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1 Orthonormal Systems in Euclidean Spaces
1.1 Euclidean Spaces

Definition 1.1.1. A real Euclidean space R is a linear space with a map (-,-) : R x R — R that satisfies the
following statements.

1 (z,y) = (y,2).

2. (1’1 + za, ) (xlvy)—’_(xQ?y)'

3. (\z,y) = A(z,y) for A € R.

4. (z,z) > 0 with (z,x) = 0 if and only if z = 0.
Remark 1.1.2.

1. The map (-,-) of Definition is referred to as an inner product on R.
2. A Euclidean space R is a normed vector space with
=]l = v/ (=, z),
and thus it is also a metric space with
pz,y) = [l —yl|.

For the moment we will exclusively work with real Euclidean spaces.

Definition 1.1.3. Let R be a Euclidean space. A system of non-zero vectors (zo)aca C R is orthogonal if
(xasx8) =0 for a # B. In particular, it is orthonormal if in addition ||z.| =1 for all o € A.

Given an orthogonal system (z4)aca, One can construct an orthonormal system (Hi—““) .
“/acA

Exercise 1.1.4. Let (4)aca be an orthogonal system of vectors. Show that (x4)aca is linearly independent.

Definition 1.1.5. Let R be a Euclidean space, with (z4)aca C R an orthogonal system. Then (z4)aca is
complete if

span ((Za)aca) = R.

Definition 1.1.6. If an orthogonal system (x4 )aca is complete, then it is said to be an orthogonal basis of R.
In particular, it is an orthonormal basis of R if in addition ||xz.| =1 for all a € A.

Example 1.1.7.

1. The space R" is a finite-dimensional real Euclidean space with inner product

n
=1



An orthonormal basis of R" is (e;)j=1, ..., where

2. The space
2= {x:(xl,x%...):Zﬁ <oo}
i=1

is an infinite-dimensional real Euclidean space with inner product

oo
=1

Consider the system (e;)jen C ¢ where

The system (e;) ;e is orthogonal as ||e;|| = 1. Let = € €% and consider (™) = (1,

n
(n) — s
" = BiCgs
j=1

and
n— oo
—

H:v(") —x 0.

Therefore, (ej)jeN C ¢? js complete and thus an orthonormal basis of ¢>.

,...). Then

Exercise 1.1.8. The space Co([—m, 7|) of continuous real-valued functions on [—m, 7] is a real Euclidean space

with inner product
s

(f,9) = f(®)g(t)dt.

Show that
{1} U {cos(nt)}nen U {sin(nt) }nen
is an orthogonal basis of Cy(|—,7]). Corollary[2.3.4 can be used without proof.

Definition 1.1.9. A space R is separable if it contains a countably dense subset.

Example 1.1.10. The Euclidean spaces from Example[1.1.7] are separable.
1. The subset Q™ C R™ is countably dense and so R™ is a separable space.

2. The subset
A:={z=(21,...,21,0,...) :2; €Q, n € N} C ¢?

is countable. Moreover, given any x € £? and € > 0 let

™ = (1, ,Zn,0,...).



Since, o, w3 < oo it follows that
H (n) n—qo
B = i — 0.

In particular, there exists an N € N such that Ha: — N )H 2 < g As Q C R is dense, there exists a
y € A such that |jy — z®™)||, < §. It follows that,

ly = all < ||y = o®)|, + ]} - 2|,
cf. €
-2 2
<e.

Thus, A C ¢2 is countable and dense, meaning (? is separable.

3. Let N
A= {al + Z (by, cos(nt) + ¢, sin(nt)) : a1, by, cp € Q, N € N} :

n=1
Let f € Co([—m,7]) and let e > 0. Then as
{1} U {cos(nt)},, cn U {sin(nt) }nen

is a complete orthogonal system on Co([—m,7]) it follows that

f@t)=a1 + Z (by, cos(nt) + ¢, sin(nt))

n=1
for some a1,b,,c, € R. Let

N
FM @) i=ay + Z (by, cos(nt) + ¢, sin(nt)) ,

n=1

then since fN) — f in Co([—, ]), there exists a Ny € N such that

(NO) . < E
Hf f Co([—m,m]) 2
As Q C R is dense, there exists a f € A such that
f_ £(No) < E
Hf f Co([—m,m]) 2
Therefore,
F F_ £(No) i H (No) _
||f fHCQ([fﬂ',Tr]) - f f Co([—m,m]) f f Co([—m,m])
6. E
2 2
= €.

This implies that A C Co([—m, 7)) is dense. As A is countable it follows that Co([—m,7]) is separable.

I Lemma 1.1.11. Let R be a separable Euclidean space. Then any orthogonal system in R is at most countable.



Proof. Without loss of generality consider (¢o)aca € R be an orthonormal system. For a # 3 observe that

[0a — @al*> = (o — ©8,Pa — ©5)

= all® = 2(¢a; s) + llosll
— 9

Therefore, the set of open balls (B%(cpa)) L e disjoint. For a countably dense set (¢, )nen C R, there exists
ae

at least one 1, in each B%(goa), hence, there can be at most countably many such balls. Therefore, as the balls
are centred on the ¢,, it follows that the system (p,)aca C R is at most countable. O

Theorem 1.1.12. Let (f,)nen be a linearly independent system in a Euclidean space R. Then there exists a
system (@n)nen C R such that the following statements hold.

1. (@n)nen is orthonormal.
2. on=ap1f1+ -+ annfn for anr € R and ay,y, # 0 forn € N,
3. fn=0bnip1+ -+ bunpn for by € R and by, # 0 forn € N,

Proof.
= let Y1 = a11f1 where ajl = \/(?1171) and let b11 = %11. Then ||§01H = ]., Y1 = a11f1 and f1 = bugol.
= Suppose that {¢1,...,pn_1} is constructed to satisfy statements 1, 2 and 3. Let
b _ (f'rugok)
nk = 7~
(¢, o)
for k=1,...,n— 1. Then letting
hn = fn - bnl@l - bn,n—l‘pn—la

it follows by the orthogonality of {¢1,...,vn_1} that

(Bnsor) = (fn, 0k) — brk (ko) =0

for k=1,...,n— 1. Note that h,, # 0 due to the linear independence of (f,)nen, so we let
_ hn
7 s hn)
Then

fn = bnlﬁpl +---+ bn,nflﬂpnfl + bnn‘pna

where by, = (hy, hy,). Moreover, using the induction hypothesis we have

(fn - bnlﬁpl - bn,nflﬁpnfl)

1 bn, bnon—
= Tfn - bil(allfl) +-- 4+ < Z; 1) (an—l,lfl +-- 4+ an—l,n—lfn—l)

:anlfl +"'+annfna

for anr € R and ay,, # 0.
Thus we conclude the proof by induction. O



Remark 1.1.13.
1. The system (p,)nen of Theorem is unique up to multiplication by +1.

2. Note that the subspaces produced by (f.)nen and (¢n)nen coincide, and so these systems are simulta-
neously complete or incomplete.

I Corollary 1.1.14. A separable Euclidean space R possess an orthonormal basis.

Proof. As R is separable there exists a countably dense subset (¢,,)nen € R. Without loss of generality one can
assume that (¢, )nen is linearly independent by removing elements v, that are represented as linear combinations
of (¢;)i=1,... .k—1. Therefore, applying Theorem [L.1.12] we obtain an orthonormal system (y)nen € R which is
additionally an orthonormal basis as (¢, )nen € R is dense. O

1.2 Closed Orthogonal Systems

For an n-dimensional Euclidean space I with a basis (e;)7_; C R, any vector x € R can be written as

n
Tr = E CLEL
k=1

for cx € R. Due to the orthogonality of the system (e;)7_; it follows that ¢, = (z,ex). In an infinite-
dimensional Euclidean space suppose that (¢,)neny € R is an orthogonal system. For f € R consider the
sequence (cg)ren C R where ¢, = (f, ) are the Fourier coefficients of f with respect to (¢, )nen. The series
Zzozl crpy is referred to as the Fourier series of f with respect to (¢, )nen. The convergence and subsequent

limit of the series are the points of discussion.

Proposition 1.2.1. Let R be an infinite-dimensional Euclidean space with an orthogonal system (., )nen-
Let f € R. For fixedn € N, let (a)?_, C R and S5 = 37" | axr. Then

=

> | £ - s

)

where S = Sohey ko for e = (f, ).

Proof. Observe that

=

= (f— > anpr, f - Zak90k>
k=1 k=1
=(ff) -2 (ﬁZ%w) + (Z akwk,zawk>
k=1 k=1 k=1
= (L —2> e+ o
k=1 k=1

n

AR =30 @+ Y ow — ).

k=1 k=1
Thus the minimum is achieved when a = ¢; for k= 1,...,n. In particular,
2 n
|7 =59 ==k (12.1)
k=1



Corollary 1.2.2. Let R be an infinite-dimensional Euclidean space with an orthogonal system (p)nen. Let
f€Randcp = (f,pr) for k € N. Then
n
doa<IfI?
k=1

for every n € N. In particular, Y ;- | ¢} converges with

doa<IfI* (1.2.2)

k=1
Proof. From (1.2.1)) it follows that
LA = ek >0
k=1

which implies that

n

ci < I£Il

b
I
—

Taking the limit as n — oo we deduce that

o0
> o < IfIP
k=1

Remark 1.2.3. The inequality (1.2.2)) is referred to as Bessel's inequality.

Exercise 1.2.4. With the notation of Proposition show that f — 5% s orthogonal to span(ps, ..., @)
if and only if ap, = ¢y fork =1,... n.

Definition 1.2.5. An orthogonal system (@, )nen is closed if for any f € R we have

> =3 (1.2.3)
k=1

where ¢, = (f, ).

Remark 1.2.6.
1. Equation (1.2.3)) is referred to as Parseval’s equality.

2. With (1.2.1)), an orthogonal system being closed is equivalent to the partial sums of the Fourier series for
f € R converging to f. That is,
oo
=Y ckpr.
k=1

I Theorem 1.2.7. In a separable Euclidean space, an orthonormal system is complete if and only if it is closed.

Proof. (<). Let (¢n)nen € R be a closed orthogonal system. Then, for any f € R, the sequence of partial
sums (3-1_1 Ck¥r), o Where ¢, = (f, @1) converges to f. Therefore, linear combinations of (¢, )nen are dense



in R, that is (5 )nen is complete.

(=). Using Lemma[1.1.11] any orthogonal system is countable, thus let (¢, )n,en € R be a complete orthogonal
system. Then every f € R can be approximated to any precision with a linear combination >, _; 5. By
Proposition , the partial sum 22:1 crpy of the Fourier series provides no worse an approximation. Therefore,

ZZ=1 CrPk nose f, meaning (©,)nen is closed. O

Example 1.2.8. Using Example [I.1.10 and Theorem [I.2.7, the orthonormal systems of Example [I.1.7 are
closed.

Fourier coefficients can be generalised to non-normalised systems. Let (¢,,)nen be an orthogonal system. Then

consider the normalised system (1, )nen, Where ¢ = HiZH' For any f € R we have

e = (f00) = ——(f, k).

x|

Thus,

F=Y b= arpr
k=1 k=1

where a; = %. This is the Fourier series of f with respect to (¢, )nen, and using ([1.2.2)) it follows that

o0

agllexll” < [ £
k=1

1.3 Complete Euclidean Spaces

Definition 1.3.1. A complete Euclidean space R is such that every Cauchy sequence (x,)nen € R converges
to some x € R.

For a sequence (cj)ren € R to be the Fourier coefficients of f € R, it is necessary that Y-, ¢} converges. If
R is a complete Euclidean space then the convergence of Z:i1 ci is also sufficient to conclude that (cx)ken are
the Fourier coefficients of f € R.

Theorem 1.3.2 (Riesz). Let R be a complete Euclidean space and let (on)nen € R be an orthonormal
system. Let (c)ren be such that Y p- | i converges. Then there is an f € R such that ¢, = (f, px) and

o0
> =lfIP
k=1

Proof. Let f, = > ._; ckipk. Then by orthonormality it follows that ¢ = (f,,¢x) for k = 1,...,n. Observe

that
n+p

2 2 2
||fn+p — fall” = llens1ngr + - + Cn-&-p‘ﬂn—s—p” = Z Ck-
k=n-+1
Since, Y72, ¢} converges it follows that (f,,)nen is Cauchy. As R is complete the sequence (fy,)nen converges
to some f € R. Note that for n > k we have

(f—fms%) < |(f_fn7§0k:)‘
< Nf = falllloxll
=20



Therefore,

(f, »x) (fnsor) + (f = fas k)

=c+(f = fn,01)

n—roo

— ¢ +0

for every k € N. Moreover,

n

IFIP =Dk = (£ 1) =2> erlfion) + > _ch
k=1 k=1

k=1
= (f Z@c@kva@c‘Pk)
k=1 k=1
=|f- an2
=300,
which implies that || f||? = > 7c , 3. O

Definition 1.3.3. A complete infinite-dimensional Euclidean space is known as a Hilbert space.

Remark 1.3.4. Euclidean spaces are isomorphic if there exists a bijective mapping between the spaces that
preserves linear operations and the inner product. Finite-dimensional Euclidean spaces are isomorphic to R™
with

n
(xvy) = ijyﬁ
7j=1

and thus we only use Hilbert spaces to refer to infinite-dimensional spaces. Infinite-dimensional Euclidean spaces
are not necessarily isomorphic.

Exercise 1.3.5. Show that (?> and Co(|—, m]) are not isomorphic as Euclidean spaces, as /* is complete whereas
Co([—m,m]) is not complete.

Proposition 1.3.6. Let H be a separable Hilbert space. Then an orthonormal system (¢pn)nen C H s
complete if and only if there is no nonzero element in H which is orthogonal to ,, for every n € N.

Proof. (=). For ¢ € H\ {0}, as (pn)neny C H is complete it is closed, by Theorem [1.2.7} and so

o0

el = e
k=1
where ¢, = (p,pr). As ¢ # 0 we have [[p|> > 0, and so as ¢; > 0 there must exist some k € N such that
¢ > 0 which means that ¢, = (p, i) # 0.
(«<). Suppose (@ )nen is not complete, then, it is not closed, by Theorem [1.2.7, and so there exists a ¢ € H
such that [|p||? # Yo, ¢t where ¢, = (¢, ¢)). However, by (1.2.2)) the series >, , ci < co and so by Theorem
[I:3:2) there exists a ¢ € H such that
o0
112
lell* = ek,
k=1

with ¢ = (B, k). Thus, (B, 0r) = (v, pr) which implies that (¢ — ¢, ) = 0 for all & € N. However, as
|2l # ||| we have ¢ — ¢ € H \ {0} which contradicts the assumption that no non-zero vector in H exists that
is orthogonal to ¢y, for all £ € N. O

10



I Theorem 1.3.7. Separable Hilbert spaces are isomorphic.

Proof. Let H be a separable Hilbert space with (¢, )nen € H a complete orthonormal system, which is countable
by Lemmam Let ® : H — (? be the correspondence of f € H with its Fourier coefficients (c1, ¢, ...). Since
Zk 103 < o0, by - the correspondence ® is well-defined. Using Theorem _for any (c1,c¢,...) € 12
thereis a f € H such that ®(f) = (¢1,c¢a,...). In particular, ® provides a bijective correspondence. Furthermore,
suppose CI)(f) (Ck)kGN and CD( ) (dk)keN Then (I)()\f) (Ack)kGN = )\Cb(f) and <I>(f—|—g) = (Ck +dk)k€N-
Thus, [|f 4 gl|2 = 335°, (cx + d)? using (1.2.3). Along with ||f[|2 = 2%, ¢2 and ||g||2 = 352, d2 it follows
that

ZC%-FQZdek-I-de—ZCk‘deP
k=1 k=1
=|f+gl?
=(f+g.f+9)
||f||2+2(f, 9)+ lgl?
ck+2 (f,9) +Zd
k= —

which implies that (f,g) = > r; crdi = ((ck)ken, (dk)keN)p. Therefore, ® is a bijection which is linear and
preserves the inner product. Hence, it is an isomorphism between H and ¢2. As H is arbitrary and ¢? is fixed,
this is sufficient to show that any separable Hilbert spaces are isomorphic. O

Remark 1.3.8. From the proof of Theorem we see that {2 plays the same role for separable Hilbert spaces
as R™ does for finite-dimensional Euclidean spaces.

One can complete a Hilbert space to obtain separable Hilbert spaces. The completion of the Hilbert space
Co([—m, w]) is L?([—m,7]). Where L?([—m, 7]) is the space of equivalence classes, with respect to the Lebesgue
measure, of real-valued functions f, on [—m, 7] such that

T

|f(1)>dt < .
The inner product on L2([—m,7]) is given by

T

(f.g)= [ f(Hg(t)de.

—T

1.4 Complex Euclidean Spaces

A complex Euclidean space, R, is a linear space over C, with a modified inner product. Amap (-,-): RxR — C
is an inner product over C if (z,y) = (y, z) and satisfies statements 2, 3 and 4 of Definition It is important
to observe that with this modification an inner product on C is no longer bilinear. More specifically, it is not
linear in the second argument as

(z, Xy) = Az, y)
for x,y € R and A € C.

Example 1.4.1.

1. The n-dimensional space C™ with inner product

n
y) = Z z;Y;
j=1

11



is the n-dimensional Euclidean space over C.

2. The space of sequences © = (1,2, ...) where x; € C and Y72, |2;|* < oo, denoted (?, with inner
product

oo
(@,y) = =,
j=1
is a complex Euclidean space.

3. The space of complex valued continuous functions on [—m, 7| denoted Co([—m,|), with inner product

(f.9)= [ g

is a complex Euclidean space.

As for real Euclidean spaces, for f € R, where R is a complex Euclidean space, we can construct its Fourier series
with respect to an orthogonal system (¢, )nen as > pey akpr Where aj = ?‘J;’fl"“z) for k € N. The analogue of
(1.2.2)) for complex Euclidean spaces is

o0
> lenlPlawl® < (17

k=1

Results shown for real Euclidean statements have similar formulations for complex Euclidean spaces, with only
slight modifications.

1.5 Solution to Exercises
Exercise [I.1.4]

Solution. For any n € N let {xa(l), e ,xa(n)} C (%a) e and suppose that
A1Tq(1) +  + AnTamn) = 0.

Then by orthogonality it follows that

0= (Ta(1) @17aq) + + anTagm) = a1 ||raq)|”-

As 241y # 0 it follows that a; = 0. More generally, ar = 0 for k = 1,...,n. Therefore, {24(1),...,Ta@m) | is
linearly independent which implies that (z4),c 4 is linearly independent. O

Exercise [.1.8l

Solution. For n € N we have

(1,cos(nt)) = ! cos(nt) dt

™

sin(nt)} :r

-0

I
S o ——
SRS

12



For n € N we have

T

(1, sin(nt)) = / sin(nt) dt
1 s
=|-= t
[ . cos(n )} -

_1_1

n n

=0.

For n € N we have
(cos(nt),sin(nt)) = / cos(nt) sin(nt) dt

1 ™
= 5/ sin(2nt) dt

For n,m € N with n # m we have

(cos(nt),sin(mt)) = /7T cos(nt) sin(mt) dt
% /7r sin((n 4+ m)t) — sin((n —m)t) dt
0

For n,m € N for n # m we have
(cos(nt), cos(mt)) = / cos(nt) cos(mt) dt

_! / " cos((n + m)t) + cos((n — m)t) dt

and
(sin(nt), sin(mt)) = /j sin(nt) sin(mt) dt
1

3 /Tr cos((n — m)t) — cos((n +m)t) dt

=0.

—T

Thus the system is orthogonal. For f € Co([—,n]) if f(—n) = f(), then f is a continuous and period function
and so by Corollary it follows that f is the limit of a uniformly convergent sequence of functions in the
trigonometric system. On the other hand, if f(—m) # f(7) let € > 0 and consider (g, )nen C Co([—m,7]) where

on(z) = {f(a:) e [-mm—1)
Fle=g)+n(fm—fr—3) (@-—m+3) welr—ga].

