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1 Orthonormal Systems in Euclidean Spaces
1.1 Euclidean Spaces

Definition 1.1.1. A real Euclidean space R is a linear space with a map (·, ·) : R × R → R that satisfies the
following statements.

1. (x, y) = (y, x).

2. (x1 + x2, y) = (x1, y) + (x2, y).

3. (λx, y) = λ(x, y) for λ ∈ R.

4. (x, x) ≥ 0 with (x, x) = 0 if and only if x = 0.

Remark 1.1.2.

1. The map (·, ·) of Definition 1.1.1 is referred to as an inner product on R.

2. A Euclidean space R is a normed vector space with

∥x∥ =
√

(x, x),

and thus it is also a metric space with

ρ(x, y) = ∥x− y∥.

For the moment we will exclusively work with real Euclidean spaces.

Definition 1.1.3. Let R be a Euclidean space. A system of non-zero vectors (xα)α∈A ⊆ R is orthogonal if
(xα, xβ) = 0 for α ̸= β. In particular, it is orthonormal if in addition ∥xα∥ = 1 for all α ∈ A.

Given an orthogonal system (xα)α∈A, one can construct an orthonormal system
(

xα

∥xα∥

)
α∈A

.

Exercise 1.1.4. Let (xα)α∈A be an orthogonal system of vectors. Show that (xα)α∈A is linearly independent.

Definition 1.1.5. Let R be a Euclidean space, with (xα)α∈A ⊆ R an orthogonal system. Then (xα)α∈A is
complete if

span ((xα)α∈A) = R.

Definition 1.1.6. If an orthogonal system (xα)α∈A is complete, then it is said to be an orthogonal basis of R.
In particular, it is an orthonormal basis of R if in addition ∥xα∥ = 1 for all α ∈ A.

Example 1.1.7.

1. The space Rn is a finite-dimensional real Euclidean space with inner product

(x, y) =
n∑

i=1
xiyi.
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An orthonormal basis of Rn is (ej)j=1,...,n where

ej = (0, . . . , 1︸ ︷︷ ︸
j

, . . . , 0).

2. The space

ℓ2 =
{
x = (x1, x2, . . . ) :

∞∑
i=1

x2
i < ∞

}
is an infinite-dimensional real Euclidean space with inner product

(x, y) =
∞∑

i=1
xiyi.

Consider the system (ej)j∈N ⊆ ℓ2 where

ej = (0, . . . , 1︸ ︷︷ ︸
j

, . . . ).

The system (ej)j∈N is orthogonal as ∥ej∥ = 1. Let x ∈ ℓ2 and consider x(n) = (x1, . . . , xn, 0, . . . ). Then

x(n) =
n∑

j=1
xjej ,

and ∥∥∥x(n) − x
∥∥∥ n→∞−→ 0.

Therefore, (ej)j∈N ⊆ ℓ2 is complete and thus an orthonormal basis of ℓ2.

Exercise 1.1.8. The space C2([−π, π]) of continuous real-valued functions on [−π, π] is a real Euclidean space
with inner product

(f, g) =
∫ π

−π

f(t)g(t) dt.

Show that
{1} ∪ {cos(nt)}n∈N ∪ {sin(nt)}n∈N

is an orthogonal basis of C2([−π, π]). Corollary 2.3.4 can be used without proof.

Definition 1.1.9. A space R is separable if it contains a countably dense subset.

Example 1.1.10. The Euclidean spaces from Example 1.1.7 are separable.

1. The subset Qn ⊆ Rn is countably dense and so Rn is a separable space.

2. The subset
A := {x = (x1, . . . , xn, 0, . . . ) : xi ∈ Q, n ∈ N} ⊆ ℓ2

is countable. Moreover, given any x ∈ ℓ2 and ϵ > 0 let

x(n) := (x1, . . . , xn, 0, . . . ).
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Since,
∑∞

k=1 x
2
k < ∞ it follows that ∥∥∥x− x(n)

∥∥∥
ℓ2

n→∞−→ 0.

In particular, there exists an N ∈ N such that
∥∥x− x(N)

∥∥
ℓ2 <

ϵ
2 . As Q ⊆ R is dense, there exists a

y ∈ A such that
∥∥y − x(N)

∥∥
ℓ2 <

ϵ
2 . It follows that,

∥y − x∥ℓ2 ≤
∥∥∥y − x(N)

∥∥∥
ℓ2

+
∥∥∥x(N) − x

∥∥∥
ℓ2

≤ ϵ

2 + ϵ

2
≤ ϵ.

Thus, A ⊆ ℓ2 is countable and dense, meaning ℓ2 is separable.

3. Let

A :=
{
a1 +

N∑
n=1

(bn cos(nt) + cn sin(nt)) : a1, bn, cn ∈ Q, N ∈ N

}
.

Let f ∈ C2([−π, π]) and let ϵ > 0. Then as

{1} ∪ {cos(nt)}n∈N ∪ {sin(nt)}n∈N

is a complete orthogonal system on C2([−π, π]) it follows that

f(t) = a1 +
∞∑

n=1
(bn cos(nt) + cn sin(nt))

for some a1, bn, cn ∈ R. Let

f (N)(t) := a1 +
N∑

n=1
(bn cos(nt) + cn sin(nt)) ,

then since f (N) → f in C2([−π, π]), there exists a N0 ∈ N such that∥∥∥f (N0) − f
∥∥∥

C2([−π,π])
<
ϵ

2 .

As Q ⊆ R is dense, there exists a f̃ ∈ A such that∥∥∥f̃ − f (N0)
∥∥∥

C2([−π,π])
<
ϵ

2 .

Therefore, ∥∥f̃ − f
∥∥

C2([−π,π]) ≤
∥∥∥f̃ − f (N0)

∥∥∥
C2([−π,π])

+
∥∥∥f (N0) − f

∥∥∥
C2([−π,π])

≤ ϵ

2 + ϵ

2
= ϵ.

This implies that A ⊆ C2([−π, π]) is dense. As A is countable it follows that C2([−π, π]) is separable.

Lemma 1.1.11. Let R be a separable Euclidean space. Then any orthogonal system in R is at most countable.
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Proof. Without loss of generality consider (φα)α∈A ⊆ R be an orthonormal system. For α ̸= β observe that

∥φα − φβ∥2 = (φα − φβ , φα − φβ)
= ∥φα∥2 − 2(φα, φβ) + ∥φβ∥2

= 2.

Therefore, the set of open balls
(
B 1

2
(φα)

)
α∈A

are disjoint. For a countably dense set (ψn)n∈N ⊆ R, there exists
at least one ψn in each B 1

2
(φα), hence, there can be at most countably many such balls. Therefore, as the balls

are centred on the φα it follows that the system (φα)α∈A ⊆ R is at most countable.

Theorem 1.1.12. Let (fn)n∈N be a linearly independent system in a Euclidean space R. Then there exists a
system (φn)n∈N ⊆ R such that the following statements hold.

1. (φn)n∈N is orthonormal.

2. φn = an1f1 + · · · + annfn for ank ∈ R and ann ̸= 0 for n ∈ N.

3. fn = bn1φ1 + · · · + bnnφn for bnk ∈ R and bnn ̸= 0 for n ∈ N.

Proof.

• Let φ1 = a11f1 where a11 = ±1√
(f1,f1)

and let b11 = 1
a11

. Then ∥φ1∥ = 1, φ1 = a11f1 and f1 = b11φ1.

• Suppose that {φ1, . . . , φn−1} is constructed to satisfy statements 1, 2 and 3. Let

bnk = (fn, φk)
(φk, φk)

for k = 1, . . . , n− 1. Then letting

hn := fn − bn1φ1 − · · · − bn,n−1φn−1,

it follows by the orthogonality of {φ1, . . . , φn−1} that

(hn, φk) = (fn, φk) − bnk(φk, φk) = 0

for k = 1, . . . , n− 1. Note that hn ̸= 0 due to the linear independence of (fn)n∈N, so we let

φn = hn

(hn, hn) .

Then
fn = bn1φ1 + · · · + bn,n−1φn−1 + bnnφn,

where bnn = (hn, hn). Moreover, using the induction hypothesis we have

φn = 1
bnn

(fn − bn1φ1 − · · · − bn,n−1φn−1)

= 1
bnn

fn − bn1

bnn
(a11f1) + · · · +

(
−bn,n−1

bnn

)
(an−1,1f1 + · · · + an−1,n−1fn−1)

= an1f1 + · · · + annfn,

for ank ∈ R and ann ̸= 0.
Thus we conclude the proof by induction.
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Remark 1.1.13.

1. The system (φn)n∈N of Theorem 1.1.12 is unique up to multiplication by ±1.

2. Note that the subspaces produced by (fn)n∈N and (φn)n∈N coincide, and so these systems are simulta-
neously complete or incomplete.

Corollary 1.1.14. A separable Euclidean space R possess an orthonormal basis.

Proof. As R is separable there exists a countably dense subset (ψn)n∈N ⊆ R. Without loss of generality one can
assume that (ψn)n∈N is linearly independent by removing elements ψk that are represented as linear combinations
of (ψi)i=1,...,k−1. Therefore, applying Theorem 1.1.12 we obtain an orthonormal system (φn)n∈N ⊆ R which is
additionally an orthonormal basis as (ψn)n∈N ⊆ R is dense.

1.2 Closed Orthogonal Systems
For an n-dimensional Euclidean space R with a basis (ej)n

j=1 ⊆ R, any vector x ∈ R can be written as

x =
n∑

k=1
ckek

for ck ∈ R. Due to the orthogonality of the system (ej)n
j=1 it follows that ck = (x, ek). In an infinite-

dimensional Euclidean space suppose that (φn)n∈N ⊆ R is an orthogonal system. For f ∈ R consider the
sequence (ck)k∈N ⊆ R where ck = (f, φk) are the Fourier coefficients of f with respect to (φn)n∈N. The series∑∞

k=1 ckφk is referred to as the Fourier series of f with respect to (φn)n∈N. The convergence and subsequent
limit of the series are the points of discussion.

Proposition 1.2.1. Let R be an infinite-dimensional Euclidean space with an orthogonal system (φn)n∈N.
Let f ∈ R. For fixed n ∈ N, let (αk)n

k=1 ⊆ R and S(α)
n =

∑n
k=1 αkφk. Then∥∥∥f − S(α)

n

∥∥∥ ≥
∥∥∥f − S(c)

n

∥∥∥ ,
where S(c)

n =
∑n

k=1 ckφk for ck = (f, φk).

Proof. Observe that ∥∥∥f − S(α)
n

∥∥∥2
=
(
f −

n∑
k=1

αkφk, f −
n∑

k=1
αkφk

)

= (f, f) − 2
(
f,

n∑
k=1

αkφk

)
+
(

n∑
k=1

αkφk,

n∑
k=1

αkφk

)

= (f, f) − 2
n∑

k=1
αkck +

n∑
k=1

α2
k

= ∥f∥2 −
n∑

k=1
c2

k +
n∑

k=1
(αk − ck)2.

Thus the minimum is achieved when αk = ck for k = 1, . . . , n. In particular,∥∥∥f − S(c)
n

∥∥∥2
= ∥f∥2 −

n∑
k=1

c2
k. (1.2.1)
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Corollary 1.2.2. Let R be an infinite-dimensional Euclidean space with an orthogonal system (φn)n∈N. Let
f ∈ R and ck = (f, φk) for k ∈ N. Then

n∑
k=1

c2
k ≤ ∥f∥2

for every n ∈ N. In particular,
∑∞

k=1 c
2
k converges with

∞∑
k=1

c2
k ≤ ∥f∥2. (1.2.2)

Proof. From (1.2.1) it follows that

∥f∥2 −
n∑

k=1
c2

k ≥ 0

which implies that
n∑

k=1
c2

k ≤ ∥f∥.

Taking the limit as n → ∞ we deduce that
∞∑

k=1
c2

k ≤ ∥f∥2.

Remark 1.2.3. The inequality (1.2.2) is referred to as Bessel’s inequality.

Exercise 1.2.4. With the notation of Proposition 1.2.1, show that f −S
(α)
n is orthogonal to span(φ1, . . . , φn)

if and only if αk = ck for k = 1, . . . , n.

Definition 1.2.5. An orthogonal system (φn)n∈N is closed if for any f ∈ R we have

∞∑
k=1

c2
k = ∥f∥2, (1.2.3)

where ck = (f, φk).

Remark 1.2.6.

