denoting the
loop that is separated from A. Intuitively it makes sense to define the addition of loops B,, and B,, as

B + By, = Binin.

With extra work one can see that what we have here is a relationship between the additive group structure of the
integers and loops in a topological space. Using this we can give an informal definition of the fundamental group.

Definition 2.1.1 (Informal). The fundamental group of a space X has elements which are classes of equivalent

loops in X that start and end at a fixed base point xq € X. Loops are equivalent if one loop can be continuously
deformed into the other.

2.2 Constructions

2.2.1 Path Homotopy

Definition 2.2.1. Let X be a topological space. Then a path is a continuous map ~y : I — X, where I = [0, 1].

Remark 2.2.2. A loop refers to a path vy : I — X where v(0) = (1) = z, with x being the base point of the
loop.

g

o

Figure 2.2.1: A loop with base point z.
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Definition 2.2.3. Paths ~yy and 71, with the same endpoints, are homotopic if there exists a homotopy between
them that preserves their endpoints. That is, there exists a continuous map F' : I x I — X such that the
following statements hold.

1. F(0) = 70(0) and F(1) =1 (1) fort € I.
2. Fo(s) = o(s) and Fi(s) = vi(s) fors € I.

Figure 2.2.2: Homotopy between paths with the same endpoints.

I Lemma 2.2.4. On the set of paths with certain fixed endpoints, homotopy is an equivalence relation.
Proof. Let vg,71,72 : I — X be paths on a topological space X with the same endpoints.
» Clearly, 79 = o through the homotopy F; : I — X given by Fi(s) = vo(s).
» If 49 = 7 through F} : I — X, then 1 ~ 7 through G : I — X given by Gi(s) = F1_+(s).
= Suppose Y9 =~ 71 and 71 ~ 5 through F; : I — X and Gy : [ — X respectively. Let H; : [ — X be given
by
F. telo,1
Hy(s) = () - [1’ 2}
sz,_l(S) te [570} .

Then H : I x I — X is continuous as its restriction to the closed subsets I x [0,%] and I x [3,1] is
continuous. Moreover, Hy = 79 and H; = 75 so that vy ~ 5.

Thus, we conclude that ~ is reflexive, symmetric and transitive on the set of paths with certain fixed endpoints
and thus defines an equivalence relation. O

Remark 2.2.5. For a path v : I — X with certain endpoints, we denote the set of homotopic paths with the
same endpoints [7].

Definition 2.2.6. Let~g,v1 : I — X be paths such that vo(1) = ~v1(0). Then the product pathyp-vy1 : I — X

IS
wm)(s){”“(%) e

7 (25— 1) 86[ , ]

=

(SIS

Remark 2.2.7.

1. The product path transverses the path ~y and then traverses the path v,. However, it does so twice as
fast, such that it conforms to Definition [2.2.1}

13



2. Ify0,71 : I — X are paths such that vy(1) = v1(0) we will say that v, extends 7.

Proposition 2.2.8. Let 9,71, 00,01 : I — X be paths such that §y extends g, d1 extends 1, 70(0) = ~v1(0),
Y0(1) =v1(1) and §p(1) = 61(1). If o =~ 1 and 69 ~ 01, then vy - §p = y1 - O1.

Proof. Suppose g =~ dg through F} : I — X and ~; ~ §; through G; : I — X. Let H; : I — X be given by
Ht(S) = (Ft . Gt)<8)

Then H : I x I — X is a homotopy between 7y - 1 and &g - 67. O

W

~——_0i — lisd| g,

Figure 2.2.3: An intuition of why the homotopy in the proof of Proposition m

A continuous function ¢ : I — I with ¢(0) = 0 and ¢(1) = 1 can re-parameterise a path v : I — X into a
¢ := 9. In particular, v ~ 74 through the homotopy

H(s,t) :=v((1 — t)o(s) + ts).

Definition 2.2.9.
1. Forxz € X let ¢, : I — X be the constant path t — .

2. Forapathy:I— X let v~ : 1 — X be the path given by t — ~(1 — t).

Lemma 2.2.10. Let vy,7v1,72 : I — X be paths. Then the following statements hold.
I (0-m) 72 = (71-72)-
2. 90 " Cyy(1) = Yo and cy,(0) * Y0 = Yo-

3. Y '70_1 =~ Cyy(0) and 70_1 "0 2 Cyg(1)-

Proof.
1. Let ¢ : I — I be given by
5 s € [0, 3]
o(s)=qs—1 s€lii]
2s—1 se[3,1].

Then (70 -71) - 72)¢ =0 - (71 -72), and so (Y0 -71) - Y2 =~ Y0 - (71 - 72)-
2. Let ¢ : I — I be given by

14



Then (70 - €yo(1))® = Y0, and 50 7o - ¢y (1) = Yo. Similarly, using ¢ : I — I given by
0 sefo,i
U(s) = [1 2}
2s—1 se[3,1]
it follows that ¢, 0y - Y0 = Y0-

3. Let Hy : I x I be given by

_ 0 (max(1 - 2s,1)) s € [0, 5]
H(s,1) = {’YO (max(2s —1,t)) s € [5,1].

Then H is continuous with H(s,0) = v5 ' - o and H(s,1) = Cyo(1)- Thus, Yol Cyo(1y- Similarly,

one deduces that 7 - 'yo_l = Cyy(0)-
O

(a) An illustration accompanying the proof of statement 1 of

Lemma @

/{\ P

X(O) Xw

(b) An illustration accompanying the proof of statement 3 of

Lemma @

Figure 2.2.4

Observe how from Lemma [2:2.10] a group structure on the set of homotopy classes emerges.

Definition 2.2.11. For z € X let m1(X, z) denote the set of homotopy classes [f] of loops f : I — X with
base point x.

Proposition 2.2.12. Forx € X the set m (X, x) with binary operation [f][g] = [f - g] is a group with identity
element [c,].

Proof. By statement 1 of Lemma the binary operation on 71 (X, z) is associative. Using statement 2 of
Lemma [2.2.10] we see the loop ¢, satisfies the conditions to be the identity element with respect to this binary
operation. Moreover using statement 3 of Lemma a loop v € m(X,x) has inverse y~!, as given by
Definition which is also a loop with base point z, that is v~ € 71(X, x). O
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Remark 2.2.13. The group of Proposition[2.2.1 is referred to as the fundamental group of X at x.

The dependence of 71 (X, z) on & € X can be illustrative of the topological properties of X.

Example 2.2.14.

1. Let X CR™ be a convex set. Forx € X let v9,v1 : I — X be loops with base point x. Let F; : I — X
be given by
Fy(s) = (1 = t)y0(s) + t71(s)-

As X is convex, F;(I) C X and so the map is well-defined. Moreover, it is continuous as 7o and 1
are continuous. Furthermore, F;(0) = Fy(1) = = for every t € I. Thus, as Fy = 9 and F; = v we
deduce that vy ~ v1. Therefore, 71(X,x) = {[cs]}, that is the fundamental group of a convex set in R™
is trivial. In particular, the fundamental group of X is independent of the base point.

2. Consider S? and loop y on S2.

(a) If the image of v is not S? then we can choose a point xo € S? \ im(vy) and perform a stereographic
projection from xq to contract -y to a constant loop.

(b) If the image of ~y is S consider an open disk U around a point xq € S%. Since v~1(U) is open in
(0,1) we can write v~ 1(U) = U;er(ai, b;) such that v([a;, b;]) NOU = {v(a;),v(b;)}. We can then
deform 7y|(q, v,] such that its image lies on OU. The curve vy is homotopic to the deformed loop 7,
which is such that xo € S?\ im (7). Therefore, using statement (a) we deduce that ~y is homotopic
to the constant map.

Therefore, m, (Sz) is trivial.

.

| N S {
\

|

Figure 2.2.5: An example of why the convexity assumption of statement 1 of Example [2.2.14] is required.

Exercise 2.2.15. Let X be a topological space. Suppose xq,x1 € X are in the same path-connected component
of X. That is, there is a path by h : I — X with h(0) = z¢ and h(1) = x;. Show that the map
Br :m (X, 21) = m1 (X, zo) given by

Bu((]) = [h-v-h71]

is well-defined.

Remark 2.2.16.
1. The map B, of Exercise[2.2.15 is referred to as the change-of-base point map.

2. Note how h - f - h=! is read from the left, unlike function composition which is read from the right.
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Proposition 2.2.17. In the context of Exercise the map By : m(X,x1) — 7 (X, x0) is a group
isomorphism.

Proof. Note that
ﬁh ([Cwlb = [h “Cgy h_l} = [h : h_l] = [CIO] .
Moreover, for 7o, v1 € m1 (X, z1) we have
Br([o-ml)=[h-y0-7 h""]
— [h.,yo.hfl.h.%.hfl]
= [h-yo-h_l] . [h-yo-h_l]
= Bn([v0]) - Bu([m])-

Thus, B is a group homomorphism. As
Bu-1 (B (W) = B ([ - h7])
= [h_l-h-7~h_1-h]
=[]

it follows that §; has inverse [3;,-1. Therefore, (3}, is bijective and hence an isomorphism. O

Remark 2.2.18. In light of Proposition if X is path-connected then we write 1 (X, x) = 71 (X) for all
zecX.

Definition 2.2.19. A space X is simply connected if it is path-connected and 71 (X) is trivial.

Proposition 2.2.20. A space X is simply connected if and only if there exists a unique homotopy class of
paths between any points of X.

Proof. (=). Let 49,71 : I — X be paths from a point zp € X to z; € X. Note that o - 7{1 and v, -nyl are
loops with base point xg. Therefore, as m1(X) is trivial it follows that ~ - fyl’l ~ v -7{1. Therefore,

YoY% =y .

(«). Clearly, X is path-connected. Moreover, for any xy € X, paths from xg to xg are loops in X. Thus, loops
at xo are homotopic to the constant loop and so 71(X) is trivial. O

Remark 2.2.21. The fundamental group is not necessarily abelian.

2.2.2 The Fundamental Group of a Circle

Intuitively, the fundamental group of S' should be Z. Consider a non-trivial loop in S'. Then there is no clear
homotopy to point. Moreover, there is no clear homotopy to another loop that wraps around S' a different
number of times. Likewise, there is no clear homotopy between loops that traverse S' in different directions.
Therefore, one can imagine identifying loops by how many times they traverse S!, and in what direction those
traversals are made. On the other hand, one expects to be able to continuously deform a non-trivial loop in S2
to a point. Therefore, one would expect the fundamental group of S? to be trivial.

Definition 2.2.22. For a space X, a covering space is a set X with a continuous map p : X — X such that
for any x € X there is an open neighbourhood U C X of x such that the following hold.

= p ' (U) =Ujes U; where U; C X is open.
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= U;NU; =0 fori#j.
] p|5_ : (7]‘ — U is a homeomorphism for all j € J.
In such a case U is said to be evenly covered with the sheets ﬁj.

The set X can be thought of as an embedding of the topological space X. The conditions of Definition [2.2.22
ensure that necessary topological properties are maintained in this embedding.

Proposition 2.2.23. Let p: X — X be a covering space. Let A C X be a subspace. Then p : p1(A) = A
is a covering space.

Proof. For x € X there exists an open set U C X such that p~1(U) =U; U, for U; disjoint open sets and p|U
a homeomorphism. Let V := U N A so that V C A is open. Let V; := U p~1(A) so that V; C p~'(A) is
open. Then,

p (V) =p H(UNA)

U) ﬂp_l(A)

<z

i
UIJ’
e

Note that each VJ is disjoint as the U'j are disjoint. Moreover, p|‘7j : VJ — V is a homeomorphism and so V' is
evenly covered by the sheets ‘7j In particular, this means that p|p_1(A) :p~1(A) — Ais a covering space. O

Proposition 2.2.24. Let p: X — X be a covering space. Then the following statements hold.
1. p is an open map.
2. X is Hausdorff if X is Hausdorff.

3. If p~Y(x) is finite for all z € X, then X is compact if and only if X is compact.

Proof.

1. Let U C X be open and consider z € p(f]) C X. Then there exists an open neighbourhood U C X of
x that is evenly covered, p~!(U) = U; U;. Now since z € p (U) NU it follows for # € U with p (&) = =

that # € U Np~'(U). In particular, there exists a U; such that & € U;. Let V := U N Uj, which we note
is open. Then as p‘Uj is a homeomorphism, we have that

Vi=plg, (V) Cp(U)NU
is open. In particular, z € V and V Cp (U) which implies that p (U) is open. Thus, p is an open map.

2. Let 71,72 € X be distinct. Consider 1 := p(Z1) € X and 25 :=p(Z2) € X.

= If 21 # @2, then there exists disjoint open neighbourhoods Uy, Uz C X of z1 and x respectively. Then
as p is continuous Vi :=p~ 1 (U;) € X and V5 := p~! (U) C X are disjoint open neighbourhood of
Z1 and T, respectively.

» If 1 = x2 =: x then there exists an open neighbourhood U C X of x that it is evenly covered,
pl = UJEJU As p|U is injective, it must be the case that Z; € UJ1 and 75 € Uj2 for j1 # Jo.

The sets Uj1 and Uj2 are open and disjoint by construction, and thus separate Z; and Z5.
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Therefore, X is Hausdorff.

3. (=). Let (U,) be an open cover for X. Then as p is surjective, the collection of open sets (V,,), where
Vi = p~1(U,) is an open cover for X. Hence, there exists a finite subcover, say (V;)7_,. It follows that
(Ui);—, is a finite subcover for X, meaning X is compact.

(«). Let (Us,) be an open cover of X. Then for each € X, as p~!(x) is finite it can be covered by

finitely many U,. Let (Um):'; C (Ua) cover p~Y(z). Let V, := |J;*, U, and consider U, C X an
evenly covered neighbourhood of . Note the covering of U, is finite as p~!(z) is finite, so we can write
p~ ' (U.) = UjL, W, . Let W, := Ny p (Ve N W,;) € X, which is open as p is an open map. Doing
this for every x € X yields an open cover (W,), .y of X. Therefore, as X is compact there exists a finite

subcover (W, )p_, of X. As pis surjective (p~(Wy,)) "

w1 is an open cover of X. As

n

8

k
p_l (W:I?k) C Vwk = UIR-,J?
1

%

n

"7k s an open cover for X. Which is a finite subcover of (Ua) Therefore, X is

it follows that (~Ik7i)k’:11i:1

compact.
O

Definition 2.2.25. forp: f{—) X a covering space, the lift of a continuous map f : Y — X is a continuous
map f:Y — X such that pf = f.

Example 2.2.26. Let p: R — S' C R? be given by
s+ (cos(2ms), sin(27s)).
Then p is a covering space of S* on R. Let w : I — S! be the loop with base point (1,0) given by
s — (cos(2ms), sin(2ms))
and let w,, : I — S' be another loop with base point (1,0) given by
s+ (cos(2mns), sin(27ns)).
Observe the following.
L [wp]=[w]" =w] ... [w]
2. The path wy, : I — R given by s — ns is a lift for w, with w,(0) =0 and w,(1) = n. Indeed,

pwn(8) = p(ns) = (cos(2mns), sin(2wns)) = wy(8).
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Figure 2.2.6: The covering space R of S! as detailed in Example [2.2.26)

Proposition 2.2.27. Let p : Xl% X be a covering space and f : Y — X a continuous map. Let A,
Y — X be lifts of f such that f1(y) = fa(y) for somey € Y. Then f1 = fo if Y is connected.

Proof. Let y € Y and let U C X be an evenly covered neighbourhood of f(y). Then
-1 U) _ U ﬁ]7
J

and suppose that U; is the sheet such that fl( ) € U, and Us is the sheet such that fz( ) € U2 As f1 and fg
are continuous there exists N C Y an open neighbourhood of y such that fi(N) € Uy and fo(N ) € Us. As
pfi = pfa it follows that fi(y) = fao(y) if and only if U; = Uy which happens if and only if fi|y = fo|x as p|U
is a homeomorphism. Consider

A::{yEY:f1( ):fz( )}

By the above arguments we have that A is open. By similar arguments, we deduce that Y \ A is also open.
Therefore, as A # () by assumption it follows that A =Y which implies that f; = fs. O

Proposition 2.2.28. Let p : X — X be a covering space and F :' Y x I — X a continuous map with
fo Y x {0} — X a lift of Fy. Then there exists a unique lift F : Y x I — X of F such that Fy = fo

Proof. For any y € Y and t € I, there are open neighbourhoods Ny CY of y and (a¢,b:) C I of ¢ such that
F (N¢ x (ag, b)) C U,

for U C X open and evenly covered. For fixed y € Y, as [ is compact, there exists a finite partition
O<toy< - <tpym=1

of I, such that for an open neighbourhood N = ("_  N;, C Y of yo we have F(N x [t;,t;11]) C U; where
U; C X is open and evenly covered. Consequently, we can inductively construct a lift F|nxr of F|nxr-

= Let F|Nx[o,0] = f0|Nx[o,o]-

= Assume F|N><[Ot] has been constructed. Let U; C X be such that p|U U; — U, is a homeomorphism
and F(yo,t;) € U;. One can assume that F(N x {t;}) C U; by shrinking N if necessary. Then let
F|N><[t,,t1,+1] =plo FNxititis]-
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After finitely many steps, for y € Y, we have F : N x I — X such that where N C Y is an open neighbourhood
y So for each y € Y there exists a neighbourhood N, C Y for which a lift F\N <1 N. x I — X of

F:|n,x1: Ny x T — X exists. In particular, as {y} x I is connected, it follows by Proposntlon [2.2.27] that this
lift is unique. Therefore, for F/: Y x I — X there exists a unique lift F: Y x [ — X. O

o

\,ﬂ
X e—X

g
i

H

v

$ o

k4

(a) Proposition [2.2.28 says that the lift of a strand of a ho-
motopy can be extended to construct a lift of the homotopy.

_fve s N R sty
’ fo At 0: > 0;
S %
e
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' Haough £ 10 U &
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(b) A visual argument for the proof of Proposition [2.2.28

Figure 2.2.7
Corollary 2.2.29. Let f : I — X be a path with f(0) = zo and suppose p : X — X is a covering space
Then for each 7o € p~Y(x¢) there is a unique lift f : I — X such that f(0) = .

Proof. Note that f can be viewed as a homotopy f : Y x I — X where Y consists of a single point. Thus, as
Y is connected, by Proposition 8| there exists a unique lift f: Y x I — X. In particular, f : I — X is just
a path with pf = f so that f(0 )— _1(f(0))€p L(xo). O

Exercise 2.2.30. Let f: I — X be a constant path. Show that a lift f : I — X is a constant path

Example 2.2.31. Let X be a topological space and let A be a discrete set. The mapp: X x A — X given
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by p(x,a) = = is continuous. Moreover, for U C X an open set let U; := U x {a;} for j € N. Note that
U; C X isopen, U;NU; =0 fori # j and

—1(U):U><A:UU><{%‘}:Uﬁj'

jEN jEN

Moreover, p|[77, Uj — U is the map (x,a;) — x, for fixed aj, and thus is a homeomorphism. Therefore,

p: X x A— X is a covering map with X := X x A a covering space of X. This covering space is referred to
as a trivial covering space of X.

Theorem 2.2.32. Let zp = (1,0) € S*. Then m (Sl,xo) is the infinite cycle group generated by the
homotopy class of the loop w : I — S' where

w(s) = (cos(27s), sin(27s)).

Proof. Let f : I — S! be a loop at xy. Then Proposition implies that there exists a lift f : I — R such
that f(0) = 0. By construction of the lift pf(1) = f(1) = z0, where p is as given by Example Thus
it follows that f(1) = p~'(z¢) = n, for some n € Z. Observe that &, : I — R, as given in Example is
another path such that &, (0) = 0 and &, (1) = n, thus f ~ @, In particular, let f ~ @, through F : I x I — R,
then pF : I x I — S'is a homotopy between pf = f and pw, = w,, thus f =~ w,. Now let m,n € Z and
suppose Wi, ~ w, through F : I x I — S'. By Proposition We know that wy,, Wy, : I — R are the unique
lifts of w,, and wy, respectively such that &, (0) = w,,(0) = 0. Recall, from Example 2.2.26] that &,,(1) = n and
@(1) = m. Moreover, by Proposition we know F" lifts uniquely to a homotopy F I x I — R between
@, and wy,. As F(0,1) = n € Z and F is continuous it follows that F'(s,1) is a constant function. Therefore,

n=wny(l)=F(0,1) = F(1,1) = o,,(1) = m.

Thus, f ~ w, for a unique n € Z. In particular, [f] = [w,] = [w]™ by observation 1 of Example [2.2.26] and so

we conclude that w generates m; (Slmo). O
“3a &5
© o——
'lc‘ IF - 0,
"WJ — o=

L (a2
(225 R

22 —
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Figure 2.2.8: An illustration of how w,, ~ w,, implies that m = n. Where (1) is an application of Proposition

2.2.27} (2) is using Example [2.2.26] and (3) is an application of Proposition [2.2.28

I Corollary 2.2.33. The fundamental group 71 (Sl) is isomorphic to (Z,+).