That is, gn(z) coincides with f(z) on [—m,m — 1] and then consists of a straight line segment such that
gn(=m) = gn(m). Thus, it is clear that |lgn — fllc,(_r ) — 0 as n — oo. In particular, there exists an

N(e) € N such that
€
lgn = Fllea(—r.m) < 3

13



for n > N(e). For each n € N, applying Corollary to gn(x) we obtain a sequence of trigonometric

polynomials (t%")) such that ‘ 5,?) — Gn — 0 as m — oo. In particular, there exists an M,, € N
b th meN Co([—m,m])
such that
me% <<
" Ca([-mx)) 2

for m > M,,. Therefore, for m > My (e it follows that

tgg) - < Htgml) - € + €) —
| Ny = INO | gy ey T 198O = ey
<L €
2 2
= €.
Hence, the trigonometric sequence (tAj[V(’“))> converges to f. Therefore, the system
N(%) keN
{1} U {cos(mf)}neN U {sin(nt) }nen
is complete and thus a basis of Cy([—, 7]). O

Exercise [1.2.4]

Solution. For S\ = > or_q Qrprk, it follows that f — 5% is orthogonal to span(er,. .., ¢y,) if and only if
(f - S,(La),gok) =0 for each k = 1,...,n. This is equivalent to (f, ¢r) — axll¢kl|> = 0, that is ax, = (f, k) =
Ck. ]

Exercise [1.3.5]

Solution. Let f, : [-7, 7] — R be given by

ful@)={na we(-L1)
—1 xe[fw,f%]

Note that for m > n it follows that

n
||fm7fn||2:/l \mxfnx\d;c:

n

m—"N nooco
2 O’

n

which means that (f,,)nen C Co([—m,7]) is Cauchy. Moreover, observe that

1 x>0
falz) =5 f(@) =40 2=0
-1 <0

pointwise. Suppose that f,, — ¢ in Co([—7,7]). Suppose that ¢©(0) > 0. As ¢ is continuous there exists a § > 0
such that ¢(z) > @ > 0 for z € (—6,0). Then for any n > 1 it follows that

0 2
I = ol > [ () = ol an> (2] 50

Therefore, f,, /4 ¢ in Ca([—m, 7]) if ©(0) > 0. Similar arguments shows that ¢(0) £ 0 and so ¢(0) = 0. However,
in such a case there exists a § > 0 such that ¢(z) € (—3,3) for # € (—6,6). Which means that for n > N
where N € N is such that % < ¢, it follows that

4
n—ﬂﬁz[(nuywmm%xZ;G_;>>;g>&

n

Therefore, f, # ¢ in Co([—m,7]). Thus we conclude that (f,)nen C Co([—m,7]) is a Cauchy sequence that does
not converge and so Ca([—7,]) is not complete. O

14



2 Trigonometric Series

The space L?(—m, ) consists of all functions over [—m, 7] for which

/j |f())? dt < cc.

With the inner product i
(f,9) = ﬂ f(t)g(t) dt,
the space L?(—m,7) is a real Euclidean space. From Exercise it follows that
{1} U {cos(nz) }nen U {sin(nz) }nen

is an orthogonal system of L?(—m, 7). Moreover, assuming the conditions of Exercise and the fact that
Cao([—m,7]) is a dense subset of L?(—m, ), it follows that the system is also complete. The corresponding
orthonormal system is given by

{7 oG} o{mon}
— — cos(nz —— sin(nx .
2m VT neN VT neN
2.1 Fourier Series

For f € L?(—m, ), its Fourier series is given by

ao

5+ > (ax cos(ka) + by sin(ke)), (2.1.1)

k=1

where a;, = L [ f(x)cos(kx)dz for k=0,1,... and by, = L [*_f(z)sin(kx)dz for k =1,2,.... Recall from
Proposition mmat the partial sum of (2.1.1)) provides the best L?-approximation of f amongst trigonometric
polynomials of the form

ap + Z (cu; cos(kx) + By sin(kz)) .

k=1
As the system is complete we have ||.S,, — f|| = 0 as n — oo and so

2 0 ™
% 2 2\ — l 2
2 + kzz:l (Clk + bk:) = T ) f(]}) d.l?

We can equally consider L?(—m, ) as a complex Euclidean space. In this space, we have the orthonormal basis
("), oy Thus, the Fourier series for f € L*(—m,7) is 3., c; cn€™, where ¢, = 5= [* f(z)e™ " da for
n € Z. Although we have seen that the Fourier series of f converges in L?, this does not provide the convergence
of the series at specific points. To understand what guarantees are required for the Fourier series of f at = to
converge to f(x) for a given x, it will be more productive to consider L?(—, ) as a real Euclidean space.

Remark 2.1.1.
1. Note that a function on [—7, | can be extended to a 2w periodic function on R.

2. As cos(nz) and sin(nx) are bounded functions, the coefficients ay, and by, exist for functions even in
LY(—m, 7). Recall that L*(—n,7) C L*(—m, ).

Exercise 2.1.2. Forl > 0, show that
1 1 nmw 1 nmw
— U< —cos|—=x U —sin | —x
v e (), v (7))

15



is an orthonormal system of L?(—l,l). Moreover, show that the Fourier series for f € L*(—l,l) with respect

to this system is
@ — km . (kT
5 + Z (ak cos (lx) + by, sin (lx)>
k=1
where aj, = %fil f(z)cos (E22) dz and by, = %filsin (Erz) dz.

2.2 From Functions to Fourier Series

Let

= 50 + zzl ay, cos(kx) + by sin(kx)) (2.2.1)

k
be the partial Fourier series of a function f € L?(—m, ) at a point .

Exercise 2.2.1. Show that

and

Proposition 2.2.2. For f € L?(—m,n) and x € [—7, 7| we have

Sel@) = i flx+ 2)D,(2)dz

—T

where

is the Dirichlet Kernel.
Proof. For S, = % + >"/'_, (ax cos(kx) + by sin(kx)) substitute in the formulas for aj, and by, to obtain

Sp(z) == /Tr (@) (1 + Z(cos(k’x) cos(kt) + sin(kx) sin(k:t))) dt

2
T k=1

— %/” f(t) (; + Zcos(k(t — :C))) dt,
- k=1

where we have been able to exchange the order of integration and summation as the sum is finite. Using Exercise

2211 it follows that
4 in t—
s =1 [ LA

T J)_r 251n (%)

i) dt.

Letting z =t — & we have

Su(e) = / IR

I 2m sin(%)
< f( 2)Dp(2) dz

where in (1) we have used the fact that the integrand in 27-periodic. O
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Remark 2.2.3. Note that by Exercise[2.2.1) we have

i D, (z)dz i/7T 1 + Zcos(k:z) dz

o 2 J_. 2
k=1
1 [z &1, .
= 2+st1n(kzu)]
k=1 .
1
-
=1.

Therefore, we can write
Sule) = @) = [ (e +2) - F@)Da(2) =
-7
Consequently, questions of convergence regarding the Fourier series at x can be answered by studying the
convergence property of the integral on the right-hand side.

Exercise 2.2.4. Show that

" |Du(2)] dz = 5 log(n) + 0(1).

—T

Lemma 2.2.5. If p(z) is integrable on [a,b] then

=

b
/ o(x)sin(yz)de — 0

2
8

and

8

b
/ o(z) cos(yx) dz =3 0.
Proof. If ¢(zx) is continuously differentiable, then we can integrate by parts to deduce that
b b b
/ o(z) sin(yz) de = [gp(:z:)cosf(yfm} Jr/ w,(x)(ms,fy’)@:) dz =3 0. (2.2.2)

Given ¢ > 0, as continuously differentiable functions are dense in L!(a,b), for ¢ € L'(a,b) there exists a
continuously differentiable function ¢, such that
€

[ 1e@) - ewlas < §

By (2.2.2)), there exists a 7o such that

AZM@QMWMx

<6
2

for v > 7. Consequently for v > ~ it follows that,

IN

b b b
[ et@rsintra)da| < | [ (ol@) - gl sintrz) da| + | [ gulw)singra) da

_|_

IA
DN ™

<
2
€

17



Therefore,

/a " () sin(yz) dz

Similarly, one deduces that

b
/ (x) cos(yr)de — 0.

1
o

—

2
8

I Corollary 2.2.6. If f € L*(—n,7) then its Fourier coefficients are such that ay,by — 0 as k — oo.

Proof. Take a = —7, b=m and v = k in Lemma [2.2.5]

Remark 2.2.7. If ¢ € C*([—m,7]) then one can integrate by parts k-times to get that

/ab () sin(yz) dz = O (;) .

Thus, the smoother a periodic function f is, the faster its Fourier coefficients decay at infinity.

Exercise 2.2.8. Suppose f is a 2w periodic and complex analytic function. Show that its Fourier coefficients

exponentially decay.

Example 2.2.9.
1. Let

fla) = {1‘ v

x| <1
0 1<z <.

As f(x) is an even function, we have by, = 0 for every k € N. On the other hand, for k > 1 we have

ag

and for k = 0 we have

ag =

Therefore, the Fourier series of f(x) is

1

™

=— _ﬂ f(z) cos(kx) dz

/01(1 _ ) ()

(=)

ENR RN

2 ! 2 (1
7/ 1—xd1:=<).
v 0 T 2

1 2 /1 —cos(k)
o + ; p (kz) cos(kx).

We can argue that this series converges for every x as its terms are of order ]?12
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2. Let
1 —-1<z<0

glz)=¢-1 0<z<1
0 1<|z|<m.

As g(x) is an odd function, we have a, = 0 for all k € N. On the other hand,

b = 1 /Tf g(z) sin(kzx) dx

T™J—m

2 1
:77/ sin(kx) dz
0

™

2 1 1
= <_k cos(k) + k)
_ 2 (cos(k) -1
o k '
Therefore, the Fourier series of g(x) is
— 2 k)—1
Z = (cos(k)> sin(kz).
k=1

It is not clear whether the series converges as the terms of the series are only of order % Instead, we will
see later using Corollary[2.2.14 that the series converges for every x.

Exercise 2.2.10. Find the Fourier coefficients of f(0) = log (|2sin (£)]).

Theorem 2.2.11. Let f € L'(—m,m) be such that for a fixed x and § > 0 we have

/5 fle+t) = f@)) 4 o o (2.2.3)
5 t ’ o

then S, (z) — f(x) asn — co.

Proof. Using Remark observe that

Suw) = £0) = [ (fla+2) = f@) Do) 0z
1 (T flx+2)—flx) =2 . [(2n+1
— Z) sm( 5 z) dz.

- 2 J_, z sin (5

From (2.2.3) and the fact that f € L'(—m,n), it follows that M is integrable over [—m, w]. Therefore,

ﬂx“g_f(g”) zz) is integrable over [—, 7] and so applying Lemma [2.2.5| it follows that
sm{ gz

1mn

L[t j@) = sin 2n—|—12 dz "% 0
2 ). z sin (%) 2 '

Hence,
S, (z) =3 f(x).
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Remark 2.2.12. Equation (2.2.3) is known as Dini’s condition. In particular, Dini’s condition holds if f is
continuous at x with the left and right derivatives of f at x existing.

Theorem 2.2.13. Let f € L'(—m,m) be such that for a fixed x and § > 0 we have

/0 f(l‘+t)—f(fv‘)‘
-5

4
6
J

then S, — 3 (f (=) + f (z7)) as n — oo.

dt < oo (2.2.4)

and
flz+t) - f(@™)

. dt < oo, (2.2.5)

Proof. Using Remark note that

ute) - LI [ (T DS LED) gy [T (1D LD b

—T

Then using (2.2.4), (2.2.5) and the fact that f € L'(—m, ) it follows that % is integrable over

ot2)— f(zt () — Flo—
[—7,0] and % is integrable over [0,7]. Consequently, iGas )2 I() , Ez
Sin b

fat+2)—f(=7)

and 5 ‘ (z) is integrable over [0, 7]. Therefore, applying Lemma [2.2.5/it follows that
Sin 5

/0 (fu + 2)2* f(a:)) Dy (2)dz + /0 <f(:17 - z); f(ﬁ)) B () s,

j is integrable over [—m, 0]

—T

Hence,
Rty CuLY i)

O

Corollary 2.2.14. Let f be a bounded, 2m-periodic function with discontinuities only of the first kind, that is
f(x™) and f (zT) exist. Moreover, suppose that the left and right derivatives exist at each point. Then

f(z x is a point of continuity,

Sn(2) = {f<x+>+f<w->

5 x is a point of discontinuity.

Proof. Note that as f is bounded we have f € L!(—n, 7). Moreover, as the left and right derivatives of f exist
condition ([2.2.3)) is satisfied at « when f is continuous at x. At the points of discontinuity, the weaker conditions

(2.2.4) and ([2.2.5)) are satisfied. Therefore, we conclude by applying Theorem [2.2.11] at points of continuity and
applying Theorem [2.2.13] at points of discontinuity. O

I Corollary 2.2.15. A continuous 2w periodic function is uniquely characterised by its Fourier coefficients.

Proof. Let f and g be 27 periodic continuous functions with the same Fourier coefficients. The partial sum of
the Fourier coefficients, S, (z), for f — g is zero. Hence, as f — g is a 27 periodic continuous functions it follows

by Corollary [2.2.14] that
(f = g)(@) = lim S,(x)=0.

n—oo

Therefore, f(x) = g(z). O
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2n+1 Z)

Remark 2.2.16. Note that D,,(z) = 5 Sm(izz)

2m sin(é

oscillates with higher frequency as n gets larger.

converges to 22t as z — 0. Moreover, the graph of D,,(z)

T

Figure 2.2.1: The graph of D,(z) for n = 10 and n = 20.

Therefore, as n gets large the main contribution to f:r f(z + 2)D,(z) dz comes from an ever smaller neigh-
bourhood of z = 0. With (2.2.3) this contribution converges towards f(x).

2.3  From Fourier Series to Functions

A continuous function f with period 27 on R is uniquely determined by its Fourier series. However, as the Fourier
series may not converge, we cannot naively use the sum of the series to determine the values of f. Instead, we
consider the Fejér sums

o(x) = - (So(e) + - + 51 () (2.3.1)
where S(z) is as in ([2.2.1).

Exercise 2.3.1. With o,,(z) as given by (2.3.1)), show that

on(x) = ' flx+ 2)®,(2) dz,

—T

where

is referred to as the Fejér kernel.

Lemma 2.3.2. Let ®,(z) be the Fejér kernel of a continuous function f which is 2m periodic. Then the
following statements hold.

1. @,(2) > 0.
2. [T ®,(2)dz =1.
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3. For fixed § > 0 it follows that

Proof.
1. This is clear.

2. As
1 n—1

k=0

/W B, (z)dz = 1.

—T

it follows from Remark [2.2.3 that

3. For § > 0 note that sin (%) > sin (g) for x € [§, 7). Therefore,

™ ™ 3 nz 2
/ D, (2)dz = 1 51.n (%) dz
s 2t Js sin (g)

< L /7r 71 dz
=2 Jy s (9

n—oo
0.

Similarly,

O

Theorem 2.3.3 (Fejér). If f is a continuous function with period 27, then the sequence (o, )nen as given by

(2.3.1)) converges to f uniformly on R.

Proof. Since f is continuous and periodic on R, it is bounded and uniformly continuous on R. Thus, there exists
an M > 0 such that | f(z)| < M for all z € R. Moreover, for an € > 0 there exists a 6 > 0 such that

@)= F @)l < 5

for |x — 2’| < 26. Write

f(@) = onlz i/ F(x + 2)) B (2) dz
(f

6+/65+/5 ) flz+ 2))P,(2) dz,

\/
I

where ®,,(z2) is the Fejér kernel, and so in (1) we use statement 2 of Lemma Then,
[1-| < 2Mn, (),

and
|1 | < 2Mn,(6)
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where

Moreover,

2

where the second inequality follows from statement 1 and statement 2 of Lemma [2.3.2] which imply that
fis ®,(z)dz < 1. By statement 3 of Lemma there exists a ng = ng(d(e)) such that for n > ng we
have 2Mn,,(§) < §. Therefore,

)
IIo| < f/ ®,(2)dz < <,
2/

€ € €
|f(33)—0n(33)|<1+§+i—6

for n > ng and any z € R which implies that o, e f uniformly on R O

Corollary 2.3.4 (Weierstrass). Any continuous periodic function is a limit of a uniformly convergent sequence
of trigonometric polynomials.

Remark 2.3.5. Theorem[2.3.3 gives an explicit sequence for Corollary|[2.3.4, namely (o, )nen.

Corollary 2.3.6. The trigonometric system
{1} U {cos(nz)}nen U {sin(nz) } nen
is complete in L?(—, ).

Proof. As continuous functions are dense in L2(—, 7) and uniform convergence implies convergence in L?(—m, 7),
it follows by Corollary that the system

{1} U {cos(nz) }nen U {sin(nz) }nen

is complete in L?(—m, 7). O

Remark 2.3.7.

1. Theorem tells us that for f € CO([—m,n]), the sequence (0,)nen converges in the metric of
CO([—m,7]), namely the supremum norm.

2. Although not in the statement of Theorem we also have that if f € L'(—m,m) then (0p)nen
converges to f in the metric of L'(—m, 7). Thus we deduce that f € L'(—m,7) is uniquely determined
by its Fourier coefficients. Indeed, suppose that f,g € L'(—m, ) have the same Fourier coefficients.
Then the corresponding Fejér sums of f — g are zero. Therefore, f — g is zero as the Fejér sums converge
to zero, hence, f = g almost everywhere.

2.4 Solution to Exercises
Exercise [2.1.2

Solution. The system
{1} u {cos (?w) }neN U {sin (nl—ﬂx> }neN

is an orthogonal system of L?(—I,1) as after a re-scaling the orthogonality conditions are the same orthogonality
conditions for
{1} U {cos(nx) }nen U {sin(nz) }rnen
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as a system of L?(—m,7), which we know the be orthogonal. In particular, we note that

1] = v
[eos (#Fa)|| = v
Isin (=) || = VI

and so 1 1 nw
IRt TG T )

is an orthonormal system of L?(—[,1). Moreover, the system is complete as {1}U{cos(nz)}nenU{sin(nz)}nen C
L?(—7,7) is complete. For f € L?(—I,1) its Fourier series with respect to this basis is

> k k
% + kz::l aj cos <l7rx) + b, sin <l7rx)

where ak:%filf( ) cos (E2z) dz and bkfffllf(m)sm(kl”x) dz. O
Exercise [2.2.1]

Solution. Note that
and

Observe that,

n 1— ei(nJrl)u

Zeiku _

k=0 L—em
(1 _ ei(n+1)u) (1 _ e—iu)

(1—e)(1—e)
1— ei(n—i—l)u — e tu + einu
2 — (eiu + efiu)
1— ei(nJrl)u _ e tu + etnu
2 — 2 cos(u)

On the one hand,
- 1 —cos(u) + (cos(nu) — cos((n + 1)u))
1+ Z cos(ku) = 21 — cos(u))
sin (2"2“u) sin (%)

2sin? (1)
i)

+

sin (

1
2
1,
T2 QSiH(%) ’

which upon rearrangement gives
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On the other hand,

= sin(ka) — sin(u) + sin(nu) — sin((n + 1)u)
Z (ku) = 2(1 — cos(u))

2sin (2 u) cos (252) — sin((n + 1)u)

H) -
%I%D
"5+) —cos ("))

Exercise 2.2.4]

Solution. On the one hand, we have

sin (
/ [Dn(2)]d= _7/ sin ( ) dz
i i ) .
wh | )
_2/’5 sin (20 + )1) |,
) sin(t)
.2 /fwdt
_72 e |sin ( 2n—|—1) )|dt
B (k—1)m
2n+1
:2i/” jsin(z)|
™ (k=1)m T
_72/ sin(u du
sin(u)
Z*Z/ e du
4 1
> Z
- w2 gk
4 4
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where ~y is Euler's constant. On the other hand, we first observe that

sin((n+34)z) sin(nz)

() tn(3)

sin ((n+ %) z) — sin(nz) cos (%)
sin (%)
sin(nz) cos (%) — sin () cos(nz) — sin(nz) cos (%)

sin (%)

= |cos(nz)|
<1

Therefore,

sin ((n + %) z)

sin (3)

™ 1 T
/ |Dp(2)|dz = — dz

- 27 -

EEICDE
) sin (g)
l/ 14 sin(nz)
T Jo
B 2 % |sin(2nt)
=i 7r/0 tan(t) ‘

tan(z)
< 1+g/2 |sm(2nt)|dt
0

dz

dz

2

g 3

4~ [ |sin(2nt)]
—reny [0

k=1 2n

4 [T sin(uw)
O A

™ I; o u+(k—1)m

™ sin(u) 4 1
<1 —du+ — —
< +/0 " u+7r22k

Hence,

Exercise 2.2.8l

Solution. Recall that the complex Fourier coefficients of f are given by

1 [ :
Cn = —/ f(x)e """ da.
2 J_,

As f is complex analytic, there exists an 7 > 0 such that f is complex analytic on the square [—7, 7] x [—n, 0].
In particular,

f f(x)e™™* dz = 0,
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where -y is the clock-wise traversing of the boundary of the square. On the first vertical component of v we have
the integral

. o
I = / fm+iy)e T dy,
0

and along the second vertical component of «v we have the integral
0 . .
I, = / fl—=m+ iy)e_m(_”“y)idy.
-n

As f(x) and e are 2 periodic it follows that

0
I, = / flr+iy)e W) dy = 1.
-

Therefore, I; and I cancel each other out in the contour integral and so

0= f(x)e ™ da + f(z —in)e” ™M@= qg,

—T ™

Hence,

2i /Tr f(l’ _ in)e—in(:c—in) dax
T J_n

e ™

5 | I =in)l]e ] da

<e ",

[cnl

IN

where I < 0o as f is analytic and ‘e‘i”“" < 1. Therefore, the Fourier coefficient ¢,, decays on the order of e™"
as n — Q. ]

Exercise [2.2.10

Solution. Using the complex Fourier series we know that the Fourier coefficient ¢, is given by

1 T : 4 —in6
Cn =5 log ( 2 sin <2> D e de.

—inf 1 0 . 0 —inf
e do + — log| —2sin| =) |e de
2 J_ . 2
)) e~ ™m0 49 + L / log (2 sin <6>> ™ do
27T 0 2

In particular,

o
3
I

F= ¥l= F-

> (2cos(nf)) df

:\c\hh
<} —
09 o
03
7 N\
N T N7 N N
2. b
= =z,
7N "
NI N7 N N
NI N N

Nl 3= N

5}
o
—
2
o
@]
BN
3
>
N—
(oW
>
+
= Z
o\ﬁ
—
@]
o
N
&,
=
/‘x
~_
~__
o
o
7
—
3
e
S—
(o}
>

log (sin (g) cos(nf) dé.
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Note that it thus suffices to consider n > 0. In particular, for n # 0, through integration by parts, it follows that

Cn = % ({isin(n@)log (sin (g))}: - :L/Oﬂ W d&)

1 [ cos (%) sin(nd)

“Tandy
_ 1 ma(sin((34n)0) —sin((3-n)0))

e Jy sin (2)
1 (e )0) rsin((n- 1))
T, i ()

n—1

EXIZ:T'-L‘—f 7+Zc05 (k0) + = +Zcos (k6)d
S Ly,

nm 0
_ 1
=

For n = 0 we have

_m/ a3 20804

= —log(2

Exercise [2.3.1]
Solution. Using Proposition [2.2.2] we have
@ -5 50
on(z) = ~ k(x

— [T 1 sin (2EHL2)

1 2
:EZ/ Stz inz)




3 Fourier Transform

Thus far we have seen that a periodic, integrable function is represented by its Fourier coefficients. We now
intend to generalise these arguments to non-periodic functions defined on R. Our approach will be to use our
previous work and a limiting argument. More specifically, we note that we can restrict a function f defined on
R to a function f defined on (—I,1). Through re-scaling, we can view this restriction as defined on (—m, 7).
Thus we can leverage our previous work on periodic functions. By sending [ — oo one would expect to obtain a
representation for f as a function on R. The conditions under which such an argument is productive are made
explicit in the following section.