1. Equation (1.2.3) is referred to as Parseval’s equality.

2. With (1.2.1), an orthogonal system being closed is equivalent to the partial sums of the Fourier series for
f ∈ R converging to f . That is,

f =
∞∑

k=1
ckφk.

Theorem 1.2.7. In a separable Euclidean space, an orthonormal system is complete if and only if it is closed.

Proof. (⇐). Let (φn)n∈N ⊆ R be a closed orthogonal system. Then, for any f ∈ R, the sequence of partial
sums (

∑n
k=1 ckφk)

n∈N where ck = (f, φk) converges to f . Therefore, linear combinations of (φn)n∈N are dense
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in R, that is (φn)n∈N is complete.
(⇒). Using Lemma 1.1.11 any orthogonal system is countable, thus let (φn)n∈N ⊆ R be a complete orthogonal
system. Then every f ∈ R can be approximated to any precision with a linear combination

∑n
k=1 αkφk. By

Proposition 1.2.1, the partial sum
∑n

k=1 ckφk of the Fourier series provides no worse an approximation. Therefore,∑n
k=1 ckφk

n→∞−→ f , meaning (φn)n∈N is closed.

Example 1.2.8. Using Example 1.1.10 and Theorem 1.2.7, the orthonormal systems of Example 1.1.7 are
closed.

Fourier coefficients can be generalised to non-normalised systems. Let (φn)n∈N be an orthogonal system. Then
consider the normalised system (ψn)n∈N, where ψk = φk

∥φk∥ . For any f ∈ R we have

ck = (f, ψk) = 1
∥φk∥

(f, φk).

Thus,

f =
∞∑

k=1
ckψk =

∞∑
k=1

akφk

where ak = (f,φk)
∥φk∥2 . This is the Fourier series of f with respect to (φn)n∈N, and using (1.2.2) it follows that

∞∑
k=1

a2
k∥φk∥2 ≤ ∥f∥2.

1.3 Complete Euclidean Spaces

Definition 1.3.1. A complete Euclidean space R is such that every Cauchy sequence (xn)n∈N ⊆ R converges
to some x ∈ R.

For a sequence (ck)k∈N ⊆ R to be the Fourier coefficients of f ∈ R, it is necessary that
∑∞

k=1 c
2
k converges. If

R is a complete Euclidean space then the convergence of
∑∞

k=1 c
2
k is also sufficient to conclude that (ck)k∈N are

the Fourier coefficients of f ∈ R.

Theorem 1.3.2 (Riesz). Let R be a complete Euclidean space and let (φn)n∈N ⊆ R be an orthonormal
system. Let (ck)k∈N be such that

∑∞
k=1 c

2
k converges. Then there is an f ∈ R such that ck = (f, φk) and

∞∑
k=1

c2
k = ∥f∥2.

Proof. Let fn =
∑n

k=1 ckφk. Then by orthonormality it follows that ck = (fn, φk) for k = 1, . . . , n. Observe
that

∥fn+p − fn∥2 = ∥cn+1φn+1 + · · · + cn+pφn+p∥2 =
n+p∑

k=n+1
c2

k.

Since,
∑∞

k=1 c
2
k converges it follows that (fn)n∈N is Cauchy. As R is complete the sequence (fn)n∈N converges

to some f ∈ R. Note that for n ≥ k we have

(f − fn, φk) ≤ |(f − fn, φk)|
≤ ∥f − fn∥∥φk∥
n→∞−→ 0

9



Therefore,

(f, φk) n≥k= (fn, φk) + (f − fn, φk)
= ck + (f − fn, φk)
n→∞−→ ck + 0

for every k ∈ N. Moreover,

∥f∥2 −
n∑

k=1
c2

k = (f, f) − 2
n∑

k=1
ck(f, φk) +

n∑
k=1

c2
k

=
(
f −

n∑
k=1

ckφk, f −
n∑

k=1
ckφk

)
= ∥f − fn∥2

n→∞−→ 0,

which implies that ∥f∥2 =
∑∞

k=1 c
2
k.

Definition 1.3.3. A complete infinite-dimensional Euclidean space is known as a Hilbert space.

Remark 1.3.4. Euclidean spaces are isomorphic if there exists a bijective mapping between the spaces that
preserves linear operations and the inner product. Finite-dimensional Euclidean spaces are isomorphic to Rn

with

(x, y) =
n∑

j=1
xjyj ,

and thus we only use Hilbert spaces to refer to infinite-dimensional spaces. Infinite-dimensional Euclidean spaces
are not necessarily isomorphic.

Exercise 1.3.5. Show that ℓ2 and C2([−π, π]) are not isomorphic as Euclidean spaces, as ℓ2 is complete whereas
C2([−π, π]) is not complete.

Proposition 1.3.6. Let H be a separable Hilbert space. Then an orthonormal system (φn)n∈N ⊆ H is
complete if and only if there is no nonzero element in H which is orthogonal to φn for every n ∈ N.

Proof. (⇒). For φ ∈ H \ {0}, as (φn)n∈N ⊆ H is complete it is closed, by Theorem 1.2.7, and so

∥φ∥2 =
∞∑

k=1
c2

k

where ck = (φ,φk). As φ ̸= 0 we have ∥φ∥2 > 0, and so as c2
k ≥ 0 there must exist some k ∈ N such that

ck > 0 which means that ck = (φ,φk) ̸= 0.
(⇐). Suppose (φn)n∈N is not complete, then, it is not closed, by Theorem 1.2.7, and so there exists a φ ∈ H
such that ∥φ∥2 ̸=

∑∞
k=1 c

2
k where ck = (φ,φk). However, by (1.2.2) the series

∑∞
k=1 c

2
k < ∞ and so by Theorem

1.3.2 there exists a φ̃ ∈ H such that

∥φ̃∥2 =
∞∑

k=1
c2

k,

with ck = (φ̃, φk). Thus, (φ̃, φk) = (φ,φk) which implies that (φ̃ − φ,φk) = 0 for all k ∈ N. However, as
∥φ̃∥ ≠ ∥φ∥ we have φ̃− φ ∈ H \ {0} which contradicts the assumption that no non-zero vector in H exists that
is orthogonal to φk for all k ∈ N.
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Theorem 1.3.7. Separable Hilbert spaces are isomorphic.

Proof. Let H be a separable Hilbert space with (φn)n∈N ⊆ H a complete orthonormal system, which is countable
by Lemma 1.1.11. Let Φ : H → ℓ2 be the correspondence of f ∈ H with its Fourier coefficients (c1, c2, . . . ). Since∑∞

k=1 c
2
k < ∞, by (1.2.2), the correspondence Φ is well-defined. Using Theorem 1.3.2 for any (c1, c2, . . . ) ∈ ℓ2

there is a f ∈ H such that Φ(f) = (c1, c2, . . . ). In particular, Φ provides a bijective correspondence. Furthermore,
suppose Φ(f) = (ck)k∈N and Φ(g) = (dk)k∈N. Then Φ(λf) = (λck)k∈N = λΦ(f) and Φ(f + g) = (ck + dk)k∈N.
Thus, ∥f + g∥2 =

∑∞
k=1(ck + dk)2 using (1.2.3). Along with ∥f∥2 =

∑∞
k=1 c

2
k and ∥g∥2 =

∑∞
k=1 d

2
k it follows

that
∞∑

k=1
c2

k + 2
∞∑

k=1
ckdk +

∞∑
k=1

d2
k =

∞∑
k=1

(ck + dk)2

= ∥f + g∥2

= (f + g, f + g)
= ∥f∥2 + 2(f, g) + ∥g∥2

=
∞∑

k=1
c2

k + 2(f, g) +
∞∑

k=1
d2

k,

which implies that (f, g) =
∑∞

k=1 ckdk = ((ck)k∈N, (dk)k∈N)ℓ2 . Therefore, Φ is a bijection which is linear and
preserves the inner product. Hence, it is an isomorphism between H and ℓ2. As H is arbitrary and ℓ2 is fixed,
this is sufficient to show that any separable Hilbert spaces are isomorphic.

Remark 1.3.8. From the proof of Theorem 1.3.7 we see that ℓ2 plays the same role for separable Hilbert spaces
as Rn does for finite-dimensional Euclidean spaces.

One can complete a Hilbert space to obtain separable Hilbert spaces. The completion of the Hilbert space
C2([−π, π]) is L2([−π, π]). Where L2([−π, π]) is the space of equivalence classes, with respect to the Lebesgue
measure, of real-valued functions f , on [−π, π] such that∫ π

−π

|f(t)|2 dt < ∞.

The inner product on L2([−π, π]) is given by

(f, g) =
∫ π

−π

f(t)g(t) dt.

1.4 Complex Euclidean Spaces
A complex Euclidean space, R, is a linear space over C, with a modified inner product. A map (·, ·) : R×R → C
is an inner product over C if (x, y) = (y, x) and satisfies statements 2, 3 and 4 of Definition 1.1.1. It is important
to observe that with this modification an inner product on C is no longer bilinear. More specifically, it is not
linear in the second argument as

(x, λy) = λ̄(x, y)
for x, y ∈ R and λ ∈ C.

Example 1.4.1.

1. The n-dimensional space Cn with inner product

(x, y) =
n∑

j=1
xj ȳj

11



is the n-dimensional Euclidean space over C.

2. The space of sequences x = (x1, x2, . . . ) where xj ∈ C and
∑∞

j=1 |xj |2 < ∞, denoted ℓ2, with inner
product

(x, y) =
∞∑

j=1
xj ȳj

is a complex Euclidean space.

3. The space of complex valued continuous functions on [−π, π] denoted C2([−π, π]), with inner product

(f, g) =
∫ π

−π

f(t)g(t) dt

is a complex Euclidean space.

As for real Euclidean spaces, for f ∈ R, where R is a complex Euclidean space, we can construct its Fourier series
with respect to an orthogonal system (φn)n∈N as

∑∞
k=1 akφk where ak = (f,φk)

∥φk∥2 for k ∈ N. The analogue of
(1.2.2) for complex Euclidean spaces is

∞∑
k=1

∥φk∥2|ak|2 ≤ ∥f∥2.

Results shown for real Euclidean statements have similar formulations for complex Euclidean spaces, with only
slight modifications.

1.5 Solution to Exercises
Exercise 1.1.4

Solution. For any n ∈ N let
{
xα(1), . . . , xα(n)

}
⊆ (xα)α∈A and suppose that

a1xα(1) + · · · + anxα(n) = 0.

Then by orthogonality it follows that

0 =
(
xα(1), a1xα(1) + · · · + anxα(n)

)
= a1

∥∥xα(1)
∥∥2
.

As xα(1) ̸= 0 it follows that a1 = 0. More generally, ak = 0 for k = 1, . . . , n. Therefore,
{
xα(1), . . . , xα(n)

}
is

linearly independent which implies that (xα)α∈A is linearly independent.

Exercise 1.1.8

Solution. For n ∈ N we have

(1, cos(nt)) =
∫ π

−π

cos(nt) dt

=
[

1
n

sin(nt)
]π

−π

= 0 − 0
= 0.

12



For n ∈ N we have

(1, sin(nt)) =
∫ π

−π

sin(nt) dt

=
[
− 1
n

cos(nt)
]π

−π

= 1
n

− 1
n

= 0.

For n ∈ N we have

(cos(nt), sin(nt)) =
∫ π

−π

cos(nt) sin(nt) dt

= 1
2

∫ π

−π

sin(2nt) dt

= 0.

For n,m ∈ N with n ̸= m we have

(cos(nt), sin(mt)) =
∫ π

−π

cos(nt) sin(mt) dt

= 1
2

∫ π

−π

sin((n+m)t) − sin((n−m)t) dt

= 0.

For n,m ∈ N for n ̸= m we have

(cos(nt), cos(mt)) =
∫ π

−π

cos(nt) cos(mt) dt

= 1
2

∫ π

−π

cos((n+m)t) + cos((n−m)t) dt

= 0,

and

(sin(nt), sin(mt)) =
∫ π

−π

sin(nt) sin(mt) dt

= 1
2

∫ π

−π

cos((n−m)t) − cos((n+m)t) dt

= 0.

Thus the system is orthogonal. For f ∈ C2([−π, π]) if f(−π) = f(π), then f is a continuous and period function
and so by Corollary 2.3.4 it follows that f is the limit of a uniformly convergent sequence of functions in the
trigonometric system. On the other hand, if f(−π) ̸= f(π) let ϵ > 0 and consider (gn)n∈N ⊆ C2([−π, π]) where

gn(x) =
{
f(x) x ∈

[
−π, π − 1

n

)
f
(
x− 1

n

)
+ n

(
f(−π) − f

(
π − 1

n

)) (
x− π + 1

n

)
x ∈

[
π − 1

n , π
]
.