Proof. As S is path connected we let 71 (S') = m1 (S*,z¢) for 2o = (1,0) without any loss of generality. For any
[v] € m1 (S'), by Theorem [2.2.32 one can write [7] = [w]™ uniquely. Meaning ® : m; (S') — Z given by [y] — n
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where n is such that [y] = [w]™ is well-defined. Moreover, it is surjective and injective as if ®([y]) = ®([¢]) then
[v] = [w]™ = [¢]. Furthermore, it is a group homomorphism as

e([y)¢]) = @ ([w]"[w]™) = @ ([w]"™™) = n +m = &([7]) + S([¢])-

Therefore, ® is a group isomorphism which implies that m; (Sl) = 7. O

I Theorem 2.2.34. Every non-constant polynomial p € C|z] has a root in C.

Proof. Without loss of generality suppose that p(z) = 2™ +a;2" "' +---+a,. Assume p has no roots in C, then
for > 0 we obtain a loop f, : I — C given by
p(Te2rr1',s)
p(r)

such that |f.(s)| = 1 for every s € I. In particular, f, is a loop with base point f,.(0) = f.(1) = 1. Moreover, f.
depends continuously on 7 and thus f, ~ f, for every r > 0 where fj is just the constant loop at one. Therefore,
[fr] = [fo] =0 € m (S"). Now fix 7 > 0 such that

S —

r>min (1, |ai| 4+ - + |an]) .
Observe that for |z| = r we have
2" > (laa] + - + |an]) |27
> |arz" 7+ + |an]
> ’alz"_l 4+ 4 an| .
Hence, for 0 <t < 1, the polynomial

pt(z) =2z" +1 (alznil +-+ an)

P (,r821ris)
pe(r)
Fot,s)=~——» 1

pt(reZﬂ'is)
pe(T)

such that F}.(0, s) = wy(s) and F.(1,s) = f.(s). Therefore, [w,] = [f], however, [f.] = 0. Thus, as [w,] = [w]™

it follows from Corollary [2.2.33| that n = 0 which means that p is constant. O

has no root z with |z| = r. Let

Lemma 2.2.35. Let X and Y be path-connected topological spaces. Fori = 1,2, let~y; : I — X XY be a
loop with base point (x,y) € X XY given by

7i(s) = (6i(s),mi(s))

where §; : I — X is a loop with base point x and n; : I — Y is a loop with base point y. Then v ~ 7o if
and only if §1 =~ 63 and n1 ~ 5.

Proof. (=). Let F; : I — X xY be a homotopy between 1 and vo. Let mx : X XY — X be the projection map
wx(x,y) = x. Then wx is continuous so that G := wx F; : I — X is continuous. In particular, Gy = nx Fy = 01
and G; = nx Fy; = §;. Moreover, G;(0) = nx F;(0) = mx(z,y) = x and G¢(1) = = so that §; ~ d5. Similarly,
we get that 77 ~ 5.

(«). Let GY : I — X be a homotopy between &; and &z, and let G} : I — X be a homotopy between 7; and
n2. Then F, := (G?,GY) is continuous. In particular, Fy = (61,m1) = 71 and Fy = (82,7m2) = 72. Moreover,
F,(0) = (G°(0),G"(0)) = (z,y) and F;(1) = (G°(1),G"(1)) = (z,y), so that 71 ~ 7. O
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Proposition 2.2.36. Let X and Y be path-connected topological spaces. For x € X andy € Y we have
7‘[‘1(X X Ya (l‘7y)) = 7T1(X,$) X 7T-1(1/’ y)

Proof. Observe that v : I — X x Y given by s — (d(s),7n(s)) is continuous if and only if 6 : I — X and
n: I — Y are continuous. Therefore, for a path vy : I — X XY with base point (z,y) we obtain paths 6 : I — X
and 7 : I — Y with base points = and y respectively. Conversely, for paths § : I — X and n: I — Y with base
points = and y respectively, we obtain a path v : I — X x Y, given by s — (§(s),n(s)), with base point (z,y).
From Lemma O (X xY,(z,y) = m(X,z) x m2(Y,y) given by [y] — ([d],[n]) is well-defined and
bijective. Moreover,

([01 - b2], [m - ma])
([011[02], Im][m=])
([01], [m])([62], [m2])

= ®([1])2([72])
with @([c(z)]) = ([cz], [¢y]), and so @ is a group isomorphism. It follows that

(X XY, (2,y)) =2 m(X,z) x T (Y, y).

([y1-72]) =

Example 2.2.37. Using Proposition it follows that the torus X = S' x S has fundamental group

T (X) =T (Sl) X 1 (Sl) =7 X 7.

2.2.3 Induced Homomorphisms

Throughout, maps will be continuous unless stated otherwise. Let ¢ : (X, z0) — (Y,yo) denote a continuous
map with the property that ¢(xg) = yo. Such a map induces a map ¢, : m (X, zo) = 71 (Y, yo) where

o« ([7]) = (9]

Exercise 2.2.38. For a continuous map ¢ : X — Y show that ¢, : m1 (X, x0) = m1 (Y, ¢(x0)) is well-defined
and a homomorphism.

Example 2.2.39.

1. Llet X = S' C R?2 and Y = D? C R?, where D? denotes the two-dimensional closed unit disc. Let
[ (X,(1,0)) — (Y,(1,0)) be the inclusion map. Then f is injective but not surjective. We know
m1(X,(1,0)) = Z and m(Y,(1,0)) = {[ca,0)]} as Y is convex. Therefore, f. : m(X,(1,0)) —
m1(Y, (1,0)) is given by f. = [cq,0)] which is surjective, but it is not injective. Indeed, for n # m we
have

fe ([wn]) = [0(1,0)] = fi (lwm]),
but [wy] # [wm]-

2 Llet X =[0,2r] CR andY = S* C C. Then f : (X,0) — (Y,1) given by f(z) = €'* is surjective
but it not injective as f(0) = f(2m). As X is convex we have 71(X,0) = {[co]} and we know that
m1(Y,1) = Z. In particular, f. : 7 (X,0) — m1(Y,1) is given by f. ([co]) = 0, which is injective but not
surjective.

From statements 1 and 2 we see that injectivity and surjectivity need not be carried over to the corresponding
induced homomorphism. We can also work backwards from a homomorphism, and determine a corresponding
function that induces the homomorphism.
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3. Suppose o : w1 (T, x¢) — 71 (T, o) is a homomorphism. Then as (T, xo) = Z?, we have that « is a

linear map on Z?, thus
a b T
O‘(x»y) = ® al y y

for a,b,c,d € Z. Recall that T is R? quotient Z2. Let ¢ : R? — R? be given by
o(z,y) = (ax + by, cx + dy).
Note that for ny,ne € Z we have
oz +n1,y+n2) = (ax + by, cx + dy) + (any + bng, cny + dns),

so that ¢ is constant on the equivalence classes of R? / 72, therefore, ¢ : T — T is well-defined. We note
that {[(1,0)],[(0,1)]} generate w1 (T, zo). Hence, as

@« ([(1,0)]) = [¢(1,0)] = [(a, )] = ([(1, 0)])

and
@+([(0,1)]) = [¢(0, 1)] = [(b,d)] = a([(0, 1)]),

we deduce that ¢, = «.

Proposition 2.2.40.
1. For topological spaces X,Y and Z let ) : X —Y and ¢ : Y — Z. Then (¢p)). = ¢,

2. Let X be a topological space, then idx : X — X induces the identity map on the fundamental group
m (X, ).

Proof.

1. Let f: I — X be aloop with base point z € X, then

(@9)-(]) =

2. Let f: I — X be a loop with base point x € X, then

(idx), () = [idx~] = [,
thus, (idx), = idm(X’w).
O
| Corollary 2.2.41. Let ¢ : X — Y be a homeomorphism. Then ¢, : m (X, z) — m (Y, ¢(x)) is an isomor-
phism.

Proof. Let ¢ : Y — X be the inverse of ¢. Then ¢y = idx, and so using statement 2 of Proposition [2.2.40] it

follows that (¢v)). = id,, (x,4). Using statement 1 of Proposition [2.2.40| we know that (¢t)). = ¢.1b«. Thus, ¥,
is a group homomorphism that is inverse to ¢,, which means that ¢, and 1., is an isomorphism. O

I Lemma 2.2.42. Let F; : X — Y be a homotopy and consider x € X. Let h: I — Y be the path between
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Fy(z) and Fy(z) given by s — Fs(x). Then (Fy), = Bn (F1),, where By, is as given by Exercise

m (Y, Fi(z))
(F1),

m (X, ) Br

w‘*

m1 (Y, Fo(x))

Proof. Fort € I let hy : I — X be the path between Fy(x) and Fi(z) given by s +— h(ts). Then for f: ] — X
a loop with base point z let

Hy = hy - (Fof) - hit
Note that H; is a loop at Fy(x), and continuous in t. Thus H; is a homotopy between
Ho=ho- (Fof) -hy' ~ Fof

and
Hy=hy-(Fif)-hit=h-(FLf)-ht

Therefore,

O

Exercise 2.2.43. Let Y = X in Lemma and suppose that Fy = Fy = idx. Using the conclusions of
Lemma show that for fixed xo € X, the loop Fy(xg) : I — X is in the centre of w1 (X, ).

Corollary 2.2.44. et ¢ : X — Y be a homotopy equivalence. Then ¢, : m(X,z) — m (Y, é(x)) is an
isomorphism for every x € X.

Proof. Let ¢ : X — Y be a homotopy equivalence with ¢ : Y — X such that ¢y ~ idy and ¢ ~ idx.
From Lemma [2.2:42] there exists a path h : I — X between z and (¢¢)(z) such that (¥¢). = By (idx ). = Bn.
Hence, using Proposition and statement 1 of Proposition it follows that (@), = ¥.¢. is a group
isomorphism. In particular, 1. ¢, is bijective so ¢, is injective and 1, is surjective. Similarly, (1)), = ¢« is an
so 9, is injective and ¢, is surjective. Therefore, ¢, is bijective and thus a group isomorphism. O

Remark 2.2.45. Suppose A C X is a deformation retract of X. Then as a deformation retract is a homotopy
equivalence, it follows that m(X) = m(A).

Example 2.2.46. Suppose that r : D> — 0D? = S! is a deformation retraction and let i : S' — D? be the
inclusion map so that ri ~ idg1. Then using Lemma[2.2.42, we have
1 (Sl) L) 1 (DQ) L> T1 (Sl) o

Therefore, as m; (DQ) = 0 by Example it follows that 7.i. (7r1 (Sl)) = 0. However, as ri = idg
it is also the case that r.i. = (ri). = id,, (s1) by statement 2 of Proposition |2.2.40, Which implies that
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ryis (w1 (S')) = Z as m (S') = Z, and thus we arrive at a contradiction. Therefore, D? does not retract onto
St.

Theorem 2.2.47 (Brouwer Fixed Point Theorem). Let h : D — D? be a continuous map. Then there exists
an x € D? such that h(z) = .

Proof. Assume h(x) # z for all z € D2. Let r : D? — S! where r(z) is the intersection between S! and the ray
propagating from h(z) towards z. In particular, let g : D — (D? x D?) \ {(z, ) € D?} be given by

g(x) = (z, f(2)).

Note that g is continuous as f is continuous. For (z,f) = ((21,22), (f1, f2)) € (D? x D?) \ {(z,z) € D?}

consider
()= () e ().

Then observe that h(t)2 + ha(t)2 = 1 can be written as a quadratic in t of the form at? + bt + ¢ = 0. More
specifically,

a= (21— f1)* + (x2 = f2)?

b=2(fi(z1— f1) + fao(z2 — f2))

c=fi+ 15

In particular, note that a # 0 as (21, x2) # (f1, f2). Moreover, one can check that
b? — dac = 4 ((fl(l’z — fo) + falwr = f1))7 + (@1 = f1)? + (22 — f2)2) > 0.

Therefore, hy(t)24ho(t)? = 1 has distinct solutions, say t; > t_. Now consider & : (D? x D?)\{(z,z) € D*} —
0D? given by

(@, ) = (w1, 22), (f1, f2)) = (ha(t4), ha(t4)).
As hq(t4) and ho(ty) are polynomial in z1,x9, f1 and fo it follows that h is continuous. Observe that r(z) =
h(g(z)) and so as h and g are continuous it follows that r is continuous. Furthermore, 7(x) = x if x € S! which
means that 7 is a retraction. This contradicts Example[2.2.46] thus there exists a x € D? such that h(z) = z. O

\ g/

e

Figure 2.2.9: The construction of the retraction r : D? — S! consider in the proof of Theorem [2.2.47|

Lemma 2.2.48. For a topological space X and xg € X assume that

X:UAa

a€cA

such that
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= A, is open and path-connected,
= 19 € A, forall € A, and
= A, N Ag is path-connected for all o, 8 € A.

Then if f is a loop in X at xq it follows that

[f] =[] ... [hm]
where the h; are loops at xy and are contained in a single A, .

Proof. As f is continuous, for all s € I there is an open neighbourhood V; of s such that f(V;) C A, for some
a € A. One can choose V; such that Vi = (as, bs) and f([as, bs]) € A,. Therefore, as I is compact, there exists
a finite partition

O=s5o<---<s,=1

with the property that f([s;_1,5;]) C Aq, for some a; € A. Let f; : I — X be the re-scaled path of f|s, | .,
such that f ~ f1-...- fo,. As Ay, N A,,,, is path-connected, and {zo, f(s;)} € Aq, N Aq,,,, there exists a
path g; from zq to f(s;) in Ay, N Aqa, . With go and g,,, being the constant loops at g let h; := g;—1 - f; -g;l
such that h; is a loop with base point 2 and h;(I) C A,,. It follows that

Fe(go-fi-or") - (Gm1-fon-0m')

which implies that [f] = [h1] ... [hnm].

Figure 2.2.10

O

Remark 2.2.49. Suppose that U;,Us C X are open and path connected such that Uy UUs = X with Uy NUs
path connected. Then for x € Uy N Uy, using Lemma every [f] € m1(X, ) can be written as

[f] = [g1][Pa] - . - [gn][Pn]

where g; is a loop with base point x contained in Uy and h; is a loop with base point x contained in Us.
In particular, with i; : Uy — X and iy : Uy — X the inclusion maps, it follows that (i1), (m1 (U1, x)) U
(i2), (71 (U, x)) generates w1 (X, x).

I Theorem 2.2.50. For n > 2 we have that m (S™) = 0.

Proof. Let
Uy :=S"\{(1,0,...,0)}
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and
Us :=S"\{(-1,0,...,0)}.

Then U; =2 R™ and Uy = R™ through stereographic projections. Moreover, U; U U = S™ and U; N U, is path
connected. Let x € Uy N Uy, then as m1 (U, z) = 71 (Usz, ) = 0, by Example [2.2.14} it follows by Remark [2.2.49
that my (S™,z) = 0 Therefore, as S™ is path-connected we deduce that 71 (S™) = 0. O

Remark 2.2.51. The proof of Theorem does not hold in the case n = 1, as Uy N Uy in this case is not
path-connected.

2.3 Seifert-van Kampen

The Seifert-van Kampen theorem is a way to compute the fundamental groups of spaces that can be decomposed
into simpler spaces.

Example 2.3.1. Consider the space X consisting of circles A and B that intersect at a single point x. We
know that 71 (A) and 71 (B) are isomorphic to Z.

» Let a™ denote n loops of A in one direction.
» Let a™" denote n loops of A in the opposite direction.
» Let a® denote no loops of A.

We adopt a similar notation for loops of B. Consequently, entries of m1(X) are of the form a™b"2a™® say,
which is the loop that traverses A with ny loops, then traverses B with no and then traverses A with ng times.
We refer to such representations as words and, as expected words form a group.

» Words are multiplied by concatenating them and performing any simplifications at the point of joining.
= Inverses are formed by changing the sign of each exponent and reversing the ordering of the symbols.
= The identity is the empty word.

The group of words is written 71 (A) * m(B) = Z x Z and referred to as the free product. The Seifert-van
Kampen theorem will tell us that for a space X its fundamental group is some free product involving the
fundamental groups of the space’s components.

2.3.1 Free Groups and Free Products

Let S be a set of symbols. Let 7! := {s‘l 1S € S} be a corresponding set of symbols where the elements will
act as an inverse to a symbol in S. Let A(S) denote the set of all words formed by SU S~!. That is,

A(S) = {s*...sp* 15, € SUS™!, n; € Z, for some k € N}.

Note that included in A(S) is the empty word, e. The empty word has the property that ss~! = s~1's = e, and

ni

es = se for any s € S. A word s7* ...s;* € A(S) is reduced if 511 # s]fl and s;&l #s;forany j=1,... k.
Let R(S) denote the set of reduced words.

Definition 2.3.2. For a set of symbols S, the free group generated by Fs is the set R(S) with the group law
that concatenates words and performs any cancellations to arrive at a reduced word.

Exercise 2.3.3. Verify that Fs, as given by Definition[2.3.2, is a group.

A free group generated by a set S can equivalently be characterised by universal property.
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Definition 2.3.4. Let S be a set. The free group Fg generated by S is such that for any group G and function
w : S — G there exists a unique group homomorphism ¢ : Fs — G which extends .

s -—*.a

[

Definition 2.3.5. Let S be a set and R C R(S). Then let

(S|R) = Fs/((R)),

where ((R)) denotes the normal closure of R in Fs. If G is a group and G = (S|R) then (S|R) is referred to
as a presentation of GG. In such a case, R is referred to as the relation.

Definition 2.3.6. A group G is finitely presented if there exists a finite set S, with R C R(S) such that
G = (S|R).

I Theorem 2.3.7. Let G be a group. Then there exists a set S and R C R(S) such that G = (S|R).

Proof. Let G be a group, and let Fz be the free group generated by G. Then by Definition there exists

a unique homomorphism ¢ : Fz — G such that ¢|¢ = idg. In particular, ¢ is surjective as idg is surjective.
Moreover, ker(¢) C Fg is a normal subgroup and so by the first isomorphism theorem, it follows that

(Glker(p)) = Fa/((ker(p))) = Fa/ ker(p) = im(p) = G.

Therefore, (G| ker(y)) is a presentation for G. O

Example 2.3.8. The dihedral group D, is presented by (S|R) where S = {r, s} and R = {r",s* rsrs'}.

Definition 2.3.9. Let (G,,) be a collection of disjoint groups. Then the free product of (G,,) is
*Go :={g1-..9m : gi € Gn, not the identity, and o; # a; 41}
On G, multiplication is given by

(glgm)(hlhn):glgmhlhn

with any cancellations made.

Remark 2.3.10.

1. The groups (Gy) in Definition[2.3.9 are disjoint in the sense of their symbols, rather than their structure.

2. Each group in the collection (G,,) can be identified with a subgroup of the free product. With only the
empty word being common to each of these subgroups which are otherwise disjoint.
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3. A collection of homomorphisms ¢, : G, — H extends uniquely to a homomorphism ¢ : *G, — H by

(g1 Gm) = Pas(91) - - - P, (Gim)-

Exercise 2.3.11. Show that xG,,, as given by Definitionl??Lmr is a group with the inverse of g1 ... gm € *Gyq
« «

given by g- ... g7 " and the identity being the empty word.

The amalgamated product is a generalisation of Definition that deals with collections of groups that have
overlapping symbols.

Definition 2.3.12. Let Gy, G1 and Gs be groups, with fi : Go — G1 and fs : Go — G2 homomorphisms.
A group H with homomorphisms hy : G1 — H and hy : Go — H such that hy f1 = hofs is an amalgamated
product of Gy and G over Gy if it satisfies the property that for every group G and homomorphisms h); : G; —
G, fori = 1,2, with b} f; = hl,fa, there exists a unique homomorphism o : H — G such that hy = ahs and
h/2 = ahg.

GQLG]_

Theorem 2.3.13. Given f; : Gy — G1 and fy : Gy — G, there exists a unique amalgamated product, up
to isomorphism, which we denote G ék Go.
0

Remark 2.3.14. For groups Gy and G, when G = {id} we write G, G* Gy = G *x Gs.

Proposition 2.3.15. For groups Gy, G1 and G2 with homomorphisms f1 : Go — Gy and f5 : Gog — G5 we
have
G1 ék Gy = (G1 *Gg) /N,
0

where N is the normal closure of

{fi(9)f2(9)"" 1 g € Go} C G1%Ga.