3.1 The Fourier Integral
Suppose f € L*(R) satisfies (2.2.3)) at each point in (—I,1). Then we know that

fx) = % + ; (a;~C cos (kﬂlm) + by, sin (T))

!
ai = %[lf(t) Cos (kﬂ;t) dt
1 [ . kmt
by, = Y[Zf(t) sin (l> dt.

Fz) = Qll/llf(t) dt + ;i/ll F(t) cos (lm(tl_“’)) dt.
} 2./
wk

Letting A\, = % and taking [ — 0o, one would expect to obtain the Fourier integral

where
and

Consequently,

o) = i/om /_oo F(#) cos(A(t — 2)) dt dA.

This limit is entirely intuitive at present and it is not clear whether it should hold. One can think of the Fourier
integral as a continuous analogue of the Fourier series. More specifically, one can re-write the Fourier integral as

flz) = /OOO ay cos(Ax) + by sin(Ax) dx

where

ay = %/_OO f(t) cos(At) dt

and

by = % / T f () sin(A) dt.

Exercise 3.1.1. For a > 0 show that

s z

l/oo sin(az) dre 1.

—00

Theorem 3.1.2. Let f € L*(R) and suppose it satisfies Dini's condition, (2.2.3), at x € R. Then

@) = i/ooo /_Oo F(#) cos(A(t — z)) dt dA. (3.1.1)
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Proof. Let

_ i/o /_O; F() cos(A(t — ) dEdA.

As f € L'(R), the double integral ((a) absolute values converges. Hence, by Fubini's theorem, the order of

integration can be exchanged such that
1 (e ] a
= f/ / cos(A(t —x))dAdt

/ £t Smtf ™) 4y
/ flx sm(az) dz.

Using Exercise [3.1.1] we can write
C(a) — f(x) = / Fet2) = f@) G asyas

z
_ / f:Jc—i—zZ fla )Sln(az)d2+71T/>Nf(xz+z)sin(az)dz
I I
_ f@) sin(az)
- /|>N . dz.
I3

As f € L'(R) it follows I — 0 as N — oo. Similarly, using Exercise we have that I3 — 0 as N — oo.
Thus there exists an Ny € R such that |I],|I3] < & for N > N. By and Lemma [2.2.5 we have that
I; — 0 as a — oo. Hence, there exists some A > 0 such that for a > A we have |11 S <. Hence, for N > N
and a > A we have

¢(a) = f(z)] <e
Therefore, ((a) — f(z) as a — oc. O

As we did for the Fourier series, we can consider the Fourier integral over L!(R) as a complex Euclidean space.
Doing so, under appropriate conditions, leads to the inverse Fourier transform. Let f € L'(R) and suppose it
satisfies (2.2.3]) at # € R. Then as cos(-) is an even function we can write the Fourier integral as

)Z;W/C: /Z F(t) cos(A(t — 2)) dt dA.

Similarly, as sin(-) is an odd function and [ f(t)sin(A(t — x)) dt exists, as f € L*(R), it follows that

—hm/ / F(t) sin(A(t — 2)) dtdA = 0.

2T N—oo

Therefore, if f € L}(R) satisfies (2.2.3)) at 2 € R its complex Fourier integral is given by

f(x) fhm/ / ft)e= 22 qrd. (3.1.2)

2T N—oo

Definition 3.1.3. Let f € L'(R). The Fourier transform of f is

o) = FIAI(N) = / Y Fe-M dr.
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Note that the Fourier transform of f exists provided that f € L!(IR). However, if additionally f satisfies ([2.2.3)
at = € R then (3.1.2)) also holds.

Definition 3.1.4. Let f € L'(R), and suppose that f satisfies (2.2.3)) at = € R. Then the inverse Fourier

transform of f at x is
1 N o
f(@) = 5~ Jim 7Ng(>\)e dA.

Remark 3.1.5. The Fourier transform exists for any f € L'(R), whereas the inverse Fourier transform exists
only for f € L'(R) that additionally satisfies Dini’s condition. This is similar to how Fourier coefficients can be
defined for any f € L'(—m, ), with the Fourier series only converging for f which satisfies Dini’s condition.

I Theorem 3.1.6. Let f € LY(R). If g(\) = F[f](\) =0, then f(z) = 0 almost everywhere.
Proof. Observe that

0=9g(\)
= h f(z)e"™*dz

A / [z +t)e @ gy
= e M / f(z+t)e ™ dz,

which implies that [*_ f(z +t)e=**daz = 0. Let p(x) := [ f(x +t) dt for fixed 1 > 0. Note that ¢ € L'(R)
and by Fubini's theorem we have

Pl = [ " p(@)e N da

S o }
= / flz+t)e At dx
—o0 J0

uoopoo _
= / / flz+t)e ™ dadt
0 —00

m
:/ 0dt
0

0.

Moreover, it is clear that on any finite interval ¢ is absolutely continuous, and thus its derivative exists almost
everywhere which implies that it satisfies Dini's condition almost everywhere. Therefore, using the inversion
formula and the fact that F[p] = 0, it follows that ¢(z) = 0 almost everywhere, but as ¢(x) is continuous this
means that ¢ = 0. Therefore,

"yt =o
0

for all 4 € R which implies that f(z) = 0 almost everywhere. O

Example 3.1.7.
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1. Let f(x) = e 12l fory > 0. Then

g(A) = / e Mele=A qg

= 2/ e 7 cos(\x) do
0

—2 ({ew <i sin(A:c))Eo - /O h }e*w sin(\z) d:c)

oo

=—— e " sin(Ax) dx
A Jo

_ _27” ([e‘"”” (i cos(m)ﬂ:o + /0 h T cos(Aa) dx)

_ (1
= /\< >\+2>\g(>\)>’

and so 9
v
A= —5—.
»
Figure 3.1.1: Graph of f(x).
2. Let
1 |z|<a
f(@) = {O |z| > a.
Then

90 = [ s@eas

:/ e dy
—a

2sin(Aa)
—

Note that g(\) € L*(R).
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o P

o—
-ac

Figure 3.1.2: Graph of f(x).

3. Let f(¥) = -+ fora>0. For A <0 let

e
Y=mUr

where v1 = [~R, R] and g = {Re" : 0 € [0,7]} for R > a. Then

1 ; 1 )
Res [ ——e ™ ja | = j{ e~ dz.
22 + a? 4 22+ a?

Observe that

Moreover,

Hence,

T —ax
Zema — ()
¢ g(N)
Therefore,
™
A) = —e P,
9(A) = —e

On the other hand, one can see that g(\) = ge*“p" using the inversion formula and statement 1.
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Figure 3.1.3: Graph of f(x).

Note the rate of convergence for each example. Continuity in statement 1 yields % convergence, the disconti-
nuity in statement 2 means we only get % rate of converges, and the analyticity of statement 3 means we get
exponential convergence.

4. Let f(x) = e~ for a > 0. Consider the contour given by

[—R, R]U[R, R + ie] U[R + i€, — R + ie] U [~ R + ic, —R] .

——
Y1 Y2 Y3 Y4
Note that
2 2 .
/e*“z dz| = / e“(Rﬂﬂ)idy'
Y2 0
€
Se—a}#/ efa(,y2+2Ryi) dy
0
S efaR266a62
23
Similarly,
2
/ e dz| 250 0
Y4
Furthermore,

Therefore, as

_ 2
/ e " dz=0
Y1Uy2UysUvs

> 2 2 [ 2 .
0= / e 9" dp — ed€ / e T 67204{1?61 dz.
—o0 0

it follows that

. . _ )\ .
In particular, letting e = —5- it follows that

o 2 i A2 > 2 e A2
e ¥ eMdr =e 3 e ™ dx =4/ —€e 4a.
oo oo a
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Therefore,

Observe that for a = 5 we have

e_ﬁ = 27re_72.

3.2 Properties of the Fourier Transform

Lemma 3.2.1. Let (fu)nen € LY(R) and f € LY(R). Suppose that f, — f in L'(R). Then g,(\) :=
F[fn)(A) = F[f](X) uniformly on R.

Proof. Observe that

lgn(A) — F[fI(N)| = ’/OO (fol2) = f(2))e” da

</ T (@) — f@)] e da

</ "V fula) - f(@)] da

= H.fn - fHLl(R)

n—
n 000.

O

Lemma 3.2.2. Let f € L*(R). Then g(\) = F[f]()\) is a bounded and continuous function, with g(\) — 0
as |A| = oo.

Proof. As f € L'(R) it follows that

(V)] < / @) 2] dz < ||| < oo.

Thus, g is bounded. Suppose f(x) = 1[4. Then

e—iAb _ p—ida

b
F[f] :/ e‘“‘”dx:T,

which is continuous and decays to zero as |A| — co. Since, F[] is a linear operation, it follows that the Fourier
transform of any step function is continuous and decays to zero as |A\| — oo. As step functions are dense in
L'(R), for any f € L*(R) there exists a sequence (f,,)nen of step functions such that f,, — f in L'(R). Using
Lemma [3.2.1 we have that F[f,] — F[f] = g(\) uniformly in A\ € R. Therefore, g()) is continuous as it is the
uniform limit of continuous functions. Given € > 0 there exists an IV € N such that

€
15 = il < 5.
Moreover, there exists a A\g € R such that |F[fn](A)] < § for [A| > Ag. Therefore, for A > A¢ it follows that

9] < l900) — FLANTO) + [FLANIOV)
< / F(@) — ful@)] ] da + [F[fn](V)]

€
<If = Sl + 5

<L
2 2

= €.
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Therefore, g(A) — 0 as |\ — oo. O

I Lemma 3.2.3. Let f € L'(R). Then g(\) = F[f]()\) is uniformly continuous on R.

Proof. Fix e > 0. As f € L*(R) there exists R > 0 such that

/ (@) da <
|z|>R

. ot
= |2sin <2>‘

it follows that for || < R, there exists a §; > 0 such that for 6 < é; we have

1o

As

|e—i5w _ 1|

‘e—iéw _ 1’

T —
2/ £l (my

Therefore for § < §; we have,

| ()\+5 |_ ’/ f —i(/\+6)ac _ —Ma:) dx

S/ |f( ||67“§I—1| dx
:/ \f(sc)”e_i‘;x—l’ dx—i—/ \f(m)||e_i5”—1 dz
|z|<R |z|>R

€

NN e d 2 d
S2||f||L1<R> /lmf(x)l ve2 [ ifa)as
Hf”L R)—|—2—

<
- 2||f|| 1

= €.

Therefore, g is uniformly continuous. O

Exercise 3.2.4. The statement of Lemma([3.2.3 holds more generally. Show that if f is a real and continuous
function such that f(z) — 0 as |z| — oo, then f is uniformly continuous on R.

Lemma 3.2.5. Let f, f' = % € LY(R), with f absolutely continuous on any finite interval. Then F [f'] (\) =
INF[FI(A).

Proof. The function f admits a representation

+/Ox f(t)dt

As f € L*(R) it follows that lim, ,~, f(z) and lim,_, ., f() exist and are zero. Using the integration by parts

formula observe that
:/ f(x)e” ™ dz

= [f()e ?"]™ +m/ f@)e™ ™" da
= IAF[f](A).
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Remark 3.2.6. Suppose f is n-times differentiable, that is f"™) € L'(R) exists with each f, f(V), ..., f(»=1
absolutely continuous and integrable. Then by integrating by parts, and using Lemma we obtain

F 1] (8) = ()" FIA).
In particular,
_IF[F™]] _ € pioes

F[f]| = <—"— 0,

where the inequality follows by the assumption that f(") € L'(R). Hence, the smoother f is the faster F|[f]
decays at infinity. The converse also holds, namely the faster f decays at infinity the smoother F[f] is.

Exercise 3.2.7. Suppose f is twice differentiable with f, f', f” € L*(R). Show that F[f] € L'(R).

Lemma 3.2.8.
1. Suppose f(x),xf(x) € LY(R). Then g(\) = F[f]()\) is differentiable with
g'(A) = Fl—izf].
2. Suppose f(z),zf(x),...,aPf(z) € L'(R). Then g(\) = F[f]()) is p-times differentiable with
9P (\) = F [(—iz)? f] (V).
Proof

1. Observe that

d 0o ) oS ]
—/ f(x)e™ ™ dx = —i/ zf(z)e” A da. (3.2.1)
d>\ —0o0 —0o0

Since zf(z) € L*(R), we know that ¢’(\) exists and thus it must be given by (3.2.1)).

2. Follows similar arguments made for statement 1.
O

Remark 3.2.9. Note that from statement 2 of Lemma it follows that if zP f(z) € L*(R) for all p € N,

then g(\) is infinitely differentiable.

I Lemma 3.2.10. If 2%l f(2) € LY(R) for some 6 > 0, then g(C) is an analytic function in a neighbourhood
of R.

Proof. The integral
/ f(sc)e“”C dz
—0o0

where { = A + ip, uniformly converges for |u| < d. Therefore,

o)1= [ " f)e d

is analytic in a neighbourhood of R.
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Figure 3.2.1:

3.2.1 Convolution

Definition 3.2.11. Let f;, fo € L'(R). Then

@) = (fi % fo)a / e —a)

is the convolution of f and f5.

Remark 3.2.12. Note that (- -) : LY(R) x L*(R) — L'(R) is a well-defined operation. Indeed,

| @it [ [ 1@k - pld

e [ a1t -vias) o
_ / A F2llor @) dy

= [lfilzrwlf2llz @)
< 00.

Theorem 3.2.13. Let f1, f» € L'(R). Then
Ff1 % f2)(A) = FIA](ANF[f2] (A).

Proof. Using Fubini's theorem

Flfy# )0 = / (% fo)(@)e= da

/ / FLW) fa(z — y)e” P dy dz
Fugnl/ hy / fo(z — y)e ™ da dy
=y / ) fily) / i fa(t)eMemM dt dy

/ fi(y)e ™V dy / Fa(t)e™ dt

= Ffi](N)F[f2](A
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3.2.2 The Heat Equation

The discussed properties of the Fourier transform are significant for their application to solving differential equa-
tions. Consider the linear differential equation

y(”) + aly("—l) +-tany = Qp({[;)’ (322)

which has constant coefficients for non-zero derivatives of y(z). If y,¢ € L'(R), an application of the Fourier

transform to yields
(N 2(A) + a1 (iIN)" " 2(N) + -+ anz(\) = Fle](N) (3.2.3)

where z(A) = F[y](A). Equation ([3.2.3)) is significantly easier to solve than ([3.2.2)).
Example 3.2.14. The heat equation is the partial differential equation

ou  O%u

where u = u(z,t) represents the temperature at positive x € R for time t > 0. Suppose that ug(z) = u(z,0)
is given. Moreover, assume that ug,uf,uy € L'(R). To make progress on solving (3.2.4) one assumes the
following conditions are satisfied.

1 u(z,t), Zu(z,t), aa—;u(a:,t) € LY(R) for all t > 0.

61& ’

forall0 <t<T.
Using assumption 1 we can apply the Fourier transform to the right-hand side of (3.2.4)) to get
0? 5
F {Wu} = —Xv(\ 1)

where v(\, t) = Fu]. Using assumption 2 we can apply the dominated convergence theorem to deduce that
the Fourier transform of the left-hand side of ([3.2.4)) is given by

Ju [T 0u i,

0 > —i\x
=5 / ue dz

—0Q0

0
= —v(\t
pralt)
In particular, we are viewing %’; as a limit to apply the dominated convergence theorem. Thus,

0
— 2 —
Av(\t) = 8tv()\,t)

to which a solution satisfying the initial conditions is given by

v(A, 1) = exp (—A%t) vo(N)
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where 'UO()\) = F[uo]()\) Noting that exp (—)\2t) =F {%m exp (—%)} we can use Theorem|3.2.13 to see
that

v(At) = F [Nlﬁ o (—fj)] Fluo]
F [NIE - ({;) *uo(a:)] .

Therefore, )

1 e 1
u(x,t) = —— exp | —— | up(z — p) dp,
(z,t) 2%3Km p( 4t)o( ) dp
which is known as the Poisson integral for the solution to ([3.2.4)).

3.3 Schwartz Functions

Definition 3.3.1. Let S denote the set of functions f, on R that are infinitely differentiable and such that
for any p,q € N, there exists a constant C(p,q, f) so that

279 @)| < C(p.. )

for all z € R.
Remark 3.3.2. A function f € §*, as in Definition is known as a Schwartz function.

| Lemma 3.3.3. If f € 8, then g = F[f] € 5.

Proof. Note that
Clp+2,q,f)

2

2P f(9) (x)’ <

which implies that 2P f(9)(z) € L'(R) for every p,q € N. Therefore, g = F|[f] is infinitely differentiable by
Remark Moreover, letting p = 0 we have f(9) € L'(R) and so it follows by Remark that g(\) tends

to zero as |A\| — oo faster than ﬁ for every ¢ € N. Next, note that F {((—ix)pf)(qq (A) = 0 as |A| = oo by
Lemma Similarly, as g'?) is the Fourier transform of (—ix)?f € L'(R), we know by by Lemma that
g (\) — 0 as |\| = oco. Therefore as,

F |(=iz) ) @] *"E28 )1 F [(~iw)f]

B )1 ()

it must be the case that g(P)()\) decays to zero faster than ‘/\% as |A\| = co. Thus if f € S it follows that
g(\) = F[fI(A) € 8. O

Remark 3.3.4. For f € §°, condition ([2.2.3)) is satisfied and so the inverse Fourier transform, Definition
holds. In particular, the converse of Lemma also holds, namely if F[f] € 8 then f € 8. As
Schwartz functions are continuous this correspondence is unique. Thus, the Fourier transform is a bijection on

S,

Example 3.3.5. Consider f(z) = e=®". Then f)(2) = p,(x)e~*" where p,(z) is some polynomial. Note
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that for any k € N we have

2 (@) (@)
€ :lz_% T

so that |z|~*k! > |z|ke="".

= For |z| > 1 we have that ’acke*m2 < ‘;% < k!l

2 . . . .
= For|z| <1, as z¥e=*" is continuous it is bounded on |z| < 1.

Therefore, there exists a M € R such that
’xkefﬁ

<M

for x € R. Hence, there exists a C = C(p, q, f) such that

27 79(@)| < C.4.5)
for all z € R, which implies that f € 8. Indeed, from statement 4 of Example[3.1.7] we have that

Flf] = V2re™ = V2rf()) € §%,

which verifies the conclusion of Lemmal3.3.3 in this case.

I Theorem 3.3.6. The class S is dense in LP(R) for every p € [1,00).

3.4 Fourier Transform in L?(R)

Throughout this section, we will consider L?(R) as a complex Euclidean space. For f € L?(—n,7) C L'(—m, )

the Fourier coefficients are )

Cn = — f(z)e ™ da

2T

for n € Z. Moreover, the map f +— (c,)nez can be seen as a map L?(—m,m) — (2, that satisfies Parseval's

equality,
2 Yl = [ 17(a) e

ne”Z

To extend the Fourier transform to L?(R) requires additional work as L#(R) ¢ L'(R) and so we cannot utilise
the work of the previous section.

Theorem 3.4.1 (Plancherel). For f € L?(R), we have

N
gv(\) = [ . f(x)e~® dz € L*(R)

for any N > 0. More specifically, as N — oo the function gn(\) converges in L?(R) to some g € L?(R)
with,

/oo GO dA = 27 /OO 1£()[2 da. (3.4.1)

— 00 — 00

If additionally f € L'(R), then g coincides with the usual Fourier transform of f € L'(R).