That is, gn(x) coincides with f(x) on
[
−π, π − 1

n

]
and then consists of a straight line segment such that

gn(−π) = gn(π). Thus, it is clear that ∥gn − f∥C2([−π,π]) → 0 as n → ∞. In particular, there exists an
N(ϵ) ∈ N such that

∥gn − f∥C2([−π,π]) <
ϵ

2

13



for n ≥ N(ϵ). For each n ∈ N, applying Corollary 2.3.4 to gn(x) we obtain a sequence of trigonometric
polynomials

(
t
(n)
m

)
m∈N

such that
∥∥∥t(n)

m − gn

∥∥∥
C2([−π,π])

→ 0 as m → ∞. In particular, there exists an Mn ∈ N
such that ∥∥∥t(n)

m − gn

∥∥∥
C2([−π,π])

<
ϵ

2
for m ≥ Mn. Therefore, for m ≥ MN(ϵ) it follows that∥∥∥t(n)

m − f
∥∥∥

C2([−π,π])
≤
∥∥∥t(n)

m − gN(ϵ)

∥∥∥
C2([−π,π])

+
∥∥gN(ϵ) − f

∥∥
C2([−π,π])

<
ϵ

2 + ϵ

2
= ϵ.

Hence, the trigonometric sequence
(
t
(N( 1

k ))
M

N( 1
k )

)
k∈N

converges to f . Therefore, the system

{1} ∪ {cos(nt)}n∈N ∪ {sin(nt)}n∈N

is complete and thus a basis of C2([−π, π]).

Exercise 1.2.4

Solution. For S(α)
n =

∑n
k=1 αkφk, it follows that f − S

(α)
n is orthogonal to span(φ1, . . . , φn) if and only if(

f − S
(α)
n , φk

)
= 0 for each k = 1, . . . , n. This is equivalent to (f, φk) − αk∥φk∥2 = 0, that is αk = (f, φk) =

ck.

Exercise 1.3.5

Solution. Let fn : [−π, π] → R be given by

fn(x) =


1 x ∈

[ 1
n , π

]
nx x ∈

(
− 1

n ,
1
n

)
−1 x ∈

[
−π,− 1

n

]
.

Note that for m > n it follows that

∥fm − fn∥2 =
∫ 1

n

− 1
n

|mx− nx| dx = m− n

n2
n→∞−→ 0,

which means that (fn)n∈N ⊆ C2([−π, π]) is Cauchy. Moreover, observe that

fn(x) n→∞−→ f(x) :=


1 x > 0
0 x = 0
−1 x < 0

pointwise. Suppose that fn → φ in C2([−π, π]). Suppose that φ(0) > 0. As φ is continuous there exists a δ > 0
such that φ(x) > φ(0)

2 > 0 for x ∈ (−δ, δ). Then for any n ≥ 1 it follows that

∥fn − φ∥2 ≥
∫ 0

−δ

(fn(x) − φ(x))2 dx >
(
φ(0)

2

)2
δ > 0.

Therefore, fn ̸→ φ in C2([−π, π]) if φ(0) > 0. Similar arguments shows that φ(0) ̸< 0 and so φ(0) = 0. However,
in such a case there exists a δ > 0 such that φ(x) ∈

(
− 1

2 ,
1
2
)

for x ∈ (−δ, δ). Which means that for n ≥ N
where N ∈ N is such that 1

N < δ, it follows that

∥fn − φ∥2 ≥
∫ δ

1
n

(fn(x) − φ(x))2 dx ≥ 1
2

(
δ − 1

n

)
>

1
2
δ

2 > 0.

Therefore, fn ̸→ φ in C2([−π, π]). Thus we conclude that (fn)n∈N ⊆ C2([−π, π]) is a Cauchy sequence that does
not converge and so C2([−π, π]) is not complete.
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2 Trigonometric Series
The space L2(−π, π) consists of all functions over [−π, π] for which∫ π

−π

|f(t)|2 dt < ∞.

With the inner product
(f, g) =

∫ π

−π

f(t)g(t) dt,

the space L2(−π, π) is a real Euclidean space. From Exercise 1.1.8 it follows that

{1} ∪ {cos(nx)}n∈N ∪ {sin(nx)}n∈N

is an orthogonal system of L2(−π, π). Moreover, assuming the conditions of Exercise 1.1.8 and the fact that
C2([−π, π]) is a dense subset of L2(−π, π), it follows that the system is also complete. The corresponding
orthonormal system is given by{

1√
2π

}
∪
{

1√
π

cos(nx)
}

n∈N
∪
{

1√
π

sin(nx)
}

n∈N
.

2.1 Fourier Series
For f ∈ L2(−π, π), its Fourier series is given by

a0

2 +
∞∑

k=1
(ak cos(kx) + bk sin(kx)), (2.1.1)

where ak = 1
π

∫ π

−π
f(x) cos(kx) dx for k = 0, 1, . . . and bk = 1

π

∫ π

−π
f(x) sin(kx) dx for k = 1, 2, . . . . Recall from

Proposition 1.2.1 that the partial sum of (2.1.1) provides the best L2-approximation of f amongst trigonometric
polynomials of the form

α0 +
∞∑

k=1
(αk cos(kx) + βk sin(kx)) .

As the system is complete we have ∥Sn − f∥ → 0 as n → ∞ and so

a2
0

2 +
∞∑

k=1

(
a2

k + b2
k

)
= 1
π

∫ π

−π

f(x)2 dx.

We can equally consider L2(−π, π) as a complex Euclidean space. In this space, we have the orthonormal basis(
einx

)
n∈Z. Thus, the Fourier series for f ∈ L2(−π, π) is

∑
n∈Z cne

inx, where cn = 1
2π

∫ π

−π
f(x)e−inx dx for

n ∈ Z. Although we have seen that the Fourier series of f converges in L2, this does not provide the convergence
of the series at specific points. To understand what guarantees are required for the Fourier series of f at x to
converge to f(x) for a given x, it will be more productive to consider L2(−π, π) as a real Euclidean space.

Remark 2.1.1.

1. Note that a function on [−π, π] can be extended to a 2π periodic function on R.

2. As cos(nx) and sin(nx) are bounded functions, the coefficients ak and bk exist for functions even in
L1(−π, π). Recall that L2(−π, π) ⊆ L1(−π, π).

Exercise 2.1.2. For l > 0, show that{
1√
2l

}
∪
{

1√
l

cos
(nπ
l
x
)}

n∈N
∪
{

1√
l

sin
(nπ
l
x
)}

n∈N
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is an orthonormal system of L2(−l, l). Moreover, show that the Fourier series for f ∈ L2(−l, l) with respect
to this system is

a0

2 +
∞∑

k=1

(
ak cos

(
kπ

l
x

)
+ bk sin

(
kπ

l
x

))
where ak = 1

l

∫ l

−l
f(x) cos

(
kπ
l x
)

dx and bk = 1
l

∫ l

−l
sin
(

kπ
l x
)

dx.

2.2 From Functions to Fourier Series
Let

Sn(x) = a0

2 +
n∑

k=1
(ak cos(kx) + bk sin(kx)) (2.2.1)

be the partial Fourier series of a function f ∈ L2(−π, π) at a point x.

Exercise 2.2.1. Show that
1
2 +

n∑
k=1

cos(ku) =
sin
( 2n+1

2 u
)

2 sin
(

u
2
)

and
n∑

k=1
sin(ku) =

sin
(

n+1
2 u

)
sin
(

n
2u
)

sin
(

u
2
) .

Proposition 2.2.2. For f ∈ L2(−π, π) and x ∈ [−π, π] we have

Sn(x) =
∫ π

−π

f(x+ z)Dn(z) dz

where
Dn(z) = 1

2π
sin
( 2n+1

2 z
)

sin
(

z
2
)

is the Dirichlet Kernel.

Proof. For Sn = a0
2 +

∑n
k=1(ak cos(kx) + bk sin(kx)) substitute in the formulas for ak and bk to obtain

Sn(x) = 1
π

∫ π

−π

f(t)
(

1
2 +

n∑
k=1

(cos(kx) cos(kt) + sin(kx) sin(kt))
)

dt

= 1
π

∫ π

−π

f(t)
(

1
2 +

n∑
k=1

cos(k(t− x))
)

dt,

where we have been able to exchange the order of integration and summation as the sum is finite. Using Exercise
2.2.1 it follows that

Sn(x) = 1
π

∫ π

−π

f(t)
sin
( 2n+1

2 (t− x)
)

2 sin
(

t−x
2
) dt.

Letting z = t− x we have

Sn(x) =
∫ π−x

−π−x

f(x+ z) 1
2π

sin
( 2n+1

2 z
)

sin
(

z
2
) dz

(1)=
∫ π

−π

f(x+ z)Dn(z) dz

where in (1) we have used the fact that the integrand in 2π-periodic.
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Remark 2.2.3. Note that by Exercise 2.2.1 we have∫ π

−π

Dn(z) dz = 1
2π

∫ π

−π

1
2 +

n∑
k=1

cos(kz) dz

= 1
2π

[
z

2 +
n∑

k=1

1
k

sin(ku)
]π

−π

= 1
2π (2π)

= 1.

Therefore, we can write
Sn(x) − f(x) =

∫ π

−π

(f(x+ z) − f(x))Dn(z) dz.

Consequently, questions of convergence regarding the Fourier series at x can be answered by studying the
convergence property of the integral on the right-hand side.

Exercise 2.2.4. Show that ∫ π

−π

|Dn(z)| dz = 4
π2 log(n) +O(1).

Lemma 2.2.5. If φ(x) is integrable on [a, b] then∫ b

a

φ(x) sin(γx) dx γ→∞−→ 0

and ∫ b

a

φ(x) cos(γx) dx γ→∞−→ 0.

Proof. If φ(x) is continuously differentiable, then we can integrate by parts to deduce that∫ b

a

φ(x) sin(γx) dx =
[
−φ(x)cos(γx)

γ

]b

a

+
∫ b

a

φ′(x)cos(γx)
γ

dx γ→∞−→ 0. (2.2.2)

Given ϵ > 0, as continuously differentiable functions are dense in L1(a, b), for φ ∈ L1(a, b) there exists a
continuously differentiable function φϵ such that∫ b

a

|φ(x) − φϵ(x)| dx < ϵ

2 .

By (2.2.2), there exists a γ0 such that ∣∣∣∣∣
∫ b

a

φϵ(x) sin(γx) dx

∣∣∣∣∣ < ϵ

2

for γ > γ0. Consequently for γ > γ0 it follows that,∣∣∣∣∣
∫ b

a

φ(x) sin(γx) dx

∣∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

(φ(x) − φϵ(x)) sin(γx) dx

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

φϵ(x) sin(γx) dx

∣∣∣∣∣
≤ ϵ

2 + ϵ

2
= ϵ.
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Therefore, ∫ b

a

φ(x) sin(γx) dx γ→∞−→ 0.

Similarly, one deduces that ∫ b

a

φ(x) cos(γx) dx γ→∞−→ 0.

Corollary 2.2.6. If f ∈ L1(−π, π) then its Fourier coefficients are such that ak, bk → 0 as k → ∞.

Proof. Take a = −π, b = π and γ = k in Lemma 2.2.5.

Remark 2.2.7. If φ ∈ Ck([−π, π]) then one can integrate by parts k-times to get that∫ b

a

φ(x) sin(γx) dx = O

(
1
γk

)
.

Thus, the smoother a periodic function f is, the faster its Fourier coefficients decay at infinity.

Exercise 2.2.8. Suppose f is a 2π periodic and complex analytic function. Show that its Fourier coefficients
exponentially decay.

Example 2.2.9.

1. Let

f(x) =
{

1 − |x| |x| < 1
0 1 ≤ |x| ≤ π.

As f(x) is an even function, we have bk = 0 for every k ∈ N. On the other hand, for k ≥ 1 we have

ak = 1
π

∫ π

−π

f(x) cos(kx) dx

= 2
π

∫ 1

0
(1 − x) cos(kx) dx

= 2
π

(
1 − cos(k)

k2

)
and for k = 0 we have

a0 = 2
π

∫ 1

0
1 − xdx = 2

π

(
1
2

)
.

Therefore, the Fourier series of f(x) is

1
2π +

∞∑
k=1

2
π

(
1 − cos(k)

k2

)
cos(kx).