Corollary 2.3.16. Let G; = <Sl|R1> and Gy = <SQ|R2>, then

G1 * G2 == <Sl U SQ|R1 U R2>

2.3.2 The Seifert-van Kampen Theorem

Theorem 2.3.17 (Seifert-van Kampen). Let X be a topological space and Uy,Us C X be open and path-
connected such that X = Uy U Uy and Uy N Us is path-connected. With x € Uy N Us we have that

7T1(X7.T)27T1(U1,1') * 7T2(U2,$)g(ﬂ'l(Uh{,E)*ﬂj(Ug,‘r))/N,
Wl(UlﬂUQ,.ﬂC)
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where N is the normal closure of
{)4() (i2)s@) " 1w € MO NV, 2) |
with iy : Uy NUy — Uy and ji, : Uy, — X the inclusion maps for k = 1,2. That is,

U1ﬁU2L>U1

L

UQLX

and

7T1(U1 N UQ,JJ) L 7T1(U1,III)

l(z'z)* lm)*
*

7T1(U2,£E) &) 7T1(U17£L')
W](UlﬁUz,aZ)

7T2(U2, .’E)
Proof. Let ® : w1 (Uy, z) * w1 (Us, ) — 71 (X, z) be the homomorphism induced by the inclusion map. Then by
Remark [2.2.49| the map @ is surjective. Moreover, if [y] € N, then

(7)) = @ ((ir), (@) ((i2), (@) )
=[] W]

= [CI],

and so N C ker(®). A factorisation for [f] € m1(X,z) is a formal product [f1]...[fx] such that the following
hold.

= Each f; is a loop at z in one of the U;, and [f;] € 71 (Uj, ) is its corresponding homotopy class.
= The loop fi... fr is homotopic to f in X.

Note that a factorisation of [f] is a word, possibly not reduced, in m (U1, x) * 71 (Uz, z) that is mapped to [f]
under ®. Factorisations of [f] are equivalent if they are related by a finite sequence of the following operations.

1. Combine adjacent terms [f;][fi+1] into a single term [f; - fixr1] if [fi] and [fi11] lie in the same group
’/Tl(Uj,{E).

2. Regard the term [f;] € m1(U;,z) as a term of w1 (Uj/, z) if f; is a loop in Uy N Us.

Notice how operation 1 does not change the factorisation as an element of 71 (U, ) * w1 (Us, x). Notice how op-
eration 2 does not change the factorisation as an element of (71 (Uy, x) * w1 (Uz,z)) /N, by how N is constructed.
Therefore, equivalent factorisations correspond to the same element of (71 (U1, z) * 1 (Uz, x)) /N. Consequently,
showing that factorisations of [f] are equivalent implies that the map (w1 (U1, z) * 71 (U, z)) /N — m (X, x) is
injective, and thus its kernel is exactly V. Hence, let [fi]...[fx] and [f{]...[f]] be factorisations of [f]. Then
fi-...- frand f{-...- f] are homotopic, say through the homotopy F : I x I — X. By the compactness of
I x I there exists partitions
O0<sg< - <sm=1

and
0:t0<...<tn:1

such that for R;; := [s;—1, ;] X [tj—1,t;] we have F'(R;;) C Uy or F (R;;) C Us. More specifically, for each
(s,t) € I x I, one can consider its image F'(s,t) € X. As U; and U, cover X, there exists an open neighbourhood
of F(s,t) that is contained in either U; or Uy. Taking the pre-image of this open neighbourhood generates an
open set in I x I. Doing this for all (s,t) € I x I one constructs an open cover for I x I. Therefore, using the
compactness of I x I we can reduce this open cover to a finite sub-cover. We can then use the corresponding
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points of the open sets to construct our partitions. Now with these partitions, we can assume that the partition
{50,...,5m} subdivides the partitions giving the products fi -...- fi and f{ -...- f/. Now relabel the R;; to
Ry,..., Ry, asin Figure 23]

MN-M+)
— 1= -
B 4fm.
(=1 : :
= - Ll e S
O Si---- 8wt
Figure 2.3.1

Then a path v in I x I from left to right gives a loop F|, in X at z. Let ~, be the path separating the first r
rectangles from the others such that

Flyo~fi-...- fu

and
Fly, =~ f1... f].

{mn
O e —
rww\
=
—
i |

A = -

¥o

Figure 2.3.2

Let v be a grid point. Let g, be a path in X from z to F'(v) such that g, is contained in Uy NUs if F(v) € U;NUsy,
and in a single U; otherwise. Then this gives a factorisation of [F'|,,] into loops only contained in Uy or Us.
Thus, the factorisations associated to v, and 7,41 are equivalent, because the homotopy between F|, and
F|,.,, by pushing v, through R, takes place within a single U;. Doing this iteratively from 7q it follows that
[Fly] = [F|,mn] which implies that factorisations of f are equivalent. O

Theorem 2.3.18 (Seifert-van Kampen, strong version). Let X be a path-connected topological space with
the following decomposition.

= X =, 4.
= Ay, AaNAg and A, N Ag N A, are open and path-connected for all o, 3, and .

= ze(), Ao
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Then
m (X, x) = xm1(Aq, z) /N
«

where N is the normal closure of
{Gap)e(@) (i5a)- (@)} 1w € m(4a N Ag) | € *m1(Aa, 0)
with iag : Aq N Ag — A, being the inclusion map.

Definition 2.3.19. A pointed topological space is a topological space X with a designated base point x,
written (X, x).

Definition 2.3.20. For pointed topological spaces (X;,x;)ic; the wedge sum of the spaces is
iel i€l

where x; ~ x; for every i,j € I.

Example 2.3.21.

1. Consider the pointed topological spaces (Sl, xg) and (Sl,xl). Then graphically X = S* v S is repre-
sented by two circles attached at a point, henceforth we will refer to this point as x. Let A, be the first
circle with a semi-circular region of the second circle which includes x. Similarly, let As be the second
circle with a semi-circular region of the first circle which includes x.

,RDLTT(M
I8C .,

ECe BE X

ﬂAq_

Figure 2.3.3: Graphical representation of the wedge sum of unit circles and the subsets A; and A, referenced
in statement 1 of Example @

If a portion of a loop with base point x enters the semi-circular region, it is intuitive that this segment of
the loop is equivalent to the constant map at x. Thus, 71 (A1) = m (S') = Z. Similarly, m (A2) = Z

Moreover, 71 (A1 N Ag) is trivial as any loop is equivalent to the constant map. As Ay, Ay and A1 N As
are path connected Theorem [2.3.17] implies that

T (81 \/Sl) 2 (Ar)*xm (Ag) 2Z*7 = Flapy

34



Through induction it follows that

g=1

More generally, one applies Theorem [2.3.18 to deduce that
T (\/ Sl) = *qerli = Foen.
aEA

2. Let T be a torus and consider a point x € T'. Let D C T be a closed disc containing x. Moreover, let
A1 :=T\D and let Ay be an open set containing D. Note that A, and Ay are open and path-connected.

= A is homotopy equivalent to S' \/ S' and so 71 (A) = Z % 7 by statement 1 of Example|2.3.21
» Ay is homeomorphic to D? and so w1 (A3) is trivial by Example

= A1 N Ay is open and path connected with x € A1 N As. Moreover, A1 N As is homotopy equivalent
to St and so m; (A1 N Ag) & Z.

= ~E&H— <0

Figure 2.3.4: The torus and the identified components referenced in statement 2 of Example [2.3.21

From Theorem [2.3.17 it follows that
m1(T) = m1 (A1) / ((ix (1 (A1 N A2))))

where i : Ay N Ay — A1 is the inclusion map. In particular, the inclusion map i : A1 N Ay — Ay induces
amap i, :m (S') — m (St VS'). Viewing a loop in in S' as a loop in S* v S'we have

iw(w) = aba™ b1,

where w generates w1 (A1 N As), and {a,b} generate m(Ay).

Figure 2.3.5: We can view loops in A; N Ay, which is equivalent to S*, as loops on the boundary of A;, which
is equivalent to S v S*.
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Hence,
m(T) =2 (Z+Z) ] {{aba™'b"")) = F(y 43/ {{aba™'b7"))
= (a,blaba'b7")
=72,

3. Consider X = R3\ {x =y = 0}, that is R® minus a line. Then R?\ {(0,0)} is a deformation retract of
X, which is a deformation retract of S' through a stereographic projection. Therefore, 71(X) = Z.

Exercise 2.3.22. Let Ty and Ty be tori. Let X be the space constructed by identifying a circle S x {xo} in
each torus.

1. Compute 71(X) using Theorem directly.
2. Compute m1(X) be noticing that X = S' x (S' v S!).

Exercise 2.3.23. Show that S! is a retract, but not a deformation retract, of S' v S1.

2.3.3 Application to CW-complexes

Consider a path-connected topological space X. Let Y be the space obtained by attaching 2-cells (ei) to X
along the maps ¢, : 9D? = S! — X. For each « let ¢/, : I — X be the loop

@L,(8) = ¢o(cos2ms, sin 27s),

which has base point ¢/, (0). Fix © € X and then for each « let 7, be a path from z to ¢/, (0). Let N C n(X, z)
be the normal closure of the collection of equivalence classes ha c Py 'yojl]. Note that IV is independent of the
path 7, chosen for each « as suppose instead that 7, is chosen, then

No o Mo = (Ma Ya') Yo ba Vo (Yo n2")-

Which means that 7, - ¢, - 77;1 and v4 - G - fy,;l are conjugate in w1 (X, zo). Note that v, - ¢u "y;l is not
necessarily null homotopic in X, however, it is certainly is null homotopic in Y. Therefore, N is contained in the
kernel of the homomorphism i, : m1 (X, 29) — 71 (Y, zo) induced by the inclusion map i : X — Y.

(03
traverse the attached boundary of the 2-cells.

Figure 2.3.6: The attached 2-cells (¢2) to a path connected topological space Y, the illustrated loops that

I Proposition 2.3.24. The inclusion i : X — Y induces the surjection i, : w1 (X,x0) — m1(Y,z0) with

36



ker(i.) = N so that
71'1(}/,.’170) gﬂ'l(X,xo)/N.

Proof. Let Z be Y with an attached I x I strip S,, for each o where (¢,0) € I x {0} is identified with ~,(¢),
(1,t) € {1} x I is identified with an arc on e and the edges (0,¢) € {0} x I of each of the strips for the o are
identified with each other. Note that Z deformation retracts to Y. For each « let y, € €2 be such that y, ¢ X
and y, € S,.

Figure 2.3.7: Illustrations of the constructions used in the proof of Proposition [2.3.24

Let Ay :=Z\ U, {¥a} and Ay = Z\ X. Then A, deformation retracts to X and A is homotopy equivalent to
a point. Thus, 71 (Asy) is trivial and Theorem [2.3.17| says that

m1(Z,w0) = w1 (A1, 20)/ ((Jx (11(A1 N A2)))),

where j : Ay N Az — A; is the inclusion map. Thus, as m1(Z,z¢) = m1(Y,2z0) and 71 (A1, z0) = m1(X, 20)
we have that ((j. (m1(A1 N A2)))) = ker(i.). For zp € A; N Ay, near zp on the segment where the S,
intersect, let d, be a loop from zy based in A; N As that represents the element of 71 (A1, 29) corresponding to
[wa - P -7;1] € m1(Az1, 29) under the change-of-base point isomorphism (3, for h the line segment connecting
20 to xg along the intersection of the S,. Observe that A, = A1 N A5\ Uﬁ?ﬁa e% is an open set that deformation
retracts onto a circle in €2 \ {yo} and so m(A,) = Z. In particular, m(A,) is generated by J,. Applying
Theorem to the cover of A; N Ag given by the open sets A,, it follows that 71 (A1 N Az) is generated by
the loops d,. Thus, ({j. (m1(A1 N Ag)))) = N. O

I Corollary 2.3.25. For every group G there exists a two-dimensional CW complex X ¢ such that m (X¢g) = G.

Proof. Let (go|(735)) be a presentation of G, that is G = F{,_)/ ({(rp))). From statement 1 of Example [2.3.21

we have
(v

Each word rg is a loop in \/ S1 . Let Y be the space constructed by attaching 2-cells to \/ S1 along the
loops rg. Then from Proposmon 2 3.24] it follows that

m(Y) = m(X)/ ((rs))) = Fg.)/ (((rp)) = G.
O

Proposition 2.3.26. Let X be a topological space. Suppose thatY is obtained by attaching n-cells, for fixed
n > 2, to X. Then the inclusion i : X — Y induces an isomorphism.

Proof. Consider the same construction of the topological space Z as considered in the proof of Proposition
where now we consider the n-cells e rather than the 2-cells ei. In this case, A, deformation retracts onto a
sphere S~ !, and so 7 (A,) = 0 for n > 2. Hence, (A N Ay) is trivial which implies that 7 (Y, zg) =
m1(A1, xo) =2 m1(X,20) and 4, : 1 (X, z9) — 71 (Y, 20) is an isomorphism. O
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Corollary 2.3.27. Let X =, . X™ be a path-connected CW complex.

neN

1. The inclusion map i : X' — X induces a surjective homomorphism i, : w1 (X') — m1(X).
2. The inclusion map i : X? — X induces an isomorphism i, : m (X?) — m1(X).

Proof.

= Suppose X = |J"_, X" is finite-dimensional. Let i; : X/ — XJ*! for j = 1,...,m — 1 be the inclusion

map. Then applying Proposition [2.3.24] to i; and Proposition [2.3.26[ to i; for j = 2,...,m — 1 yields the
surjective homomorphism

(i2), (tm—1).

m (XY Wy (x2) @ e () =y (X))
Moreover, we obtain the isomorphism

(i2)* (imfl)*

1 (X2) Wl(Xm):Wl(X).
= Suppose X is infinite-dimensional. Here we only argue for statement 2 as the argument for statement 1
is similar. Let f : I — X be a loop with base point 2y € X2. Then the image of f is compact in X
and so contained in X™ for some n € N by Proposition Using Proposition it follows that
f is homotopic to a loop in X?2. Therefore, m; (XZ,.IQ) — m (X, o) is surjective. Now suppose that
f € m (X% x0) is null-homotopic via F' : I x I — X. The image of this homotopy is compact in X and so
lies in some X", where we can assume that n > 2. Therefore, since m; (XZ,.TQ) — 71 (X™, x9) is injective
by Proposition it follows that f is null-homotopic in X2, meaning m; (XQ,I()) — 71 (X, x0) is also
injective.
O

Exercise 2.3.28. Consider the topological space X consisting of S?> with the north and south poles identified.
Using Theorem and the CW complex structure constructed in Exercise determine the fundamental
group of X.

2.4 Covering Spaces

We would now like a classification of covering spaces for a topological space.

Example 2.4.1.

1. On the space S' we have already encountered a covering space, namely Example Visually this
can viewed as an infinite helical vertical extrapolation of S'. However, we also have a covering space
p: St — St given by

p(z) =2
where z is viewed as a complex number and n € N. Vijsually this can be viewed as an n-fold helical

extrapolation of S' around a torus. It turns out, that these covering spaces exhaust all the possible
covering spaces of S'.
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Figure 2.4.1: The covering space p : S! — S! given by z — 23.

2. Note that S' V S can be viewed as a graph with one vertex and two oriented edges. More specifically,
we label the edges a and b. For consistency let X = S' v S!.

o.

Se—

Figure 2.4.2: X =S v St

Now let X be any graph with four edge ends meeting at each vertex. Suppose that the edges of X are
labelled a and b and oriented in such a way that the local picture at each vertex of X looks like the
vertex of X. A structure constructed in this way is referred to as a 2-oriented graph. Given a 2-oriented
graph one can construct a map p : X — X sending all vertices of X to vertices of X and sending each
edge of X to the correspondingly labelled edge of X. As each vertex of X locally resembles the vertex
of X it follows that p : X — X is a covering map. What’s more, any covering map of X induces such
an oriented structure. Indeed, one can show that any graph with four edge ends at each vertex can be
2-oriented. Thus we see that the possible covering spaces for X = S' V' S' are much more plentiful than
those of S*.
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Figure 2.4.3: Covering spaces for S' v S'.

2.4.1 Lifting Properties

Throughout this section, we will let f : ¥ — X be a continuous map, with lift f :Y — X. Meaning f has
the property that pf = f where p : X — X is a covering space. For Y connected recall the following results
regarding the lift of maps to covering spaces.

= Proposition [2.2.27| says that if lifts f; and fo coincide at a point, then they coincide on Y.

— If Y is a single point we can contextualise this result in the following way. Let f: I — X be a path
with f(0) = z. For each Ty € p~'(x0), there exists a unique path f : I — X that lifts f and starts
at 7.

* In particular, the lift of a constant path is a constant path.

» Proposition [2.2.28|says that if F; : Y — X is a homotopy and Fy is a lift of Fy, then there exists a unique
homotopy F,: Y — X from Fy that lifts F,.

— Recall that a homotopy of paths must fix the endpoints of the paths, namely if FF: I x I — X is a
homotopy of paths then F;(0) : I — X and Fy(1) : I — X are constant paths. Therefore, as our
remark above, their lifts are constant paths, and so F; is also a homotopy of paths.

Fixing zo € X and Ty € X one can consider the induced map p, : 71 (X, Zg) — m1 (X, z0).

Proposition 2.4.2. Fix zo € X and Ty € X so that p(Zy) = o, then the following statements hold.
1 p,:m (X',ic‘a) — m1(X, o) is injective.

2. The set p, (m1 (X, 0)) € m1(X,x0) consists of the homotopy classes of loops starting at xq whose lift
to X starting at To are loops.

Proof.

1. Let f: I — X be a loop at Zg such that [f] € ker(p.), meaning pf = f is homotopic to a constant
loop. Let f be homotopic to a constant loop through F; : I — X. By Proposition 2.2.28] F; lifts to a
homotopy F; between f and the lift of the constant loop which must be the constant loop by uniqueness,
which implies that [f] =id € m; (X,%0). Thus p. is injective.

2. On the one hand, let f : I — X be a loop at z, that lifts to a loop f at Zo. Then pf = [ and so

Ds ([f]) = [f]. On the other hand, if f: I — X is a loop at xg such that there exists a loop f:I—>X

at 7o with p. ([f]) = [f], then f is homotopic to pf. By Proposition [2.2.28] this homotopy lifts to a

homotopy between f and f’, where f is a loop at Zg that lifts f.
O
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Definition 2.4.3. A topological space X has a property P locally if for each x € X and neighbourhood U of
x there is an open neighbourhood V- C U of x that has property P.

Example 2.4.4.

1. Let X = (0,1) U (2,3) C R be endowed with the subspace topology. Then X is locally path connected
but it is not path connected.

2. Let
X = (U {i}xz>u({o}x1)u(1x{o})gR2

be endowed with the subspace topology. Then X is path connected but it is not locally path connected.
Therefore, path-connected is not a stronger property than locally path-connected, and similarly, locally path-
connected is not a stronger property than path-connected.

Figure 2.4.4: The distinction between path-connected and locally path-connected

For a covering space p : X — X, suppose U C X is an evenly covered neighbourhood of 2 € X with

a€eA
Then, as p|y_ is a homeomorphism, we note that [p~! ()| is exactly equal to [A]. In other words, the sheets of U
are in bijection to p~1(x). Consequently, the cardinality of p~!(z) is locally constant. Hence, if X is connected
then the cardinality of p~!(z) is constant.

Proposition 2.4.5. Let X and X be path-connected and let p : (X,EUH) — (X, z0) be a covering space.
Then the number of sheets of p equals the index of H := p, (w1 (X, %g)) in 71 (X, z0).

Proof. Let g be a loop in X at z¢ with g its lift to a path in X starting at 2. Then for [h] € H, the path - g
lifts to a path h- g in X that starts at 7y and ends at the endpoint of § as Proposition says that h is a loop.
Therefore, the map @ : 71 (X, x9)/H — p~!(z0) be given by

Higl — g(1)

is well-defined.
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= For 2y € p~'(z0), as X is path connected, there is a path § in X from Zj to Zo'. Then g = pg is such
that ®(H|g]) = 7o', and so ® is surjective.

= Suppose ®(H|[g1]) = ®(H|[gz]), then the lift §; - g5 of g1 - g5 * is a loop in X at Zy. Hence, Proposition
implies that [g1][g2] ™ € H and so H|[g1] = H|[gz], which means that ® is injective.

Therefore ® is a bijective, meaning the index of H in 71 (X, z0) equals to number of sheets of p which is given
by [p~" (20)]. O

AT
h %
Figure 2.4.5

Proposition 2.4.6. Let p : (X,’m‘ﬁ) — (X, z0) be a covering space and f : (Y,yo) — (X, o) a continuous
map, where Y is path-connected and locally path-connected. Then there is a lift f : (Y,yo) — (X@VO) of f
if and only if 5
fe (m(Y,90)) C pa (11 (X, 70)) -
(X, 7o)

ey

(Y, yO) — (Xa (Eo)

Proof. (=). As f = pf it follows that f, = p,f.. Thus

f* (TFI(Ya yO)) = D= (.]E* (ﬂ-l(YlayO))) - D« (71-1 (X7%))
(«<). Fory € Y choose a path « from M Yo to y such that fy: I — X is a path from z to fly ) By Corollary[2.2.29
the path f~ can be lifted to a path f*y I — X that starts at Zy. Thus, consider the map f : (Y,y0) — (f(,%)
given by y — f’y( ).