Proof. Step 1: Show the result for functions in S.
Let f1, fo € 8, with g1, g2 denoting their Fourier transforms. By Lemma [3.3.3] we have g1, g2 € S*°. Applying
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the inverse Fourier transform and Fubini's theorem we have

/_Z fl(x)mdx = /DO 1 (/OO 91()\)6i’\xd)\>fz(x)dx

—o0 2m —oo

_ % / e / fa(@)e—e da dX

= % [ O; g1(N)g2(A) dA.

Setting f1 = f2 gives (3.4.1).

Step 2: Show the result for functions in L?(R) with compact support.

Let f € L*(R) be such that f(z) = 0 for z € [—a, a] for some a > 0. Then f € L?(—a,a) which implies that
f € LY(—a,a), and as f(z) = 0 for & [—a, a] we have that f € L'(R). Consequently, the Fourier transform of
f exists and is given by

g@%=[%f@k””d%

Let (fn)nen € S be such that f,,(z) = 0 for z ¢ [—a,a] and f,, — f in L?(—a,a). This exists due to Theorem
We note that f,, — f in L?(—a,a) implies that f,, — f in L'(—a,a), and so we also have f, — f in
L'(R). Therefore, using Lemma gn = F|[fn] — g uniformly on R. As g,, — g € S> we can use step 1 to
deduce that - -

[ 10000 = guF =27 [ 1fuf@) = ful@)] d
In particular, this means that (g,)nen is Cauchy in L?(R) as (fn)nen is Cauchy in L2(R). Thus, (gn)nen
converges in L?(R), more specifically it must converge to g. Therefore, as || fu||22 = 5=|gn |2, from step 1, we

deduce (3.4.1)) for f € L?(R) with compact support.
Step 3: Show the result for functions in L?(R).

For f € L3(R) let
fﬂmf{ﬂwlﬂSN

0 |z| > N.

Note, ||f — fnl|lzz — 0 as N — oco. By similar arguments as made in step 2, we know that fx € L!(R), meaning
its Fourier transform exists and is given by

e’} N
gn(N) = / fN(x)e_i)‘x dz = / f(x)e_i)‘”” dz.
oo _N
By step 2 we know that
1
| fv — fullFe = %HQN — gurl|3e,

and so gy converges in L*(R) to some g € L?(R). Taking the limit of ||fx |22 = 5=|lgn||%2, given by step 2,

we deduce (3.4.1) for f € L*(R).

Step 4: Coinciding with Fourier transform for functions in L!'(R) N L*(R).
Let f € L*(R) N L?(R). Then the Fourier transform of f exists,

g@%=[%f@k””dw

Since fx — f in LY(R) it follows that gy — § uniformly on R by Lemma [3.2.1] However, we know, from step
3, that gy — g and so it must be the case that g = §. O

Remark 3.4.2.

1. The function g € L?(R) of Theorem (3.4.1] is called the Fourier transform of f € L%*(R). Indeed, if
f € L*(R) then g as in Theorem (3.4.1| coincides with the Fourier transform of f as given by Definition
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2. From (.4.1)), we can say that as a linear operator in L?(R) the Fourier transform preserve norms, up to
2.

Corollary 3.4.3. For any f1, fo € L?(R) we have

1 o0
2m J_ o

/:X) fi(@) fa(z)dz = g1 (N)g2(A) dA.

Proof. Using Theorem let g1, 92 € L?(R) be such that
o0 1 o0
| 1n@Par= g [ ooy
oo T ) o

and

| 1p@ar =5 [l ax

In particular, note that f; + f> € L?(IR), and so through the algebra of limits we have

[ 10+ el ar= o [ 10+ 2R a (342)

Observe that,

| 0@+ @ dr= [ (@) + £6) T+ ) de

= /OO [f1(@)]* + fi(2) fo(2) + fi(2) fo(2) + | fo(@)* d

:2177/_0; |91()\)|2d)\+217r/_o; |92(>\)|2d>\+/_2 fi(@) fo(@) + fi(2) fo(2) de

- ;T/_O; g1 VP A + ;ﬂ/_o; g2 (VP dA + ;/_Z Re (fi(@)f(a)

Similarly,

[ o+ mrar= [ aP + 0 + (6050 + 5 (e0) 4

= [ 1m0 + P + 5Re (510500 r

Thus, returning to (3.4.2)) it follows that
%) - 1 00 L
re( [~ a@REE) = 5ore ([~ amma).,

| 1n@+in@P e = L [ a0 +in0)F o

Similarly, from

_ o
Im (/O:O fl(x)fg(a:)dx> = %Im (/O; gl()\)gg()\)d/\) .

| n@R@a =5 [ g

it follows that

Therefore,
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3.5 Laplace Transform

The Laplace transform extends the Fourier transform beyond integrable functions.

Definition 3.5.1. Let L be the class of functions f, that satisfy the following statements.
1. f(z) satisfies Dini's condition.
2. f(z) =0 forz < 0.
3. |f(x)| < Ce* for some C,~y > 0.

For f € L let .
g(s) ::/_ f(z)e " du,

where s = A +ip for A\, u € R. Despite f being potentially exponentially large and not integrable, from condition
3 of Definition 351l

g(s) = /000 f(z)er®e ™ dy

exists and is an analytic function of s in the half plane Im(s) = u < —~vp. In particular, for fixed u < —v9, the
function g(s) is the Fourier transform of f(xz)e*®. Thus, using condition 1 of Definition we can apply the
inverse Fourier transform to deduce that

N

1 4
HT : AT
flx)e o Nh_r)r(l)o i, g(s)e" ™ dA.

With the change of variables p = is, letting ®(p) = g(s) and & = —pu, we obtain

1 po+ico
flx) = i fyi ®(p)e”* dp
where 0 > 7 and
O(p) = /0OO f(x)e P¥ da. (3.5.1)

We note that ®(p) is analytic for Re(p) > o, as when Re(p) > 7o we have that Im(s) < —vg which ensures
that ®(p) = g(s) is analytic.

Definition 3.5.2. For f € L, the function ®(p) as given by (3.5.1)) is the Laplace transform of f(z).

3.5.1 Application to Ordinary Differential Equations

As before we consider the application of the Laplace transform to ordinary differential equations. Suppose
y ™ a4 e,y = b(x) (3.5.2)

with a1, ...,a, € C has the initial conditions y*(0) = yx for k = 0,...,n — 1. Assuming that b(z) € £ we seek
a solution such that y*) € £ for k=0,...,n. Let

Vo) = [ vle)eda

and ~
B(p):/0 b(x)e P* du.

Using integration by parts, and an inductive argument it follows that

/ y P (2)e " = p*Y (p) — b1 — pyk—o — - — P" o
0

44



for k=1,...,n. Applying the Laplace transform to ([3.5.2) yields
Q(p) + R(p)Y (p) = B(p)

where
R(p) =p" +aip" "+ +ay,

and Q(p) is a polynomial of degree n — 1 dependent on yo,...,yn—1. Consequently, one can show that

O+i00 -
y(z) = 1 B(p) — QD) pe

= — d
2mi Joine  R(p) P

which can then be computed using residues. This method for obtaining a solution to a linear differential equation
with constant coefficients is known as the operator method.

Exercise 3.5.3. Using the Laplace transform, solve the differential equation

y@ (@) + y(a) = 1

for y(x) € R satisfying the initial conditions y(0) = y'(0) = y”(0) = 0.

3.6 Fourier-Stiltjes Transform

Recall that for f € L'(R) the Fourier transform is given by

g@%:/me””ﬂ@da

— 00

which as a Lebesgue-Stiltjes integral can be written as

g0 = /_ T e g R (), (3.6.1)
where .
Fla) = [ () dt. (3.6.2)

Definition 3.6.1. A function F(z) is of bounded variation on [a,b] if

VPF = sup (Z |f (k) — f(xk_l)) < 00,

k=1
where the supremum is over finite divisions of [a, b] of the form
ap =20 < -+ < ap =10,

where n € N can vary. Similarly, a function F(z) is of bounded variation on R if

VS F = Var(F) := Hflgor%%m VPF < o0.
Remark 3.6.2.

1. A function of bounded variation can be written as a difference of monotone functions.

2. A function bounded variation is differentiable almost everywhere. Indeed, a function F of bounded
variation can be written as

F=op(z) +¢(z) +n(2)
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where p(x) is absolutely continuous, 1)(x) is singular continuous, and n(x) is a jump function. Hence,
F'(z) = ¢'(x) almost everywhere, as ¢'(x) = n'(x) = 0 almost everywhere.

Example 3.6.3.

1. If F(z) is a monotonically increasing function on [a,b] then

VPF = F(b) — F(a).

2. If F(x) is a differentiable function on [a,b] then

b
VbR = / |F'(2)] da.

For (3.6.1), we note that F'(z) is absolutely continuous with bounded variation on R as

Var(F):/ |f(z)|dz < 0.
However, we note that ([3.6.1)) is well-defined even if F'(z) is not directly of the form ([3.6.2). It is sufficient for
F(z) to be of bounded variation on R for ([3.6.1]) to be well-defined.

Definition 3.6.4. For F(x) a function of bounded variation on R, the function

o= [ " e dF(a)

— 00

is the Fourier-Stiltjes transform of F(x).

Example 3.6.5. Forxzi <z <---<x, and ay,...,a, € R consider the step function
Flz) = | Zoe<a @6 T2 1
0 r<ux

For a < x1 and x,, < b we have
b . n .
/ g dF(z) = Z e ATk (F (xk)+ - F (xk)i)
a k=1
k

n k-1
= e~ 1 (g —0) + Z e~ ATk (Z a; — Z ai>
k=2 i=1

g=1l

n
— e—zkxlal + § e—z)\wkak
k=2

n
= E ape” AT,
k=1

Sending a — —oo and b — oo it follows that

g(\) = / e AR (z) = ape” Tk,
=es k=1
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Lemma 3.6.6. The Fourier-Stiltjes transform of a function F' of bounded variation on R is bounded and
continuous on R.

Proof. The Lebesgue-Stiltjes measure of an interval corresponding to V®__F is greater than or equal to the
measure of the interval corresponding to F'(x). Therefore, the following can be deduced.

1. Note that - -
lg(N)| < / ‘e_i)‘””’ dF(z) < / dVZ F < 0.

So g()) is bounded.

2. Note that

N
lg(A1) — g(\2)] < / le™ M — g7t qVEF + / e — g7 qVE_F .
-N Jlz|>N

11 12

Since I is of bounded variation and |e*”‘1”” — e’“‘”| is bounded, the integral I5 can be made arbitrarily
small for large N uniformly over A; and \o. With this fixed N, we note that

2sin (Ql _ZAQ) x)

Hence, I1 — 0 as |A\; — A2| — 0. Therefore, g is uniformly continuous.

I/\1—A2‘—>0
==

|e—z/\1x o e—zkga:| _

0.

O

Example 3.6.7. Unlike Fourier transforms, Fourier-Stiltjes transforms do not necessarily decay as |\| — oo.

Consider
>
Flz) = {1 x>0
0 x<0O.
Then
g\ = / =M 4P ()
= N (F(0,) - F(0.))
=] ]_7
for all A € R.

Exercise 3.6.8. Let F'(x) € S have Fourier-Stiltjes transform g(\). Show that,

" or

00 ezAb _ ei)\a
F(b) — Fla) = — [ PO

for a < b.

3.6.1 Convolution

Recall the convolution of fi, fo € L'(IR) as given by Definition [3.2.11] Now let

Fa = [ s
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where f(t) := (f1 * f2)(¢) and

0= [ s

for 7 = 1,2. Using the absolute integrability of f, fi and fs, it follows by Fubini's theorem that

/; f(t)dt
/Oo /O; F1(t =) faly) dy e
/—O; </_; hlt=y) d’f) f2(y) dy

= /_OO Fi(x —y)dFa(y).

However, the resulting integral is well-defined more generally, not just when F; and Fy are absolutely continuous
as is the case here. Indeed, a function of bounded variation F' is Borel measurable. Thus, the integral of F} with
respect to Fy is well-defined provided Fj is of bounded variation. Moreover, the integral is finite provided F3 is
of bounded variation.

Definition 3.6.9. For F, F5 functions of bounded variation on R, their convolution is given by

F( ) (Fl*FQ / F1 x— dFQ( )

I Lemma 3.6.10. The function Fy x Fy from Definition[3.6.9 is of bounded variation on R.
Proof. Observe that
Plon) = Faa)l = | [ (R =9) = Rl = 1) dF2(0)
S/ |Fi(z1 —y) — Fi(ze —y)|dVY Fy.

Hence,
Var(F) < Var(F;)Var(F,) < oo

O

Theorem 3.6.11. Let F' = F x F5, where F, and F5 are of bounded variation on R. Let g, g1 and g be
their respective Fourier-Stiltjes transform. Then

g(A) = g1(N)g2(N).

Proof. Let
a=x9 <2 < <xp =b.

Then for any ), since e~** is continuous, the Lebesgue-Stiltjes integral coincides with the Riemann-Stiltjes
integral
’ iA iA
e " dF lim e Tk — F (xp_
A ( ) max(Amk)AOZ ( § 1))

lim / Z —iX(zr—y) (Fy (zx —y) — Fy (tp—1 —y)) e~y dFy(y).

max(Aa:k)AO 0 k3
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That is,
b , [e'e] b—y . .
/ e—’L}\.’I) dF(.’l?) — / / e_ZAx dF1 (x)e_”‘y dFQ(y)a
a —oo Ja—y

where the limit has been brought into the integral using the dominated convergence theorem. By another
application of the dominated convergence theorem, it follows by taking the limit @ =+ —oo and b — oo that

/ "M AF(z) = / e~ AF(y) / e~ ARy (z).

— 00 — 00 — 0o

In other words, g(A) = g2(A)g1(N). O

3.7 Application to Probability

Let ¢ and 1 be independent random variables with distribution functions F} and F5 respectively. Then F' = Fy % F5
is the distribution function of { + 7. In probability theory, the Fourier-Stiltjes transform is known as the method
of characteristic functions. That is,

a(A) = /OO e dF;(z)

—0o0
is known as the characteristic function of (. Consequently, we have that the characteristic function of { + 7 is
the product of the characteristic functions of ¢ and 7.

3.8 Solution to Exercises
Exercise 3.1.1
Solution. With y; = [r, R], 7o = [-R, —r], v, = {re? : 6 € [r,0]} and vz = {Re? : 0 € [0, 7]}, let

Yy=71Uvr Uy U,

Then as etz is analytic in y it follows that
eiaz
27{ dz.
Y 2
Note that
. . i0
elaz m ezaRe ) i
[m . dz| = . Re iRe' df

T
/ efaRsm HezaRCOSO do'
0

< /Tl' e—aRsin@ de
—Jo
2,

On the other hand,

iaz 0

e L ioa,if
/ dz:/ e do
Y # w

0

Therefore, sending R — oo and r» — 0 it follows that

o _iaz 0 iaz
0:/ ¢ dz—|—0+/ ¢ dz —im.
0 z —o0 z
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Looking at the imaginary parts we have

and so

Exercise 3.2.4]

Solution. Given € > 0, let M € R be such that [f(z)| < § for [x| > M. Then since f is continuous it is
uniformly continuous on [—M, M]. In particular, let § > 0 be such that |f(x) — f(y)| < § for z,y € [-M, M]
with |z — y| < 4. Let 2,y € R be such that |z — y| < 4.

» If 2,y € [-M, M] we have

@)= Jw)l < g <«

» If |x|,|y| > M, then

F@) = FW] < F@] +1fW) < 5+ 5 <e

= Ifzxe[M—6,M]and y > M, then

(@) = F@)] < |f(@) = FOD|+F(M) - f(y)]
< 5+ IFON]+ 15 )]

<e+e+e
3 3 3

= €.

Therefore, in any case, for z,y € R with |z —y| < & we have |f(z) — f(y)| < €, which implies that f is uniformly

continuous. O
Exercise 3.2.7]
Solution. Using Remark [3.2.6] we have that
FIAN < 5
for all A € R. Therefore, as 55 € L'(R) it follows that F[f] € L'(R). O

Exercise 3.5.3]

Proof. Note that
y3) (2)e* da = p*Y (p) — ¥ (0) — py'(0) — p*y(0) = p°Y (p),

0
and
< 1
/ e PPde = —.
0 p
Hence, )
(P*+1)Y(p) = -
p
Thus, o
1 “+100 eip:n
y(z) = ————dp

T 27 Jo e PP 1)
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for @ > 0 larger than the real component of any pole. For = > 0, taking the left semi-circle contour and using
Jordan’s lemma it follows that

ipT

y(x) = Res <p(;3+_1),0> + Res (p(;il_)’ 1>

et i e'pr — i
+Res| ——,¢3 | + Res | ——,e73
(p (p®+1) ) (p (P +1) )

1 —x 1 iz i3y —i3y
:1—56 —§62 (62 +e 2 )
=1- le*m - ge%z cos (\/gx>

3 3 2

For x < 0, taking the right semi-circle contour and using Jordan's lemma it follows that

y(x) =0.
O
Exercise [3.6.8]
Solution. We have -
g0) = / = 4P (x), (38.1)
thus for fixed p we have
g\t = / e TP AR (2) = / e~ AF (z 4 p) (3.8.2)
Subtracting ([3.8.1)) from ([3.8.2) it follows that
g(\) (e —1) = / e (dF (x + p) — dF(z)) .
Letting G(x) = F(x + p) — F(x) we have
g(\) (e —1) = / e AT AG ().
As |z| — oo note that G(z) — 0, and so
e}
g(\) (e —1) = / e~ dG(z)
— 00
= ([e_i’\””G(ac)]iooo —|—/ iNe M G(x) dx)
= i/\/ e~ MG (z) da.
Since, G(z) € 8> we can apply the inverse Fourier transform to deduce that
L[~ e —1 i
Setting p = b — a and x = a it follows that
1 0 ei(bfa))\ -1 .
F _F _ ia\
0 =Pl =5 [ s e ax
1 [ eibA _ giad
O
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4 Linear Functionals on Normed Linear Spaces

4.1 Linear Functionals

Definition 4.1.1. Let L be a linear space. Then f : L — C, or R, is a functional on L. It is linear if

fl@z+y) = f(z)+ fy)
and
flaz) = a(z)
for all z,y € L and o € C, or R.

Definition 4.1.2. For f a linear functional on a linear space L, the kernel of f is

ker(f) :=={x € L: f(x) =0}.

I Lemma 4.1.3. The codimension of the kernel of a linear functional on a linear space is one.

Proof. Let f : L — C be a non-zero linear functional. Then there exists an xg € L such that f(z) # 0. In
particular, using the linearity of f we can assume without loss of generality that f(xzp) = 1. Note that for x € L
we have f(z — f(x)zg) = f(x) — f(z)f(xo) = 0, which implies that x — f(z)xo € ker(f). Hence, we can write
x = f(x)xg + y for some y € ker(f). Moreover, suppose that x = Az + ¢ for some A € C and § € ker(f).
Then,
0=f(A=f@)zo+7—y) = A= f@)f(zo) + f(7) — fly) = A= f(z),

and so A = f(z). This implies that § = y and so the representation = = f(x)xo + y is unique. Thus, we deduce
that L/ker(f) = span(zg) and so the codimension of the kernel of f is 1. O

Lemma 4.1.4. Suppose that f is a non-zero linear functional on a linear space L. Then f is uniquely
determined by {x € L : f(z) = 1}.

Proof. Let f : L — C be a linear functional and let Ey := {z € L : f(z) = 1}. For z € L note that f (ﬁ) =1

and so % € Ey. Thus, f is determined by E'¢. For another linear functional f: L — C suppose that Ef = Ef.

For x € L, as ﬁ € Ly it follows that ﬁ € Ef. Therefore,

which implies that f(z) = f(z). As & € L was arbitrary, we deduce that f = f. Therefore, E; uniquely

determines a linear functional. O
Definition 4.1.5. A function || - || : E — R on a linear space E is a norm if the following statements are
satisfied.

1. ||z|| > 0, with ||z|| = 0 if and only if z = 0.
2. ||ax|| = |a|||lz|| for « € C, or « € R if E is a real linear space.
3 |z +yll <zl + [lyl-

A linear space E with a norm || - || is a normed linear space.
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Remark 4.1.6. Note that a normed vector space E is a metric space with

p(z,y) = [z —yll.
Thus a normed vector is induced with a topology.

Henceforth, E will denote a normed linear space.

Definition 4.1.7. A functional f on E is continuous if for any xy € E and e > 0, there exists a neighbourhood
U of xq such that

[f (@) = flzo)| <€

forx e U.

Exercise 4.1.8. Suppose that E is a finite-dimensional normed vector space. Show that any linear functional
is continuous.

I Lemma 4.1.9. If a linear functional is continuous at some x € E then it is continuous on E.