We can argue that this series converges for every x as its terms are of order 1
k2 .
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2. Let

g(x) =


1 −1 < x ≤ 0
−1 0 < x < 1
0 1 ≤ |x| ≤ π.

As g(x) is an odd function, we have ak = 0 for all k ∈ N. On the other hand,

bk = 1
π

∫ π

−π

g(x) sin(kx) dx

= − 2
π

∫ 1

0
sin(kx) dx

= − 2
π

(
− 1
k

cos(k) + 1
k

)
= 2
π

(
cos(k) − 1

k

)
.

Therefore, the Fourier series of g(x) is

∞∑
k=1

2
π

(
cos(k) − 1

k

)
sin(kx).

It is not clear whether the series converges as the terms of the series are only of order 1
k . Instead, we will

see later using Corollary 2.2.14 that the series converges for every x.

Exercise 2.2.10. Find the Fourier coefficients of f(θ) = log
(∣∣2 sin

(
θ
2
)∣∣).

Theorem 2.2.11. Let f ∈ L1(−π, π) be such that for a fixed x and δ > 0 we have∫ δ

−δ

∣∣∣∣f(x+ t) − f(x)
t

∣∣∣∣ dt < ∞, (2.2.3)

then Sn(x) → f(x) as n → ∞.

Proof. Using Remark 2.2.3 observe that

Sn(x) − f(x) =
∫ π

−π

(f(x+ z) − f(x))Dn(z) dz

= 1
2π

∫ π

−π

f(x+ z) − f(x)
z

z

sin
(

z
2
) sin

(
2n+ 1

2 z

)
dz.

From (2.2.3) and the fact that f ∈ L1(−π, π), it follows that f(x+z)−f(x)
z is integrable over [−π, π]. Therefore,

f(x+z)−f(x)
z

z

sin( z
2 ) is integrable over [−π, π] and so applying Lemma 2.2.5 it follows that

1
2π

∫ π

−π

f(x+ z) − f(x)
z

z

sin
(

z
2
) sin

(
2n+ 1

2 z

)
dz n→∞−→ 0.

Hence,
Sn(x) n→∞−→ f(x).
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Remark 2.2.12. Equation (2.2.3) is known as Dini’s condition. In particular, Dini’s condition holds if f is
continuous at x with the left and right derivatives of f at x existing.

Theorem 2.2.13. Let f ∈ L1(−π, π) be such that for a fixed x and δ > 0 we have∫ 0

−δ

∣∣∣∣f(x+ t) − f (x−)
t

∣∣∣∣ dt < ∞ (2.2.4)

and ∫ δ

0

∣∣∣∣f(x+ t) − f (x+)
t

∣∣∣∣ dt < ∞, (2.2.5)

then Sn → 1
2 (f (x+) + f (x−)) as n → ∞.

Proof. Using Remark 2.2.3 note that

Sn(x) − f (x+) + f (x−)
2 =

∫ 0

−π

(
f(x+ z) − f (x−)

2

)
Dn(z) dz +

∫ π

0

(
f(x+ z) − f (x+)

2

)
Dn(z) dz.

Then using (2.2.4), (2.2.5) and the fact that f ∈ L1(−π, π) it follows that f(x+z)−f(x−)
2 is integrable over

[−π, 0] and f(x+z)−f(x+)
2 is integrable over [0, π]. Consequently, f(x+z)−f(x−)

2
z

sin( z
2 ) is integrable over [−π, 0]

and f(x+z)−f(x+)
2

z

sin( z
2 ) is integrable over [0, π]. Therefore, applying Lemma 2.2.5 it follows that

∫ 0

−π

(
f(x+ z) − f (x−)

2

)
Dn(z) dz +

∫ π

0

(
f(x+ z) − f (x+)

2

)
Dn(z) dz n→∞−→ = 0.

Hence,
Sn

n→∞−→ f (x+) + f (x−)
2 .

Corollary 2.2.14. Let f be a bounded, 2π-periodic function with discontinuities only of the first kind, that is
f (x−) and f (x+) exist. Moreover, suppose that the left and right derivatives exist at each point. Then

Sn(x) →

{
f(x) x is a point of continuity,
f(x+)+f(x−)

2 x is a point of discontinuity.

Proof. Note that as f is bounded we have f ∈ L1(−π, π). Moreover, as the left and right derivatives of f exist
condition (2.2.3) is satisfied at x when f is continuous at x. At the points of discontinuity, the weaker conditions
(2.2.4) and (2.2.5) are satisfied. Therefore, we conclude by applying Theorem 2.2.11 at points of continuity and
applying Theorem 2.2.13 at points of discontinuity.

Corollary 2.2.15. A continuous 2π periodic function is uniquely characterised by its Fourier coefficients.

Proof. Let f and g be 2π periodic continuous functions with the same Fourier coefficients. The partial sum of
the Fourier coefficients, Sn(x), for f − g is zero. Hence, as f − g is a 2π periodic continuous functions it follows
by Corollary 2.2.14 that

(f − g)(x) = lim
n→∞

Sn(x) = 0.

Therefore, f(x) = g(x).
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Remark 2.2.16. Note that Dn(z) = 1
2π

sin( 2n+1
2 z)

sin( z
2 ) converges to 2n+1

2π as z → 0. Moreover, the graph of Dn(z)
oscillates with higher frequency as n gets larger.

Figure 2.2.1: The graph of Dn(z) for n = 10 and n = 20.

Therefore, as n gets large the main contribution to
∫ π

−π
f(x + z)Dn(z) dz comes from an ever smaller neigh-

bourhood of z = 0. With (2.2.3) this contribution converges towards f(x).

2.3 From Fourier Series to Functions
A continuous function f with period 2π on R is uniquely determined by its Fourier series. However, as the Fourier
series may not converge, we cannot naively use the sum of the series to determine the values of f . Instead, we
consider the Fejér sums

σn(x) = 1
n

(S0(x) + · · · + Sn−1(x)) (2.3.1)

where Sk(x) is as in (2.2.1).

Exercise 2.3.1. With σn(x) as given by (2.3.1), show that

σn(x) =
∫ π

−π

f(x+ z)Φn(z) dz,

where

Φn(z) = 1
2πn

(
sin
(

nz
2
)

sin
(

z
2
) )2

is referred to as the Fejér kernel.

Lemma 2.3.2. Let Φn(z) be the Fejér kernel of a continuous function f which is 2π periodic. Then the
following statements hold.

1. Φn(z) ≥ 0.

2.
∫ π

−π
Φn(z) dz = 1.
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3. For fixed δ > 0 it follows that∫ −δ

−π

Φn(z) dz =
∫ π

δ

Φn(z) dz = ηn(δ) n→∞−→ 0.

Proof.

1. This is clear.

2. As

Φn(z) = 1
n

n−1∑
k=0

Dk(z).

it follows from Remark 2.2.3 that ∫ π

−π

Φn(z) dz = 1.

3. For δ > 0 note that sin
(

z
2
)

≥ sin
(

δ
2
)

for x ∈ [δ, π]. Therefore,

∫ π

δ

Φn(z) dz = 1
2πn

∫ π

δ

(
sin
(

nz
2
)

sin
(

z
2
) )2

dz

≤ 1
2πn

∫ π

δ

1
sin2 ( δ

2
) dz

n→∞−→ 0.

Similarly, ∫ −δ

−π

Φn(z) dz n→∞−→ 0.

Theorem 2.3.3 (Fejér). If f is a continuous function with period 2π, then the sequence (σn)n∈N as given by
(2.3.1) converges to f uniformly on R.

Proof. Since f is continuous and periodic on R, it is bounded and uniformly continuous on R. Thus, there exists
an M > 0 such that |f(x)| ≤ M for all x ∈ R. Moreover, for an ϵ > 0 there exists a δ > 0 such that

|f(x) − f (x′)| < ϵ

2

for |x− x′| < 2δ. Write

f(x) − σn(x) (1)=
∫ π

−π

(f(x) − f(x+ z))Φn(z) dz

=
(∫ −δ

−π︸︷︷︸
I−

+
∫ δ

−δ︸︷︷︸
I0

+
∫ π

δ︸︷︷︸
I+

)
(f(x) − f(x+ z))Φn(z) dz,

where Φn(z) is the Fejér kernel, and so in (1) we use statement 2 of Lemma 2.3.2. Then,

|I−| ≤ 2Mηn(δ),

and
|I+| ≤ 2Mηn(δ)
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where
ηn(δ) =

∫ π

δ

Φn(z) dz.

Moreover,
|I0| ≤ ϵ

2

∫ δ

−δ

Φn(z) dz < ϵ

2 ,

where the second inequality follows from statement 1 and statement 2 of Lemma 2.3.2 which imply that∫ δ

−δ
Φn(z) dz ≤ 1. By statement 3 of Lemma 2.3.2 there exists a n0 = n0(δ(ϵ)) such that for n ≥ n0 we

have 2Mηn(δ) < ϵ
4 . Therefore,

|f(x) − σn(x)| < ϵ

4 + ϵ

2 + ϵ

4 = ϵ

for n ≥ n0 and any x ∈ R which implies that σn
n→∞−→ f uniformly on R

Corollary 2.3.4 (Weierstrass). Any continuous periodic function is a limit of a uniformly convergent sequence
of trigonometric polynomials.

Remark 2.3.5. Theorem 2.3.3 gives an explicit sequence for Corollary 2.3.4, namely (σn)n∈N.

Corollary 2.3.6. The trigonometric system

{1} ∪ {cos(nx)}n∈N ∪ {sin(nx)}n∈N

is complete in L2(−π, π).

Proof. As continuous functions are dense in L2(−π, π) and uniform convergence implies convergence in L2(−π, π),
it follows by Corollary 2.3.4 that the system

{1} ∪ {cos(nx)}n∈N ∪ {sin(nx)}n∈N

is complete in L2(−π, π).

Remark 2.3.7.

1. Theorem 2.3.3 tells us that for f ∈ C0([−π, π]), the sequence (σn)n∈N converges in the metric of
C0([−π, π]), namely the supremum norm.

2. Although not in the statement of Theorem 2.3.3, we also have that if f ∈ L1(−π, π) then (σn)n∈N
converges to f in the metric of L1(−π, π). Thus we deduce that f ∈ L1(−π, π) is uniquely determined
by its Fourier coefficients. Indeed, suppose that f, g ∈ L1(−π, π) have the same Fourier coefficients.
Then the corresponding Fejèr sums of f − g are zero. Therefore, f − g is zero as the Fejèr sums converge
to zero, hence, f = g almost everywhere.

2.4 Solution to Exercises
Exercise 2.1.2

Solution. The system
{1} ∪

{
cos
(nπ
l
x
)}

n∈N
∪
{

sin
(nπ
l
x
)}

n∈N

is an orthogonal system of L2(−l, l) as after a re-scaling the orthogonality conditions are the same orthogonality
conditions for

{1} ∪ {cos(nx)}n∈N ∪ {sin(nx)}n∈N
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as a system of L2(−π, π), which we know the be orthogonal. In particular, we note that
∥1∥ =

√
2l∥∥cos

(
nπ
l x
)∥∥ =

√
l∥∥sin

(
nπ
l x
)∥∥ =

√
l

and so {
1√
2l

}
∪
{

1√
l

cos
(nπ
l
x
)}

n∈N
∪
{

1√
l

sin
(nπ
l
x
)}

n∈N

is an orthonormal system of L2(−l, l). Moreover, the system is complete as {1}∪{cos(nx)}n∈N∪{sin(nx)}n∈N ⊆
L2(−π, π) is complete. For f ∈ L2(−l, l) its Fourier series with respect to this basis is

a0

2 +
∞∑

k=1
ak cos

(
kπ

l
x

)
+ bk sin

(
kπ

l
x

)

where ak = 1
l

∫ l

−l
f(x) cos

(
kπ
l x
)

dx and bk = 1
l

∫ l

−l
f(x) sin

(
kπ
l x
)

dx.

Exercise 2.2.1

Solution. Note that

1 +
n∑

k=1
cos(ku) = Re

(
n∑

k=0
eiku

)
and

n∑
k=1

sin(ku) = Im
(

n∑
k=0

eiku

)
.

Observe that,
n∑

k=0
eiku = 1 − ei(n+1)u

1 − eiu

=
(
1 − ei(n+1)u

) (
1 − e−iu

)
(1 − eiu) (1 − e−iu)

= 1 − ei(n+1)u − e−iu + einu

2 − (eiu + e−iu)

= 1 − ei(n+1)u − e−iu + einu

2 − 2 cos(u) .