= Suppose v’ is path from yo to y, then ho = (f+') - (fw)*1 is a loop with base point z( with

[ho] € fu (m1(Yiyo)) € ps (m1 (X, 7)) -

Using statement 2 of Proposition - 2.4.2} this means that there is a homotopy h; of hg to a loop h; that lifts
to a loop Ay in X with base point rp. Using Proposition [2.2.28 we obtains a lift hy of hy. As hy is a loop
with base point Zg, it follows that A is also a loop with base point Zy. By the uniqueness of lifted paths,

- — - — 1 — i
it follows that the first half of hg is f7’ and the second half of hg is fy . Hence, f(1) = f+/(1), which
means that f is well-defined.
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= Let y € Y and U an evenly covered neighbourhood of f(y). Let U be the sheet such that f(y) € U,
meaning that p|; : U — U is a homeomorphism. As Y is locally path connected, there exists V C Y a
path-connected neighbourhood of y such that f(V') C U. Consider a path « from gy, to y and for ' € V
consider a path n from y to y’ such that - 5 is a path from yo to y'. Then (fv) - (fn) : I — U is a path

from z to f (y'). In particular, fn = (p|U)71 fn. Which means that
flv (') = fa(1) = wle) ™ o)) = (blg) ™" £ ()

and so f|y = (p|U)_1 f. Hence, f|7 : V — U is continuous, which implies that f is continuous at y.

2.4.2 Classification of Covering Spaces

For a fixed space X there exists a classification of its different covering spaces.

Definition 2.4.7. A covering space p: X — X is a universal cover if X is simply-connected.

As universal covers have advantageous properties, it will be useful to determine when spaces have universal covers.

Definition 2.4.8. A topological space X is semi-locally simply connected if each x € X has a neighbourhood
U such that i, : m (U, x) — w1 (X, x) is trivial for i : U < X being the inclusion map.

Example 2.4.9. Consider X = UneN C,, C R? where C,, C R? is the circle of radius % centred at (%,O .
Then any neighbourhood U of zero contains a circle C,, for some n € N. Hence, i, : m1(U,0) — m1(X,0) is
not trivial for any neighbourhood U of zero and so X is not semi-locally simply connected.

Figure 2.4.6: A non-example of a semi-locally simply connected topological space.

I Proposition 2.4.10. /fp: X — X is a universal cover, then X is semi-locally simply connected.
Proof. For x € X let U be an evenly covered neighbourhood with U one of the sheets. For € m (U, x) the
path 4 := p~!|5v is a loop at = p~!|;(x) € U. In particular, ¥ is homotopic to the constant loop at # as X

is simply connected. Composing this homotopy with p implies that v : I — X is homotopic to the constant loop
at x, and so 71 (U, x) — m (X, x) is trivial. O

Definition 2.4.11. A basis on a set Y is a collection B C P(Y') such that the following hold.

1Y =UyesU.
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2. IfUy,Uy € B, and y € Uy N Uy, then there exists a V- € B such that y € V and V. C Uy N Us.

Remark 2.4.12. A basis on a set Y defines a topology. Namely, A C'Y is open if and only if A is the union
of elements of B. Consequently, f : Z — Y is continuous if and only if f=*(U) is open for all U € B.

Suppose that p : (X,Ea) — (X, o) is a universal cover. Then, we have an equivalence between
1. points in X',
2. [] where v is a path in X starting at Zg, and
3. [y] where 7 is a path in X starting at z.

Therefore, for an arbitrary space X we can consider constructing a universal cover X as the space of homotopy
classes of paths starting at z(. Indeed the collection ¢/ of path-connected open sets U C X such that i, is trivial
forms a basis for the topological space X. In particular, if for a given set U € U and path v in X from z to a
point in U we let

Upy) = {[v -7l :n apathin U with n(0) = (1)},

it follows that the collection (U['y]) forms a basis which we can use to define a topology on X. One can

B Uel,y
then show that the map p : X — X with U},) — U gives our desired covering space.

Theorem 2.4.13. Let X be path-connected, locally path-connected, and semi-locally simply connected. Then
there exists a universal coverp: X — X.

Proof. For xg € X, let

X :={[y]: v:I— X a path with y(0) = z}
and let p: X — X be given by
] = (D).

= Let U be the collection of all path connected open subsets U C X such that 71 (U) — 71 (X) is trivial.

— For x € X, as X is semi-locally simply connected, there exists V' C X open such that 71 (V,z) —
m1(X, x) is trivial. Then as X is locally path connected there exists a U C V C X such that U is path
connected. In particular, the map m (U) — 71 (V) — 71(X) is trivial. Therefore, U € U. Hence,
X = UUeu U.

— Let U;,Us € U and y € U; NUs. Then there exists a path-connected neighbourhood V- C U; N U,
of y. In particular, from V — U; < X we have 71 (V) — m1(U1) — 71(X), and so m (V) — 71(X)
must be trivial as w1 (U1) — 71 (X) is trivial. Hence, V € U.

Thus, we deduce that I/ is a basis for the topology on X. Now for U € U and a path v : I — X from xg
to a point in U, let

Un :=={ly-nl:n:1—= U a path with n(0) =~(1) e U} C X.
The set Uy,) depends only on the class [y]. Indeed, let [y] = [y/] then [y 7] = [y"- 7] and so U, = U},.

- As X = Upyey U we have Uy, Uy = X.

- If [y/] € Upy) then 4" =~ -nfor n: I — U a path. Hence, elements of U}, have the form [y -7 - y]
and so U C U Similarly, elements of Uy have the form

1 1

ow=[y-nn =00ty

and so Uy, € Uy, meaning Uy, = Up,). Now consider Uy, and Vi, and let [y"] € Up, N Vi so
that Up) = Up and Viyp = V- As U is a basis, let W € U be such that W C U NV, and such
that 7"(1) € W. Then Wiy € Upyy N Vi) = Upyy N Vi with [77] € Wiy

44



Therefore, <U[“Y])Ueu 8 forms a basis for X.

= Note that U is path connected and so p|UM : Uy — U is surjective. Moreover, suppose -7 and 772 have
the same endpoint. Then [771 ~n51] is a loop at (1) in U. Therefore, as X is semi-locally simply connected
we have that [n; 75 '] = id and so [1] = [n2]. In particular, [y - 7] = [y - 2] and so plu,, Uy = U
is injective. Hence, p\UM : U — U is bijective. Let V},,; C U, be an element of the basis. Then by
construction we have that p (Vh']) =V € U which is open, meaning p’1|UM is continuous. Moreover, for
V CUwith Vel, let [y] € p~' (V)N U},. Then Vi, C Upy = Upy) and so plyyy) is bijective as

P~ (V)N ULy = Vi) VU = Vi
Thus, as V|, is open it follows that p|UM is continuous. In particular, this also means that p is continuous.
Now note that if Up; N Upyq # 0 then for ["] € Upy N Upy we have
Uy = Uy = Upys

and so
P (U) = Uy
]

is indeed an even covering of U. Therefore, p : X — X is a covering space.

= Let 7o € X be the class of the constant path. Let [y] € X be arbitrary. Then v : I — X with v(0) = .
Let v : I — X be given by

Then 5 : I — X given by t +— [v,] is a path from Zg to [y], which means that X is path connected. Now
let [7] € p (m1 (X,Z0)). Then v lifts to a loop at g by statement 2 of Proposition m Since t — [v¢]
provides a homotopy to such a loop, by Proposition [2.2.28] it follows that the lift must be given by this
homotopy. In particular, g = [y0] = [71] = [7] and so 7 is homotopic to the constant loop. Therefore,
De (7r1 (X',Ea)) = {id}. Hence, as p. is injective, by statement 1 of Proposition it follows by the
first isomorphism theorem that 7y (X,%H) is trivial and so we conclude that X is simply connected.

O

Proposition 2.4.14. Let X be path-connected, locally path-connected, and semi-locally simply connected.
Then for every subgroup H C 71 (X, x) there is a covering spacep : Xg — X such that p,(m (X, xg)) = H.

Proof. Let X be as constructed in Theorem [2.4.13[ and let Xy := X/ ~ where [y] ~ [7/] if and only if
~v(1) =+/(1) and {7. (7’)71} € H. Note the following.

» Y]~ [y]aside H.

= [y] ~ [¥'] implies that [y'] ~ [y] as H contains all inverses.

v If [y] ~ [¢'] and [y/] ~ [¥"] then [y] ~ [y"] since H is closed under products.

Therefore, ~ is an equivalence relation and X is well-defined. Let p: Xy — X be the natural projection given
by [y] — ~(1). Observe that if v(1) = +/(1) then [y] ~ ['] which implies that [y-7n] = [ - 5], for  a path with
n(0) = v(1) = '(1). Therefore, U,; and U}, are identified to each other. As U}, form a basis it follows that
p is a covering space, and more specifically,

P (U) = Up-
Y

For the base point 7y € Xg we choose the equivalence class of the constant path c;,. Note that a loop v in X
with base point g, lifts to X starting at [c,,] and ending at [y]. So the image of this loop in Xy is a loop if
and only if [y] ~ [cg,], or equivalently [y] € H. Therefore, the image of p, : w1 (X, xo) — 71 (X, o) is exactly
H. O
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Remark 2.4.15. Note how Theorem is Proposition with H being the trivial subgroup.

Definition 2.4.16. Covering spaces p; : X, — X and py : X3 — X are isomorphic if there exists a homeo-
morphism f : X7 — X such that pof = p1.
Xl 4f ? X2

N

Remark 2.4.17. Note that the inverse of an isomorphism between covering spaces, f 1, is also an isomorphism
between covering spaces. Moreover, the composition of isomorphisms is an isomorphism. Thus, isomorphism
is an equivalence relation between covering spaces.

Proposition 2.4.18. Let X be a path-connected, locally path-connected and let zq € X. Path-connected
covering spaces p1 : X1 — X and ps : Xo — X are isomorphic through a homeomorphism f : X1 — X, that
maps 71 € p; (x0) to T3 € py *(x0) if and only if

(p1)« (m1 (X1,27)) = (p2)« (m1 (X2, 72)) -
Proof. (=). If f: (X1,71) — (X2,22) is an isomorphism then p; = pof and so
(p1)s (1 (X1,21)) C (p2)s (m1 (X2,22)) .
Furthermore, p, = p1f~! and so
(p2)« (m1 (X2,72)) € (p1)« (m1 (X1,77)) -
(«). Using Proposition [2.4.6] we can lift p; to a continuous map
P (X1, 71) = (X2,72)
Similarly, we can lift p> to a continuous map
Po i (Xo,72) — (X1,77) .
In particular, p1ps = po and pof1 = p1. Note that f1p- fixes 75 € X and so by Proposition we have

P1p2 = idz,. Similarly, pap; = idsz, and so f = p; is an isomorphism. O

Remark 2.4.19. Let p; : X, — X and P2 - X, > X be covering spaces. Let xg € X be fixed. Then for
T € py *(20) and T3 € p; *(x0), an isomorphism f : (X1,21) = (X2,3) is referred to as a base point
preserving isomorphism.

Theorem 2.4.20 (Galois Correspondence). Let X be a path-connected, locally path-connected, and semi-
locally simply-connected, and let xo € X. Then the following statements hold.

1. Path-connected covering spaces up to base point preserving isomorphisms p : (X' , ?vvo) — (X, x0) are in
bijection with subgroups H C (X, xg).

2. Path connected covering spaces p : X — X up to isomorphisms are in bijection with conjugacy classes
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I of subgroups H C m (X, z9).
Proof.
1. For a covering space p : (X',fia) — (X, x0) we associate the subgroup
D« (7r1 (Xafa)) g 7T1(X7 xO)'

Using Proposition and Proposition 2.4.18] it follows that this is well-defined on the isomorphism
classes, and bijective up to basepoint preserving isomorphisms.

2. Let p: X — X be a covering space and consider 1,73 € p~*(z¢). Let
H; = p. (m (X,23)) € m(X, 20)

for i = 1,2. Let 4 be a path from 7y to 3 then v = p7j is a loop at zg. Let [f] € m1(X,20). Then
[f] € Hy if and only if the lift f is a loop at Z1. In which case ¥~1 - f - 7 is a loop at 73, so as

p (3 f ) = f ey

we have [y]7'[f][y] € Hy. Hence, [y|7'Hi[y] C Hs. Similarly, [y]Hz[7]™! € H;. Conversely, let
H C 7 (X, z0), and let [§] € 7m1(X,20) be arbitrary. Let 0 be a lift of § such that §(0) =z and consider
23 = 0(1). Then through the same construction

pe (1 (X,75)) = [8] 7 H9).
]

Example 2.4.21. Recall the construction of covering spaces for S' \/ S' given in statement 2 of Example
Consider the covering spaces of S' VV S as depicted in Figure[2.4.7,

b o b Q

b (+§ bo-

(a) Covering space of S' v S'. (b) Covering space of S* v S*.

Figure 2.4.7

These covering spaces are isomorphic, but not under a base point preserving isomorphism. The subgroup of

m1 (S V S', z0) induced by Figure is

Hy = (a®,b%,aba™ " bab™ "),
and the subgroup of w1 (S' V S', z¢) induced by Figure is
Hs = <a2,b2,ba2671,baba71b71>.

Indeed, H, and H, are distinct but they are conjugate, as expected by Theorem
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Exercise 2.4.22. Letpx : X — X and py : Y — Y be covering spaces. Thenp: X xY — X x Y given by

p(z,y) = (px (), py (v))

is a covering space for X x Y.

A fundamental group 71 (X, o) can act on a covering space p : X — X through lifts of loops.

Proposition 2.4.23. Let p : X — X be a covering space for X which is path-connected, locally path-
connected, and semi-locally simply connected. Then the following hold.

1. The path connected components of X are in bijection with the orbits of the action of m1 (X, zg) on
=i
p~ (o).

2. For fixed Ty € p~'(x), let Y C X be a path connected component containing Zy. Then the stabiliser
subgroup of 7o s (ply )., (m (Y, 7).

Proof.

1. Let z,2’' € p~!(xo) be in the same orbit under the action of w1 (X, zg). Then there exists ay : I — X such
that its lift 4 is a path from z to 2’. In particular, this means that = and 2’ are in the same components of
X. On the other hand, let A C X be a connected component of X. Letx,2’ € A Np~Y(zo). Then since
A is connected, there exists a path 5 from z to 2’. The path p7 is a loop with base point o, hence,  and
2’ lie in the same orbit.

2. Let v € m1 (X, x0) be a stabiliser of . Then ~ lifts to a loop 7 with base point zg. Thus, 7 € m; (X,Ec‘a)
which implies that v € (p|y), (71(Y,Zo)). On the other hand, let v € (ply), (m1(Y,Zo)). Then 7 lifts to
4 which is a loop at zy. That is v acts on Zy by sending it to itself and thus is in the stabiliser of zg.

O

2.4.3 Deck Transformations

Definition 2.4.24. let p: )g — X be a covering space. A deck transformation is an isomorphism between p
and itself. In particular, f : X — X is a deck transformation if f is a homeomorphism and pf = p. The group
of deck transformations is denoted by G (X )

Example 2.4.25.

1. Consider the covering spacep : R — S' C C. Then a homeomorphism f : R — R is a deck transformation
if and only if p(f(t)) = p(t), which happens if and only if e2mif(t) = 27t which happens if and only if
f(t) =t +n for some n € Z. Therefore, G (X) = Z.

2. Recall the covering space p : S' — S! where p(z) = 2", forn € N. Then a homeomorphism f : S — St
is a deck transformation if and only if p(f(t)) = p(t), which happens if and only if f(t)" = f(t), which
happens if and only if f(t) = e

w t fork € {0,...,n— 1}. Therefore, G (X) = Z/nZ.
Note that a deck transformation can be viewed as a lift of the covering space p. Hence, from Proposition

we see that if X is path-connected then f € G (X) is determined by where it sends a single point. Consequently,
the identity is the only deck transformation with a fixed point.

Definition 2.4.26. A covering space p : X — X is normal if for each x € X and every pair Z,%' € p~*(z)
there is an f € G (X) such that f(&) =&’
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Example 2.4.27. The covering spaces of Example[2.4.25] are normal.

1. Forz € S', we have p~(2) = {a+n : n € Z} for some a € R. Therefore, for ¥, 7' € p~L(x) we
have & = a+ ny and ¥’ = a + ny for some ny,ne € Z. Note that f(t) =t + (no —mnq) is a deck
transformation, and in particular

f@) =a+n+n2—ni=a+ny=%"
0

2. For ¢ € S', we have p—! (eie) = {e’n*‘% cke{0,...,n— 1}} Therefore, for 7,3 € p~1(z) we

2k i .9 | 2komi 2(kg—kp)mi

have & = eint % and & = eint for k1,ka € {0,...,n — 1}. Note that f(t) = e~ = 1t
where ko — k1 is taken modular n, is a deck transformation, and in particular

2(ko—ky)mi .o , 2kymi 9 | 2komi
f (i’) = e n el;+ n = 61’;4» n = j/.

Proposition 2.4.28. Let p : (X',EES) — (X, z0) be a path-connected covering space, and X locally path-
connected. Then p: X — X is normal if and only if H = p, (7r1 (X,EB)) is a normal subgroup.

Proof. Let 71 € p~*(wp), and let 4 be a path from Zy to 77 then v = p¥ is a loop at z. Then
Vp. (w1 (X, 71)) (/)7 = H.

Hence, [yJH[y]~! = H if and only if H = p, (m (X,27)) which by Proposition happens if and only if
there exists a deck transformation f : (X',fc‘a) — (X,EEI) In particular, as f (zg) = 1 we have that G (X) acts
transitively on p~1(zg) if and only if H C 7 (X, o) is a normal subgroup. Now let z, € X and h a path from
zo to @) Let h be a lift of & such that h(0) = Zo. Set zp = h(1) so that p (z') = xf). Then the following
diagram commutes.

US| (X7§"\6) T 1 (Xvi‘\o//)

m1 (X, ) <T 1 (X, zp)
h

Thus as 5, and j; are isomorphisms we have that H C 71 (X, z¢) is normal if and only if
ps (m (X,70')) C m (X, 20)

is normal. This, as argued before, happens if and only if G (X) acts transitively on p~1 (zf,). Therefore, we have
that H is normal if and only if G (X) acts transitively on X, which is equivalent to saying that p is normal. [

Example 2.4.29. Consider the covering spaces from Example[2.4.25
1. Asmi(R) =0, it follows that p, (m1(R)) = 0, which is a normal subgroup of 71 (S') = Z.
2. Asm (S') =Z, it follows that p, (w1 (S')) = nZ, which is a normal subgroup of my (S*) = Z.

From Example [2.4.27 and Proposition[2.4.2, it is to be expected that the subgroups computed in statements
1 and 2 are normal.

3. Recall that for T = S' x S, we have 71 (T) = Z%. Hence, as 71 (T) is abelian, any subgroup of m1(T')
is normal. Therefore, for any covering space p : X — X, as p. (7T1 (X,Ea)) is a subgroup of m(T)
by statement 1 of Proposition it follows from Proposition that p is normal. From Exercise
it follows that p : R? — S x S* given by

p(S,t) _ (627”'5’ e27rit)

49



is a covering space forT. In particular, it is a universal cover as my (R2) is trivial and R? is path-connected.

Proposition 2.4.30. Let p : (X'jc\a) — (X,z0) be a path connected covering space, and suppose X is
locally path-connected. Let H = p, (7r1 (X,EEB)) and N(H) C m(X,x0) be the normalizer of H. Then
G (f() =~ N(H)/H. In particular, the following hold.

= If X is normal, then G (X) =m(X,z0)/H.

= If X is the universal cover, then G (f() =~ (X, 20)-

Proof. Let ¢ : N(H) = G (X) be the map given by sending [7] to the deck transformation 7 taking z to z71, as
constructed in the proof of Proposition Let v' be a another loop corresponding to the deck transformation
7/, which takes 7o to 1. Then -+ lifts to 4 - (7 (3')), which is a path from Zg to 7 (1) = 77/ (zp). Thus,
as 77’ is deck transformation, and thus determined at a single point, it must be the case that 77/ is the deck
transformation corresponding to [y] [y'], which shows that ¢ is a homomorphism.

i T(%)-Tle'E)

O s

Figure 2.4.8

Moreover, ¢ is surjective as for any f € G (f() we can let f (zg) = x; and consider v a path from zg to 7.
By the arguments made in the proof of Proposition we have that [y] € N(H). Moreover, the kernel of
¢ consists of the classes [] that lift to loops in X, which are exactly the elements of p, (m1 (X',%)) = H, by
statement 2 of Proposition O

Example 2.4.31. Using Proposition and Example we can verify the explicit calculations made in
statements 1 and 2 of Example[2.4.25,

1. As X is a universal cover we have

2. As X is normal and H = nZ we have

G(X)=m (SY)/H =Z/nZ.

Exercise 2.4.32. A finite group G acts on a path-connected, locally path-connected, Hausdorff topological
space X by identifying homeomorphisms X — X. Each g € G corresponds to a homeomorphism g : X — X
such that (g192)(x) = g1(g2(x)) for any g1,92 € G and x € X. The action of G on X is free if for each z € X
we have

{9€G:g(z) =2} = {e}.
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We denote by X/G the set of orbits of G in X, where the orbit of x € X is
G(z) ={g(z) : g € G}.