Proof. Suppose a linear functional f : E — C is continuous at x € E. Let y € FE and € > 0. There exists
a neighbourhood U C E of z such that |f(z) — f(¢t)| < efort € U. Let V :=U + (y — ). Then V is a
neighbourhood of y, such that for z € V we have z +x — y € U and so

e>|[f(x) - fz+x—y)|=f(y) - f(2)],

where in the second equality we have used the linearity of f. It follows that f is continuous at y € F, and thus
f is continuous on FE. O

Theorem 4.1.10. A linear functional f on E is continuous if and only if there is a neighbourhood of 0 € E
on which f is bounded.

Proof. (=). As f is continuous on E it is continuous at 0 € E. As f(0) = 0, it follows that for any € > 0 there
exists a neighbourhood U C E of 0 € E such that |f(z)| < e for z € U.

(«). Let V C E be a neighbourhood of 0 € E such that |f(z)| < ¢ for x € V. For € > 0, using the linearity of
f, we have

(2] - o< eme

Hence, <V C E is a neighbourhood of 0 € E such that |f(x) — f(0)| = |f(z)| < e. Therefore, f is continuous
at 0 € E which implies that it is continuous on E by Lemma O

I Corollary 4.1.11. A linear functional f on E is continuous if and only if it is bounded on {z € E : ||z| < 1}.

Proof. Any neighbourhood of 0 € E contains a ball of sufficiently small radius. Being bounded on this ball is
equivalent to being bounded on {z € E : ||z|| < 1} through linearity. Therefore, using Theorem [4.1.10, a linear
functional is continuous if and only if it is bounded on {z € E : ||| < 1}. O

Exercise 4.1.12. Let E be a normed linear space and let f be a linear functional on E. Show that the following
are equivalent.

1. f is continuous on E.

2. There exists an open set U C E and at € R such thatt & f(U).
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3. The kernel of f is closed in E.

4. f is bounded on any bounded subset of E.

Definition 4.1.13. Let f be a continuous linear functional on E. Then the norm of f is

£l :== sup [f(z)].
llz] <1
Equivalently,
flz
1fl= sup @I
zeE\{0} |||

Remark 4.1.14.
1. Note that Definition is well-defined due to Corollary[4.1.11

2. From Definition it is clear that
Lf @) < Il (4.1.1)

forallz € E.

Example 4.1.15.

1. Consider the Euclidean space R™, and the linear function f : R™ — R given by f(x) = (x,a) for some
a € R™. Using Cauchy-Schwartz we have

[f (@) = |(z,a)] < [|lz[][lal,

and so f is bounded on the unit ball by ||a||. Thus, f is continuous. In particular, it follows that

fl= sup 2@

sern\ {0} |1zl

< all-

However, for x = a we have

Therefore,

|f(2)]
[fll= sup S—==a.
zerr\{0} |||l

» More generally, for a € X, where X is a Euclidean space, the linear functional f(x) = (z,a) is
continuous with || f|| = ||al|.

2. Consider the space C([a, b]) with norm ||z|| = maxc[q,p) |2(t)|. Then

b
I(x) ::/ x(t) dt
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is a linear functional of C([a,b]). In particular,

b
I(z)| = / o(t) dt

<(-a) oy |(t)]

= [lz[|(b — a).

We note that equality is reached when x € C([a,b]) is constant, and so we conclude that I(z) is a
continuous linear functional with ||I|| = b — a.

. For yo € C([a,b]) consider the linear functional

Then,

Therefore, F is bounded by f lyo(t)| dt < |lyol|(b — a) < oo on the unit ball of C([a,b]) and so is a
continuous linear functional, with

F(x &
IFl= sup L@ g/ o ()] dt.
vec(ao)\{o} ]l a

If yo(t) = 0, then |F|| = f lyo(t)|dt = 0. So suppose yo(t) # 0 and let z,(t) = \yo%z)(ltll’ which is

continuous as |yo(t)| + = # 0. Observe that

b 2
Pl = | [ —28 g
a lvo()]+ =
b 2
= bo(t) - dt
a Yo+

In particular, % — |yo(t)| as n — oo with % < |yo(t)| which is integrable. Therefore, by
the dominated convergence theorem it follows that

b
lim |F(x,)| = lim / :/ t)| dt,
n—)oo‘ | n—00 |y ‘ -|— @ IyO( )‘

which implies that | F|| > f lyo(t)| dt. Therefore,

b
17| = / lyo(8)] dt.
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4. Let tg € [a,b], and consider the linear functional 6y, (x) := x(ty) on C([a,b]). Then
|6t ()] = [z(to)| < |||
with equality when x is constant. Therefore, oy, (x) is continuous with ||d:,|| = 1.
Suppose f is a linear functional on the normed vector space E, and consider the hyperplane F = {z € E : f(z) =

1}. The distance from the origin to F' is given by
d := inf ||z|.
zeF

Using (#-1.1)), on F we have that ||z|| > % and so

1
d> —.
1f1]
On the other hand, by Definition[4.1.13] for all € > 0 there exists an . € F such that 1 = f(z.) > (|| f||—€)||z]|.

Consequently,
1

S TA=e

_ L
IR

Thus, we can geometrically interpret the norm of a linear functional as the reciprocal of the distance between the
origin and the unit level-set of the functional.

which implies that

Definition 4.1.16. Let p be a non-negative functional on a linear space L. Then p is convex if

p(z+y) < px)+ply)

and
p(az) = |a|p(z)

for all x,y € L and o € C.

Remark 4.1.17. A norm is a convex functional.

Theorem 4.1.18 (Hanh-Banach). Let L be a linear space, and let p be a convex functional on L. Suppose
that fo is a linear functional on a subspace Ly C L and is such that | fo(z)| < p(x) for all z € Ly. Then there
exists a linear functional f, on L such that the following are satisfied.

1. f(z) = fo(x) for all x € Ly.
2. |f(z)|] < p(x) for all x € L.

Theorem 4.1.19 (Hanh-Banach on Normed Linear Spaces). Let E be a normed linear space, and let f, be a
continuous linear functional defined on a subspace Eg C E. Then there exists a continuous linear functional
on E such that the following are satisfied.

1. f(x) = fo(x) for all z € Ey.
2. |fllz-c = llfollzo-c-

Proof. Let || follg,—~c = c¢. Note that p(z) := ¢ ||z| is a convex functional on E such that |fo(z)] < p(x).

Applying Theorem |4.1.18| we obtain a linear functional f on E such that f(z) = fo(x) for all z € E; and
|f(z)| < c||z]|. In particular, since || follg,—c = ¢ it must be the case that || f||g—c =c as Ey C E. O
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Corollary 4.1.20. Let E be a normed linear space, and let xo € E\{0}. Then there exists a linear functional
f on E such that ||f|| =1 and f(zo) = ||xo]|-

Proof. Let Ey = {azg : « € C}, and let fy : Ey — C be given by axg — a||zo||. Clearly, ||follg,—c = 1, and
so by Theorem [4.1.19] there exists a functional f : E — C such that

[fllz~c = lfollzo—c =1

and

f(@o) = fo(zo) = [[zol-

4.2 The Adjoint Space

So far we have been considering linear functionals individually. However, we can also view linear functionals as a
space in their own right. Throughout, E is a linear space, with f1, fo linear functionals on E.

Definition 4.2.1. The sum of linear functionals f, fs is given by f(x) = fi1(x)+ fa(x) for all x € E. Similarly,
the product of the linear functional f1 by o € C is given by f(x) = afi(x) for all x € E.

Remark 4.2.2. With the operations of Definition [4.2.1], the space of linear functionals satisfies the axioms of
a linear space. In particular, if E is a normed space then f; + fo, and af1 are continuous if f1 and fy are
continuous.

Definition 4.2.3. For a normed linear space E, the adjoint space to E denoted E*, is the space of continuous
linear functionals on E with operations as given by Definition

Exercise 4.2.4. Verify that the map given in Definition is a norm on E*.

Definition 4.2.5. With Exercise[4.2.4, we have that E* is a normed linear space with the corresponding induced
topology referred to as the strong topology on E*.

I Theorem 4.2.6. For a normed linear space E, the adjoint space is complete.

Proof. Let (fn)nen € E* be a Cauchy sequence. In particular, for ¢ > 0 there exists an N € N such that
[l fn — fmll < € for every m > n > N. Therefore,

[fn(2) = fm(@)| < | fn = Fmllll2]] < ell]] (4.2.1)

for all x € E. Hence, for fixed x € E the sequence (f,,(z))nen € C is Cauchy and thus convergent as C is
complete. Let f: E — C be given by f(z) := lim,,_,o fn(x). Observe that

floax + py) = lim_fo(ax + By)
= lim (afu(z) +Bfn(y))
= af(x) +Bf(y),
and so f is linear. Moreover, taking m — oo in it follows that

[fn(z) = f(@)] < e, (4.2.2)
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which implies that f,, — f is bounded on {z € E : |z|| < 1}. Using Corollary [4.1.11| we deduce that f,, — f is
continuous and thus f is continuous as f,, is continuous. Moreover, from (4.2.2) we have

If = full <€

for all n > N, thatis f,, — f in E*, and so E* is complete. O

Remark 4.2.7. Note that in Theorem |4.2.6| we do not require that E is complete. A consequence of this is
explored in Corollary[4.2.8

For a linear space E, we denote by E the completion of E. That is, E is E along with the limits of all Cauchy
sequences in E. Furthermore, linear spaces E and F' are isometric, written £ = F', if there exists an isomorphism,
that is a bijective map preserving linear operations, that also preserves the norm.

I Corollary 4.2.8. Let E be a linear space. Then E* and (E)" are isometric.

Proof. Note that E C E is everywhere dense, and so f € E* is uniquely extended to a functional f on F using

continuity. In particular, as E C E we have that ||f|| = ||f|| Conversely, any functional f on E restricts to
a functional f on E, which is such that Hf” = ||f||. Therefore, the correspondence of f to f is a bijective
correspondence that preserves the norm. That is, £* = (E)* O

Example 4.2.9. Consider an n-dimensional linear space E. Let {ey,...,e,} be a basis for E, so that any

x € E can be written as
n
Xr = E iL’j@j
j=1

for x; € R. For a linear functional f : E — R we have

flz) = Zl‘jf(@j)-

In particular, this means that f is determined by {f(e1),..., f(en)}. Consider the linear functionals g1, ..., gn
given by
1 j=k
e;) =
94(¢5) {o i £k
It is clear that {g1,...,gn} is linearly independent. Moreover,

f(z) = ijgj@%

where f; := f(e;). Therefore, {g1,...,gn} forms a basis for E* which means that E* is also n-dimensional.

Exercise 4.2.10. Let E be an n-dimensional linear space.
1 1
2

1. Show that the norm ||z|| = (Z?:l |xj|2)§ on E induces the norm || f|| = (Z?:l |fj\2> on E*.

1

1
2. For p > 1, show that the norm ||z| = (Z;’L:l |mj|1’> " on E induces the norm ||f|| = (Z;’L:l |fj|q) ‘,

where % + % =1, on E*.
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3. Show that the norm ||z|| = 3°7_, |x;| on E induces the norm || f|| = sup; <<, |f;| on E*.

4. Show that the norm ||z|| = sup, <, |z;| on E induces the norm | f|| = 3 1", |f;| on E*.

Remark 4.2.11. As E is finite-dimensional, all the norms identified in Exercise[4.2.10 induce the same topology.

Lemma 4.2.12. Consider the space

Co = {x:(xl,xg,...): lim xn:O}

n—r oo

with norm ||z|| = sup,.cy |n|. Then (Cg, | - |) is isometric to ¢*.

Proof. Let f = (fi, fa,...) € £, so that 3.0 |fu| = ||f]ler < 0c. Consider the linear map f : Cp — C given
by

n=1

Observe that

F@| < 02l Y 15l = Il s,
n=1

which shows that f is bounded and thus it must be continuous as it is linear. Hence, the map ¢ : ¢! — C§ given
by f > f is well-defined. In particular, Hf” < ||f]lex- On the other hand, consider

Y7
N =3 I
=

where e, = (0,...,1,0...), and I}c—"l is set to zero in the case when f, = 0. Then ™) € Cy with ||z < 1.
n
Moreover,
R n R f N
F (™) =3 flen) s = D1l
n=1 |f"| n=1
Therefore,

Jim f(2@) = |1

which implies that Hf” > |[fller. Thus, HfH = ||fllex. This means that ¢ preserves the norm between ¢! and
C§. Furthermore, if o(f1) = ¢(f2), then

(f1), = p(f1)(en) = p(f2)(en) = (f2), -

Hence, f1 = fo which shows that ¢ is injective. Now, let f € C§. For any x = (x1,22,...) € Cy one can write

[eS)
T = E Tpen,
n=1

as
N

T — E Tnén

n=1

N—00
= sup |z,| — 0.
n>N
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Thus, using the continuity of f we deduce that

f@) =" znf(en)
n=1
Now set N
2V = flen) e
2 [ften
Then N N .
Z Flen)| = Z f(e;()f()T) :]E(x(N)> < Hf ,

where the inequality follows as ™) € Cy and [|2™]| < 1. Therefore, 307 | ’f(en)

< 00 and so (f(en))neN €

0. Therefore, as <(f(en)> N) = f we deduce that ¢ is surjective and thus an isometry between (C{, || - |)
ne
and /. O

Lemma 4.2.13. Consider the space

m = {x = (21,T2,...) :sup|zy| < oo}
neN

with norm ||z|| = sup,,cy |n|. Then ((ﬂl)* N ||¢1) is isometric to m.
Proof. Let f := (f1, f2,...) € m. Let f: 0" = C be given by
oo
n=1

Note that, f is linear. Furthermore,

n ‘Zqozozlxnfn‘
= 8% Tl
¢ oy Zoalelr]
zel\{0} [E4P
< SUPpeN |fn|||1'||Z1
T ser\ {0} || 2
= sup | fnl. (4.23)

Hence, f is bounded as (fn)nen € m and thus continuous which means that fe (El)*. Moreover, let

x =sgn(fp)ep
where p is such that |f,| = sup,,cn | fn] and e, = (0,...,1,...). Then,
——

P

’f(a:)‘ _ Isgn(fp) fol
(B Isgn(fp)l
= |fp|

= sup | fl.
neN
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Hence,

f” = sup,,cy | fn|- Note that the map f — f is injective as evaluating f at e,, recovers the components

of f. On the other hand, for f € (¢!)" one can write

n=1

A

where f, = f(en). As f € (£1)" we know that HfH = M < co. Thus, letting x = e,, we note that

[l = | Flen)] < [|£]] neall = || £]
and so sup,,cy | fn| £ M < oo which implies that f := (f1, f2,...) € m. Furthermore, using (4.2.3) we deduce
that sup,, oy | fn] = Hf” Therefore, the map f — f is an isometry. O

Exercise 4.2.14. Consider the space (P, for p > 1, of sequences x = (x,)neN Such that

Jall = (fj |> < oo.

n=1

D=

Show that (¢P)* is isometric to ¢, where 1% + % = 1.

Theorem 4.2.15. Let H be a Hilbert space. Then for any f € H* there is a unique xy € H such that
f(x) = (x,20) for every x € H and | f|| = ||xo|. Conversely, for any xy € H if f(x) = (x,x0) for every
x € H then f € H* with || f|| = ||zol|. Consequently, the map f — ¢ is an isometry between H and H*,
with the conjugate-linear isomorphism \xo — \f if H is complex.

Proof. (<). For any xg € H consider the map f : H — C given by f(x) = (z,x0). Observe that

[f(@)] = [ (2, zo)| < [|[[[|oll

In particular, as | f(x0)| = ||zo]|? we have ||f|| = ||zo|| and so f is bounded. Moreover, f is linear by the properties
of the inner product so that f is continuous.
(=). If f=0, then f(z) = (z,x0) with o = 0. Suppose instead that f # 0 and let

Hy :=ker(f) ={z: f(z) =0}.

By Lemma [4#.1.3] the codimension of Hj is one. As f is continuous Hy is closed by statement 3 of Exercise
4.1.12l Consequently, for some yo € Hy-, we can write any © € H as = \yg + y for some A € C and y € H.
We can assume without loss of generality that ||yo|| = 1. Now let 9 = f(yo)yo, then for any € H note that

f(z) = Af(yo), and thus

(2, x0) = (2. Fyo)wo

= ()\yo, myo)

= A (yo) (Yo, yo)
= Af(yo)
= f(z).

Now suppose there exists another z(; € H such that f(z) = (x, (). Then
0= (z,xo — xp)

for every x € H. In particular, this holds for = xq — x(, which implies that ||zg — z({|| = 0 and so zg = zp. O
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Remark 4.2.16. From Theorem we have that H = H* in the sense of linear spaces. Thus, as the
completion E of a linear space E is a Hilbert space, we have that £ = (E) = E*.

4.2.1 Second Adjoint Space

For a linear normed space E, the adjoint space E* is itself a linear normed space. Thus we can consider its adjoint
space. More specifically, fix zo € E and let ¢, : E* — C be given by

Note that ¢, is linear as

Pao (f1 +Af2) = (fi + Af2) (20)
= fi(xo) + Afa(zo)
= @mo(fl) + /\Sﬁzo (f?)
Moreover, note that
l@ao (£ = 1f (@) < [ fIlllzoll-

Which shows that ¢, is bounded on the closed unit ball of E*, and so by Corollary we have that
Pao € (E*)* = E**.

Definition 4.2.17. The map  : E — E** given by x — ., in the sense of (4.2.4)), is called the natural map
of E into E**.

Exercise 4.2.18. The natural map, as given by Definition is an isomorphism between E and w(E) C
E**.

Lemma 4.2.19. Let E be a normed linear space. Then the natural map, as given by Definition|4.2.17, is an
isometry between E and n(E) C E**.

Proof. For x € E let ||z|| be its norm in E and let ||z||2 = ||¢x|| be the norm in E** of its image under the
natural map. Let f € E*\ {0}. Then |f(z)| < |IfIlll=]l, and so
|f ()]
]| = :
I1£1]
Taking the supremum over f € E* we deduce that
/()]
lzll = sup = [ll2-
rer\foy ISl

On the other hand, for any xg € E \ {0} by Corollary [4.1.20] there exists an fy € E*\ {0} such that |fo(zo)| =
[l follllzoll- In particular, taking xy = z it follows that

|f ()]
lzlla = sup o= > .
repgop ISl
Therefore, ||z]| = ||z||2, and so in conjunction with Exercise [4.2.18| we have that the natural map is an isometry
between E and 7(E) C E**. O

Definition 4.2.20. A normed linear space E is reflexive if m(E) = E**, where v is the natural map between
E and E**.
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Example 4.2.21.

4.3

1

Finite-dimensional Euclidean spaces and Hilbert spaces are reflexive. Indeed, in these cases, we also have
E = E*.

For the space Cy, sequences converging to zero, we have (Co)* = {1 from Lemma and (Co)™ =m
for Lemma Therefore, Cyy is not reflexive.

The space C([a, b]) is not reflexive.

Using Exercise|4.2.14, the space (P forp > 1 is reflexive. More specifically, (¢P)* = ¢4 and so (¢P)*" = (P.
If p # 2 then (P # ((P)", but for p = 2 we have (2 = (£2)", which is to be expected as (? is a Hilbert
space.

Linear Topological Spaces

Definition 4.3.1. A set E is a linear topological space if the following statements hold.

1. E is a linear space over the real or complex numbers.
2. E is a topological space.

3. Linear operations are continuous in E.

Remark 4.3.2. Statement 3 of Definition[4.3.1 means that the following statements hold.

1. If zg = xg + yo, then for any neighbourhood U of z, there are neighbourhoods V' of xq and W of yq,

such that V + W C U.

2. If agzg = yo, then for any neighbourhood U of yy there is a neighbourhood V of xg and an e-

neighbourhood of ay such that for o — ap| < € and x € V we have ax € U.

Consequently, the topology on E is fully defined by specifying a set of neighbourhoods of zero. Let x € E and
U be a neighbourhood of zero, then U + x is said to be a neighbourhood of x. Refer to Section for more
details.

Exercise 4.3.3. Let I be a linear topological space.

1. IfU and V' are open in E, then

U+V={ut+v:uelUveV}
is open.

If U is open in E, then
aU :={au:u e U}

is open for o # 0.
If F is closed in E, then aF is closed for all o € R.
Let U open with 0 € U. Then there exists a W open with0 e W, W = —-W and W + W C U.

If F C E is closed, and x € E\ F, then x and F have non-intersecting neighbourhoods.
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Proposition 4.3.4. The set {0} is closed if and only if the intersection of all neighbourhoods of zero does
not contain non-zero elements.

Proof. (=). Let x € E'\ {0} be in every neighbourhood of zero. Since {0} is closed, by statement 5 of Exercise
there exist disjoint neighbourhoods of = and zero which is a contradiction.

(«). Let z € E'\ {0}. Then there exists a neighbourhood U of zero such that « ¢ U. Theset V,, := E\ U is
closed with 0 & V.. Therefore, by statement 5 of Exercise [4.3.3] there exists a neighbourhood U, of V,, such that
0 ¢ U,. Note that E'\ {0} = U, cp\ 0} Ux is an open set, meaning {0} is closed. O

I Proposition 4.3.5. If {z¢} C E is closed, then E is Hausdorff.