On the one hand,

1 +
n∑

k=1
cos(ku) = 1 − cos(u) + (cos(nu) − cos((n+ 1)u))

2 (1 − cos(u))

= 1
2 +

sin
( 2n+1

2 u
)

sin
(

u
2
)

2 sin2 (u
2
)

= 1
2 +

sin
( 2n+1

2 u
)

2 sin
(

u
2
) ,

which upon rearrangement gives
1
2 +

n∑
k=1

cos(ku) =
sin
( 2n+1

2 u
)

2 sin
(

u
2
) .
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On the other hand,
n∑

k=1
sin(ku) = sin(u) + sin(nu) − sin((n+ 1)u)

2(1 − cos(u))

=
2 sin

(
n+1

2 u
)

cos
(

n−1
2
)

− sin((n+ 1)u)
2
(
2 sin2 (u

2
))

=
sin
(

n+1
2 u

) (
cos
(

n−1
2
)

− cos
(

n+1
2
))

2 sin2 (u
2
)

=
2 sin

(
n+1

2 u
)

sin
(

n
2u
)

sin
(

u
2
)

2 sin2 (u
2
)

=
sin
(

n+1
2 u

)
sin
(

n
2u
)

sin
(

u
2
) .

Exercise 2.2.4

Solution. On the one hand, we have∫ π

−π

|Dn(z)| dz = 1
2π

∫ π

−π

∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

sin
(

z
2
) ∣∣∣∣∣ dz

= 1
π

∫ π

0

∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

sin
(

z
2
) ∣∣∣∣∣ dz

= 2
π

∫ π
2

0

∣∣∣∣ sin ((2n+ 1)t)
sin(t)

∣∣∣∣ dt

≥ 2
π

∫ π
2

0

|sin ((2n+ 1)t)|
t

dt

= 2
π

n∑
k=1

∫ kπ
2n+1

(k−1)π
2n+1

|sin ((2n+ 1)t)|
t

dt

= 2
π

n∑
k=1

∫ kπ

(k−1)π

|sin(x)|
x

dx

= 2
π

n∑
k=1

∫ π

0

sin(u)
u+ (k − 1)π du

≥ 2
π

n∑
k=2

∫ π

0

sin(u)
kπ

du

≥ 4
π2

n∑
k=1

1
k

≥ 4
π2 log(n) + 4

π2 γ,
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where γ is Euler’s constant. On the other hand, we first observe that∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

sin
(

z
2
) − sin(nz)

tan
(

z
2
) ∣∣∣∣∣ =

∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

− sin(nz) cos
(

z
2
)

sin
(

z
2
) ∣∣∣∣∣

=

∣∣∣∣∣ sin(nz) cos
(

z
2
)

− sin
(

z
2
)

cos(nz) − sin(nz) cos
(

z
2
)

sin
(

z
2
) ∣∣∣∣∣

= | cos(nz)|
≤ 1.

Therefore, ∫ π

−π

|Dn(z)| dz = 1
2π

∫ π

−π

∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

sin
(

z
2
) ∣∣∣∣∣ dz

= 1
π

∫ π

0

∣∣∣∣∣ sin
((
n+ 1

2
)
z
)

sin
(

z
2
) ∣∣∣∣∣ dz

≤ 1
π

∫ π

0
1 +

∣∣∣∣∣ sin(nz)
tan

(
z
2
) ∣∣∣∣∣ dz

= 1 + 2
π

∫ π
2

0

∣∣∣∣ sin(2nt)
tan(t)

∣∣∣∣ dt

≤ 1 + 2
π

∫ π
2

0

| sin(2nt)|
1
2 t

dt

= 1 + 4
π

n∑
k=1

∫ kπ
2n

(k−1)π
2n

| sin(2nt)|
t

dt

= 1 + 4
π

n∑
k=1

∫ π

0

sin(u)
u+ (k − 1)π du

≤ 1 +
∫ π

0

sin(u)
u

du+ 4
π2

n−1∑
k=1

1
k

≤ 1 +
∫ π

0

sin(u)
u

du+ 4
π2 γ + 4

π2 log(n).

Hence, ∫ π

−π

|Dn(z)| dz = 4
π2 log(n) +O(1).

Exercise 2.2.8

Solution. Recall that the complex Fourier coefficients of f are given by

cn = 1
2π

∫ π

−π

f(x)e−inx dx.

As f is complex analytic, there exists an η > 0 such that f is complex analytic on the square [−π, π] × [−η, 0].
In particular, ∮

γ

f(x)e−inx dx = 0,
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where γ is the clock-wise traversing of the boundary of the square. On the first vertical component of γ we have
the integral

I1 =
∫ −η

0
f(π + iy)e−in(π+iy)i dy,

and along the second vertical component of γ we have the integral

I2 =
∫ 0

−η

f(−π + iy)e−in(−π+iy)i dy.

As f(x) and eix are 2π periodic it follows that

I2 =
∫ 0

−η

f(π + iy)e−in(π+iy) dy = −I1.

Therefore, I1 and I2 cancel each other out in the contour integral and so

0 =
∫ π

−π

f(x)e−inx dx+
∫ −π

π

f(x− iη)e−in(x−iη) dx.

Hence,

|cn| =
∣∣∣∣ 1
2π

∫ π

−π

f(x− iη)e−in(x−iη) dx
∣∣∣∣

≤ e−nη

2π

∫ π

−π

|f(x− iη)|
∣∣e−inx

∣∣ dx

≤ e−nηΓ,

where Γ < ∞ as f is analytic and
∣∣e−inx

∣∣ ≤ 1. Therefore, the Fourier coefficient cn decays on the order of e−n

as n → ∞.

Exercise 2.2.10

Solution. Using the complex Fourier series we know that the Fourier coefficient cn is given by

cn = 1
2π

∫ π

−π

log
(∣∣∣∣2 sin

(
θ

2

)∣∣∣∣) e−inθ dθ.

In particular,

cn = 1
2π

∫ π

0
log
(

2 sin
(
θ

2

))
e−inθ dθ + 1

2π

∫ 0

−π

log
(

−2 sin
(
θ

2

))
e−inθ dθ

= 1
2π

∫ π

0
log
(

2 sin
(
θ

2

))
e−inθ dθ + 1

2π

∫ π

0
log
(

2 sin
(
θ

2

))
einθ dθ

= 1
2π

∫ π

0
log
(

2 sin
(
θ

2

))
(2 cos(nθ)) dθ

= 1
π

∫ π

0
log
(

2 sin
(
θ

2

))
cos(nθ) dθ

= 1
π

∫ π

0
log(2) cos(nθ) dθ + 1

π

∫ π

0
log
(

sin
(
θ

2

))
cos(nθ) dθ

= 1
π

∫ π

0
log
(

sin
(
θ

2

))
cos(nθ) dθ.
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Note that it thus suffices to consider n ≥ 0. In particular, for n ̸= 0, through integration by parts, it follows that

cn = 1
π

([
1
n

sin(nθ) log
(

sin
(
θ

2

))]π

0
− 1
n

∫ π

0

cos
(

θ
2
)

sin(nθ)
sin
(

θ
2
) dθ

)

= − 1
nπ

∫ π

0

cos
(

θ
2
)

sin(nθ)
sin
(

θ
2
) dθ

= − 1
nπ

∫ π

0

1
2
(
sin
(( 1

2 + n
)
θ
)

− sin
(( 1

2 − n
)
θ
))

sin
(

θ
2
) dθ

= − 1
nπ

∫ π

0

sin
((
n+ 1

2
)
θ
)

+ sin
((
n− 1

2
)
θ
)

sin
(

θ
2
) dθ

Ex 2.2.1= − 1
nπ

∫ π

0

1
2 +

n∑
k=1

cos(kθ) + 1
2 +

n−1∑
k=1

cos(kθ) dθ

= − 1
nπ

∫ π

0
dθ

= − 1
n
.

For n = 0 we have

c0 = 1
π

∫ π

0
log
(

sin
(
θ

2

))
dθ

= 1 1
π

∫ π

0
− log(2) −

∞∑
k=1

cos(kθ)
k

dθ

= − log(2).

Exercise 2.3.1

Solution. Using Proposition 2.2.2 we have

σn(x) = 1
n

n−1∑
k=0

Sk(x)

= 1
n

n−1∑
k=0

∫ π

−π

f(x+ z) 1
2π

sin
( 2k+1

2 z
)

sin
(

z
2
) dz

=
∫ π

−π

f(x+ z) 1
2πn

1
sin2 ( z

2
) n−1∑

k=0
sin
(

2k + 1
2 z

)
sin
(z

2

)
dz

=
∫ π

−π

f(x+ z) 1
2πn

1
sin2 ( z

2
) n−1∑

k=0

1
2 (cos(kz) − cos((k + 1)z)) dz

=
∫ π

−π

f(x+ z) 1
2πn

1
sin2 ( z

2
) 1 − cos(nz)

2 dz

=
∫ π

−π

f(x+ z) 1
2πn

(
sin
(

n
2 z
)

sin
(

z
2
) )2

dz

=
∫ π

−π

f(x+ z)Φn(z) dz
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3 Fourier Transform
Thus far we have seen that a periodic, integrable function is represented by its Fourier coefficients. We now
intend to generalise these arguments to non-periodic functions defined on R. Our approach will be to use our
previous work and a limiting argument. More specifically, we note that we can restrict a function f defined on
R to a function f defined on (−l, l). Through re-scaling, we can view this restriction as defined on (−π, π).
Thus we can leverage our previous work on periodic functions. By sending l → ∞ one would expect to obtain a
representation for f as a function on R. The conditions under which such an argument is productive are made
explicit in the following section.

3.1 The Fourier Integral
Suppose f ∈ L1(R) satisfies (2.2.3) at each point in (−l, l). Then we know that

f(x) = a0

2 +
∞∑

k=1

(
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

))
where

ak = 1
l

∫ l

−l

f(t) cos
(
kπt

l

)
dt

and
bk = 1

l

∫ l

−l

f(t) sin
(
kπt

l

)
dt.

Consequently,

f(x) = 1
2l

∫ l

−l

f(t) dt+ 1
l

∞∑
k=1

∫ l

−l

f(t) cos
(
kπ(t− x)

l

)
dt.

Letting λk = πk
l and taking l → ∞, one would expect to obtain the Fourier integral

f(x) = 1
π

∫ ∞

0

∫ ∞

−∞
f(t) cos(λ(t− x)) dtdλ.

This limit is entirely intuitive at present and it is not clear whether it should hold. One can think of the Fourier
integral as a continuous analogue of the Fourier series. More specifically, one can re-write the Fourier integral as

f(x) =
∫ ∞

0
aλ cos(λx) + bλ sin(λx) dx

where
aλ = 1

π

∫ ∞

−∞
f(t) cos(λt) dt

and
bλ = 1

π

∫ ∞

−∞
f(t) sin(λt) dt.

Exercise 3.1.1. For a > 0 show that
1
π

∫ ∞

−∞

sin(az)
z

dz = 1.

Theorem 3.1.2. Let f ∈ L1(R) and suppose it satisfies Dini’s condition, (2.2.3), at x ∈ R. Then

f(x) = 1
π

∫ ∞

0

∫ ∞

−∞
f(t) cos(λ(t− x)) dtdλ. (3.1.1)
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Proof. Let
ζ(a) := 1

π

∫ a

0

∫ ∞

−∞
f(t) cos(λ(t− x)) dtdλ.

As f ∈ L1(R), the double integral ζ(a) absolute values converges. Hence, by Fubini’s theorem, the order of
integration can be exchanged such that

ζ(a) = 1
π

∫ ∞

−∞

∫ a

0
cos(λ(t− x)) dλ dt

= 1
π

∫ ∞

−∞
f(t) sin(a(t− x))

t− x
dt

z=t−x= 1
π

∫ ∞

−∞
f(x+ z) sin(az)

z
dz.

Using Exercise 3.1.1 we can write

ζ(a) − f(x) = 1
π

∫ ∞

−∞

f(x+ z) − f(x)
z

sin(az) dz

= 1
π

∫ N

−N

f(x+ z) − f(x)
z

sin(az) dz︸ ︷︷ ︸
I1

+ 1
π

∫
|z|≥N

f(x+ z)
z

sin(az) dz︸ ︷︷ ︸
I2

− f(x)
π

∫
|z|≥N

sin(az)
z

dz︸ ︷︷ ︸
I3

.