The space X/G is turned into a topological space by endowing it with the quotient topology. Show the following
statements hold for a free action G on a topological space X.

1. The quotient map p : X — X/G is a covering space.
2. G is isomorphic to the group of deck transformations G(X).

3. m(X/G)/p« (m1 (X)) 2 G.

Example 2.4.33. Recall the real projective n-space RP™ from statement 7 of Example[I.2.8 Note that RP™
is given by S™ quotient the action of 7./27, where x — —x. In particular, the action is free so that by statement
1 of Exercise the quotient map S™ — RP"™ is a covering space. Indeed, each open hemisphere in S™
provides a sheet for an open neighbourhood in RP"™,

= Forn > 2, asS™ is simply-connected it follows from statement 3 of Exercise[2.4.32 that m, (RP™) = 7 /27.
One can see this explicitly by considering the projections of paths in S™ under the quotient map. For
a path in S™ to correspond to a lift of non-trivial loop v in RIP", the path must be between antipodal
points of S™. Let v be a loop in RP™ generating w1 (RP™). Then the lift of vy - v, say v -7, is a loop in
S™ since the lift of «y connects antipodal points. Therefore, as the fundamental group of S™ is trivial, it
follows that v -7 is homotopic to a constant map, therefore, vy - v is homotopic to the constant map.

= Forn =1, the orbits under the action are the fibres of the map z 22, where St is considered as the
unit circle in the complex plane. Hence, p. (7r1 (Sl)) =~ 27.. Therefore, from statement 3 of Exercise

it follows that ; (RP') 2 7,

Definition 2.4.34. For X a path-connected, locally path-connected and semi-locally simply connected space,
a path-connected covering space p : X — X is abelian if it is normal and has an abelian deck transformation

group.

Proposition 2.4.35. Let X be path-connected, locally path-connected and semi-locally simply connected.
Then X has a universal abelian cover p : X — X, in the sense that X is a covering space of any abelian
covering space of X up to isomorphism.

Proof. Let H < 71(X) be the commutator subgroup. Then, by Proposition there exists a covering space
pu : Xu — X such that (pg), (m1 (Xg)) = H. As H is normal, by Proposition [2.4.28} the covering space py
is normal. Hence, by Proposition we have that G (Xy) =2 N(H)/H = 71 (X)/H. Hence, G(Xpg) is
abelian and so py is an abelian covering. Suppose that ¢ : Y — X is an abelian cover. Then, by Proposition

2.4.28] the subgroup ¢. (m1(Y)) =: H' C m1(X) is normal as ¢ is normal. Thus, by Proposition [2.4.30] the
quotient 71 (X)/H' 2 G(Y) is abelian. Hence, H < H’, meaning there exists a continuous lift p : Xg — Y of

p: Xy — X. Therefore, p is a covering space of Y. O

2.5 Solution to Exercises
Exercise [2.2.15

Solution. Let 7yg,v1 € m1 (X, x1) be homotopic. Then an application of Proposition shows that

h”}/oﬁh"}/l,
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and then another application of Proposition [2.2.8] shows that
h-vo-h™ Y ~h-~-h%

Therefore,
Br(o]) = [h-y0 -k~ = [h-7 b7 = Bul(lm)).

Exercise [2.2.30

Solution. Let f : I — X be a constant path with f(0) = zo. Let f: I — X be the unique lift of [ such that

f(0) =2 € p~"(x0). Let U C X be an evenly covered neighbourhood of xo, with p~"(U) = U, U;. Let
A={tel:ft)=m}.

Consider t € A with f(t) € ﬁj. Then as f is continuous there exists a neighbourhood N C I of ¢ such that
fIn € Uj. In particular, for t' € N we have

pf(t)=f (') = f(t) = pf(D).

As p|Uj is a homeomorphism it follows that f (/) = f(t) = Zo. Thus, N’ C A and so A is open. Similarly, we

show that I\ A is open. Therefore, as I is connected it follows that A = I which means that f(t) =z for every
t € I, that is f is constant. O

Exercise [2.2.38

Solution. Suppose fy and f; are homotopic through F; : I — X. Then ¢F; : I — Y is a homotopy between ¢ fj
and ¢ f1. Hence,
¢«([fo]) = [@fo] = [0 /1] = ¢« ([f1]),

which means that ¢, is well-defined. Moreover,

o« ([f - g]) = [6(f - 9)] = [oF - d9] = [0 f1ldg] = & ([f])x([9]),

and
bx ([czo)) = [Beze] = [C¢(w0)] :

Therefore, ¢, is a group homomorphism. O

Exercise 2.2.43]

Solution. Let h(t) = Fy(xg). From Lemma [2.2.42| we have (Fp). = Bn(F1)«. Since, (Fo)« = (F1)s = idr, (X,20)
it follows that 3, = idr, (x,z,)- That s,

[h-v-h71 =[]
for every v € w1 (X, xg), hence, h(t) = Fi(xo) is in the centre of 71 (X, ). O
Exercise [2.3.22)

Solution.

1. Let U; and U, be open neighbourhoods of St x {zo} in Ty and T respectively. Let A} = T4 UU; and Ay =
ToUUs. Then A; and Ay deformation retract onto 77 and T respectively. Moreover, U; N Uy deformation
retracts onto S* x {zg}. Therefore, with m(T1) = (a,blaba'b~') and m(T2) = (c,d|cdc™'d™1), it
follows that m (Uy N Us) = (a, clac™!). Therefore,

m1(X) = {a,b,c,dlaba b cde™ d ™ JacTt) X Z x (Z+ Z).
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2. Using Proposition [2.2.36] and statement 1 of Example [2.3.21] it follows that

m(X)=m (S') xm (S'VSY) =Z x (Z*17).

Exercise 2.3.23

Solution. Note that

S'vSt = ((S' x {0}) U (8" x {1})) / {(20,0), (z0, 1)}
Let #: ((S* x {0}) U (S! x {1})) — S be given by

Observe that # is continuous and constant on the equivalence classes of S! v S. Therefore, by Proposition
there exists a continuous map 7 : S' vV S! — S! such that # = 71, where 7 is the quotient map. Letting
i: St — S'VS! be the map given by x — [(x,0)], it follows that the map r := i is a retract. However, r cannot
be a deformation retract as m; (S') = Z whilst 7y (S* V' S') = Z « Z. The former is abelian whilst the latter is
not. O

Exercise [2.3.28

Solution. Let U be a neighbourhood of e!, and V the interior of e2. Then as U deformation retracts onto e!, it
follows that m1 (U, x) = Z. Let w1 (U, x) be generated by a. On the other hand, m; (V,z) = 0. Note that UNV
deformation retracts onto S!, so that m (U N'V) = Z. In particular, the generator of 71 (U N V) gets sent to

a — a under the homomorphism 71 (U N V) — 71 (U). Therefore, w1 (X, x) = Z by Theorem O
Exercise [2.4.22

Solution. Let (z,y) € X xY. Let U C X be an evenly covered neighbourhood of z and let V. C Y be an evenly
covered neighbourhood of Y. More specifically, let

p)_(l(U) = U 02'
iel
and -
(V) =V
jeJ

Then U x V C X x Y is a neighbourhood of (x,y) such that
plUxV)= |J TxV;.
il jed

Note that the sets U; x VJ are open, disjoint and such that p|Uiij is a homeomorphism. Therefore, p: X x Y —
X x Y is a covering space. O

Exercise [2.4.32]
Solution.

1. Let z € X and consider g € G\ {e}. Then since = # g(x) and X is Hausdorff, disjoint open neighbourhoods
Uy and V; of 2 and g(z) exist, respectively. Let

U= () Ung " (Vy).
9€G\{e}
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We note U is an open neighbourhood of z as U, and g_l(Vg) are open neighbourhoods of z, and the
intersection is finite as G is finite. Observe that g(U) C Vy is disjoint from Uy, 2 U and thus

Ung(U)=10
for each g € G'\ {e}. Moreover, for g1, g2 € G\ {e} distinct we have that g; 'gs # e and so

91 (U) N g2(U) = g1 (UN (g7 ' 92) (U)) = 0.

Now for 2’ € X/G as p: X — X/G is surjective we can write p(z) = 2’ for some z € X. Construct U as
above. Then p(U) identifies all the orbits for which the points of U participate and so p~! (p(U)) identifies
all points that are within those orbits, or in other words,

P (p) = | 9(U).

geG

Therefore, p(U) C X/G is an open neighbourhood of 2’ as its pre-image is the union of the open sets g(U)
and hence open. We now show that p restricted to g(U) is a homeomorphism.

= Suppose p(g(u1)) = p(g(uz)). Then g(u1), g(uz) lie in the same orbit, and thus w1, uz lie in the same
orbit. Thus there exists a g such that §(u;) = us which implies that U N g(U) # 0 and so § = e.
Therefore, u; = §(u1) = ug, and so p on g(U) is injective.

= As u and g(u) are in the same orbit it is clear that p restricted to g(U) is surjective onto p(U).

In conclusion, for ' € X/G the open neighbourhood p(U) of 2’ is evenly covered by the disjoint open sets
g(U) for g € G on which p restricts to a homeomorphism. Therefore, p: X — X/G is a covering space.

. Fix z € X. Let f be a deck transformation, that is pf = p. Then p(f(x)) = p(x), which means that
f(z) and z lie in the same orbit. In other words, there exists a g € G such that g(z) = f(z). Therefore,
as X is path-connected it follows by the unique lifting property that f is equal to the homeomorphism
corresponding to g € G. Conversely, g € G is an isomorphism from X to itself such that for any z € X
we have that p(g(z)) = p(z), since = and g(x) lie in the same orbit. Meaning g is a deck transformation.
Moreover, let f1, fo be deck transformations corresponding to g1, g2 € G respectively. Note that

(fio f2)(z) = fi(f2()) = 91(g2(x)) = (9192)(2).

Therefore, by the unique lifting property, we have that the deck transformation f; o fy corresponds to
g192 € G. Hence, the correspondence preserves the group structure and so the group of deck transformations
is isomorphic to G.

. Let * € X/G and consider &1, € p~*(x). Then &1, ¥, are in the same orbit and so there exists a g € G
such that g (Z1) = Z3. Thus, from (b), it follows that p : X — X/G is normal. Therefore,

Prop. [2.4.30
~

GEa(x ™ (X/G, o) [p. (71 (X, 50)).
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3 Homology

3.1 Motivation

Just as we considered base point preserving homotopies of the form ¢ : I — X with the fundamental group
m1(X, x0). We can also consider higher homotopies groups 7, (X, x¢) which are groups of base point preserving
homotopies of the form ¢ : I — X where ¢(OI™) = xo. This will be useful to probe higher dimensional spaces,
as currently with the fundamental group we cannot distinguish between the S™'s for n > 2. More specifically, we
see by Theorem that the fundamental group is dependent only on the 2-skeleton of X. More generally,
7 (X) depends only on the (n + 1)-skeleton of X.

I Theorem 3.1.1. 7; (S™) =0 for i < n and Z for i = n.

However, high-order homotopy groups are difficult to compute. Fortunately, homology groups share many of the
same dependencies on structure as homotopy groups and are more computable. However, their definition is less
transparent than the definition of homotopy and thus requires the introduction of different ideas before they can
be implemented.

3.1.1 Intuition

Consider the graph X as depicted in Figure[3.1.1] In the case of the fundamental group, a base point is fixed and
the loops from that base point are investigated. For example, ab~! is a loop with base point z. In the context
of the fundamental group, the loop b~ 'a would be distinguished from ab~! as they have different base points.
However, in some sense, it may be useful to treat b~ 'a and ab™! as the same object. In effect, we are attempting
to simplify matters by abelianizing. Hence, we adopt the additive notation, namely ab™" is represented with a —b.
Moreover, loops are now referred to as cycles and can be linearly combined as chains of edges. Note that chains
can have different decompositions into cycles. For example, the chain @ — b + ¢ — d can be decomposed into the
the cycles (a — ¢) + (d — b) or (a — d) + (b — ¢). We can algebraically formalise this with the following.

» Let Cy be the free abelian group with basis {x,y}. Such that elements of Cyy are 0-dimensional chains.
» Let (4 be the free abelian group with basis {a,b, ¢, d}. Such that elements of C; are 1-dimensional chains.

» Let 0: Cy — Cp be the map sending each basis element of C to y — x, that is the vertex at the head of
the edge minus the vertex at its tail. Then

Oka+lb+me+nd)=(k+l+m+ny—(k+1+m+n)z,

and so the kernel of 0 is precisely the cycles on Xj.

With this algebraic formulation, it becomes straightforward to generalise these ideas. Consider the graph Xs,
which is X7 with an attached 2-cell. One can think of this 2-cell as being oriented clockwise, by letting its
boundary be a — b. Note that by adding A, the loop a — b is homotopic to a point as it can be slid across A.
Suggesting that we can quotient subgroup generated by a — b out of Cy, for example, we can now identify a — ¢
with b — c.

» Let C5 be the infinite cyclic group generated by A.
» Let 3y : Co — Cy be the homomorphism where 95(A) = a — b.

With this notation, the quotient group we are seeking is ker(d;)/im(d2). This quotient group is precisely the
homology group Hi(X32) that we are interested in investigating. We can take these ideas further by now considering
the graph X3, which attaches another 2-cell, B, to X5 along the same cycle a — b.

= Let C5 be the infinite cyclic group generated by A and B.
= Let Oy : Co — Cq be the homomorphism where 95(A) = a — b and 02(B) = a —b.
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As before, the homology group is H2(X3) = ker(0;)/im(d2). However, as the kernel of 0 is non-trivial, it is

generated by A — B, we can view A — B as a 2-dimensional cycle and obtain the homology group Ha(X3) =
ker(02) = Z.

Figure 3.1.1: From left to right, the graphs X;, X2 and X3.

3.2 A-Complexes

Definition 3.2.1.

» An n-simplex in R™ is the convex hull of a set V' of n+ 1 points in R™ that are not all contained in an
affine (n — 1)-dimensional subspace of R™. The standard n-simplex is given by

{(-’I:O)o.-7$n)eRn+1:.’I;iz()’xo—f—..._’_xn:l}.

» An ordered n-simplex is an n-simplex where the vertices have an order. We denote this by [vy, ..., v,].
The standard ordered n-simplex is [e1, .. ., en11], which is the convex hull of the standard basis of R 1
with the natural ordering imposed on the vertices. We denote this simplex by A™.

= For the n-simplex [vo,...,v,] in R™ let L = Sp(vo,...,v,). Then there is a unique affine morphism
L — R"*! given by v; + e;41 fori = 0,...,n. More specifically, we have a homeomorphism from
[vo,...,vyn] to A™ which preserves the ordering.

= The faces of [vg, . ..,v,] are [vg,...,0;,...,v,] fori =0,...,n, where 0; means this vertex is omitted.

= The boundary of a simplex A is the union of the faces. More specifically,

A = vo, .., 0,y vn].
1=0

= The (relative) interior of a simplex A is A = A\ OA.
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(a) The 1, 2, and 3 simplices.

SRS

(b) The standard 1 and 2 simplices.

Figure 3.2.1: A-complexes.

Example 3.2.2. For A% = [e}, ea, 3] we have

OA? = [eg, e3] U [e1, e3] U [e1, €3]

Definition 3.2.3. A A-complex structure on a topological space X is a collection of maps oo : A™M®) — X
for « € A and n(a) € N with the following properties.

1. 0alAnce is injective for all o € A, and for x € X there is a unique o € A such that x € o, (A"(O‘)).

2. The restriction of o,, to its faces is equal to og for some § € A with n(8) = n(a) — 1.

3. U C X is open if and only if o,'(U) is open in A™) for all a € A.

Example 3.2.4.

1. The torus is two A2, three A and one A°,

b
v v
U
a a
L
v v
b

2. The dunce hat is constructed by identifying the faces of a A% with each other. As A-complex this can
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be seen as one A2, one A! and one A°.

3. One can construct a A-complex structure on RP™ through an inductive argument.

= Consider antipodal points vy, v1 on S' and label the connecting segments a = [vg,v1] and b =
[vg,v1]. Then RP! s the identification of vy = v1 and a = —b.

= The equator of S™ is homeomorphic to S"~'. On S™~! we can construct a A-complex structure for
RP™! by the inductive assumption. The complement of the equator is the disjoint union of two
D™ \ D™, each of which is homeomorphic to the interior of A™. The A-complex of RP" is then
given by identifying the A™ with opposite orientations along the equator.

An illustration of the A-complex structure for RP? is given below.

b
U1 Vo
U
a a
L
Vo V1
b

3.3 Homology Groups

3.3.1 Simplicial Homology

Let X be a A-complex. The free abelian group generated by o, : A™®) — X for n(a) = n, denoted A, (X), is
referred to as the n-chains of X. We represent elements of A,,(X) as

§ CaO0q

acAn(a)=n
for co € Z with finitely many of the ¢, non-zero.

Example 3.3.1. For T the torus as given by statement 1 of Example the n-chains are given by the
following.

. A(T

12

V7.

12

)
L] Al(T) aZ@bZ@CZ
)

= A(T)2UZ @ LZ.

12

» A, (T) =0 forn > 3.
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Definition 3.3.2. The boundary homomorphism 0,, : A, (X) — A,,_1(X) is given by

n

an(aa) = Z(_l)iaa|[’U0,...,’fli,...,v"]'

=0

In particular, we let 0y = 0.

I Lemma 3.3.3. With 8, and 8,,_1 as given by Definition|[3.3.2, we have 8,,_1 0 d,, = 0.

Proof. Observe that

On1(0n(0)) =Y (1) (=1) 0lug.....t ot

O

Remark 3.3.4. Geometrically, Lemma(3.3.3 holds as the composed map gives us the n-simplices restricted to
the (n — 2)-ordered faces by removing two vertices from the n-simplices. Removing these vertices in different
orders results in each restriction appearing twice in the sum. Due to the changing signs, these cancel each
other and thus we are left with the zero map.

Definition 3.3.5. A chain complex of abelian groups (C., ) is the chain

L2, By B o B, (3.3.1)
where each C; is an abelian group and the maps 0,, are homomorphisms such that 0,, 0 9,11 = 0 for all n € N.

Let (C,,0) be a chain complex. Note that ker(d,,) C C,, and im(9,+1) C Cy,. In particular, elements of ker(d,,)
are referred to as cycles and elements of im(9,,+1) are referred to as boundaries. For b € im(9,,+1) we have that
b = On+1(a) for some a € Cp41, so that 9,(b) = (O, 0 Ony1)(a) = 0 meaning im(dp41) C ker(dy,).

I Lemma 3.3.6. The sequence (C,,0) is a chain complex if and only if im(9,,+1) C ker(9,).

Proof. (=). Let & € im(0,,41), then there exists a y € C,, 1 such that 8,,11(y) = x. Therefore, as 9,00,+1 =0
it follows that
On(x) = (0p 0 On+1)(y) =0,

which implies that = € ker(9,).
(«). Let y € Cpy1, then Opt1(y) € im(Op41) C ker(9y,), which implies that

(On © Ont1)(y) = 0.

Therefore, 9, 0 Op+1 = 0, making (C,, d) a chain complex. O

Definition 3.3.7. The n'" homology group of a chain complex, as given by (3.3.1)), is

H, (C,,0) = ker(0,)/im(0n41)-
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Definition 3.3.8. The n'" simplicial homology group of a chain complex, as given by (3.3.1)), is
H2(X) = Ho(A(X),d) = ker(dy,) /im (0t 1).

Remark 3.3.9. Elements of a homology group H,, are cosets referred to as homology classes.

Example 3.3.10.

1. Consider X = S', with a vertex v, and an edge e.

(%

= The groups Ag (Sl) and A4 (Sl) are both Z as they are generated by {v} and {e} respectively.
= Forn > 2, the groups A, (S') are trivial as S' has no n-simplices.
= The boundary map 01(e) =v —v = 0.

Therefore,

Z n=0,1
H; (Sl)N{O n > 2.

2. Consider X =T the torus, with a vertex v, three edges (a, b, c) and two 2-simplices (U, L).

b
v v
U
a a
L
v v
b

» Ao(T) 2 Z as it is generated by {v}, A(T) 2 ZBZDZ as it is generated by {a,b,a + b — c}
and Ao (T) 2 Z @ Z.

= The boundary 0, = v —v = 0.

The boundary map 0 is given by 05(U) = 02(L) = a + b — c. In particular, 02(pU + qL) = 0 only
if p=—q. Soker(0s) is generated by U — L.