Proof. If {0} is closed then {z} is closed for all z € E. Therefore, by statement 5 Exercise[4.3.3] for any z,y € F
distinct we can find disjoint neighbourhoods. Therefore, E is Hausdorff. O

Example 4.3.6.

1. A normed linear space is a linear topological space where the topology is induced by a norm. Indeed, the
linear operations are continuous due to the properties of the norm.

2. Let K([a,b]) be the space of continuously differentiable functions on (a,b). Form € N and ¢ > 0 let
Urpc 5= {ga € K([a, b)) : ’@(k)(z)‘ < e€foreveryk=0,... ,m} .

The collection of neighbourhoods of zero (Uy,.e);.cy o~ induces a topology on K([a,b]) that is a linear
topological space.

Definition 4.3.7. Let E be a linear topological space. Then M C E is bounded if for any neighbourhood U
of zero there exists a n > 0 such that
M C AU

for all |\| > n.
Remark 4.3.8. If E is a normed linear space, then Definition[4.3.7] coincides with boundedness in the norm.

Exercise 4.3.9. Show that a set A C E is bounded if and only if for any sequence (x,)nen € A and any
(€n)pen € Rso with €, — 0 we have that (e,2,),y converges to zero.

Note that Definition holds on a linear topological space as well.

Lemma 4.3.10. Let E be a linear topological space. Then a linear functional f on E is continuous if and
only if there is a neighbourhood of zero on which f is bounded.

Proof. Follows in the same way as the proof for Theorem [4.1.10 O

I Lemma 4.3.11. If fy, fo are continuous functions on E, and « # 0 then f1 + fo and af, are continuous.

Proof. This follows directly from statement 1 and statement 2 of Exercise [4.3.3] O
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Many of the notions we encountered for normed linear spaces extend to linear topological spaces. For example,
for a linear topological space E, the adjoint space E*, as in Definition is well-defined by Lemma
However, E is only equipped with a topology which does not necessarily correspond to a norm. Thus, we
cannot define a topology on E* as we did in the case of normed linear spaces, we instead appeal to systems of
neighbourhoods, Definition For a normed linear space E on the adjoint space E*, as constructed using the
norm of E, the system of neighbourhoods

U.={fe€eE" :|f(x)] <eforxe B}

where B = {z : ||z|| < 1} is an open base. Indeed, for any open neighbourhood U of 0 € E* in the topology
induced by the norm || - || on E*, there exists an € > 0 such that

Vi={feE:|fl<e CU

In particular, as |f(x)| < [|z[|||f]] it is clear that V' = U.. Hence, the collection B = (U,), is an open base,
as in the sense of statement 2 Remark of the strong topology on E* for a normed linear space E. This
motivates Definition [4.3.12| which induces the strong topology on the adjoint space of a linear topological space.

Definition 4.3.12. For a linear topological space E, the strong topology on E* is induced by the local base
of E* where open neighbourhoods of zero are

Ua={f€E":|f(z)| <eforze A},

fore > 0 and A a bounded set in E.

Remark 4.3.13.

1. Indeed,
Umin(el,eg),Alqu g U€1,A1 N U€27A2

which equivalently shows that the system of neighbourhoods of Definition is a local base. Moreover,
page 42 of [1] shows that the defining system of Definition makes E* a linear topological space.

2. The sets U, 4 are neighbourhoods of zero in E*. However, as linear operations are continuous, we can
translate the sets to obtain neighbourhoods for arbitrary points in E*.

Exercise 4.3.14. Verify that if E is a normed linear space, Definition|4.3.17 coincides with Definition

Having endowed E* with a topology we can consider the second adjoint and define the natural map. However,
with the lack of norms on these spaces, we no longer have the notion of an isometry.

Definition 4.3.15. A linear topological space E is reflexive if w is continuous and 7(E) = E**.

4.4 Weak Convergence
4.4.1 Topological Spaces

Exercise 4.4.1. Let F be a linear topological space. Let ¢ > 0 and f1,..., f, € E* forn € N. Show that
U={zecE:|fi(z))<ej=1,...,n}

is an open neighbourhood of zero in E. Show also that the system of open neighbourhoods of the form U is
defining.

65



Definition 4.4.2. The topology generated by the local base of Exercise [4.4.]] is called the weak topology on
E.

Remark 4.4.3.

1. The sets of Exercise are open in E, meaning the topology they generate is weaker than the original
topology on E. In particular, the weak topology is the weakest topology on E such that all f € E* are
continuous.

2. The space E with the weak topology is a linear topological space since linear operations are continuous.

3. Convergence in E under the weak topology is referred to as weak convergence, whereas convergence
under the original topology is referred to as strong convergence. In particular, for (z,)neny C E, if
&, — x strongly then x,, — x weakly. One often writes x, — x to denote weak convergence.

Proposition 4.4.4. A sequence (x,,)nen € E converges in the weak topology to xg € E if and only if for all
f € E* the sequence (f(xy))nen C C converges to f(xg).

Proof. Without loss of generality, we consider xy = 0.
(=). For any U there exists an N € N such that z,, € U for n > N. Consequently, for any fixed f € E* we
have |f(z,)| <eforn> N, and so f(z,) — 0= f(0) as n — 0.
(<). Let

U={z:|fj(x)|<e¢j=1,...,n}
be a weak neighbourhood of 0 € E. For each j =1,...,n, there exists an N; € N such that |f;(z,)| < € for all
n > Nj. Letting N := max;=1_. »(N;) we have z,, € U for all n > N. Hence, (z,,)nen C E converges in the
weak topology. O

4.4.2 Normed Spaces

Theorem 4.4.5. Let E be a linear normed space. If (xy,)nen C E is weakly convergent, then there exists a
C > 0 such that
znl < C

for all n € N.

Proof. Let
Ak,n ={fel”:|f(z,)| <k} CE"

for k,n € N. Since f(z,) for fixed x,, is a continuous function in f, the sets Ay, are closed, and thus
Ay =2, Ag.n is closed. Since (z,,)nen is weakly convergent, the sequence (f(2y,))nen C C is bounded for
each f € E*. Therefore, each f € E* is in some A which implies that E* = J;—, Aj. Since E* is complete it
cannot be represented as a countable union of nowhere-dense sets, by Baire's theorem, hence, for some k = kg
we must have that Ay, is dense in some B.(fo). As Ay, is closed, we have B.(fo) C A, which implies that the
sequence (z,)neny C E** is bounded on B.(fy), and therefore must be bounded on the unit ball around zero.
Since E and w(E) C E** are isometric, Lemma it follows that (2, )nen C E is also bounded. O

I Proposition 4.4.6. For a normed linear space E, a set A C FE is bounded if and only if any f € E* is bounded
on A.

Proof. (=). Note that for any f € E* we have |f(z)| < ||f|l||x| for each z € E. Since A is bounded, for x € A
we have |f(z)| < CJ|f|| where C' = sup,¢ 4 ||z||. Therefore, f is bounded on A.

(«<). Suppose that A is not bounded. Then there exists an unbounded sequence (z,)neny C A. Consider the
sets

Apn ={f € E":|f(zn)| < k}.
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Then Ay := (0, cy Ak,n is the collection of linear functionals that are bounded by & on (2, )nen € A. Therefore,
by assumption, E* = | J,,ciy Ak By the same arguments as those made in Theorem we deduce that (2, )nen
is bounded, which is a contradiction. O

Theorem 4.4.7. Let E be a linear normed space. Then (z,)nen C E converges weakly to x € E if the
following statements hold.

1. (zp)nen is bounded in norm. That is, for some ¢ > 0 we have ||z, || < c for every n € N.

2. f(zn) — f(x) for any f € A, where A C E* is a complete system in E* with respect to the strong
topology.

Proof. If ¢ € E* is a finite linear combination of elements of A, it follows by condition 2 that ¢(x,) — ¢(x).
For ¢ € E* there exists a sequence (¢k)ren © E* such that ¢ — ¢ in the norm of E* with each ¢y a finite
linear combination of elements of A. In particular, for fixed € > 0 there exists a K € N such that

e — @l <
LU 3c
for k > K. Furthermore, there exists a N € N such that
€
[pxc(n) = prc(@)] < 5
for n > N. Therefore, for n > N it follows that

[p(2n) — (@) < lp(xn) — @i (@n) + oK (Tn) — ox (@) + oK (2) — @ (2)|

<l = exlllznll + lex (@) = ox (@n) + o — el ]|
< € € + €
—c+z-+—c
~ 3c 3 3c
= €.
Therefore, ¢(z,,) — ¢(z) for all p € E* and so (), converges weakly to 2 by Proposition [4.4.4] O

Proposition 4.4.8. Let E be a finite-dimensional Euclidean space. Then weak convergence and strong
convergence are equivalent.

Proof. Let (z,)nen € E converge weakly to z € E. Let {e1,...,e,} C E be a basis. Then

T = Zw;j)ej
j=1
for each k € N, and
T = Zx(j)ej.
j=1

As the inner product (-, e;) is a continuous linear functional for each j =1,...,n it follows that

r) = (o, e)) 75 (2,65) =29,

meaning x; — x coordinate-wise. Therefore,

n ) 2
|zp — x| = Z (mg) _ x(j)) g 0

j=1

which means z; — x strongly. Conversely, strong convergence implies weak convergence, even in infinite dimen-
sions. 0
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Example 4.4.9.
1. Consider the space ¢*. Suppose (xy)ren C ¢2 is bounded, and such that

(g, e5) = x,(cj) — 20 = (z,¢;)

forj =1,2,... wheree; = (0,...,1,...). Then as ({2)" = (% and (e;);en C €2 is complete system, it
~——

J
follows from Theorem that z, — . On the other hand, consider (ej) jen C 0? as a sequence. It
does not converge strongly to any limit, however, for any f € (62)* we can write f(x) = (x,a) for some
a = (ai,as,...,) € 2. In particular, f(e;) = a; — 0 as j — oo since 23011 laj|> < oo. Therefore,

€; 20, thus strong and weak convergence do not coincide in (2.

2. Consider the space C([a,b]) with supremum norm. Let (z,,)nen C C([a,b]) be such that z,, - x. Then
by Theorem the sequence (xy,)nen is bounded in norm. For toy € [a,b], consider the functional
8+, € C([a,b])* given by 0;,(z) = x(tg). Then since z,,(t) = x(t) it follows that ds,(2,,) — s, () which
implies that x,(ty) — x(to). Therefore, we conclude that x,, — x when there exists a C > 0 such that
|z, (t)| < C forallt € [a,b] andn € N, that is the sequence (,,(t)),,cy is uniformly bounded. Moreover,
the sequence converges pointwise.

Theorem 4.4.10. Suppose (z,)nen © H, where H is a Hilbert space, converges weakly to x € H and
|zn|l = ||z|| as n — oo. Then x,, — x strongly.

Proof. As H and H* are isometric through z > (-, 2), it follows that for any z € H we have that (z,,2) — (z, 2)
as n — oo because f(x,) = f(x) as n — oo. In particular, (z,,2) — (z,x) as n — co. Therefore,

Hxn - T”Q = (xnaxn) - (l‘n,l’) - (x,xn) + (J),Z(’)

L—>_0>0 (“va) - (‘va) - (:Lv“L) + (1’,L)

207

3

where we have used (z,,,2,,) = ||z, ||* = ||z]|> = (x,2). Therefore, z,, — x strongly. O

4.4.3 Adjoint Space

Definition 4.4.11. For a linear topological space E, the weak-x topology on E* is induced by the local base
of E* where open sets are given by

Uea={fePE" :|f(x) <eforzec A},

where ¢ > 0 and A is a finite set in E.

Remark 4.4.12.

1. The weak-x topology on E* is weaker than the strong topology on E*. Indeed, the strong topology on
E* is characterised by neighbourhoods of the same form as those in Definition but where A is a
bounded set. Thus, as any finite set is bounded it follows that the weak-x topology on E* is weaker than
the strong topology on E*.

2. Convergence with respect to the weak-+ topology is referred to as weak-+* convergence.
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Proposition 4.4.13. A sequence (f,)nen € E* converges x-weakly denoted f, N f. if and only if for all
x € E the sequence (fn(2))nen € C converges to f(x).

Remark 4.4.14. Clearly, if f, — f strongly then f, N f.

Theorem 4.4.15. Let E be a Banach space. Then if (f,)nen € E* is x-weakly convergent, then there exists
a C' > 0 such that
[ fnll < C

for all n € N.
Proof. We proceed as in the case of Theorem with the sets
Apn i ={z € E:|fu(z)| <k}.

Where now the application of Baire's theorem is justified as E is Banach and thus complete. O

Theorem 4.4.16. Let E be a Banach space. Then (f,)neny C E* is x-weakly convergent to f € E* if the
following statements hold.

1. (fn)nen is bounded in norm.

2. (fn,x) = (f,x) for any © € A, where A C E is a complete system in E with respect to the strong
topology.

Proof. We proceed as in the case of Theorem [4.4.7] arriving at

[fn(@) = f(@)] < |ful@) = folwr) |+ [folek) = flax) + [f(zx) = f(2)]

< Wfallle =2kl + [ falzx) — flze)l + [ Flllex — 2]
c o L€
~ 3c 3 3

O

Example 4.4.17. Consider the space C([a, b]) and the §-function given by 6(x) = z(0). Let (¢n)nen C C([a,b])
be such that for every n € N the following statements hold.

1 pu(t) = 0 with ¢, (t) = 0 for [t| > +.

2 [Pont)dt =1.

Then for any x € C([a,b]) note that
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As (Pn),eny € C([a,b])* it follows that ®,, “s 5. That is, the o-function can be represented as a limit, in the
weak-x sense, of functions (¢n)nen-

Remark 4.4.18. Considering E* as a linear topological space, we can also consider the weak topology on E*.
We note that the weak-x topology on E* is weaker than the weak topology on E*, and they coincide when E
is reflexive.

Theorem 4.4.19 (Banach-Alaoglu). For a separable normed linear space E, the closed unit ball in E* is
compact with respect to the weak-x topology.

Corollary 4.4.20. Let E be a separable normed linear space. Then a bounded sequence (x,,)nen C E* has
a x-weakly convergent subsequence.

4.5 Countably-Normed Spaces

Definition 4.5.1. Let E be a linear space and let || ||1, || - |2 be norms on E. If for any sequence (z,,)nen C E
that is Cauchy in || - ||y and || - ||2 we have that convergence to x € E in || - ||1 means convergence to x € E in
Il - ll2, then || - ||1 and || - ||2 are said to be compatible.

Definition 4.5.2. A linear space E is countably-normed if a countable system of pairwise compatible norms is
given on E.

The topology for a countable-normed space is generated by the defining system of neighbourhoods of 0 € E given
by
Une ={z e E:z|lo <e..., ||z, <e} (4.5.1)

fore >0 and r € N.

Exercise 4.5.3. Verify that a countably-normed space E is a topological linear space with the topology gen-

erated by (4.5.1)).

Lemma 4.5.4. Let E be a countably-normed linear space. Then (x,)neny C E converges to x € E if and
only if x,, — x with respect to each norm.

Proof. (=). Without loss of generality suppose that (z,)nen C E converges to 0 € E. Then fix m € N and
€ > 0. For Uy, ¢ there exists an N € N such that x,, € U, for all n > N. In particular, ||z, < € for all
n > N. Thus, z, — 0 with respect to || - ||.

(«<=). Without loss of generality suppose that (z,)neny € E converges to zero with respect to || - ||, for each
m € N. Then for any m € N and € > 0 let N = max;—1, ., (NN;) where N; is such that ||z,||; <€ for n > Nj.
It follows that x,, € Uy,  for all n > N. This implies that z,, = 0 in E. O]

The norms on a countably-normed space E can always be considered such that
[/l < llll: (4.5.2)
for k <l and all z € E. Indeed if this is not the case, then we can instead consider (|| - ||},), oy Where

lelly = sup (). (453)

1=0,...,k

without affecting the generated topology on E.
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Exercise 4.5.5. Verify that replacing a system of compatible norms (|| - ||x),ex With [|-[|3) e as given by
(4.5.3)), does not affect the induced topology on the countable normed space.

I Lemma 4.5.6. A countably-normed space E is metrizable.

Proof. Consider p: E x E — R given by

o0

Lz —yla

n=0
Note that p(z,y) is well-defined, since

oo

Lz =yl

n=0
o0

1
< —
< on

n=0

< 00.

Clearly, p(z,y) = p(y,x). Moreover, p(z,y) > 0 and p(z,y) = 0 if and only if ||z — y||,, = 0 for all n € N which
happens if and only if = y. Observe that
d =z 1

el _ 0
del+z (1+:c)2>

for x > 0. Therefore, as
[z = 2lln < llz = ylln + |y = 2[ln,

it follows that

[z = 2l 2 = ylln n ly — z[ln
T+ —zlln =~ I+ llz—yla+lly—2ln 1T+ lz—yln+lly—2ln
[l = ylln ly — 2ln

Tl =yl T4y =2l

Therefore, p(z,z) < p(x,y) + p(y, z), and thus p is a metric. Now suppose that (2,,)men € F converges to
x € E with respect to the topology on F, and fix an € > 0. Note that

T 1+x—1 1
= =1-—x1
14+ 1+ 14+
for £ > 0 and .
—0
1+x

as x \( 0. Therefore, % <1lforallz,y e EandneN. As > > 2% < oo there exists an NV € N such
that ZZO:N_H 2% < 5. Moreover, by Lemma we have that (z,,)men converges with respect to each norm
|| - |- In particular, for each n € {1,..., N} there exists an M,, € N such that

|2 — @mln 2N

€
T4z —zpll,  2VNF1—12
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for m > M,,. Taking M = max,—o,. . n(M,), it follows for n > M that

oo

Lz =zl
p(.ﬁU,JZn) - Z ] 4 Hx — ‘rn”n

n=0
N
— Zi ||x_xn||n + i i Hx_x'n”n
20 1+ |z — 2|y W 2t |z — zn||n
N 0o
1z — | 1
S aplnl 1
n=0 2nl + HJ? - ann n=N+1 2"
N
€ 2N 1 €
= 99N+l _q Z on + 9
n=0
o € + €
202
= €.

Therefore, (2., )men converges to = € E with respect to p. Conversely, let (z,,)men C E converge with respect
to p. Then for n € N and € > 0 there exists a M € N such that for m > M we have p(z, z,,) < m Hence,
for m > M we have

1 HJS - xmnn — 1 ||x — mek
_ M miin - Z _ W millk

14— amlln 2 It @ - wmly

= p(l', LL‘m.)

€
S U+20e)
Therefore, || — @y |ln < € for m > M. This implies that (2,,)men converges to x € E with respect to || - ||
for every n € N. So by Lemma it follows that (2,,)men € F converges to x € E with the topology of
E. In conclusion, the topology induced by p on E is equivalent to the inherent topology of E, and thus F is
metrizable. O

Remark 4.5.7. Despite a countably normed space being metrizable, it is not necessarily a normed space. That
is, a single norm on a countably normed space may not necessarily be able to generate the topology induced

by (4.5.1), however, the metric of Lemma does.

Exercise 4.5.8. To show the metric of Lemma[4.5.6 induces the same topology, it was shown that convergence
under the metric coincides with convergence in the underlying topology. Equivalently show that the metric of
Lemma induces the same topology by showing the open sets under the metric coincide with the open sets
defined on the original topology.

Example 4.5.9.

1. The space K([a,b]) is a countably normed space with

1l i= sup |1 ®)

t€la,b],0<k<m

form = 0,1,.... Indeed, one can verify the compatibility of the norms by verifying the compatibility of

|||, and || - ||p+1. On the one hand, suppose that (¢n)nen € K([a,b]) converges to zero with respect to

|l -1, and is Cauchy with respect to || - ||p+1. Then (ap,(zk)(x)) converges uniformly to zero as n — co
neN

fork =0,1...,p, and converges uniformly to some 6(x) for k = p + 1. However, it must be the case
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that 0(x) = 0 and so ||@n|lp+1 — 0. Conversely, if ||¢||p+1 — O then

[enllp < llenllp+1 = 0.
Therefore, || - ||, and || - ||,+1 are compatible.

2. The space 8% is a countably normed space with

1flmi=_sup_ [t 7@ ()
teR,k,qg<m
form =0,1,.... Indeed, suppose that (¢,)nen C S converges to zero with respect to || - ||lm, and is

Cauchy with respect to || - ||m,. Then,

n—roo

lon ()] < lenllm, — 0,

which means that (y,),, oy uniformly converges to zero. Thus, since the sequence of derivatives (@”)
neN
is Cauchy for each ¢ < my it converges and must do so to zero. Therefore,

llen llm. iy 0,

and so the norms are compatible.

Proposition 4.5.10. Let E be a countably-normed linear space. Let f be a linear functional on E. Then f
is continuous on E if and only if f is continuous with respect to || - || for some k € N.

Proof. (=). Using Theorem |4.1.10| there exists some neighbourhood U of 0 € E such that f is bounded on U.
By construction of the topology of E there exists some € > 0 and k > 0 such that

By :={z:|z||x <€} CU.