As f ∈ L1(R) it follows I2 → 0 as N → ∞. Similarly, using Exercise 3.1.1 we have that I3 → 0 as N → ∞.
Thus there exists an N0 ∈ R such that |I2|, |I3| ≤ ϵ

3 for N ≥ N0. By (2.2.3) and Lemma 2.2.5 we have that
I1 → 0 as a → ∞. Hence, there exists some A > 0 such that for a ≥ A we have |I1| ≤ ϵ

3 . Hence, for N ≥ N0
and a ≥ A we have

|ζ(a) − f(x)| < ϵ.

Therefore, ζ(a) → f(x) as a → ∞.

As we did for the Fourier series, we can consider the Fourier integral over L1(R) as a complex Euclidean space.
Doing so, under appropriate conditions, leads to the inverse Fourier transform. Let f ∈ L1(R) and suppose it
satisfies (2.2.3) at x ∈ R. Then as cos(·) is an even function we can write the Fourier integral as

f(x) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
f(t) cos(λ(t− x)) dtdλ.

Similarly, as sin(·) is an odd function and
∫∞

−∞ f(t) sin(λ(t− x)) dt exists, as f ∈ L1(R), it follows that

1
2π lim

N→∞

∫ N

−N

∫ ∞

−∞
f(t) sin(λ(t− x)) dtdλ = 0.

Therefore, if f ∈ L1(R) satisfies (2.2.3) at x ∈ R its complex Fourier integral is given by

f(x) = 1
2π lim

N→∞

∫ N

−N

∫ ∞

−∞
f(t)e−iλ(t−x) dtdλ. (3.1.2)

Definition 3.1.3. Let f ∈ L1(R). The Fourier transform of f is

g(λ) = F [f ](λ) =
∫ ∞

−∞
f(t)e−iλt dt.
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Note that the Fourier transform of f exists provided that f ∈ L1(R). However, if additionally f satisfies (2.2.3)
at x ∈ R then (3.1.2) also holds.

Definition 3.1.4. Let f ∈ L1(R), and suppose that f satisfies (2.2.3) at x ∈ R. Then the inverse Fourier
transform of f at x is

f(x) = 1
2π lim

N→∞

∫ N

−N

g(λ)eiλx dλ.

Remark 3.1.5. The Fourier transform exists for any f ∈ L1(R), whereas the inverse Fourier transform exists
only for f ∈ L1(R) that additionally satisfies Dini’s condition. This is similar to how Fourier coefficients can be
defined for any f ∈ L1(−π, π), with the Fourier series only converging for f which satisfies Dini’s condition.

Theorem 3.1.6. Let f ∈ L1(R). If g(λ) = F [f ](λ) ≡ 0, then f(x) = 0 almost everywhere.

Proof. Observe that

0 = g(λ)

=
∫ ∞

−∞
f(z)e−iλz dz

z=x+t=
∫ ∞

−∞
f(x+ t)e−iλ(x+t) dx

= e−iλt

∫ ∞

−∞
f(x+ t)e−iλx dx,

which implies that
∫∞

−∞ f(x+ t)e−iλx dx = 0. Let φ(x) :=
∫ µ

0 f(x+ t) dt for fixed µ > 0. Note that φ ∈ L1(R)
and by Fubini’s theorem we have

F [φ](λ) =
∫ ∞

−∞
φ(x)e−iλx dx

=
∫ ∞

−∞

∫ µ

0
f(x+ t)e−iλx dtdx

=
∫ µ

0

∫ ∞

−∞
f(x+ t)e−iλx dxdt

=
∫ µ

0
0 dt

= 0.

Moreover, it is clear that on any finite interval φ is absolutely continuous, and thus its derivative exists almost
everywhere which implies that it satisfies Dini’s condition (2.2.3) almost everywhere. Therefore, using the inversion
formula and the fact that F [φ] ≡ 0, it follows that φ(x) = 0 almost everywhere, but as φ(x) is continuous this
means that φ ≡ 0. Therefore, ∫ µ

0
f(t) dt = 0

for all µ ∈ R which implies that f(x) = 0 almost everywhere.

Example 3.1.7.
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1. Let f(x) = e−γ|x| for γ > 0. Then

g(λ) =
∫ ∞

−∞
e−γ|x|e−iλx dx

= 2
∫ ∞

0
e−γx cos(λx) dx

= 2
([
e−γx

(
− 1
λ

sin(λx)
)]∞

0
−
∫ ∞

0

γ

λ
e−γx sin(λx) dx

)
= −2γ

λ

∫ ∞

0
e−γx sin(λx) dx

= −2γ
λ

([
e−γx

(
1
λ

cos(λx)
)]∞

0
+
∫ ∞

0

γ

λ
e−γx cos(λx) dx

)
= −2γ

λ

(
− 1
λ

+ γ

2λg(λ)
)
,

and so
g(λ) = 2γ

λ2 + γ2 .

Figure 3.1.1: Graph of f(x).

2. Let

f(x) =
{

1 |x| ≤ a

0 |x| > a.

Then

g(λ) =
∫ ∞

−∞
f(x)e−iλx dx

=
∫ a

−a

e−iλx dx

= 2 sin(λa)
λ

.

Note that g(λ) ̸∈ L1(R).
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Figure 3.1.2: Graph of f(x).

3. Let f(x) = 1
x2+a2 for a > 0. For λ < 0 let

γ = γ1 ∪ γR

where γ1 = [−R,R] and γR =
{
Reiθ : θ ∈ [0, π]

}
for R > a. Then

Res
(

1
x2 + a2 e

−iλx, ia

)
=
∮

γ

1
z2 + a2 e

−iλz dz.

Observe that ∣∣∣∣∫
γR

1
x2 + a2 e

−iλx dx
∣∣∣∣ =

∣∣∣∣∣
∫ π

0

1
(Reiθ)2 + a2

e−iλReiθ

iReiθ dθ

∣∣∣∣∣
≤ R

R2 − a2

∫ π

0
eλR sin θ dθ

R→∞−→ 0.

Moreover,
Res

(
1

x2 + a2 e
−iλx, ia

)
= lim

z→ia

(x− ia)
x2 + a2 e

−iλx = π

a
eaλ.

Hence,
π

a
eaλ =

∫ ∞

−∞

1
x2 + a2 e

−iλx dx = g(λ).

Similarly, for λ > 0 letting γR =
{
Reiθ : θ ∈ [0,−π]

}
it follows that

π

a
e−aλ = g(λ).

Therefore,
g(λ) = π

a
e−a|λ|.

On the other hand, one can see that g(λ) = π
a e

−a|λ| using the inversion formula and statement 1.
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Figure 3.1.3: Graph of f(x).

Note the rate of convergence for each example. Continuity in statement 1 yields 1
λ2 convergence, the disconti-

nuity in statement 2 means we only get 1
λ rate of converges, and the analyticity of statement 3 means we get

exponential convergence.

4. Let f(x) = e−ax2 for a > 0. Consider the contour given by

[−R,R]︸ ︷︷ ︸
γ1

∪ [R,R+ iϵ]︸ ︷︷ ︸
γ2

∪ [R+ iϵ,−R+ iϵ]︸ ︷︷ ︸
γ3

∪ [−R+ iϵ,−R]︸ ︷︷ ︸
γ4

.

Note that ∣∣∣∣∫
γ2

e−az2
dz
∣∣∣∣ =

∣∣∣∣∫ ϵ

0
e−a(R+yi)idy

∣∣∣∣
≤ e−aR2

∫ ϵ

0

∣∣∣e−a(−y2+2Ryi)
∣∣∣ dy

≤ e−aR2
ϵeaϵ2

R→∞−→ 0.

Similarly, ∣∣∣∣∫
γ4

e−az2
dz
∣∣∣∣ R→∞−→ 0.

Furthermore, ∫
γ3

e−az2
dz =

∫ −R

R

e−a(x+ϵi)2
dx

= −eaϵ2
∫ R

−R

e−ax2
e−2axϵi dx.

Therefore, as ∫
γ1∪γ2∪γ3∪γ4

e−az2
dz = 0

it follows that
0 =

∫ ∞

−∞
e−ax2

dx− eaϵ2
∫ ∞

−∞
e−ax2

e−2axϵi dx.

In particular, letting ϵ = − λ
2a it follows that∫ ∞

−∞
e−ax2

eλxi dx = e− λ2
4a

∫ ∞

−∞
e−ax2

dx =
√
π

a
e− λ2

4a .
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Therefore,

g(λ) = F [f ](λ) =
√
π

a
e− λ2

4a .

Observe that for a = 1
2 we have

F
[
e− x2

2

]
=

√
2πe− λ2

2 .

3.2 Properties of the Fourier Transform

Lemma 3.2.1. Let (fn)n∈N ⊆ L1(R) and f ∈ L1(R). Suppose that fn → f in L1(R). Then gn(λ) :=
F [fn](λ) → F [f ](λ) uniformly on R.

Proof. Observe that

|gn(λ) − F [f ](λ)| =
∣∣∣∣∫ ∞

−∞
(fn(x) − f(x))e−iλx dx

∣∣∣∣
≤
∫ ∞

−∞
|fn(x) − f(x)|

∣∣e−iλx
∣∣ dx

≤
∫ ∞

−∞
|fn(x) − f(x)| dx

= ∥fn − f∥L1(R)
n→∞−→ 0.

Lemma 3.2.2. Let f ∈ L1(R). Then g(λ) = F [f ](λ) is a bounded and continuous function, with g(λ) → 0
as |λ| → ∞.

Proof. As f ∈ L1(R) it follows that

|g(λ)| ≤
∫ ∞

−∞
|f(x)|

∣∣e−iλx
∣∣ dx ≤ ∥f∥L1 < ∞.

Thus, g is bounded. Suppose f(x) = 1[a,b]. Then

F [f ] =
∫ b

a

e−iλx dx = e−iλb − e−iλa

−iλ
,

which is continuous and decays to zero as |λ| → ∞. Since, F [·] is a linear operation, it follows that the Fourier
transform of any step function is continuous and decays to zero as |λ| → ∞. As step functions are dense in
L1(R), for any f ∈ L1(R) there exists a sequence (fn)n∈N of step functions such that fn → f in L1(R). Using
Lemma 3.2.1 we have that F [fn] → F [f ] = g(λ) uniformly in λ ∈ R. Therefore, g(λ) is continuous as it is the
uniform limit of continuous functions. Given ϵ > 0 there exists an N ∈ N such that

∥f − fN ∥L1 <
ϵ

2 .

Moreover, there exists a λ0 ∈ R such that |F [fN ](λ)| < ϵ
2 for |λ| > λ0. Therefore, for λ > λ0 it follows that

|g(λ)| ≤ |g(λ) − F [fN ](λ)| + |F [fN ](λ)|

≤
∫ ∞

−∞
|f(x) − fn(x)|

∣∣e−iλx
∣∣ dx+ |F [fN ](λ)|

≤ ∥f − fN ∥L1 + ϵ

2
<
ϵ

2 + ϵ

2
= ϵ.
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Therefore, g(λ) → 0 as |λ| → ∞.

Lemma 3.2.3. Let f ∈ L1(R). Then g(λ) = F [f ](λ) is uniformly continuous on R.

Proof. Fix ϵ > 0. As f ∈ L1(R) there exists R > 0 such that∫
|x|>R

|f(x)| dx ≤ ϵ

4 .

As ∣∣e−iδx − 1
∣∣ =

∣∣∣∣2 sin
(
δt

2

)∣∣∣∣
it follows that for |x| ≤ R, there exists a δ1 > 0 such that for δ < δ1 we have∣∣e−iδx − 1

∣∣ ≤ ϵ

2∥f∥L1(R)
.

Therefore for δ < δ1 we have,

|g(λ+ δ) − g(λ)| =
∣∣∣∣∫ ∞

−∞
f(x)

(
e−i(λ+δ)x − e−iλx

)
dx
∣∣∣∣

≤
∫ ∞

−∞
|f(x)|

∣∣e−iδx − 1
∣∣ dx

=
∫

|x|≤R

|f(x)|
∣∣e−iδx − 1

∣∣ dx+
∫

|x|>R

|f(x)|
∣∣e−iδx − 1

∣∣ dx

≤ ϵ

2∥f∥L1(R)

∫
|x|≤R

|f(x)| dx+ 2
∫

|x|>R

|f(x)| dx

≤ ϵ

2∥f∥L1(R)
∥f∥L1(R) + 2 ϵ4

= ϵ.

Therefore, g is uniformly continuous.