Therefore,
Z®7Z n=1
HXT)=!{7Z n=0,2
0 n > 3.
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3. Consider X = K the Klein bottle, with a vertex v, three edges and two 2-simplices (U, L).

b
v v
U
a a
L
v v
b
Then
(v) n=
AL (K)={ (a,b,c) n=1
(U,L)y n=2
Moreover,
9 =0
01(a) =01(b) =0(c) =v—v=0
RU)=a+b—c, &(L)=a—b+c.
Note that

0=0:(pU +qL) = (p+qla+(p—qb+ (¢ —p)c

implies that p +q = 0 and p — q = 0, which happens if and only if p = q = 0 and thus ker(ds) = 0.
Therefore,

Ho(K) = ker(dp) /im(d1) = (v) = Z,

and
Hy(K) = ker(0;)/im(0s)
= (a,b,c)/{a+b—c,a—b+c)
={a+b—cb,c)/{a+b—c,2b—2c)
— (b, /(26— 20)
=(b—1c¢,c)/{2b—2¢)
=7/2Z & Z.
Similarly,
HQ(K) = ker(ag)/lm(ag,) = 0,
therefore,
Z n=20
Hy(K)={Z/2207 n=1
0 n > 2.

4. For m € N consider X obtained from A™ by identifying faces of the same dimension. Then

Z n<m

0 otherwise.

An(X) = {

Let A™ be the generator of A,,(X). Then

L A +A" 1 n<m, n even
B(A™) = S (=1 [0, ., 05, 0] = =M,
(&%) Z( Y Lo E Un] {0 otherwise.

=0
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Therefore,
Z n=0,n=m withm odd.
0 otherwise.

Hn(X) = {
Exercise 3.3.11.

1. Using the A-complex of RIP? provided in statement 3 of Examp/e determine the homology groups
of RP?.

2. By constructing a A-complex structure on S* x (S' v S'), computes it homology groups.

3.3.2 Singular Homology

Definition 3.3.12. A singular n-simplex in a topological space X is a continuous map o : A™ — X.

A singular n-simplex o does not have to be a well-behaved map, in particular, it can have singularities. Thus, a
singular n-simplex is more general than a A-complex as the image of o does not necessarily have to be a simplex.
The free abelian group of the singular n-simplices in X is denoted C,,(X). Elements of C,,(X) are finite singular
n-chains of the form >, n;o; for n; € Z where o; is a singular n-simplex. As the space of singular n-simplicies
is larger, when working with C,,(X) in practice we are less likely to encounter finitely generated groups as we did
in the case of simplicial homology.

Definition 3.3.13. The boundary map 0,, : C,(X) — C,_1(X) is given by

n

an(g) = Z(_1)7;0-|[U1,..‘7f)i,..‘,vn]7

=0

where o is an n-simplex.

I Lemma 3.3.14. With 9,, and 0,1 as given by Definition[3.3.13, we have 8,,_1 0 9, = 0.

Proof. Proceeds in the same way as Lemma [3.3.3 O

From Lemma[3.3.14] it follows that
L o) 29 op(x) 250 (3.3.2)

is a chain complex.

Definition 3.3.15. The n'" singular homology group of the chain complex (3.3.2)) is

Ho(X) = ker(8h) /im(Ongr).

I Proposition 3.3.16. /f X and Y are homeomorphic then H,(X) = H,(Y).

A simplicial homology can be constructed from a singular homology. Let X be an arbitrary space, and define the
simplicial complex S(X) as the following A-complex.

1. One n-simplex A7 for each n-simplex o : A™ — X.
2. Attach A” to the restrictions of o to the (n — 1)-simplices of JA™.

From this construction we have that H2(S(X)) = H,(X) for all n € N.
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Proposition 3.3.17. For a topological space X = |, X, where the X, are path-connected, we have that

H, (X) = @D Ha(X.).

Proof. Since A™ is path-connected and o is continuous, it follows that a singular n-complex o : A™ — X has a
path-connected image. In other words, o : A™ — X, for some «. Thus,

Cu(X) = P Cu(Xa)

The boundary maps 9, preserves this decomposition, so 9,(Cy, (X)) C C,—1(Xy) implies that ker(9,) and
im(0p+1) split into direct sums. Therefore,

H,, =ker(9,)/im(9n41) = € Ha(Xa).

Proposition 3.3.18. If X is a non-empty, path-connected topological space, then
Hy(X)=Z.

Proof. Since 0y = 0 we have Hy(X) = Co(X)/im(0;). Let € : Co(X) — Z be given by
Zniai — Zni.
Clearly, € is surjective. Let o : A™ — X be a 1-simplex. Then

81(0) = U|[v1] - O|[vo]’

and so €(01(0)) = 1 —1 = 0, which implies that im(0;) C ker(e). On the other hand, € (3, n;0;) = 0 implies
that >, n;, = 0. The o; are singular O-simplicies, which are just points of X. Let zy € X and let oy be the
corresponding O-simplex. That is, g : AY — X is given by A® = [v] — zo. Let 7; : I — X be a path from
a base point zg to o;([v]). We can view 7; as a singular 1-simplex since [vg,v1] is homeomorphic to Al. In
particular, 7; : [vg,v1] — X is such that 0;(7;) = o; — 09. Hence,

o1 (E nm) = E nio; — g n;og = E n;o;,
i ; ; i

using the fact that >, n; = 0. This means that ). n;0; € im(9d;) and so ker(e) C im(0;). Consequently, we
have ker(e) = im(0;). Therefore, from the first isomorphism theorem, it follows that

Hy(X) = ker(dp)/im(d1) = Co(X)/ ker(e) = Z.

O

Remark 3.3.19. From Proposition [3.3.17] and Proposition [3.3.18 we deduce that for an arbitrary space X
the zeroth singular homology group Hy(X), is a direct sum of Z. In particular, the rank of this partial sum
indicates the number of path-connected components of X.
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Proposition 3.3.20. /f X is a point, then

Z n=0
0 n>0.

H,(X) = {

Proof. Since X is just a point, for each n € N there exists a unique singular n-simplex, o, : A" — X, so
Cp(X) = Z for all n € N. Observe,

- ; 0 n odd
an(an) = Z(fl)zo—n—l == {
= On—1 T even,
which shows that 0,, = 0 if n is odd, and an isomorphism if n is even. Therefore,

=2 o (X)) 2 () 2

[~ [~

0 7 ~ 7 0

So H,(X) = ker(9,)/im(0p+1) = 0 for n > 1. Using Proposition |3.3.18| we know that Ho(X) = Z as X is
path-connected. O

3.3.3 Reduced Homology Group

Definition 3.3.21. The reduced homology group E(X) is the homology group of the augmented chain

L2 o) 22 0p(X) -z 2 0,

where € : Co(X) — Z is given by

: (; ) o

i

Remark 3.3.22. Recall from Proposition [3.3.18 that € is surjective and € 0 9; = 0. Thus,
IR O (x) 2y 2 Gp(X) -5z 2,

is a chain complex so that H,(X) is well-defined.

I Proposition 3.3.23. For a space X we have Hy(X) & fIVO(X) 7.

Proof. Since € : Cy(X) — Z is surjective it induces a surjective homomorphism ¢, : Ho(X) = Co(X)/im(01) —
Z. In particular, ker(¢e) = ker(e)/im(9;) = Ho(X). Therefore, by the first isomorphism theorem we have

Ho(X)/Ho(X) 2 Z

which implies that .
Hy(X) = Hy(X) & Z.
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Corollary 3.3.24. If X is a point, then

H,(X)=0
for all n € N.
Proof. Follows immediately from Proposition [3.3.20] and Proposition [3.3.23 O

~

Note that for n. > 1 we have H,,(X) = H,(X) as the augmented chain is the same as the original chain complex
at these points. For the augment chain complex we can also consider

ker(9y)/im(e) = Z/Z = {0}.
3.4 Homotopy Invariance
Definition 3.4.1. For chain complexes (A.,0*) and (B,,0%), a chain map f : (Al,0*) — (B.,05) is
collection of homomorphisms f,, : A, — B, such that 85 o f,, = f,_1 0 9.

A
n—1

3;?4—2 an+1 a2
N N S S T

lfn-f-l lfn lfﬂ 1
BB B aB

.”—“>Bn+1%3 *>Bn T
Remark 3.4.2.
1. For our purposes, we have 02 = OF being the boundary map.

2. A chain map gives a mechanism to transfer between chain complexes. For topological spaces X and Y
let f: X =Y beamapand let fyu: Cyh(X)— C,(Y) be given by

fylo)=foo
for o : A™ — X and extend it linearly to elements of C,(X). Observe that

(fx00)(0) = fz (Z(_l)ia[Uo,-~~7f)i7-~~7vn]>

=0

n
Z fOO' |[U0a Disee 77’71]

1=0

do fy) (o)

so fu 00 = 0o fu meaning fy is a chain map between (Co(X),0) and (Co(Y'),0). Note that for
a € Cy(X) with 0(o) = 0 we have

(@0 fy)(a) = (fgo0d)(a) =0

and so fyu maps cycles to cycles. Similarly, as

fy 0 (9(B)) = 9o (f4(8))

we deduce that boundaries are mapped to boundaries. In particular,

—~

fu(ker(0,,)) C ker(9y,)
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and

f4(im(On11) € im(Ont1)

so that f induces a homomorphism f,. : H,(X) — H,(Y).
« X Ly % Z then (go f), = g. o fu.
= (dx). =idgy, (x)-
The space A™ x I can be divided into (n + 1)-simplices. Let
A" x {0} = [vg, . .., Up]

and
A" x {1} = [wo, . . w),

where v; and w; have the same projection under A™ x I — A™. We can interpolate from [v,...

[wo, . .., wy,] through a sequence of n-simplices. Starting from [v, ...,
[UOa s 7Un—17wn}7
then to
[U07 ceey Un—2,Wn—1, wn]

until arriving at

[wo, .. ., Wy
The region between [UQ,. ..,vi,wi+1,...,wn] and [’Uo,...,’l}i_l,’wi,. ..
[V0y -+ Vi Wiy oy W]

vy] we move to

,Wy] is the (n + 1)-simplex

Altogether, we see that A™ x I is the union of the (n + 1)-simplices given by

[0y -« vy Uiy Wiy oy W],

that intersect along the face of the next n-simplex in the sequence.

Figure 3.4.1: The decomposition of A3 x I.

I Theorem 3.4.3. If f,g: X — Y are homotopic then f, = g..

,Un] to

Proof. Let F': X x I — Y be a homotopy from f to g. Let 0 : A™ — X be a singular n-simplex. Consider

AP x T8 x w1y,
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Using the decomposition of A™ x I into (n + 1)-simplices, consider P : C,,(X) — C,,41(Y) given by

n

P(U> = Z(_I)ZF © (U X id)|[v07...,vi7wi7...,w,,b]-

=0

Let o : A™ — X be a singular n-simplex, then

NE

(0o P)(o)=10 ( (—=1)'F o (0o x id)|[v0,4..,vi,wi,4..,wn]>

=0

n
Z JF o (o x ld)l (00,0500, 06, Wi sy W]
i=0

S
E J+1 .
Fo (U X ld)|[vo,...,vi,wi,...,wj,..A,wn]'
j2i

If i« = j, then the terms cancel except for

F © (U X id)|[f)0,w0,...,’wn] = g o0 = g#(U)

and
Fo (o xid)|,,...vpm0, = —f o0 = —fu(0).
The terms ¢ # j sum up to —(P o0 9)(0o) since
P °© a ZZ ]F © (J X 1d)|[1)0,...,’u7,11)7, w], wn]
= 0]<Z
+ ZZ JFO (U X ld)|[1)0,...,17_7‘,....,'Ui,’u),‘,,...,’wn]'
=0 j>1

Hence,
aOP:g#—f#—POO'.

Cn+1(X *> C ( ) *> Cn 1(X)

/f#(/ Qg#/c

Now if o € C,,(X) is a cycle, that is d(a) = 0, then
gu(a) = fg(a) = (00 P)(a) + (P o 0)(a) = (9o P)(a),

meaning g4 (a) — fu(c) is a boundary. Thus, g4 (o) — fx () is in the identity homology class since the homology
group quotients out the boundary. This means that g4 («) and fu(a) are in the same homology class and so

g+([a]) = fi([a]). H

Crn (V) —2— (Y)

Remark 3.4.4. The relation
3OP+POa:g#—f# (34].)

is expressed by saying that P is a chain homotopy between the chain maps fu and gx. The proof of Theorem
shows that if (3.4.1) is satisfied then the chain maps induce the same homomorphism on homology
groups.
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I Corollary 3.4.5. If f: X — Y is a homotopy equivalence, then f, is an isomorphism.

Proof. Let g : Y — X be a continuous map such that fg ~idy and gf ~idx. Then

Similarly, g, f« = id which implies that f, is an isomorphism. O
Similar results hold for reduced homology groups, as given in Definition [3.3.21] Let f: X — Y be a map, and
then construct the chain map fu : C,(X) — C,(Y) for the chains (Ce(X),d) and (Ce(Y'),0) as in statement

2 of Remark [3.4.2l Then for the corresponding augmented chain complexes, we let fu : Z — Z be the identity
map. Doing so we observe that

= <Z f#(%‘)@)

= (€0 f4) (o).
Therefore, we have
s O (X) 2 (X)) — = Z —— 0
b e
s Ol(Y) =25 Cp(Y) ——Z —— 0

in turn constructing a chain map for the augmented chains of (Ce(X), 0) and (Ce(Y'), D). Let the prism operator
P :Z — Cy(Y) be the zero map such that for v € Cy(X) we have

A(P(v)) — P(8(v)) = 8 (F o (v x id)) — 0
=Fo (U X id)|[w] —Fo (U X id)‘[v]
= g#(v) = f(v).

Therefore, P is a chain homotopy between the extended chain maps f4 and g4 for the augmented chains of
(Ce(X),0) and (Ce(Y), 9).

C1(X) *>C’0 %Z%O
/t#glg/
C (Y *>Co *>Z*>O

Hence, the proof of Theorem holds for the augmented chain complexes, allowing us to conclude that the
induced homomorphism between reduced homology groups is invariant under homotopy. Thus, we obtain a result
similar to Corollary [3:4.5] which says that if f : X — Y is a homotopy equivalence then f, is an isomorphism
between the reduced homology groups.

Example 3.4.6. Let X be a nonempty set.

1. Endow X with the trivial topology {(), X}. Then X is homotopic to a point zy through the homotopy
H: X xI— X given by
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Therefore, with Corollary[3.4.5] it follows from Proposition that

Z n=0
0 n>0.

H,(X) = {

2. Endow X with the discrete topology. Then the path-connected components of X are the individual
points of X. Therefore, by Proposition we have that

Ho(X) = D Ho({z}) =

{@xexz n=0
rzeX

0 n > 0.

Exercise 3.4.7. Fork € N find H,, (R*) for every n € N.

3.5 Exact Sequences and Excision
3.5.1 Exact Sequences

Relationships between H,, (X), H,(A) and H,(X/A) for A C X are useful to establish as CW-complexes are
built inductively from subspaces.

Definition 3.5.1. A sequence of group homomorphisms of abelian groups,
LR, S

is exact at A, if ker(ay,) = im(a,41). A sequence

On41

Oy @ Qpy—
LR AL A, A, TS

is exact if it is exact at A,, for all n € N.

Remark 3.5.2. Let (A,,a) be an exact sequence.
1. Using Lemma(3.3.4] it follows that (A, ) is a chain complex.
2. The homology groups
H,(A.,a) =ker(ay,)/im(a,11) = ker(ay, )/ ker(ay,) =0

are trivial.

Exercise 3.5.3.
1. Show that 0 — A -5 B is exact if and only if ker(a) = {0}.
2. Show that A -+ B — 0 is exact if and only if im(a) = B.
3. Show that 0 — A -+ B — 0 is exact if and only if a is an isomorphism.

4. Show that 0 —s A -5 B 25 ¢ — 0 is exact if and only if the following hold.

(a) ker(a) = {0}.
(b) ker(8) = im(«).
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(c) im(B) = C.

In particular, we have that C = B/A.

Remark 3.5.4. An exact sequence of the form of statement 4 in Exercise[3.5.3 is referred to as a short exact
sequence.

Example 3.5.5. Suppose that the sequence
05A4-2-505B%22 52505257250
is an exact sequence, where i : Z> — 7 is given by i(x,y) = (z,0) and j is an isomorphism.
» Using statement 3 of Exercise[3.5.3 it follows that A = Z.

» Note that B/ ker(v) = im(v)), which by exactness means that B/im(yp) = ker(i), hence B = Z.

= Note that C/ker(p) = im(u), which by exactness means that C'/ ker(u) = ker(j) = 0, hence C = 0.

Lemma 3.5.6. Consider the following commutative diagram of abelian group homomorphisms, where the
rows are exact.

A b ooy p_3,E

R

A —-5 B 250 L DY

Then if e,(,0 and v are isomorphisms then 1 is an isomorphism.

Proof.

1. Let ¢ € C'. Then u(c) € D’ so that there exists a d € D such that

as 6 is an isomorphism. In particular,
v(0(d)) = 1(6(d))

due to commutativity. By the exactness of D’ we have v(6(d)) = 0 and so ¢(6(d)) = 0. As ¢ is an
isomorphism it follows that §(d) = 0. Thus, as D is exact

d=~(c)

for some ¢ € C. In particular,
0(v(c)) = 0(d) = n() .
As 0(v(c)) = u(n(c)) by commutativity it follows that

p(nc) —c)=0

as  is a homomorphism. Therefore, by the exactness at C’ we have

n(e) - = A(V))

for some b’ € B’. As ( is an isomorphism &’ = ((b) for some b € B, and thus

A(b') = AC(D)) = n(B(D)
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where the second equality is by commutativity. Hence,

and so

which shows that 7 is surjective.

2. Let n(c) = 0. Then u(n(c)) = 0. Therefore, by commutativity, we have that 6(y(c)) = 0. By the injectivity
of 6 it follows that y(¢) = 0. Using the exactness at C' it follows that ¢ = §(b) for some b € B. Thus,

where the last equality follow by commutativity. Using the exactness of B’ we have

¢(b) = ()

for some a’ € A’. In particular, as € is an isomorphism there exists an a € A such that

and so by the injectivity of ¢ we have that
b— afa) =0.

Applying 3, it follows that
¢ = plafa)) =0,

where the second equality follows by exactness at B. Thus, 7 is injective.
By combining 1 and 2 it follows that 7 is bijective and thus an isomorphism. O

Exercise 3.5.7. Suppose
0—A%BY%0c—0

is a short exact sequence. Moreover, suppose that there exists a homomorphism p : C — B such that vy op = id.
Using Lemma|[3.5.6, show that . : A& C — B given by

v(a,c) = ¢(a) + p(c)

is an isomorphism.

Definition 3.5.8. Let A C X, for X a topological space. Then A is a strong deformation retract of X if there
is a deformation retractionr : X — A, and amap F : I x X — X such that forx € X,a € A andt € I we
have

1. F(0,2) =z,
2. F(1,z) =r(x), and
3. F(t,a) = a.
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Remark 3.5.9. Statement 3 of Definition is the strong aspect of a strong deformation retraction since
the other conditions hold under Definition A strong deformation retraction requires a homotopy which
fixes the set A.

Definition 3.5.10. Let ) # A C X be closed, for X a topological space. Then (X, A) is a good pair if A has
a neighbourhood in X that is a strong deformation retract to A.

Example 3.5.11.

1. The pair (D",S"~') is a good pair, since S"~ is a deformation retraction of D"\ {0}.

Figure 3.5.1

2. Let
A{i:neN}U{O}g[O,l].

Then ([0, 1], A) is not a good pair. To see this, note that any neighbourhood U C X of A necessarily
contains a path connected component U C U such that ‘U N A‘ > 2. A deformation retractr : U — A

will be such that r (ﬁ' ) is not path connected, which contradicts the connectedness of U.

3. Let X be a CW complex, and let A be a non-empty subcomplex of X. Then (X, A) is a good pair.

Theorem 3.5.12. Let (X, A) be a good pair, then there is an exact sequence
+— Hy(A) 5 Hy (X) 25 Hy(X/A) 25 Ho(4) = Ho(X) 2 Ho(X/A) — 0, (35.1)

where i : A — X s the inclusion map and j : X — X /A is the quotient map.

Corollary 3.5.13. In the setting of Theorem[3.5.12 we have that

— 7 i=
L

Proof. Recall from statement 1 of Example |3.5.11| that (D",S"‘l) is a good pair. Moreover, for n > 0 recall
that D™/S"~1 = S, Therefore,

s H (ST B HOM S H S S H (ST B H (DY) D H, (S .
—— ——
0 0

Thus, using statement 4 of Exercise , for n > 0 we have H; (S") & H,_, (S*=1) fori > 0 and Hy (S™) = 0.
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= Since SC is just two points, from Proposition [3.3.17|and Proposition [3.3.20 it follows that that Hj (%) =z
and H; (S°) =0 for i > 0.

= Suppose that
Z i=n-1

s -

otherwise.

Then
—~ — Z 1—1=n-1 Z 1=
H; (Sn) - H,_, (Sn—l) _ { ? n _ { 1="n

0 otherwise 0 otherwise.

Therefore, we conclude by induction that

Z i=mn

0 otherwise.