Consequently, f is bounded on By . meaning f is continuous with respect to || - ||, by Theorem

(«<). By Theorem f is bounded with respect to || - ||x, on a neighbourhood of 0 € F in the topology of
I - |- Without loss of generality let f be bounded with respect to || - ||z on By, := {z : ||z||x < €}. Using the
convention that || - ||; < || - ||x for I < k it follows that B; . C By, for | < k. Hence, f is also bounded on each
By for | < k. Therefore, f is bounded on

U:=={z:|zllo<e...,||z[r <e}.

Thus, using Theorem [4.1.10| it follows that f is continuous on E. O

Corollary 4.5.11. Let E be a countably-normed linear space. Then

o0
E* =] E;
n=0
where E* is the space of continuous linear functionals on E with respect to || - ||,. In particular, assuming

that (4.5.2) holds, we have that

E;C..E1C....

Definition 4.5.12. Let E be a countably-normed linear space. Let f € E*. Then the smallest n € N such
that f € E; is referred to as the order of f.
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Remark 4.5.13. From Corollary[4.511} any f € E* has finite order.

4.6 Solution to Exercises
Exercise [4.1.8

Solution. Let {eq,...,en} be a basis for E, such that for any = € E one can write

n
Tr = E €T;€;
=1

for ; € R. As norms on finite-dimensional spaces are equivalent, we can assume without loss of generality that
the norm on FE is given by
n
Izl = lal.
i=1

Let f : E — R be a linear functional and let z € E. Given ¢ > 0, let U := Bj(x), where § = m
Then, for y € U it follows that o

f (@) = f@)l = | D (i — ) fed)

i=1
< . S
= fo?’%n‘f(evﬂzl‘xz yz‘
= llz =yl max |f(ei)l

: ax |f(e)]
max 1

max;—1,..n |f(e;)] i=1,..n ci

= €.
Therefore, f is continuous at = € F. O

Exercise [4.1.12)
Solution. (1) = (2). Since f is continuous it is bounded on an open neighbourhood U of zero. In particular,
[f(z)| <M

for all z € U and for some M > 0. Hence, for t = M + 1 we have that t ¢ f(U).
(2) = (1). Without loss of generality, we can suppose that U is a neighbourhood of zero. Moreover, we can
suppose that U = {x € E : ||z|| < €} for some € > 0. In particular, if z € U then for o € [—1, 1] we have

o] = [afllz]] < =[] <e,

which implies that ax € U. Therefore, if t ¢ f(U) it must also be the case that 1t ¢ f(U), when |a| > 1. It
follows that |f(z)| < [¢| for all x € U which implies that f is continuous.

(1) = (3). Observe that {0} is closed, and so ker(f) = f~1({0}) is closed.

(3) = (2). The set U := C \ ker(f) is open and such that 0 ¢ f(U).

(1) = (4). Let U C E be a bounded set, namely

UC{ze€E:|z| <R}
for some R > 0. A continuous linear functional is bounded on {z € E : ||z|| < 1}, that is

|f(z) < M
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forx € {x € E: ||z|| <1} and some M > 0. Therefore, for x € U we have

T

@) =l ‘f( )‘ < RAM.

]

Hence, f is bounded on U.
(4)=(1). AsU ={z € E: ||| <1} is a bounded set we have that f is bounded on the unit ball and therefore
continuous by Corollary [4.1.11] O

Exercise [4.2.4]

Solution.
1. |fll = 0 with ||f|| = 0 if and only if f(x) =0 for all z € E '\ {0}, which happens if and only if f = 0.
2. Clearly, ||af|| = ||| f]] for a € C.
3. For f1, fo € E* we have

| fi + f2l = sup M< sup [f1(@)] + [ fo(2)]
z€E\{0} ||l z€E\{0} ||l

= Il + 11 f2ll-

Exercise [4.2.10]

Solution. Throughout let {e1,...,e,} be a basis for E such that

n
Tr = E T;€;
i=1

and

fl@) =" fiw,
=1

where f; := f(e;).

1. Observe that

|f(z)]
£l =
z€E\{0} |||
_ sup |Zi:1 flx’b‘
z€E\{0} ll |l
n % n i
(S 1A1) T (2 feal?)?
< sup
zeE\{0} [l

(gw)?

With equality when x = (f1,..., f.), and so

Ll = (Z Ifi|2> :
i=1
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2. Observe that

If(2)]
£l =
z€E\{0} [l
— swp I> iy fid
cep\{o} 7]l
< sup iy 1) iy xalP)”
2€B\{0} [|z]]

(gmq)?

With equality when = = (sgn(f1)|f1]97%, ..., sgn(fn)|f2]7""), and so

LAl = (Z Ifil“> :
i=1

3. Observe that

flx
ifl= sup O
zerr{o} Izl
) 2
serrfor 7]l
< sup MAXisLn [fil o5y |
veB\{0} [
= max |f;.
1=1,...,n
Suppose that |f;| = max;=1, ., |fi]. Then equality arises when = = (z1,...,x,) where
o dsenlfy) 1=
’ 0 otherwise

fori=1,...,n. So
Ifll = max |fi].
1=1,...,n

4. Observe that

1= sup )

z€E\{0} [zl
cebNfoy |zl
sup max;=1,..n |24 Z?:l |fil

2€B\{0} [|z]]
DIl
=1

With equality when = = (sgn(f1),...,sgn(f,)) and so

IN

n

L7l = DIl

i=1
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Exercise [4.2.14]
Solution. Let (f1, f2,...) € ¢4, so that (307, \fn|q)% = || flles < 0. Let f: P — C be given by

n=1

Clearly f is linear. Furthermore,

= o [E
cerrfoy  ||ler
oo Lzl Sl
p
zelr\{0} [2|er

= [1fllea-

|

IN

Hence, f is bounded which means that f € (£P)*. More specifically, let
z = (sgn(f)l 1|7 sen(fo)l ol )

Note that

g =

i ‘fn|p(q—1)
n=1
=Y |fal

n=1

= I£1%

< 00,

so that € /P. Moreover,

F@)] = 3 sen(fu)fulfal?™!
n=1
= 1 fal?
n=1
= [I£1%
so that
@ e,
=l s,
ot
= [[f1lea
= [I£lles,
which implies that HfH = || f|l¢a. Conversely, let f € (¢7)*. Then one can write

n=1
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where f,, = f(en). Let f = (f1, f2,...). As fe (¢P)" we know that HfH = M < oo. In particular, letting

o™ = (sgn(f)lA1 - sen(fa) | fal 77150, 00)

we have 2™ € /P and so we can deduce from our above computations that

o\
(z w) M <o
i=1
Sending n — oo we deduce that
[[fllea < M < o0,
that is f € (7. As before we deduce that M = ||f
Exercise [4.2.18]

Solution. Let x1,z5 € E with A € R. Then

, thus the map f — f is an isometry. O

Partaas (f) = [ (21 + Ax2)
= f(z1) + Af(x2)
= Qu, (f) + Aoy (f)
= (a1 + Aoas) (f)

Therefore, © + @, is a linear map. Suppose = € ker(w). Then f(z) = 0 for all f € E*. Which means that
x = 0 and so ker(w) = {0} meaning 7 is injective. Therefore, we conclude that 7 is an isomorphism onto it
image w(E) C E**. O

Exercise [4.3.3]
Solution.

1. For fixed u € U, the map ¢(v) = v — u is linear and thus continuous. Hence, u+V = ¢~ 1(V) is an open
set. Therefore,
U+V=|Ju+V
uclU

is open.
2. For a # 0, the map ¢(u) = éu is linear and thus continuous. Hence, aUU = ¢~ 1(U) is an open set.

3. If a =0, then oF is closed since its complement is E' which is open. If a # 0, then aF¢ is the complement
of aF'. Since F° is open, it follows by statement 2 that aF' is open meaning o F is closed.

4. Since 0 + 0 € U there exists neighbourhoods V; and V5 of zero such that Vi + V5 C U by statement 1
of Remark By statement 2, the sets —V; and —V5 are open and also contain zero since —0 = 0.
Therefore,

W .= V1 N ‘/2 N (—Vl) n (—‘/2)

is an open set containing zero. In particular, we note that if w € W then —w € W so that —-W = W.
Moreover, for wq,ws € W we have that wy € V7 and ws € V5 so that

wy+wp € Vi + Vo CU,

meaning W + W C U.
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5. Note that E\ F' — x is an open set containing zero. Therefore, by statement 4 there exists an open set V.
of zero such that V] + V] C E\ F — z. Similarly, as V] is an open set containing zero, by statement 4
there exists an open set V,, of zero such that V,, + V,, C V. In particular, we have that

Vo+ Vo4V, +V, CE\F —u,

or equivalently
x4+ Ve +Vo+ Ve +V, CE\FL

Since, 0 € V,, it follows that

Now suppose that

Then there exists uy,us,u3 € V, and f € F such that x + u; + us = f 4 ug which implies that
f=x+ uy + us — uz. However, since —ugz € V, it follows that

fex+Vy+Vy+Vy,

which is a contradiction. Therefore, x + V. 4+ V, and F'+ V. are non-intersecting neighbourhoods of x and

F respectively.
O

Exercise [4.3.9

Solution. (=). Let U be a neighbourhood of zero. Let k € R be such that A C AU for every |A| > k.
Equivalently, %A C U for every || > k. As there exists an N € N such that €, < % for n > N it follows that
€nTy € U for every n > N. Hence, €,x,, — 0 as n — oco.

(«<). Let x € A. Take x,, = x for every n € N and (€, )nen € Rs such that €, — 0 as n — oo. Then given an
open neighbourhood U of zero there exists an N € N such that ¢,z € U. In particular, this means that az € U
for 0 < a < sup,,~n(€n). Let k > L Then x € AU for every |\| > k. As k is independent of x it follows

SUp, >N €n

that A C AU for every |\| > k. Therefore, A is bounded. O

Exercise [4.3.14]

Solution. Assuming the topology of Definit we have already seen that (Uc ), . is an open base for
the strong topology as given by Definition On the other hand, suppose E is a normed linear space with
E* having the strong topology as given by Definition Consider the set Uc 4. Then for g € U 4 it must
be the case that |g(x)| < 6 < e. Otherwise, the function m would be continuous and unbounded on A,
which cannot be the case. Then as the set A is bounded, there exists an R such that ||z|| < R for every x € A.
Therefore, one can take the open set

€e—90
U .= c E*: <
{reran<Z}
and observe that

lg(x) + f(2)] < |g(2)] + [f(2)]
<0+ [ £l
€—0

R
R

<40+

=e.
Thus, U + g C U, 4 which means that U, 4 is open. O
Exercise [4.4.1]
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Solution. Since the pre-images of open sets under continuous functionals are open, it follows that U is the finite
intersection of open sets and thus open. Suppose

Uy={zecE:|fjx)|<e,j=1,...,n1}

and
Uy={zecE:|fj(x)|<e,j=ni+1,...,n2}.
Then,
UrNUz; D{z € E:|fj(z)] < min(er,€2), j =1,...,n2}.
Therefore, the system is an open base. O
Exercise [4.5.3]

Solution. It suffices to check that linear operations are continuous on E.

For fixed A # 0 consider f : E — FE given by f(x) = Ax. For xg € E consider the neighbourhood
Ure+ f(x0). Note that for z € Ur,ﬁ + xg it follows that

1/ (2) = f(zo)lli = [[Az — Azoll

= [Alllz = zoll:
€
S |)‘|W =€

for I = 0,...,r, which implies that f(z) € U, + f(zo). Therefore, f is continuous at zy and hence
continuous on E. If A =0 then f(z) = 0 which is continuous.

For fixed y € F consider f : E — E given by f(x) = x +y. For xg € E consider the neighbourhood
Ur.e + f(xo). Note that for € U, + o it follows that

£ () = f(zo)lli = [l& — zolls

<

for I = 0,...,r, which implies that f(z) € U, + f(zo). Therefore, f is continuous at zy and hence
continuous on E.

O
Exercise [4.5.9]
Solution. Let
Ue={z € E:|zlo<e€,....|[z| <e€}
and
Ul ={w € E: o) <e,..., Jall, < e},
with (Ur.e),.cn e generating the topology 7 and (UAG)TEN .~ Benerating the topology Tl
» If z € Uj then
Izl < sup ([lzfl) = [lzll; <,
1=0,..., T
for any k = 0,...,7. Therefore, z € U, and so U, . C U,... So by linearity, we deduce that 7 C 7’.
» If 2 € U, 5 then
€
lefly = sup (o) < § <
1=0,....k
for any k =0,...,7. Therefore, z € U] . and so U, ¢ C U, .. So by linearity, we deduce that 7' C 7.
O
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Exercise [4.5.8l

Solution. Let N, be an open neighbourhood with respect to the metric p. For g € N, consider the neighbourhood
N, — ¢ of zero. Then there exists a neighbourhood

B={xecE:p(z,0)<e}

of zero such that B C N, — zg. Let r € N be such that Zn i+l an < 5. Then for x € U, < it follows that

oo

1 @]
=S Il

_Z L el i 1 =zl
2T+ el T 20 1A [l

n=r+1
L lzlln | €

T =2 1

3 iig
- :02”1+§ 2
<e " 1+e
_4n:02" 2
P
-2 2
=€

Therefore, Ur’i C

C B, implying that B is open in the topology of the countably normed space. Conversely,
consider

Ue={zeE:|z|j<eforj=0,...,r}

and
B={z € E:p(z,0) < é}.

1 _|=lln

For z € B we have 5 Tl < € for every n € N, in particular, (1 — 2"¢€) ||z||, < 2™¢é. Therefore, for sufficiently

small é we have 1—2”e>0forn:0,...7r so that

2"e

1—2n¢

]ln <
s € \, 0 it follows that ||z|, N\ 0 for n = 0,...,r. Therefore, for € sufficiently small we have ||z|,, < €

for n = 0,...,r which implies that = € U, .. Hence, B C U, meaning U, is open in the topology of the
metric. O
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5 Distributions

Consider f : R — R a locally integrable function and ¢ : R — R a compactly supported function. Then

() = (o) = | " f@)e(e) de, (5.0.1)

is a well-defined linear functional on the space of compactly supported functions ¢. More generally, the space
of linear functionals that can be identified with a function f in the form of increases as the space of
functions, on which is to be well-defined, decreases. This is because as the space of functions decreases,
the regularity of f required for to be well-defined also decreases which increases the opportunity for a
function f to determine a well-defined linear functional. However, the space of all linear functionals on a space
of functions extends beyond those of the form .

5.1 The Space of Test Functions

For A C R, let C>°(A) denote the linear space of infinitely differentiable functions on A with compact support.
Let D(A) = C(A) and let D = D(R).

Example 5.1.1. Consider
1
(2) {exp( (b_x)(x_a)> x € (a,b)

0 otherwise.

Then o € D.

Definition 5.1.2. The linear space D is referred to as the space of test functions, with elements of D known
as test functions.

Let D,,, C D consist of the test functions vanishing outside [—m, m] such that (D,,)men is an increasing sequence

of sets with D = UmEN D,n. The space D,, is countably-normed with

lells™ = sup (o)
0<k<n,|t|<m

for n € N. A set U is a neighbourhood of 0 € D if for all m € N we have that U N D,,, is a neighbourhood of
0 € D,,,. The topology on D induced by these neighbourhoods makes D a topological linear space.

Lemma 5.1.3. The sequence (¢n)nen C D converges to ¢ € D if and only if the following statements hold.

1. There is an interval [a,b] such that for all n € N we have @, (x) =0 for z € R\ [a, b].

2. For fixed k € N, the sequence (ap%k)(a:)) e R converges to o*)(z) uniformly.
ne

Proof. (=). Suppose that (¢, )neny C D converges to zero in D.

= Suppose that 1 does not hold. Then for each j € N there exists n; € N with |z,,| > j such that
©n,(Tn;) = ¢ > 0. Since ¢,, — 0, every neighbourhood of zero contains a tail of this sequence.

However, let U be a neighbourhood of zero containing distributions such that if ) € D then ||¢||E)1) <3,
if v € Dy \ Dy then ||¢||E)2) < 2 min(eo, €1) and so on. By construction, the set U cannot contain a tail of
¢n;, which is a contradiction.

= Note that statement 1 implies that for every n € N we have ¢,, € D,,, for some m € N. Since (¥ )nen
converges in D it also converges in D,,. In particular, it converges with respect to each norm of D,, by
Lemma Hence, wgf) — 0 uniformly as n — oo for each k € N.
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(«<). Suppose for (¢ )nen € D we have p,(z) = 0 for € R\ [-=m, m] and every n € N. Moreover, suppose
that (cp%k)) converges uniformly to zero for every k € N. Then (), cy € Di converges to zero in D,,.

ne

Therefore, for any neighbourhood U of zero in D, there exists a N € N such that for every n > N we have
pnelUND,, CU.

Thus, ¢, = ¢ in D. O

Definition 5.1.4. A functional f is a distribution or a generalised function if f € D*. We use D' = D* to
denote the space of distributions.

I Lemma 5.1.5. A linear functional f on D is continuous if and only if f(vn) — f(¢) when ¢, — ¢ in D.

Proof. (=). Without loss of generality suppose that (¢,)neny € D is such that ¢, — 0. In particular, by
statement 1 of Lemma [5.1.3] there exists a M > 0 such that for all n € N we have ¢, (z) = 0 for all z €
R\ [-M, M]. Given an e > 0, by the continuity of f, there exists an open neighbourhood U of 0 € D such that
|f(¢)| < € for all ¢ € D. In particular U N Dy, is open so that there exists a § > 0 such that

Urs ={o D el <o, ol < 6} cU.

By statement 2 of Lemma there exists a N € N such that for each £ = 0,...,r we have ||<an,(€M) < 4 for
n > N. Therefore,
Pn € Ur,5 g U,

and so | f(pn)| < e Thus, f(¢n) — 0.
(«<). Suppose f is not continuous at zero. Then for some € > 0 it follows that for any neighbourhood U of
0 € D there exists a ¢ € U such that |f(¢)| > €. Note that

1
Uy = {¢;||¢||;M><n fork::O,...,neN}

is an open neighbourhood of 0 € D. Let ¢, € U, be such that |f(@,)| > €, in particular we can choose ¢,

such that ¢, (z) = 0 for z € R\ [-M, M]. Since, |<pn||,(€M) — 0 asn — oo for any k € N it follows that

(goslk)(z)) N converges uniformly to zero for each k € N. Therefore, ¢, — 0 in D by Lemma [5.1.3] However,
ne

this is a contradiction, as this would imply that f(¢,) — 0 which is not the case. Hence, f must be continuous
at zero. ]

Remark 5.1.6. By linearity, it is sufficient to check the criterion of Lemmal[b.1.5 for ¢, — 0 in D.

Let f: R — R be a locally integrable function. With f one can identify the linear functional

o0
(F9)i= [ f@ypl@)ds
— 00
In particular, if ¢, — ¢, then by statement 1 of Lemma [5.1.3] there exists a compact set K C R such that

(f. on) = /K J(@)on(e) da

for every n € N. By statement 2 of Lemma the sequence (¢, (x))nen converges uniformly to o(z) on
K. As @ is bounded, the sequence (¢y,)nen is uniformly bounded on R. Therefore, as f is locally integrable,
|(f,¢n)| < M for every n € N. So one can use the dominated convergence theorem to deduce that (f, ¢,) —
(f,¢) as n — co. Thus, using Lemma[5.1.5 we deduce that (f,-) is continuous and hence defines a distribution.
Distributions that can be identified with an f in such a way are referred to as regular, whilst other distributions
are referred to as singular.
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Example 5.1.7. The following are singular distributions.

1. The o-function, which is given by () = ©(0). Similarly, the distribution §(x —a) given by §(x—a)(p) =
¢(a) is singular. Indeed, suppose that 6(p) = [*_ f(z)¢(x)da for some locally integrable function f.
Then for ¢ € D with 0 ¢ supp(yp), it follows that

0 /Supw) f(@)p() da.

This implies that f(x) = 0 almost everywhere on R. Hence, if p € D is such that 0 € supp(yp) it follows
that

0= [ f@)pla)do = b(¢) = 9(0) > 0
which is a contradiction. Therefore, the d-function is a singular distribution.

2. Recall that % is not integrable at zero. However,

f1(p) := lim

—p(x)dx
eN0 R\[—e,e] T ( )

exists for p(x) € D. In particular, for ¢ € D there exists an R > 0 such that o(z) = 0 onz € R\[-R, R].

Thus,
filp(@)) =i L o(z)d
1(p(x)) = Im —p(x)dr
’ NSOJR\[—eq] ¥
1
= lim —p(x)dx
NOJ[-R,R\[-e,e] T
— 1
= lim (@) =20 4, 4+ o(0) lim ~da
NOJ[—R,R\[~e,e] @ NOJ[-R,R)\[-e,e] T
— (0
:/ o(r) — o )dx—i—O.
[_RvR] Z

Then through integration by parts
f10) == [ ¢/(a)log(lel)do
B [-R,R]

which implies that

f1(p)| < C(R) sup [¢'(@)]-

|z|<R

Therefore, if ¢ — 0 in D then

f1 (ga)’ — 0 by statement 2 of Lemma|5.1.3, and so by Lemma|5.1.5 it

follows that f1 is continuous.

Lemma 5.1.8. A linear functional f on D is continuous if and only if f is continuous as a linear function on
D,,, for every m € N.