Exercise 3.2.4. The statement of Lemma 3.2.3 holds more generally. Show that if f is a real and continuous
function such that f(x) → 0 as |x| → ∞, then f is uniformly continuous on R.

Lemma 3.2.5. Let f, f ′ = df
dt ∈ L1(R), with f absolutely continuous on any finite interval. Then F [f ′] (λ) =

iλF [f ](λ).

Proof. The function f admits a representation

f(x) = f(0) +
∫ x

0
f ′(t) dt.

As f ′ ∈ L1(R) it follows that limx→∞ f(x) and limx→−∞ f(x) exist and are zero. Using the integration by parts
formula observe that

F [f ′] (λ) =
∫ ∞

−∞
f ′(x)e−iλx dx

=
[
f(x)e−iλx

]∞
−∞ + iλ

∫ ∞

−∞
f(x)e−iλx dx

= iλF [f ](λ).
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Remark 3.2.6. Suppose f is n-times differentiable, that is f (n) ∈ L1(R) exists with each f, f (1), . . . , f (n−1)

absolutely continuous and integrable. Then by integrating by parts, and using Lemma 3.2.5, we obtain

F
[
f (n)

]
(λ) = (iλ)nF [f ](λ).

In particular,

|F [f ]| =
∣∣F [f (n)]∣∣

|λ|n
≤ C

|λ|n
|λ|→∞−→ 0,

where the inequality follows by the assumption that f (n) ∈ L1(R). Hence, the smoother f is the faster F [f ]
decays at infinity. The converse also holds, namely the faster f decays at infinity the smoother F [f ] is.

Exercise 3.2.7. Suppose f is twice differentiable with f, f ′, f ′′ ∈ L1(R). Show that F [f ] ∈ L1(R).

Lemma 3.2.8.

1. Suppose f(x), xf(x) ∈ L1(R). Then g(λ) = F [f ](λ) is differentiable with

g′(λ) = F [−ixf ].

2. Suppose f(x), xf(x), . . . , xpf(x) ∈ L1(R). Then g(λ) = F [f ](λ) is p-times differentiable with

g(p)(λ) = F [(−ix)pf ] (λ).

Proof.

1. Observe that
d

dλ

∫ ∞

−∞
f(x)e−iλx dx = −i

∫ ∞

−∞
xf(x)e−iλx dx. (3.2.1)

Since xf(x) ∈ L1(R), we know that g′(λ) exists and thus it must be given by (3.2.1).

2. Follows similar arguments made for statement 1.

Remark 3.2.9. Note that from statement 2 of Lemma 3.2.8 it follows that if xpf(x) ∈ L1(R) for all p ∈ N,
then g(λ) is infinitely differentiable.

Lemma 3.2.10. If eδ|x|f(x) ∈ L1(R) for some δ > 0, then g(ζ) is an analytic function in a neighbourhood
of R.

Proof. The integral ∫ ∞

−∞
f(x)eixζ dx

where ζ = λ+ iµ, uniformly converges for |µ| < δ. Therefore,

g(ζ) =
∫ ∞

−∞
f(x)eixζ dx

is analytic in a neighbourhood of R.
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Figure 3.2.1:

3.2.1 Convolution

Definition 3.2.11. Let f1, f2 ∈ L1(R). Then

f(x) = (f1 ⋆ f2)(x) :=
∫ ∞

−∞
f1(y)f2(x− y) dy

is the convolution of f1 and f2.

Remark 3.2.12. Note that (· ⋆ ·) : L1(R) × L1(R) → L1(R) is a well-defined operation. Indeed,∫ ∞

−∞
|(f1 ⋆ f2)(x)| dx ≤

∫ ∞

−∞

∫ ∞

−∞
|f1(y)||f2(x− y)| dy dx

Fubini.=
∫ ∞

−∞
|f1(y)|

(∫ ∞

−∞
|f2(x− y)| dx

)
dy

=
∫ ∞

−∞
|f1(y)|∥f2∥L1(R) dy

= ∥f1∥L1(R)∥f2∥L1(R)

< ∞.

Theorem 3.2.13. Let f1, f2 ∈ L1(R). Then

F [f1 ⋆ f2](λ) = F [f1](λ)F [f2](λ).

Proof. Using Fubini’s theorem

F [f1 ⋆ f2](λ) =
∫ ∞

−∞
(f1 ⋆ f2)(x)e−iλx dx

=
∫ ∞

−∞

∫ ∞

−∞
f1(y)f2(x− y)e−iλx dy dx

Fubini=
∫ ∞

−∞
f1(y)

∫ ∞

−∞
f2(x− y)e−iλx dxdy

t=x−y=
∫ ∞

−∞
f1(y)

∫ ∞

−∞
f2(t)e−iλte−iλy dtdy

=
∫ ∞

−∞
f1(y)e−iλy dy

∫ ∞

−∞
f2(t)e−iλt dt

= F [f1](λ)F [f2](λ).
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3.2.2 The Heat Equation

The discussed properties of the Fourier transform are significant for their application to solving differential equa-
tions. Consider the linear differential equation

y(n) + a1y
(n−1) + · · · + any = φ(x), (3.2.2)

which has constant coefficients for non-zero derivatives of y(x). If y, φ ∈ L1(R), an application of the Fourier
transform to (3.2.2) yields

(iλ)nz(λ) + a1(iλ)n−1z(λ) + · · · + anz(λ) = F [φ](λ) (3.2.3)

where z(λ) = F [y](λ). Equation (3.2.3) is significantly easier to solve than (3.2.2).

Example 3.2.14. The heat equation is the partial differential equation

∂u

∂t
= ∂2u

∂x2 (3.2.4)

where u = u(x, t) represents the temperature at positive x ∈ R for time t ≥ 0. Suppose that u0(x) = u(x, 0)
is given. Moreover, assume that u0, u

′
0, u

′′
0 ∈ L1(R). To make progress on solving (3.2.4) one assumes the

following conditions are satisfied.

1. u(x, t), ∂
∂xu(x, t), ∂2

∂x2u(x, t) ∈ L1(R) for all t ≥ 0.

2. For any T there exists a fT (x) ∈ L1(R) such that∣∣∣∣ ∂∂tu(x, t)
∣∣∣∣ ≤ fT (x)

for all 0 ≤ t ≤ T .

Using assumption 1 we can apply the Fourier transform to the right-hand side of (3.2.4) to get

F

[
∂2

∂x2u

]
= −λ2v(λ, t)

where v(λ, t) = F [u]. Using assumption 2 we can apply the dominated convergence theorem to deduce that
the Fourier transform of the left-hand side of (3.2.4) is given by

F

[
∂u

∂t

]
(λ) =

∫ ∞

−∞

∂u

∂t
e−iλx dx

= ∂

∂t

∫ ∞

−∞
ue−iλx dx

= ∂

∂t
v(λ, t)

In particular, we are viewing ∂u
∂t as a limit to apply the dominated convergence theorem. Thus,

−λ2v(λ, t) = ∂

∂t
v(λ, t)

to which a solution satisfying the initial conditions is given by

v(λ, t) = exp
(
−λ2t

)
v0(λ)
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where v0(λ) = F [u0](λ). Noting that exp
(
−λ2t

)
= F

[
1

2
√

πt
exp

(
− x2

4t

)]
we can use Theorem 3.2.13 to see

that

v(λ, t) = F

[
1

2
√
πt

exp
(

−x2

4t

)]
F [u0]

= F

[
1

2
√
πt

exp
(

−x2

4t

)
⋆ u0(x)

]
.

Therefore,
u(x, t) = 1

2
√
πt

∫ ∞

−∞
exp

(
−µ2

4t

)
u0(x− µ) dµ,

which is known as the Poisson integral for the solution to (3.2.4).

3.3 Schwartz Functions

Definition 3.3.1. Let S∞ denote the set of functions f , on R that are infinitely differentiable and such that
for any p, q ∈ N, there exists a constant C(p, q, f) so that∣∣∣xpf (q)(x)

∣∣∣ < C(p, q, f)

for all x ∈ R.

Remark 3.3.2. A function f ∈ S∞, as in Definition 3.3.1, is known as a Schwartz function.

Lemma 3.3.3. If f ∈ S∞, then g = F [f ] ∈ S∞.

Proof. Note that ∣∣∣xpf (q)(x)
∣∣∣ ≤ C(p+ 2, q, f)

x2

which implies that xpf (q)(x) ∈ L1(R) for every p, q ∈ N. Therefore, g = F [f ] is infinitely differentiable by
Remark 3.2.9. Moreover, letting p = 0 we have f (q) ∈ L1(R) and so it follows by Remark 3.2.6 that g(λ) tends
to zero as |λ| → ∞ faster than 1

|λ|q for every q ∈ N. Next, note that F
[
((−ix)pf)(q)

]
(λ) → 0 as |λ| → ∞ by

Lemma 3.2.2. Similarly, as g(p) is the Fourier transform of (−ix)pf ∈ L1(R), we know by by Lemma 3.2.2 that
g(p)(λ) → 0 as |λ| → ∞. Therefore as,

F
[
((−ix)pf)(q)

]
Rem 3.2.6= (iλ)qF [(−ix)pf ]
Lem 3.2.8= (iλ)qg(p)(λ)

it must be the case that g(p)(λ) decays to zero faster than 1
|λ|q as |λ| → ∞. Thus if f ∈ S∞ it follows that

g(λ) = F [f ](λ) ∈ S∞.

Remark 3.3.4. For f ∈ S∞, condition (2.2.3) is satisfied and so the inverse Fourier transform, Definition
3.1.4, holds. In particular, the converse of Lemma 3.3.3 also holds, namely if F [f ] ∈ S∞ then f ∈ S∞. As
Schwartz functions are continuous this correspondence is unique. Thus, the Fourier transform is a bijection on
S∞.

Example 3.3.5. Consider f(x) = e−x2 . Then f (n)(x) = pn(x)e−x2 where pn(x) is some polynomial. Note
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that for any k ∈ N we have

ex2
=

∞∑
l=0

(
x2)l

l! ≥
(
x2)k

k!

so that |x|−kk! ≥ |x|ke−x2 .

• For |x| ≥ 1 we have that
∣∣∣xke−x2

∣∣∣ ≤ k!
|x|k ≤ k!.

• For |x| ≤ 1, as xke−x2 is continuous it is bounded on |x| ≤ 1.

Therefore, there exists a M ∈ R such that ∣∣∣xke−x2
∣∣∣ ≤ M

for x ∈ R. Hence, there exists a C = C(p, q, f) such that∣∣∣xpf (q)(x)
∣∣∣ < C(p, q, f)

for all x ∈ R, which implies that f ∈ S∞. Indeed, from statement 4 of Example 3.1.7 we have that

F [f ] =
√

2πe− λ2
2 =

√
2πf(λ) ∈ S∞,

which verifies the conclusion of Lemma 3.3.3 in this case.

Theorem 3.3.6. The class S∞ is dense in Lp(R) for every p ∈ [1,∞).

3.4 Fourier Transform in L2(R)
Throughout this section, we will consider L2(R) as a complex Euclidean space. For f ∈ L2(−π, π) ⊆ L1(−π, π)
the Fourier coefficients are

cn = 1
2π

∫ π

−π

f(x)e−inx dx

for n ∈ Z. Moreover, the map f 7→ (cn)n∈Z can be seen as a map L2(−π, π) → ℓ2, that satisfies Parseval’s
equality,

2π
∑
n∈Z

|cn|2 =
∫ π

−π

|f(x)|2 dx.

To extend the Fourier transform to L2(R) requires additional work as L2(R) ̸⊆ L1(R) and so we cannot utilise
the work of the previous section.

Theorem 3.4.1 (Plancherel). For f ∈ L2(R), we have

gN (λ) =
∫ N

−N

f(x)e−iλx dx ∈ L2(R)

for any N > 0. More specifically, as N → ∞ the function gN (λ) converges in L2(R) to some g ∈ L2(R)
with, ∫ ∞

−∞
|g(λ)|2 dλ = 2π

∫ ∞

−∞
|f(x)|2 dx. (3.4.1)

If additionally f ∈ L1(R), then g coincides with the usual Fourier transform of f ∈ L1(R).

Proof. Step 1: Show the result for functions in S∞.
Let f1, f2 ∈ S∞, with g1, g2 denoting their Fourier transforms. By Lemma 3.3.3 we have g1, g2 ∈ S∞. Applying
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the inverse Fourier transform and Fubini’s theorem we have∫ ∞

−∞
f1(x)f2(x) dx =

∫ ∞

−∞

1
2π

(∫ ∞

−∞
g1(λ)eiλx dλ

)
f2(x) dx

= 1
2π

∫ ∞

−∞
g1(λ)

∫ ∞

−∞
f2(x)e−iλx dx dλ

= 1
2π

∫ ∞

−∞
g1(λ)g2(λ) dλ.