E<S">—{

I Corollary 3.5.14. There exists no retraction r : D™ — 9D".
Proof. Assume that r : D™ — 0D™ is a retraction. Let i : 9D™ — D™ be the inclusion map such that ri = idypn,
then r.i, = (ri). = id. However,

—_~—

H,_, (0D") =5 H,_, (D") - H,_, (D),

Z 0 Z

implies that 7, = 0 and r, = 0 which gives a contradiction. O

I Theorem 3.5.15 (Brouwer Fixed Point Theorem). Every continuous map f : D™ — D™ has a fixed point.

Proof. Assuming no such fixed point exists one can construct a retraction r : D™ — 9D in the same way as
done in the proof of Theorem [2.2.47] This contradicts Corollary [3.5.14 and so f must have a fixed point. O

Example 3.5.16. Let A be a finite set, then (R, A) is a good pair. Therefore, as H;(R) = 0, it follows from
B5I) that Hy (R/A) = Ho(4) = &1'7,
3.5.2 Relative Homology Group

We introduce relative homology groups to prove Theorem [3.5.12] Intuitively relative homology groups allow one
to ignore certain structures. More specifically, for a topological space X and A C X let

Effectively, C,(X, A) ignores the chains in the subspace A. Let 9 : C,,(X) — C,,—1(X) be the boundary map so
that
0(c: A" = A) € 9(C,,(A)) C C,,—1(A).

This induces the homomorphism 9 : C,, (X, A) — C,,_1(X, A) with 909 = 0 so that we have the chain complex

s Ot (X, A) -2 (XL A) D O (X A) —
for which we make the following remarks.

= The homology groups are the relative homology groups, H,, (X, A).
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= The relative n-chains are elements of C,, (X, A).
= The relative n-cycles are elements [a] of ker(9) C C,, (X, A) such that d(«) € C,—1(A).

= The relative n-boundaries are elements [a] of im(9) C C,,(X, A) such that o = 9(5) +y for 8 € Cpy1(X)
and v € C,(4).

Definition 3.5.17. A short exact sequence of chain complexes is
0= (Ae,6) = (Be,d) = (C4,d) — 0
where i and j are chain maps such that
O—>AnL>Bni>Cn—>0

is a short exact sequence for every n € N.

0 0 0

It will be interesting to understand whether one could zig-zag along a short exact sequence of chain complexes,
to encounter the homology groups of the different groups. In particular, we would like to consider

oo Hy(A) 25 Hy(B) 25 Ho(C) -5 Hyy 1 (A) 25 Hy 1(B) 25 Hy 1 (C) — . ...

However, to do so requires the construction of a connecting map 0 : H,(C) — H,_1(4).

Definition 3.5.18. Let

0 — (Ae,6) == (Be,0) - (Co,d) — 0

be a short exact sequence of chain complexes.

L

.*>An+1i> LAn,lim..
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Let c € C,, be a cycle. Then ¢ = j(b) for some b € B,,, as j is surjective by exactness. Then

which implies that 0(a) = 0 as i is injective by exactness, so that a € A, _; is a cycle.

ac€ A,

It

be B, —2 8(b) € Bp_y

I

ceC,

Let 0 : H,(C) — H,_1(A) be the map given by [c] — [a].

Exercise 3.5.19. Show that the map 0 : H,(C) — H,_1(A) of Definition is well-defined and a
homomorphism.

Theorem 3.5.20 (Zig-Zag). Suppose
0 — (Ae,6) == (B.,d) = (C4,d) — 0
is a short exact sequence of chain complexes. Then the sequence
i B ) i i
2 Hn(A) — Hn(B) ]—> Hn(c) — Hn—l(A) — Hn—l(B) ]_> Hn—l(c) e
is exact.
Proof.

= Since ji = 0, we have j,i, = 0 which implies that im(é,) C ker(j).

= We have 9j, = 0 from Definition [3.5.18) which implies that im(j.) C ker(9).

= Since .0 takes [c] to [0b] = 0, we have that 7.0 = 0 which implies that im(9) C ker(i.).

= A homology class in ker(j.) is represented by a cycle b € B,, with j(b) a boundary, such that j(b) = 9 (¢)
for some ¢’ € C,,11. Since j is surjective, we have ¢’ = j (b') for some b’ € B, ;1. In particular,

J(b=01)) =5(b) =5 1) =4b) -0 @) =0
since 0 (5 (b)) =0 (') = j(b). Therefore, b — 9 (V') = i(a) for some a € A,,. This a is a cycle since
i(9(a)) = 9 (i(a)) =0 (b— 0 (b)) = d(b) =0,

and ¢ is injective. Hence,
i«([a]) = [b—OV] = 0],

which shows that ker(j.) C im(i.).
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= With the notation as in Definition [3.5.18} if ¢ represents a homology class in ker(9), then a = 9 (a’) for
some o’ € A,,. Then b—i(a’) is a cycle since

9(b—i(a")) = d(b) - (i () = A(b) — i (9 () = A(b) — i(a) = 0.

Moreover,
jb—i(d))=jb)—j(i(a))=jb)=c
and so j. maps [b —i(a’)] to [c], hence ker(9) C im(j.).

With this, for any pair (X, A), consider the sequence of short exact sequences
0 — Co(A) =5 Cu(X) L5 Cu(X, A) — 0,

for ¢ the inclusion map and j the quotient map. Using Theorem we obtain a long exact sequence of
homology groups,

oo Hy(A) 25 Hy(X) 25 Ho (X, A) -5 Ho(A) 25 Ho(X) 25 Ho(X, A) — 0.

More specifically, if [a] € H, (X, A) is represented by a cycle o € C,,(X), then 9([a]) is the class of the cycle
d(a). Hence, 0 : H, (X, A) — H,_1(A) is given by d([a]) = [0(a)]. In particular, this long exact sequence of
homology group formalises the intuition that H,, (X, A) measures the difference between the groups H,,(X) and
H,(A). Indeed, exactness implies that if H, (X, A) = 0 then A < X induces an isomorphism H,,(A) = H,(X).
We can also consider the sequence of short exact sequences provided by the augment chains.

In particular, note that when A # () we have that EL(X, A) =2 H,(X,A). Thus, applying Theorem [3.5.20| to
this sequence of short exact sequences yields the long exact sequence

e~

oo Hy(A) = Ho(X) = Ho (X, A) = Hy_1(A) = Hy (X)) = Hy_ (X, A) = ... (3.5.2)

Observe the following.
1. If A= {z} C X, then since H,({z}) = 0 for all n € N, it follows from (3.5.2) that H, (X,z) = H,(X).

2. Amap f: X — Y such that f(4) C B induces the chain map fyu : C,(X,A) — C,(Y,B). Since
f4#0 = O fx holds for absolute chains it also holds for relative chains. Therefore, by statement 2 of Remark
we get an induced homomorphism f, : H,(X, A) — H, (Y, B). Such induced maps have the property

that (f 0 g). = fi o g..
Example 3.5.21. For the pair (D", 0D"), the maps O : H; (D", 0D") — H;_, (S"=1) are isomorphisms for
1 > 0 since E (D™) =0 for every i € N. Thus,

Z i=mn

H; (D",0D") =
( ) {O otherwise.
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Definition 3.5.22. A homotopy between maps f,g: (X,A) — (Y,B) isamap F : [ x X — Y such that
1. F(0,z) = f(x),
2. F(1,z) = g(x), and
3. F(s,a) € B,

forallz € X, se€ I and a € A.

I Proposition 3.5.23. If f,g: (X, A) — (Y, B) are homotopic then f, = g..

Proof. Recall the prism operator P : C,,(X) — Cp4+1(Y) constructed in the proof of Theorem [3.4.3] The
operator P maps C,(A4) to C,41(B) and so induces a map P’ : C,(X)/Cp(A) = Cry1(Y)/Cry1(B). As
(3.4.1)) remains valid after passing through quotients it follows by Remark that f. = g.. O

For a topological space X consider the triple (X, A, B), where B C A C X such that
(A, B) = (X, B) = (X, A).
This induces the short exact sequence of chain complexes

0— Cn(A,B) —» Cn(X,B) — Ch(X,A) =0
—— —— ——
Cn(A)/Cn(B)  Cn(X)/Cn(B)  Cn(X)/Cn(A)

which in turn yields the long exact sequence

-+— H,(A,B) - H,(X,B) » H,(X,A) - H, 1(A,B) > H,_1(X,B) > H,_1(X,A) — ...

3.5.3 Excision

Let X be a topological space, and consider a collection of subspaces U = (U;) C X whose interiors form an open
cover of X. Then let C¥(X) C C,(X) be the subgroup of chains of the form 3", n;o; where the image of each
o; is contained in some U; € U. Observe that the map 9 : C,,(X) — C,,—1(X) satisfies § (C¥ (X)) C C¥_(X),
and so the groups C¥(X) form a chain complex. Let H%(X) be the homology groups of this chain complex.
In particular, the inclusion map i : C¥(X) — C,(X) is a chain map, so we get an induced homomorphism
iv: HY(X) — Ho(X).

Remark 3.5.24. IfUl = {A, B}, then we denote C¥(X) by C,,(A+ B).

Proposition 3.5.25. The inclusion i : C%(X) — C,(X) is a chain homotopy equivalence, in the sense of
Remark Hence, i induces isomorphism HY(X) = H,,(X) for each n € N.

Proof (Sketch). Step 1: Barycentric subdivision of simplices.

The barycentre of the simplex [vg, ..., v,] is the point b = n%rl >, vi. Inductively, the barycentric subdivision

of [vg, ..., vy] is the decomposition of [vg, ..., v,] into the n-simplices [b, wy, . .., w,_1] where [wo, ..., w,_1] is

an (n — 1)-simplex in the barycentric subdivision of a face [vg, ..., 0;,...,v,]. The n-simplices of the barycentric

subdivision of A™ together with their faces form a A-complex structure on A™. In particular, the diameter of
n

each simplex of the barycentric subdivision of [v, ..., v,] is at most 47 times the diameter of [vo, -« Unl.
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Figure 3.5.2: Barycentric subdivision of A2,

Step 2: Barycentric subdivision of linear chains.

For a convex set Y in Euclidean space, the linear maps A™ — Y generate a subgroup of C,,(Y) referred to as the
linear chains, LC,,(Y"). The boundary map 9 takes LC,,(Y) to LC,,_1(Y), so linear chains form a subcomplex
of the singular chain complex of Y. By convention, LC_1(Y) = Z. Each b € Y determines a homomorphism
b:LC,(Y) = LC,41(Y) by

b([wo, . . ., wy]) = [b,wo, ..., wy].

One can see that 9b + b0 = id, so that b is a chain homotopy between the identity map and the zero map of
the augmented chain complex LC(Y). Let A : A™ — Y be a generator of LC,(Y) with by the image of the
barycentre of A™ under A. Inductively, S(A) = bx(SOA) where by : LC,_1(Y) — LC,(Y), where S is the
identity on LC_;(Y"). One can check that 95 = S0 so that S is a chain map from the chain complex LC(Y") to
itself. Inductively let T : LC,(Y) — LC,+1(Y) be given by TA = by (A — TOX) for n > 0 and setting T' = 0 for
n = —1. One can show that 97 + T9 = id — S so that T' is chain homotopy between S and the identity.

. —— LCy(Y) —— LC1(Y) —— LCy(Y) —— LC_1(Y) —— 0

J/J/M/Tolld

. —— LC(Y) —— LC(Y) —— LCy(Y) —— LC_1(Y) —— 0

Step 3: Barycentric subdivision of general chains.

Let S: Cp(X) — C,(X) be given by So = 04 SA™ for a singular n-simplex o : A™ — X. One can show that
0So = S0c so that S is a chain map. Let T': Cp(X) — Cp11(X) be given by To = 02T A™. One can show
that 0T + T0 = id — S so that T is a chain homotopy between S and the identity.

Step 4: Iterated barycentric subdivision.

A chain homotopy between id and the iterative S™ is given by Dy, = >, .. T'S" as it satisfies 0Dy, + Dy, 0 =
id — S™. For each singular n-simplex o : A" — X, there exists an m € N such that S™(0) lies in CY(X)
since the diameter of S™ (A™) will be less than the Lebesgue number of the cover of A™ by the open sets
o1 (UJ) Let m(c) be the smallest such m. Let D : C,(X) — Cpy1(X) be given by Do = D,,,,y0. Let
p =1id — 9D — DJ. One can show that dp = pd such that p : C,,(X) — C,(X) is a chain map. In particular,
we have that p : C,,(X) — CY(X), thus 9D + DO = id — ip. Furthermore, pi = id since D is identically zero
on CY(X) as m(o) = 0 if o € C¥(X), meaning i is a chain homotopy equivalence with inverse p. O

Remark 3.5.26.

1. The Lebesgue number for an open cover of a compact metric space is a number ¢ > 0 such that every
set of diameter less than € lies in some set of the cover.

2. Barycentric constructions allow for the computation of homology groups using singular simplices.

I Theorem 3.5.27. Let X be a topological space with Z C A C X subspaces such that the closure of Z is
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contained in the interior of A, Z C A. Then the inclusion (X \ Z, A\ Z) < (X, A) induces the isomorphism
Hn(X\ Z,A\ Z) = Hn (X, A)

for all n € N. Equivalently, if A, B C X are such that AU B = X, then the inclusion (B, AN B) < (X, A)
induces the isomorphism
H,(B,ANB)= H,(X,A)

for all n € N.
Proof. Consider the case where X = AU B and U = {A, B} is a cover. From the proof of Proposition |3.5.25
we deduce that 0D + DO = id — ip, and pi = id. In particular, all these maps take chains of A to chains
of A, so they induce quotient maps when we factor out chains in A. These quotient maps also satisfy the
previous formula, thus the inclusion C,(A + B)/C,(A) = C,,(X)/Cp(A) induces an isomorphism on homology.
The map C,(B)/C,(AN B) — Cyp(A+ B)/C,(A) induced by the inclusion is an isomorphism since both

quotient groups are free with a basis consisting of the singular n-simplices in B that do not lie in A. Hence,
H,(B,ANnB)Z H,(X,A). O

Remark 3.5.28.
1. Theorem gives conditions for which the impact of relative groups H,,(X \ A) may be ignored.

2. The equivalent statement of Theorem follows as one can set B = X \ Z and Z = X \ B. Then
ANB=A\Z and Z = X \ B such that Z C A if and only if X = AU B.

Proposition 3.5.29. Let (X, A) be a good pair. Then the quotient map q : (X, A) — (X/A, A/A) induces
an isomorphism q, : H, (X, A) — H,(X/A, A/A) for all n € N.

Proof. Let V' C X be a neighbourhood of A that strongly deformation retracts to A. Note that

[ | |

Hn(X/A, AJA) —— Hn(X/A,V/A) —— H,((X/A)\ (A4/A), (V/A)\ (A/A))
commutes.

= Note (V, A) is homotopy equivalent to A such that H,(V,A) = H, (A, A) =0. As A CV C X, the triple
(X,V, A) induces a long exact sequence

o> Hy(V,A) —» Hy(X,A) - Hy (X, V) = Hy 1 (V,A) — oL
—— ————
0 0

Thus,
H,(X,A) =2 H,(X,V).

Therefore, the upper-left map of the diagram is an isomorphism.
= Similarly, with the triple (X/A,V/A, A/A) and using H,(V/A,AJ/A) =2 H,(A/A, A/A) = 0 we get that
H,(X/A ,AJA) = H,(X/A,V/A).

Therefore, the lower-left map of the diagram is an isomorphism. Hence, with statement 1 and the commu-
tativity of the diagram, we get an induced isomorphism H, (X, V) = H,(X/A,V/A).

= The upper-right and lower-right maps of the diagram are isomorphism by Theorem [3.5.27
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= The right-most vertical map of the diagram is an isomorphism since the quotient map X — X/A induces
a homeomorphism X/A — (X/A)\ (4/A).

Therefore, by the commutativity of the diagram, it follows that the left-most vertical map g, is an isomorphism. [

Remark 3.5.30. Note that A/A is just a point, so that H, (X/A, A/A) (X/A) Hence, using Proposition
we see that for a good pair (X, A) we have H,(X,A) = H,(X/A) for all n € N.

Proof. (Theorem . Using Proposition [3.5.29| we deduce that
H,(X, A) = Hy(X, A) = H,(X/A),
Thus, using (3.5.2]) we deduce the long exact sequence ([3.5.1)) as required. O

Corollary 3.5.31. Let (X,)aca be a collection of topological spaces with x, € X, such that (X,,xs) is
a good pair for all o € A. Let \/ 4, X denote the wedge sum with respect to the x.. Then there is an

isomorphism
H, <|_| Xa> =D Ha(Xa) = H,, (\/)@) :

Proof. Since, (X, A) = (L], Xa,Ll, {za}) is a good pair, it follows by Proposition [3.5.29| that

sz (s (i) (1))
o (e (i) e ) ) = ()

A) g@Hn (Xom‘ra) %@ﬁ;(_}(

Since,

and
it follows that

D, (x.) = I, (\/xa>

«

Example 3.5.32. Using Corollary[3.5.31] it follows that

— == 0 n=0,n2>2
1 ~ 7 (SY) & H, (S)
(s vs) = B ) o () =y "
Similarly,
0 n=0,n>3
H,(S'vs'vs)~H,(S") e H,(S")®H, (S) =2{ZBZ n=1
Z n=2
Recall from statement 2 of Example[3.3.10 that
0 n=0,n>3

HE (8! x 8Y)

12
N
2]
N
S

|



In particular, using Theorem |4.1.2 we can deduce that

0 n=0,n>3
H,(8'x8")=ZoZ n=1
Z n=2.

Hence, S* vV S' vV S? and S* x S have isomorphic homology groups. However, m (S'V S'V S§?) =2 Z x Z,
whereas mq (81 X Sl) = 7 x 7. Therefore, these spaces are not homotopy equivalent despite having isomorphic
homology groups.

Exercise 3.5.33. Let X be an n-dimensional CW complex. Show that EL(X) is free, and I;T;(X) = 0 for
k>n.

Theorem 3.5.34. Let U C R™, V C R" be open and non-empty. Then, if U and V' are homeomorphic then
m =n.

Proof. For x € U, let A:=R"™ \ {z} and B :=U. Then by Theorem we have that
Hy(U, U\ {z}) = Hg (R™,R™ \ {z}).

From the long exact sequence

. = Hy (R™) — Hy, (R™,R™\ {2}) = Hy_y (R™\ {2}) = Hy_y (R™) = ...,
0 0

it follows that o
Hy, (R™,R™ \ {z}) = Hp—1 (R™ \ {z}).

Since R™ \ {x} deformation retracts to S™ ! we deduce that

Z k=m
0 otherwise.

Similarly,
Z k=mn
0 otherwise.

Hp(V,V\{z}) = {

Let h: U — V be a homeomorphism, as h, : Hiy(U,U \ {z}) — Hi(V,V \ {h(x)}) is an isomorphism for each
k € N by Proposition [3.3.16} it must be the case that m = n. O

3.5.4 Naturality

Theorem 3.5.35. Let (A.,0), (B.,0), (Ce,d), (A,,0), (B.,0), and (C,,d) be chain complexes that satisfy

0 Ay — B, —— C, 0
N I
0 A, 5 B, L ! 0
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where each row is a short exact sequence. Then the induced diagram

. — Ho(A) -2 Ho(B) 25 Ha(C) -2 Hoyo1(A) =2 Hyo1(B) 25 Ho1(C) — ...

b 1 I b P I

. — H, (4") =" H, (B') —="H, (C") 2, H,,(4) =% H,,(B) —=H,C) — ...
is commutative.
Proof.

= The first two squares from the left commute since i = '« implies that S.i. = ('), a. and vj = 75
implies that v.j. = (j'), B«

= Recall, from Definition [3.5.18] that 0 : H,,(C) — H,_1(A) is given by 9([c]) = [a], where ¢ = j(b) and
ia) = A(b). As 2(e) = 1(G(4) = J/(B(b)) and #(a(a) = B(i(a)) = BA(b)) = D(A(b)) we have that
A([y(c)]) = [a(a)]. Hence, O (y«[c]) = ax([a]) = a«(d([c])), which means that the third square from the
left commutes.

O

3.6 Mayer-Vietoris Sequences
3.6.1 The Sequence

Theorem 3.6.1. Let X be a topological space with A, B C X such that AUB=X. Let

» 1 :ANB <= A,

= ,: ANB < B,

= j1:A— X, and

= jo:B—X
be inclusion maps. Then we have the exact sequence

- 5 H(ANB) S Hi(A) @ Hi(B) 3 Hi(X) 3 Hy(ANB) 3 Ho(A) & Ho(B) 3 Ho(X) — 0,

where

1 9(z) = ((i1)+ (@), —(i2)+ (2)),

2. ¥(z,y) = (J1)+(2) + (G2)«(y),

3. and 0 is the connecting homomorphism.

Proof. Consider the sequence of chain complexes

0= Co(ANB) -2 Co(A) & Co(B) -5 C(A+B) = 0
where ¢(z) = (z, —) and 9 (x,y) = = + y. Note the following.