Proof. (=). Note that f were continuous on D,, for every m € N then for every m € N, by Proposition [4.5.10
there would exist a ¢ > 0 and n € N such that

@) <elgli =c  sup|pM()]

0<k<n,|z|<m

for every ¢ € D,,. Therefore, for contradiction, suppose that there exists a m € N such that for all n € N and
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¢ > 0 there exists a ¢, € Dy, such that

1 (@ne)l > ¢llnell ™

Let o
’L/}n,c = $a
| (en.c)l
then 1 > C\Wn,c“flm)- In particular,
m 1
[nnlly™ <~
which implies that ¢, , — 0 € D by Lemma However, |f (¢n.n)| = 1 /4 0, which contradicts Lemma

. 1.5l

(«<). Let ¢, = @ in D. Then, using statement 1 of Lemma there exists an interval [a,b] such that
on(z) =0 for z € R\ [a,b] and every n € N. In particular, there exists an m € N such that ¢, (x) = 0 for
x € R\ [-m, m] for every n € N. Therefore, v, — ¢ in D,,. Hence, f(vn) — f(p) as f is continuous on D,,.
Thus, f is continuous using Lemma [5.1.5 O

One can show that on D', the convergence of sequences under the strong and weak-* topology coincide. This
motivates Definition for convergence in D'.

Definition 5.1.9. A sequence (fy,)neny € D’ converges to f € D' if fr.(¢) — f(p) for any p € D.

5.2 Derivative of a Distribution

Suppose that f is a continuously differentiable function, and let

T(0)= [ el ds,

where ¢ is differentiable with compact support. Then integrating by parts it follows that

| r@eac=- [~ f@ewa (5.2.1)

It is natural to consider the left-hand side of (5.2.1)), as the derivative of T, namely T7”(y). Consequently, as the
right-hand side of (5.2.1)) does not require the assumption that f is differentiable, it provides a means by which
to define a derivative more generally.

Definition 5.2.1. For f € D', its derivative is given by

fllo)=—f(£).
Similarly,
FB(e) = (-1 ()
fork=1,2,....
With this we see that if f,, — f in D', then f,gk) — &) in D'

Example 5.2.2.

1. If f : R — R is continuously differentiable, then its derivative is identified with the distribution of the
corresponding induced distribution.

2. Let
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such that

(o) = [ pl@)do
0
Then
(h/a (P) = (ha 901)
= —/ o' (z) dz
0

= ¢(0).

Therefore, h' = 4.

3. Using statements 1 and 2 we see that if f : R — R is a function with jumps at (x;);cn equal to (h;)ien
and continuously differentiable everywhere else, then its distributional derivative is the sum of the ordinary
derivative at the points where it exists, and Y .-, h;6(z — x;) otherwise.

4. The distributional derivative of ¢ is

5. Consider
co . ( ) ﬂ'%I O<z S 7T
sin(nx .
f(x)zg = -z _g<z<0
=1 0 x =0,

extended as a 2 periodic function on R. Using the right-hand side it follows from statement 3 that

@) =—5+7 Y da—2mk).

k=—o0

However, using the left-hand side it follows that
(o)
fli(z) = Z cos(nw)
n=1
in the sense of distributions. Therefore,

i e = 21 i o(x — 27k).

n=-—oo k=—o0

5.2.1 Application to Differential Equations

To understand how distributions can be applied to solve differential equations it will be useful to let DV) denote
the linear subspace of D consisting of distributions ¢ € D that are the derivative of some distribution ¢ € D.

I Lemma 5.2.3. Let ¢ € D. Then ¢ € DW if and only if [~ ¢(z)dz = 0.

Proof. (=). Let p(x) =4¢'(x) for b € D. Then

(<). Let
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Note that ¢(z) is infinitely differentiable, with 1" = ¢. As ¢ has compact support, there exists a K such that
¢(z) =0 for z ¢ [~ K, K]|. In particular, as [*°_¢(t)dt = 0 we have that ¢)(z) = 0 for z & [— K, K]. Therefore,

the support of ¢ is bounded and thus must also be compact. Hence, ¢» € D which means ¢ € D). O

Remark 5.2.4. Lemma can be interpreted as saying that the kernel of the functional f = 1 is D).
Hence, using the general theory of linear functionals on linear spaces any ¢ € D can be represented as

© = cpo + 1
for some 1 € DU, ¢ € C, with ¢, a fixed element of D\ D) that satisfies
(fooo) = [ pol@)dz=1.

Note that ¢ = ffooo p(z) dz so we deduce that p1 = ¢ — cyyp.

I Theorem 5.2.5. The only solutions to the equation y' = 0 in D’ are constant solutions.

Proof. With 3’ = 0 it follows that
0=(v,¢) = (y,—¢") (5.2.2)

for all ¢ € D. In particular, (5.2.2)) defines the linear functional y on DM To determine the linear functional y
on D, it suffices to determine y on ¢ from Remark Let (y, o) = a for some o € C, then

(Y, ¢) = (y, cp0 + 1)

(y, o) + (4, 1)
15.2.2)

C(ya (100)

Hence, y = a on D. O

I Corollary 5.2.6. Let f,g € D'. If f' =g’ then f — g = ¢, where c is a constant.

I Theorem 5.2.7. The differential equation y' = f for f € D' has a solution y € D'.

Proof. With 3/ = f we have
(f,9) = (¥ 0) = (y,—¢") (5.2.3)

for all ¢ € D. From (5.2.3)), the linear functional y is defined on all of D). In particular, for 1 € D), we have

(y,01) = <f, - /; ©1(t) dt) .

Let o € D\ D) be as in Remark [5.2.4} and set (, p0) = 0. Then for ¢ € D we have

(ya 90) = (y7 901)

- (f, - /_Oo ™0 dt) (5.2.4)
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where 1 = ¢ —cpp. Note that y as given by (5.2.4)) is linear. Moreover, let (¢, )nen € D be such that ¢, — 0.

(n)

Let ¢, = ™y + )" for each n € N. As (™ € DU it follows that there exists a (™) € D such that

(v™)" = o{". Thus,
(Y, n)| = (f,—[ gaY”(t)dt)‘

—|- [ (o) dt’
=|(#.0)]

As @, — 0 it is clear that (") — 0 and so as f is continuous we have |(f,%(™)| — 0. Hence, |(y,n)| = 0
which implies that y is also continuous. Observing that

W 9) = (y,—¢")
(1 )
=(f.9)

it follows that 4/ = f and so y € D’ is a solution to the differential equation. O

Remark 5.2.8. By Corollary[5.2.6, the solution given by Theorem is unique up to an additive constant.

Theorem 5.2.9. Consider a system of differential equations given by

i = ajr(@)yn (5.2.5)
k=1

for j = 1,...,n, where the a;; are infinitely differentiable functions. Then all solutions to (5.2.5) in D’ are
regular and coincide with the classical solutions.

Theorem 5.2.10. Consider a system of differential equations given by

i =Y @)y + 1 (5.2.6)
k=1
forj =1,...,n, where the a;j, are infinitely differentiable functions and f; € D'. Then a solution (yj);-‘:l cD

to (5.2.6) exists and is unique up to an arbitrary solution of (5.2.5)). Moreover, if f; for j = 1,...,n are
classical ordinary functions then the solution to ((5.2.6)) is also classical.

Remark 5.2.11. By a regular distribution, we refer to the distributions that can be identified by a function f
through the equation

T(p) = (f,¢) = /_OO f(z)p(x) dz.

Note that we could have alternatively defined correspondence between functions f and distributions through
the integral

/_Z f(@)p(x) de.
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Equally, we could have considered
o0 J—
| @@
— 0o
or

/Zjv(x)gp(x)dx.

Each of which would have provided a different way of embedding ordinary functions into distributions.

5.3 Functions of Several Variables

Let ¢(x1,...,x,) on R™ have partial derivatives of all orders with respect to each of the n variables, and vanish
outside some [a1,b1] X + -+ X [ay,b,]. One can introduce a topology on this linear space such that ¢ — ¢ if
there exists some B := [a1,b1] X - -+ X [an, by] such that ¢g(z1,...,2,) =0 on R™\ B for all k € N, and

0", o

ox{t...0zy" ozt ...0zy"

for 7 = >7"_, a; uniformly on B for any (a,...,a,) C N". We denote this space D (R") = C° (R™).

Definition 5.3.1. A linear continuous functional on D (R™) is referred to as a distribution of n-variables. The
corresponding space of distributions is denoted D’ (R™).

Locally integrable functions f, on R™ correspond to the regular distributions

(fv‘p):/7 [ <,0(I1,,xn)f(a?1,,x,L)dacldm,L

All the results derived for single-variable distributions can be extended to the n-variable case. For example, the
derivative of an n-variable distribution is given by

of (1) 0"
<8x?1 ... 0z ’SD) = (=1 (f’ Ozt ...83:%") '

5.4 Functions on the Unit Circle
Consider the unit circle in the complex plane, namely
II:= {xe@:x:ei9,0§9<2w}.
Just as we have consider functions defined on R, we can consider functions defined on II. Functions on II can be

viewed as periodic functions on R. For the linear space of infinitely differentiable functions on II, we can consider

a topology where ¢,, — ¢ if <p5lk) (z) — ) (x) uniformly on II for every k = 0,1,.... As II is bounded the

property that the functions of D(II) have compact support is implicit, a property that we had to explicitly require
for D. We denote this space as D(II).

Definition 5.4.1. An element f € D(I1)* is referred to as a distribution on the unit circle.

Functions and distributions on II can be extended periodically on R.

Definition 5.4.2. An element f € D’ is a periodic distribution with period a if

(fs o(z — a)) = (f, (z))

for every p € D.
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Example 5.4.3. Recall from statement 5 of Example[5.2.7 that

i e =2 i d(z — 27k)

n=—oo k=—

in the sense of distributions. From the right-hand side, it is clear that this is a distribution of period 2.
5.5 Tempered Distributions
Let S = S be the space of Schwartz functions on R as given by Definition [3.3.1]

Exercise 5.5.1. Show that S is a countably-normed space with norms

lelln = > sup

pigen TER0<G<p,0<k<g

(1+ |2) o® ()

forn=0,1,....

Lemma 5.5.2. A sequence (¢, )nen C S converges to ¢ € S if and only if for any ¢ = 0,1,... the sequence
(<p£?)> N converges uniformly on any bounded interval, and
ne

xpﬁpgzq)(x)‘ < Cpg
holds for some constant Cy, , > 0 independent of n € N.

Proof. From Lemma we have that ¢, — ¢ in S if and only if p,, — ¢ with respect to each norm || - ||
Since S is a linear space, it suffices to consider ¢ = 0.
(=). Let p,q €{0,1,...} and m = p+ q. Since ||¢n||m — 0, it follows that

n—oo

sup [0 (@)| < llgnllm "5 0
z€R

and
sup |zPplD ()
rz€eR

In particular, (5.5.1]) implies that there exists a C}, ; > 0 independent of n € N such that

< llenllm —0. (5.5.1)

’ n—oo
"’L‘psp’l(’],q)(x)‘ < Cpyq
for all z € R.

(«<). Letm € N. Let j, k € Nbesuch that j+k < m. Lete > 0. Let & > max (2(7":1)201’;6, 2(7":1)2 Cit1k 1).
Let N € N be such that

(k) ’< €
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for || < &. Then for n > N we have

sup [(1+ lal’) o (2)| = max <sup
z€R

(L+ |al) 2 ()|, sup

(1+ [2) 7 <x>\>

|I|<ff \z|>m
. D@)| ot o @)
< max | sup 2x > , sup +
\»L|<w 289 (m+1)%) "5z 2] |z]
< 01 ko Cit1k
o (m+1)?" =z T
<m € + €
- m+12’ 2(m+1)2  2(m+1)2
N <m+ 1?2
Hence,
lonlm =3 sw |1+ 1) o @)
ptq=m TER,0<7<p,0<k<q
€
< _c
32, G
€
= 12—
(m+1) 12

= €.

Therefore, ¢, — 0 with respect to || - ||, Since m € N was arbitrary it follows by Lemma that ¢, = 0in
S. O

Definition 5.5.3. A linear continuous functional on S is referred to as a tempered distribution. The space of
tempered distribution is denoted S'.

As before regular functionals on S can be identified with a function f through

/ f@)p(z) dz = (£,).

Exampl;e 5.5.4. As D C S it follows that S’ C D’. In particular, these inc/usigns are strict. Indeed, e’ eD
since e* is locally integrable. However, from Example we know that e=* € S§°°. Therefore, since

> 2 2
/ e” e * dx = oo,
— 00

the regular distribution of e®” cannot be a tempered distribution.
I Lemma 5.5.5. A linear functional f on S is continuous if and only if f(¢n) — f(v) when ¢, — ¢ in S.

Definition 5.5.6. A sequence (fy,)nen C S’ converges to f € 8" if fr.(p) = f(p) forall p € S.

5.5.1 Fourier Transform
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Definition 5.5.7. The Fourier transform of a distribution f € 8’ is the distribution F[f] = g € S’ given by

(9,9) = (f, Fle])
for all p € S.
Note that
(9,01 + Ap2) = (f, Flor + Apa))
Y (1, Flpa] + AF[])

© (£, Fler]) + A(f, Floa))
= (g9p1) + (g, ¥2),

where in (1) the linearity of the Fourier transform on S is used, and in (2) the linearity of f is used. Thus, we
deduce that g is linear. Moreover, suppose that ¢, — ¢ in S. Observe that F[p,| € S and Fp,] = F[¢] in S.
So as f is a distribution on S it follows that

(9, on) = (f, Flen])
— (f, Fle])
= (9, ).
Therefore, g as given by Definition [5.5.7|is a distribution on S.

Exercise 5.5.8. As L'(R) C &', as regular distributions, it should be the case that Definition extends
Definition[3.1.3 Verify that this is indeed the case.

Example 5.5.9. Let ¢ = F[y].
1. Let f(z) = ¢, where c € R. Then
(Fld,¢) = (f,9)
= C/OO Y(x) de
= 2W;<p(0)7
where for the last equality we have used the inverse Fourier transform of p. Thus, Fc] = 2mcd(z).
2. Let f(z) = €'®. Then
(F[e7] ,9) = (£.9)
= /00 e “%o(z) dx
2o,
where in the last equality we have used the inverse Fourier transform on . Thus F [e'**] = 2r6(x — a).

3. Let f(x) =d6(x —a). Then

(F[6(z —a)l,¢)

I
-~
E

I
S
—~
g

D

|

=

8
o,
8
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Thus, F[6(z — a)] = e~?e®,

4. Recall, the distribution f1 given by

(f%7np) = lim () dz.

e\0 R\[—¢,e] x

Suppose F [f%] =g. Then
(¢’ 0) = (g,—¢")
= (3, -Fl01)
= (3, =)

1
= —ilim —APp(N) dA
e\ 0 R\[—¢,€] A ( )

o0
- / H() dA
— 0o
= —2mip(0).
As (sgn)’ = 26, it follows by Corol/ary that
9(x) = —misgn(z) + ¢,

for some ¢ € R. In particular, suppose that ¢ € S is even, then on the one hand we have

me:/mﬂmﬂ“m

so that

(f%,F[go]) = lim /R\[_e,e] M dz = 0.

On the other hand,

(0.0)= [ (misn(z) + )ple) da

— 00

/O (7t + ¢)p(x) dx+/000(—7ri+c)cp(x) dz

= 20/ o(z)dz.
0

Therefore, ¢ = 0 and so

Definition 5.5.10. Let Z be the linear space consisting of entire functions 1) where for all ¢ = 0,1, ... there
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exists Cy (), a(y) > 0 such that

AP (A)] < Cq(9) exp (a(y) Tm(A)]) - (5.5.2)

I Lemma 5.5.11. The Fourier transform is a bijection between D and Z, which preserves linear operations.

Proof. Let ¢ € D, then

—
—

2 [ e da,

—a
where (1) follows as ¢ has compact support. As e~“*%(z) is analytic in A and continuous in z, it follows that
() extends to an entire function. Moreover, by integration by parts we obtain

AN = ‘/“ Pl (@)e™"* dz| < Cyexp(allm(N)]),

which means that 1) € Z. Conversely, let ¢ € Z and consider

o(x) = %/_ P(N)e™ d),

which converges absolutely and uniformly for 2 € R by taking Im(\) = 0 in (5.5.2). Similarly,

1 e ;
P (2) = / (i) T (A) e dA
71— — 00
forq=1,2,...is absolutely and uniformly convergent and so ¢ is infinitely differentiable. Now for 2 > a(v) =: a,

where a(1)) comes from , consider the integral of 1)(\)e™* over the contour v = " Ung " Una " Unys”
where

A= {A=0:0€ -4, A}

Y= {A=A+in:nel0,]}

7?;4’7 ={A=o0+ir:z €A -A]}

YA = {A=—A+in:nen0]}.

Observe that

| vt e g
0

/ Y(N)e dN| =
.

A,
2

£33 [T Ci(4) exp(an) dn
0o AZ+n?
A —00
0.
Similarly,
20

Therefore, as



it follows that,

pla) = [ e do
Y3’

1 e -
= — / Y(o+i7m)e " ™ do

21 J_ o

for 7 > 0. With s = o + i7, using (5.5.2)) for ¢ = 0 and ¢ = 2, we obtain

()] < el min (00, s >

[s[?
cal]
< -
14 s)?
calr]
<C—no
> 1+0_27

where C'is just some constant. Hence,
C oS} e(afx)‘r
lp(z)| < —— ——5 do
2n J_ o 1+0

< Clef(zfa)r’

where C’ is a constant independent of 7 > 0. Since, 7 > 0 and & > a, by taking 7 — oo we deduce that

|p(z)] = 0. A similar argument shows that |p(z)| = 0 for x < —a. Therefore, ¢ has a compact support and

because it is infinitely differentiable we have ¢ € D. Moreover, ¢ € D is the unique test function such that

F[¢] = 1. In conclusion, F': D — Z is a bijection.

O

Definition 5.5.12. The Fourier transform of a distribution f € D' is the distribution g = F[f] € Z2* = Z’

given by
(9,9) = (f, Flgl)
for all ¢ € Z.

5.6 Solution to Exercises
Exercise [5.5.1]

Solution. On the one hand,

s |1+l P @]z Y s b [¢)
prq=n TER,0Z7<p,0<k<q ptg=n TER,0<j<p,0<k<q
> sup |zl (SU)’ .
0<j,k<n
On the other hand,
sup (1+ J2f) sﬂ(k)(l‘)‘ < > sup (L4 x|+ + |z)) w(k)(x)’
ptq=n TER,0<7<p,0<k<q ptgen TERO<j<p,0<k<q
< swp |1+ [2l) (@)

piamn ©ER0<G<p,0<k<g

<(n+ 1)? sup
0<j,k<n

27 p®) (.23)‘ .

Therefore, || - ||, is equivalent to the norm from statement 2 of Example and thus S with the norms || - ||,

is a countably normed space.
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Exercise [5.5.8]
Solution. If f € § and ¢ € S then

o0

= (7F[<p])~ (5.6.1)

Using the density of S in L!(RR), under an appropriate limit it follows that (5.6.1)) holds for all f € L*(R). [

96



6 Appendix
6.1 Constructing Topologies from Neighbourhoods

Definition 6.1.1. Let T' be a non-empty set. For x € T, a system of neighbourhoods N(z) is a collection of
subsets of T' such that the following hold.

1. N(z) is not empty.

2. IfU € N(z) thenz € U.

3. IfU,V € N(z) thenUNV € N(z).

4. If U € N(x) then there exists a V € N(z) such that V. C U and V =, V, where V; € N(y).

An element U € N(x) is referred to as a neighbourhood of x.

Definition 6.1.2. When we have a system of neighbourhoods for the elements of a set T', we say a subset
S C T is open if either S = ) or for every s € S there exists a U € N(s) such that U C S.

Remark 6.1.3. Note that a neighbourhood itself may not be an open set.

I Lemma 6.1.4. The collection of open sets given by Definition defines a topology on T'.

Proof.
= The empty set is open.

» Let (Sk)ren be a collection of open sets. Then for each s € |J, oy Sk, there exists a &' € N such that
5 € Skr. Hence, as Sy is open there exists a U € N(s) such that U C S C J,cn Sk Therefore, [, cn Sk
is open.

» Let (Sk)?_, be open sets. Then for s € [,_, S, there exists a Uy € N(s) such that Uy C Sy for each
k=1,...,n. From statement 3 Definition the set U := (,_, Uy is open, and in particular is such

that s € U C (,_; Sk. Therefore, (,_; S is open.
O

Remark 6.1.5.

1. The topology of Lemma is denoted T, and is referred to as the topology induced by the defining
system of neighbourhoods {N (z) : x € T'}.

2. Note that the set V of statement 4 of Definition [6.1.1] is an open set in the sense of Definition [6.1.23
The collection of such open sets B with () is an open base of 7. Namely, B C T with each A € T a union
of sets from B.

3. With this construction of T, we can extend the notion of a neighbourhood of x to mean any set U such
that x € U and U contains an open set containing x. Note that if U and V are neighbourhoods of x
thensoisUNYV.
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