1. ker(¢) = {0} since a chain in AN B that is a zero chain in A, or in B, must be the zero chain. Hence, the
sequence is exact at C,,(A N B) by statement 1 of Exercise

2. im(¢) C ker(y) as ¢ = 0. Moreover, ker(¢)) C im(¢) since for any (z,y) € Cn(A) & Cp(B), as
x4y = 0 it follows that z = —y and so z is a chain in both A and B. Thatis, z € C,,(AN B) and
(z,y) = (z, —z) € im(¢). Hence, the sequence is exact at Cy,(A) @ Cy,(B).
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3. Exactness at C,(A + B) follows by definition.

Therefore, we have a short exact sequence of chain complexes, and so by Theorem [3.5.20| we have an induced
long exact sequence

o Hi(ANB) 3 Hi(A) & Hi(B) % Hi(X) 3 Hy(AN B) 3 Hy(A) & Ho(B) 5 Ho(X) — 0.

Remark 3.6.2.

1. Theorem [3.6.]] utility lies in inductive arguments. If one has results for A, B and AN B one can argue
by induction using Theorem [3.6.]] that the result is holds for AU B.

2. Note that in the proof of Theorem[3.6.1 we have used notation as given by Remark[3.5.24,

If AN B # () then we have an analogous sequence for the augmented chain complex. More specifically, we have
the short exact sequence between the augmented chain complexes

i i i

0 —— Co(ANB) —2 Cy(A) @ Cy(B) —2 Co(A+B) —— 0

| I |

0 Z YASY/ Z 0

which induces the long exact sequence of homology groups
- Hi(ANB) % Hy(A) o Hy(B) % Hi(X) % Hy(AN B) % Ho(A) & Ho(B) % Ho(X) -0,

referred to as the Mayer-Vietoris sequence for reduced homology groups. If AN B is additionally path connected
then Ho(A N B) =0 and so the exact sequence

o H{(ANB) -2 Hi(A) @ Hy(B) -5 Hy(X) -5 Ho(ANB) — ...
——
0

implies that

Example 3.6.3. Let X = S" C R**! with x € S™. Let A :=S"\ {x} and B = S"\ {—z}. Then A and B

are contractible so that fl;(A) = EL(B) =0 for all n, and AN B deformation retracts to S"~1. In particular,
by Theorem|3.6.1] we have

—_— — — _ ——

- — Hy(A) @ Hy(B) —» Hy(X) = Hi_1(ANB) = Hi_1 (S""1)(A) & H,_1(B) — ...
0 ;I_v 0

which implies that H; (S™) = H, (S"71) forn > 1. As

Z k=mn
0 otherwise,

f%(sn)%{
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it follows that

3.6.2

Z k=n

0 otherwise.

H?(W)%{

Application

Definition 3.6.4. A continuous map ¢ : X — Y between topological spaces is an embedding if it is homeo-
morphic to its image.

Pro

position 3.6.5. For h : D — S™ an embedding. Then

7, (" \ h (D)) =0

for all 1.

Proof.

For k = 0, we have S™ \ i (D°) =2 R" and so
Hy (8" \ h(D")) =0
for all n.

Suppose H; (S \ h (D¥1)) = 0 for all n. Now let h : I* — S", where we replace D* with I* for
convenience. For contradiction assume there is a cycle a in S\ h (I¥) that is not a boundary in S"\ h (I*).
Let A := S"\ h(I*!x[0,3]) and B := S"\ h(I*7! x [1,1]) such that AN B = S\ h(I*) and
AUB=S"\h(I*1 x {1}). Thus by assumption H;(AU B) =0 for all j, and so from the long exact
sequence provided by Theorem [3.6.1]it follows that

ﬁ;@"\h(ﬂj)%fE(S"\h<ﬂklx[Q;})>@25<8"\h(ﬂle{;J]>).

Hence, « is a cycle but not a boundary in S™ \ A (I*=! x [0,1]) or S" \ A (I*71 x [1,1]). Let I; C I
be the interval such that a is a cycle but not a boundary in S™ \ h (I*~! x I). Repeating this argument
yields a sequence of nested intervals

0,1]=,2L2LD...

where each I; is of length % In particular, this means that « is a boundary of some cycle 8 in S™\
h (1"~ x {x}) for {z} = (0, I;. Note that B = >, n;0; is a sum of finitely many simplifies, with the
image of each o; compact. As the S™\ h (I*~* x {}) for an open cover of S™\ h (I*~! x {z}) it follows
that 3 is a chain in S™ \ h (I*~! x {}) for some i. Thus « is a boundary in S™\ h (I*~! x {z}) which is
a contradiction.

Therefore, we conclude by induction. O

Pro

Proof.

position 3.6.6. For h : S¥ — S™ an embedding for k < n it follows that

Z i=n—k-—1

s\ () - {;

otherwise.
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= For k=0 we have "\ 2 (8%) 2 S"~! xR and so

A ={7 ok

otherwise.

= Suppose the result holds for k — 1. Let h: S¥=1 — S™ be an embedding. Let A :=S"\ 1 (D%) and B :=
S™ \ h (D*) where D% and D* are the positive and negative hemispheres respectively. Using Proposition
it follows that H;(A) = 0 and H,(B) = 0 for all i. With the observation AN B = S™\ 8™\ & (S)
and AU B = 8"\ h(S*71!), from the long exact sequence given by Theorem it follows that

o (5 \ b ($)) = HL (5" \ b (5%).
Thus, using the inductive hypothesis it follows that

ﬁxwxh@%)~{fi:"‘k‘1

Therefore, we conclude by induction. O

otherwise.

Corollary 3.6.7. Let h: S* — S? be an embedding. Then 52\ h (S') consists of exactly two path-connected
components.

Proof. From Proposition we have Hy (S?\ h (S')) = Z which implies that Ho(S?* \ 2 (S')) X Z & Z. In
other words, S\ h (Sl) has two path-connected components. O

Remark 3.6.8.

1. One could just as well replace S? in Coro//ary with R? as S? \ {x} is still connected and R? is
homeomorphic to S? \ {z} through a stereographic projection. This particular case is referred to as the
Jordan curve theorem.

2. Corollary[3.6.7 can be generalised to say that a subspace of S™, or R", that is homeomorphic to S"~!
separates S™ into two path connected components that have the same homology groups as a point.

3.7 Degree

For the continuous map f : S™ — S" let f. : H, (S") — H, (S™) be the induced homomorphism. Since
H, 27 (S") £ Z, it follows that
fe(a) = do

for some d € Z. The integer d is known as the degree of f and is denoted deg(f).

Proposition 3.7.1.

~

. deg (idgn) = 1.
. If f is not surjective, then deg(f) = 0.

2

3. If f ~ g then deg(f) = deg(g).

4. deg(fg) = deg(f)deg(g). In particular, if f is a homotopy equivalence then deg(f) = 1.
5. For R; : S™ — S™ given by

R; (xla-"a‘ria"'axn-‘rl) = (x17"'7_xi7~-'71‘n+1)
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, referred to as the reflection map, we have deg(R;) = —1.
6. For —idgn(x) = —x, referred to as the antipodal map, we have deg (—idg») = (—1)"*1.
7. If f: S™ — S™ has no fixed points then deg(f) = (—1)"*1.
Proof.
1. This is clear since (idg»), (o) = a.
2. Choose a point zp € S™\ f(S™), then f can be factored through
S™ — S"\ {zo} — S™.
Since S™\{x} is contractible we have that H,, (S™ \ {x0}) = 0 and so f. = 0 which means that deg(f) = 0.
3. Thisis clear as f ~ g implies that f. = g..

4. Since (fg)« = fig« it is clear that deg(fg) = deg(f) deg(g). In particular, if f is a homotopy equivalence
then there exists a g : S — S™ such that fg ~ idg,. Using statement 1 and our previous discussion it
follows that

deg(f) deg(g) = deg(fg) = deg (ids») =1
Therefore, as deg(f), deg(g) € Z we must have that deg(f) = £1.

5. It is sufficient to show the result for ¢ = 1.
» Forn =1, letw:[0,27] — S* be given by
w(t) = (cos(2nt), sin(27t)).

Then Ry ([w]) = —[w] and so deg(Ry) =

» Assume that deg(R;) = —1, for B; : S"~! — S"71. Let U = S"\ {N} and V = S"\ {S}, where
N =(0,...,1) and S = (0,...,1). Note that R1(U) = U and R;(V) =V such that the diagram

0 —— Co(UNV) —— Co(U)DCe(V) —— Co(U4+V) —— 0
l(Rl)# l(Rn#ea(Rl)# l(Rl)#
0 —— CoUNV) —— Co(U) & Co(V) —— Co(U+V) — 0

commutes. In particular, this induces the diagram

H,(8") —2= H,_1(UNV) «— H,_1 (S" )

l(Rl)* J/(Rl)* J/(Rl)*

H,(8") —2= H,_1(UNV) +— H,_1 (S")

where i : S"~1 — U NV is given by
i(l‘l,-.-,xn) = (x17"'7xna0)

which is a homotopy equivalence and thus i, is an isomorphism. Moreover, 0 is an isomorphism as
shown in Example The left-hand square of the diagram commutes by Theorem and
the right-hand square commutes by the functoriality of the induced homomorphism, namely (Ryi). =
(R1) .. Therefore, there exists an isomorphism H, (S™) = H,,_1 (S"™'). Thus we can use the
inductive hypothesis to conclude.

Therefore, using induction we conclude the proof.
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6. Since —idgn = Ry ... R,41, it follows by statement 5 that

deg (—idgn) = deg(Ry) ...deg(Ruy1) = (—1)" 1.

7. If f(z) # « for all z € S™, then t — (1 —1t)f(x) —tx is a line segment from f(x) to —x that does not pass

through the origin. Let ( £ ()
(A=t f(z) —tx
MO =0 h 5w —at

such that f; is a homotopy from f to —idg». Thus, using statement 3 and statement 6 we have

deg(f) = deg (—ids») = (-1)""".

Remark 3.7.2. It is also the case that if deg(f) = deg(g), then f ~ g, however, we do not show this here.

Recall that the action of a group G on a space X is a homomorphism from G to the group of homeomorphisms
X — X, denoted Homeo(X). In particular, the action is free if the homeomorphism corresponding to each
non-identity element of G has no fixed points.

Proposition 3.7.3. Ifn is even, then Z /27 is the only non-trivial group that can act freely by homeomorphisms
on S™.

Proof. Let G be a free group action on S™, such that G C Homeo (S™). For f € G, by statement 4 of
Proposition [3.7.1] we have deg(f) = +1. Moreover, for f,g € G we have deg(fg) = deg(f) deg(g) by statement
3 of Proposition E Hence, the degree defines a homomorphism d : G — {£1} = Z/27Z. As the action is
free it follows that if g € G\ {id} then g has no fixed points and so by statement 7 of Proposition we
have that deg(g) = (—1)""! = —1, as n is even. Hence, ker(d) = {id} which implies that either G = {id} or
G=7Z/2Z. O

Definition 3.7.4. A vector field on S™ is a continuous map v : S — R"! such that for each x € S™ the
vector v(x) is tangent to S™ at x.

Theorem 3.7.5. The space S admits a continuous vector field v : S — R™*! that is nowhere zero if and
only if n is odd.

Proof. (=). If v(z) # 0 for all z € S™ let v/ : S — R™~! be given by

Consider
fi(z) := cos(tm)x + sin(tm)v' ().

Then f; € S™ for all x € S™ and for all t € I. Thus, f; is a homotopy from idgn —idgn, so

Thus n is odd.
(«). Let n =2k — 1, then
’U(Il;---,%zk) = (*IQ,Il,---a*!EQk,IQk—l)
is a vector field on S™. O
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3.8 Solution to Exercises
Exercise [3.3.11]
Solution.

1. The A-complex structure on RIP? is given by

b
U1 Vo
U
a a
(&
L
Vo U1
b
Hence,
<U07 U1> n=
A, (RP?) =< (a,b,c) n=1
(U,Ly n=3.
Since,

O01(a) = v1 — vy
(91(17) =71 — Vg
81(0) = V9 — Vg = O,

it follows that
{ker(@l) ={a—b,c)

im(@l) = <’U1 — U0>.

Similarly,

ker(dy) =0
im(d)={(a—b—c,a—b+c).

Therefore,

HO (RP2) = <’UO,’U1>/<’01 — ’U0> =7
Hy (RP?) = (a—b,¢)/{a—b—c,a—b+c)=(a—1b)/(2(a—b)) 2 Z/2Z
H, (RP?) = 0.

2. A A-complex structure on S' x (S Vv S') is given by

b
Ve v
R
a 4 a
S
v v
b
T
C C
U
v v
b
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Hence,

(v) n =0
A, (Slx(Sl\/Sl)): (a,byc,d,e) n=1
(R,S,T,U) n=3.

It follows that 95 = 97 = 0. Since

02(R) = 0s(S) =a+b—d
82(T) = 62([]) =b+c—e

it follows that

ker(9) = (R— S, T —U)
im(de) ={a+b—d,b+c—e).

Therefore,
Hy (S* x (S'v8)) =
Hy (S* x (S*vsh)) = @5’:12
Hy (St x (Stvsh)) =zaZ.
O
Exercise 3.4.7]

Solution. The space R¥ is homotopy equivalent to a point. Therefore, using Corollary [3.4.5 and Corollarym
it follows that H,, (R*) = 0 for every n € N.

Exercise [3.5.3]

Solution.

1.
2.

The image of the map into A is equal to {0}, hence the sequence is exact if and only if ker(a) = {0}.
The kernel of the map out of B is equal to B, hence the sequence is exact if and only if im(a) = B.

Using statement 1 the sequence is exact at A if and only if ker(a) = {0}. Using statement 2 the sequence
is exact at B if and only if im(«r) = B. Hence, the sequence is exact if « is a bijection, and thus an
isomorphism.

To be exact at A requires ker(a) = {0} by statement 1. To be exact at B requires ker(5) = im(«). To be

)
exact at C requires im(/5) = C' by statement 2.
O

Exercise 3.5.7

Solution. Consider the diagram

c 1<

O*>A*>A® C ——0
L
0 A—* Y ,¢C 0

where i4 : A - A® C is given by i4(a) = (a,0) and ¢ : A® C — C is given by m¢(a,c¢) = c. Observe that

and

w(ia(a)) = ¢((a,0)) = ¢(a) + p(0) = id(p(a))

id(mo(a, c)) = ¢ = ¥(p(a) + (p(c)) = P(p(a) + p(c)) = P(u(a ),
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so that the diagram commutes. By assumption the bottom row of the diagram is exact. As
im(ig) = A = ker(n¢)

the top row is exact. Therefore, as the vertical maps excluding ¢ are isomorphisms, it follows from Lemma [3.5.6
that ¢ is an isomorphism. O

Exercise [3.5.19
Solution.

= To show O is well-defined it suffices to understand what happens if at each stage a different element is
chosen.

— The choice of a is uniquely determined by 9(b) since ¢ injective.

— Suppose ' is chosen instead, then j (b') = j(b) and so b’ — b € ker(j) = im(¢). Hence, b’ —b =1 (a’)
for some a’ which implies that &’ = b+ i (a’). Hence replacing b with b’ has the effect of changing a
toa+d(a) as

As 0 (a+ 0 (a’)) = 9(a), it follows that a and a + 9 (a’) are in the same homology class. Thus, the
construction is independent of the representative chosen from the homology class of b.

— A different representative from the homology class of ¢ has the form ¢+ 9 (¢’). Since, ¢/ = j (V') for
some b’ it follows that

c+d()=c+0(GO)=c+j@OO)=40b+dY)).
Thus, b is replaced by b+ 9 (b'), which leaves 9(b) and thus a unchanged.
= Suppose 9([c1]) = [a1] and I([c2]) = [az] through elements by and bs respectively. Then
J(b1 +b2) = j(b1) + j(b2) = c1 + c2

and
i(al + ag) = i(al) + i(ag) = 8(b1) + (9([)2) = 8([)1 + bg)

Therefore,
[e1] + [e2]) = [a1] + [a2],

which means that 0 is a homomorphism.

Exercise 3.5.33
Solution. Proceed by induction on n.
» For n =0, X is a point. Therefore, the statement holds by Corollary [3.3.24

= Suppose the statement holds for CW complexes of dimension less than n. Then consider the short exact

sequence
0= Co (X" = Co(X™) = Co (X", X" 1) 0,

which induces the long exact sequence

coo = Hy (X1 = He (X™) = Hy (X7, XY = Hey (X771 =
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As (X™,X"71) is a good pair we know that H, (X, xn71) = H, (X™/X"~1). Since X" /X" 1 is the
wedge-sum of S"s, it follows that

o _ o @QGAZ k =N
Hy (X", X" ') = H st =
g ( ) g (a\e/A ) {O otherwise.

~

As I/{vn (X”’l) = 0 by the inductive assumption, it follows from the long exact sequence that EL (X") =
H, (X", X" 1) = ®4eaZ, which is free. Similarly, the long exact sequence gives Hy, (X™) = 0 for k > n.

O
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4 Appendix

4.1

For n

Simila

Equivalence of Simplicial and Singular Homology
> 1 note that

Prop. — Cor. B513 —
H, (A", 0A") =TT (AT /oAYY 2N L (ST = 7.

rly, Hy (AO,('?AO) =7Z.

I Lemma 4.1.1. The homology group H,, (A™,0A™) is generated by the class of the cycle i,, : A™ — A™.

Proof.

For n = 0, we have that H (AO,Q]) is generated by [ig].

Assume that H,,_1 (A"~!, dA""1) is generated by i,,—; : A""1 — A"1. Let A C OA™ be the union of
all but one of the (n — 1)-dimensional faces of A™. Then A" strongly deformation retracts to A thus

H; (A", A) = H; (A,A) =0.
Consequently, the long exact sequence for A C 9A™ C A™ is

<o = Hy (A", A) = Hy (A", 0A™) — H,_q (OA™,A) = Hp— g (A", A) — ...

—_———— —_———
0 0

which implies that H,, (A", 0A™) = H,,_; (OA™, A). Note that 9A™/A is homeomorphic to A"~ /9A"~1

which are good pairs, thus,

1

H, (A", 0A™) = H,_; (A", A)

Hy 1 (9A"/A)

(
anl (An—l/aAn—l)
> M,y (A™L 94"

1

Il

As [i,,] maps to [£i,—1] along these isomorphisms, it follows by the inductive assumption that H,, (A™, dA™)
is generated by [iy].
O

For X a topological space with a A complex structure, we have the simplicial chain complex

In par
chain

o A1 (X) = An(X) = A1 (X) .

ticular, every simplicial chain complex can be viewed as a singular n-chain, thus we obtain an inclusion of
complexes Aq(X) — Co(X).

Theorem 4.1.2. The inclusion of chain complexes Ay(X) — Co(X) induces an isomorphism H2(X) —
H,(X).

Proof. We consider only the case where the A-complex structure on X is finite-dimensional, with dimension k.

For k =0, X is a collection of points hence H-(X) = H,(X).

Suppose that H(X) = H,,(X) for all n when the dimension of A is k — 1. Let X have a k dimensional
A-complex structure. Let X! be the [-skeleton of X consisting of all simplices of dimension at most .
Then the chain complex

v = Ay (XP) A (XFTY) = AL (XP) /A, (XY = Ay (XF) /AL (XY = L
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has homology groups H5 (X*, X*~1). Since

A, (XF) n=k

0 otherwise,

Ay (XF) /A, (XF7Y) = {

it follows that
FAk n==k

H (XF, XM = { ,
0 otherwise,

where Ay contains the k-simplices of X. Furthermore,

0 —— A, (X)) —— A, (XF) —— A, (XF) /A, (X)) —— 0

[ [ [

0 —— Cp (XE1) —— O, (XF) —— O (XF) /C (XE1) —— 0
commutes, with each row being a short exact sequence. Therefore,

Co HY L (XE XETL) o HS (XY 5 HS (XP) - HY (XP, XY 5 HY  (XFY) > L

J» l b Js |

.= Hypr (XF,XF7Y) o H, (XF1) = H, (XF) = H, (XPF, X1 5 Hyog (XFY) 5 L

commutes by Theorem [3.5.35] Moreover, by the inductive hypothesis, we have that 5 and e are isomor-
phisms. Consider the continuous map ® : ||, (Ak,0A%) — (X*, X*~1) formed by the characteristic

a?

maps AF — X for all k-simplices of X. Since ® induces a homeomorphism between | |, A% /| | OAF and
X*/X*=1 it follows by Proposition [3.3.16| that H,, (| |, A%/, 0A%) = H, (X*/X*~1). Therefore,

H, (x*, x*1~gq, <|_| A’;,|_|3M> =P H. (A%, 0AL),

which is the free abelian group on i, : A2 — A” by Lemma [4.1.1} and so « and ¢ are isomorphisms.
Therefore, using Lemma it follows that -y is an isomorphism.

O

Remark 4.1.3. The proof of Theorem[4.1.7 in the infinite-dimensional case requires more work.
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