Setting f1 = f2 gives (3.4.1).
Step 2: Show the result for functions in L2(R) with compact support.
Let f ∈ L2(R) be such that f(x) = 0 for x ̸∈ [−a, a] for some a > 0. Then f ∈ L2(−a, a) which implies that
f ∈ L1(−a, a), and as f(x) = 0 for x ̸∈ [−a, a] we have that f ∈ L1(R). Consequently, the Fourier transform of
f exists and is given by

g(λ) =
∫ ∞

−∞
f(x)e−iλx dx.

Let (fn)n∈N ⊆ S∞ be such that fn(x) = 0 for x ̸∈ [−a, a] and fn → f in L2(−a, a). This exists due to Theorem
3.3.6. We note that fn → f in L2(−a, a) implies that fn → f in L1(−a, a), and so we also have fn → f in
L1(R). Therefore, using Lemma 3.2.1, gn = F [fn] → g uniformly on R. As gn − gm ∈ S∞ we can use step 1 to
deduce that ∫ ∞

−∞
|gn(λ) − gm(λ)|2 dλ = 2π

∫ ∞

−∞
|fn(x) − fm(x)|2 dx.

In particular, this means that (gn)n∈N is Cauchy in L2(R) as (fn)n∈N is Cauchy in L2(R). Thus, (gn)n∈N
converges in L2(R), more specifically it must converge to g. Therefore, as ∥fn∥2

L2 = 1
2π ∥gn∥L2 , from step 1, we

deduce (3.4.1) for f ∈ L2(R) with compact support.
Step 3: Show the result for functions in L2(R).
For f ∈ L2(R) let

fN (x) :=
{
f(x) |x| ≤ N

0 |x| > N.

Note, ∥f −fN ∥L2 → 0 as N → ∞. By similar arguments as made in step 2, we know that fN ∈ L1(R), meaning
its Fourier transform exists and is given by

gN (λ) =
∫ ∞

−∞
fN (x)e−iλx dx =

∫ N

−N

f(x)e−iλx dx.

By step 2 we know that
∥fN − fM ∥2

L2 = 1
2π ∥gN − gM ∥2

L2 ,

and so gN converges in L2(R) to some g ∈ L2(R). Taking the limit of ∥fN ∥2
L2 = 1

2π ∥gN ∥2
L2 , given by step 2,

we deduce (3.4.1) for f ∈ L2(R).
Step 4: Coinciding with Fourier transform for functions in L1(R) ∩ L2(R).
Let f ∈ L1(R) ∩ L2(R). Then the Fourier transform of f exists,

g̃(λ) =
∫ ∞

−∞
f(x)e−iλx dx.

Since fN → f in L1(R) it follows that gN → g̃ uniformly on R by Lemma 3.2.1. However, we know, from step
3, that gN → g and so it must be the case that g = g̃.

Remark 3.4.2.

1. The function g ∈ L2(R) of Theorem 3.4.1 is called the Fourier transform of f ∈ L2(R). Indeed, if
f ∈ L1(R) then g as in Theorem 3.4.1 coincides with the Fourier transform of f as given by Definition
3.1.3.
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2. From (3.4.1), we can say that as a linear operator in L2(R) the Fourier transform preserve norms, up to
2π.

Corollary 3.4.3. For any f1, f2 ∈ L2(R) we have∫ ∞

−∞
f1(x)f2(x) dx = 1

2π

∫ ∞

−∞
g1(λ)g2(λ) dλ.

Proof. Using Theorem 3.4.1 let g1, g2 ∈ L2(R) be such that∫ ∞

−∞
|f1(x)|2 dx = 1

2π

∫ ∞

−∞
|g1(λ)| dλ

and ∫ ∞

−∞
|f2(x)|2 dx = 1

2π

∫ ∞

−∞
|g2(λ)| dλ.

In particular, note that f1 + f2 ∈ L2(R), and so through the algebra of limits we have∫ ∞

−∞
|f1(x) + f2(x)|2 dx = 1

2π

∫ ∞

−∞
|g1(λ) + g2(λ)|2 dλ. (3.4.2)

Observe that,∫ ∞

−∞
|f1(x) + f2(x)|2 dx =

∫ ∞

−∞
(f1(x) + f2(x)) (f1(x) + f2(x)) dx

=
∫ ∞

−∞
|f1(x)|2 + f1(x)f2(x) + f1(x)f2(x) + |f2(x)|2 dx

= 1
2π

∫ ∞

−∞
|g1(λ)|2 dλ+ 1

2π

∫ ∞

−∞
|g2(λ)|2 dλ+

∫ ∞

−∞
f1(x)f2(x) + f1(x)f2(x) dx

= 1
2π

∫ ∞

−∞
|g1(λ)|2 dλ+ 1

2π

∫ ∞

−∞
|g2(λ)|2 dλ+ 1

2

∫ ∞

−∞
Re
(
f1(x)f2(x)

)
dx.

Similarly, ∫ ∞

−∞
|g1(λ) + g2(λ)|2 dλ =

∫ ∞

−∞
|g1(λ)|2 + |g2(λ)|2 +

(
g1(λ)g2(λ) + g1(λ)g2(λ)

)
dλ

=
∫ ∞

−∞
|g1(λ)|2 + |g2(λ)|2 + 1

2Re
(
g1(λ)g2(λ)

)
dλ.

Thus, returning to (3.4.2) it follows that

Re
(∫ ∞

−∞
f1(x)f2(x) dx

)
= 1

2πRe
(∫ ∞

−∞
g1(λ)g2(λ) dλ

)
.

Similarly, from ∫ ∞

−∞
|f1(x) + if2(x)|2 dx = 1

2π

∫ ∞

−∞
|g1(λ) + ig2(λ)|2 dλ

it follows that
Im
(∫ ∞

−∞
f1(x)f2(x) dx

)
= 1

2π Im
(∫ ∞

−∞
g1(λ)g2(λ) dλ

)
.

Therefore, ∫ ∞

−∞
f1(x)f2(x) dx = 1

2π

∫ ∞

−∞
g1(λ)g2(λ) dλ.
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3.5 Laplace Transform
The Laplace transform extends the Fourier transform beyond integrable functions.

Definition 3.5.1. Let L be the class of functions f , that satisfy the following statements.

1. f(x) satisfies Dini’s condition.

2. f(x) = 0 for x < 0.

3. |f(x)| < Ceγ0x for some C, γ0 > 0.

For f ∈ L let
g(s) :=

∫ ∞

−∞
f(x)e−isx dx,

where s = λ+ iµ for λ, µ ∈ R. Despite f being potentially exponentially large and not integrable, from condition
3 of Definition 3.5.1

g(s) =
∫ ∞

0
f(x)eµxe−iλx dx

exists and is an analytic function of s in the half plane Im(s) = µ < −γ0. In particular, for fixed µ < −γ0, the
function g(s) is the Fourier transform of f(x)eµx. Thus, using condition 1 of Definition 3.5.1 we can apply the
inverse Fourier transform to deduce that

f(x)eµx = 1
2π lim

N→∞

∫ N

−N

g(s)eiλx dλ.

With the change of variables p = is, letting Φ(p) = g(s) and ∂ = −µ, we obtain

f(x) = 1
2πi

∫ ∂+i∞

∂−i∞
Φ(p)epx dp

where ∂ > γ0 and
Φ(p) =

∫ ∞

0
f(x)e−px dx. (3.5.1)

We note that Φ(p) is analytic for Re(p) > γ0, as when Re(p) > γ0 we have that Im(s) < −γ0 which ensures
that Φ(p) = g(s) is analytic.

Definition 3.5.2. For f ∈ L, the function Φ(p) as given by (3.5.1) is the Laplace transform of f(x).

3.5.1 Application to Ordinary Differential Equations

As before we consider the application of the Laplace transform to ordinary differential equations. Suppose

y(n) + a1y
(n−1) + · · · + any = b(x) (3.5.2)

with a1, . . . , an ∈ C has the initial conditions yk(0) = yk for k = 0, . . . , n− 1. Assuming that b(x) ∈ L we seek
a solution such that y(k) ∈ L for k = 0, . . . , n. Let

Y (p) =
∫ ∞

0
y(x)e−px dx

and
B(p) =

∫ ∞

0
b(x)e−px dx.

Using integration by parts, and an inductive argument it follows that∫ ∞

0
y(k)(x)e−px = pkY (p) − yk−1 − pyk−2 − · · · − pk−1y0
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for k = 1, . . . , n. Applying the Laplace transform to (3.5.2) yields

Q(p) +R(p)Y (p) = B(p)

where
R(p) = pn + a1p

n−1 + · · · + an,

and Q(p) is a polynomial of degree n− 1 dependent on y0, . . . , yn−1. Consequently, one can show that

y(x) = 1
2πi

∫ ∂+i∞

∂−i∞

B(p) −Q(p)
R(p) epx dp,

which can then be computed using residues. This method for obtaining a solution to a linear differential equation
with constant coefficients is known as the operator method.

Exercise 3.5.3. Using the Laplace transform, solve the differential equation

y(3)(x) + y(x) = 1

for y(x) ∈ R satisfying the initial conditions y(0) = y′(0) = y′′(0) = 0.

3.6 Fourier-Stiltjes Transform
Recall that for f ∈ L1(R) the Fourier transform is given by

g(λ) =
∫ ∞

−∞
e−iλxf(x) dx,

which as a Lebesgue-Stiltjes integral can be written as

g(λ) =
∫ ∞

−∞
e−iλx dF (x), (3.6.1)

where
F (x) =

∫ x

−∞
f(t) dt. (3.6.2)

Definition 3.6.1. A function F (x) is of bounded variation on [a, b] if

V b
aF := sup

(
n∑

k=1
|f(xk) − f(xk−1)|

)
< ∞,

where the supremum is over finite divisions of [a, b] of the form

a0 = x0 ≤ · · · ≤ xn = b,

where n ∈ N can vary. Similarly, a function F (x) is of bounded variation on R if

V ∞
−∞F = Var(F ) := lim

a→−∞,b→∞
V b

aF < ∞.

Remark 3.6.2.

1. A function of bounded variation can be written as a difference of monotone functions.

2. A function bounded variation is differentiable almost everywhere. Indeed, a function F of bounded
variation can be written as

F = φ(x) + ψ(x) + η(x)
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where φ(x) is absolutely continuous, ψ(x) is singular continuous, and η(x) is a jump function. Hence,
F ′(x) = φ′(x) almost everywhere, as ψ′(x) = η′(x) = 0 almost everywhere.

Example 3.6.3.

1. If F (x) is a monotonically increasing function on [a, b] then

V b
aF = F (b) − F (a).

2. If F (x) is a differentiable function on [a, b] then

V b
aF =

∫ b

a

|F ′(x)| dx.

For (3.6.1), we note that F (x) is absolutely continuous with bounded variation on R as

Var(F ) =
∫ ∞

−∞
|f(x)| dx < ∞.

However, we note that (3.6.1) is well-defined even if F (x) is not directly of the form (3.6.2). It is sufficient for
F (x) to be of bounded variation on R for (3.6.1) to be well-defined.

Definition 3.6.4. For F (x) a function of bounded variation on R, the function

g(λ) =
∫ ∞

−∞
e−iλx dF (x)

is the Fourier-Stiltjes transform of F (x).

Example 3.6.5. For x1 < x2 < · · · < xn and a1, . . . , an ∈ R consider the step function

F (x) =
{∑

xk<x ak x ≥ x1

0 x ≤ x1.

For a < x1 and xn < b we have∫ b

a

e−iλx dF (x) =
n∑

k=1
e−iλxk

(
F (xk)+ − F (xk)−

)
= e−iλx1(a1 − 0) +

n∑
k=2

e−iλxk

(
k∑

i=1
ai −

k−1∑
i=1

ai

)

= e−iλx1a1 +
n∑

k=2
e−iλxkak

=
n∑

k=1
ake

−iλxk .

Sending a → −∞ and b → ∞ it follows that

g(λ) =
∫ ∞

−∞
e−iλx dF (x) =

n∑
k=1

ake
−iλxk .
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Lemma 3.6.6. The Fourier-Stiltjes transform of a function F of bounded variation on R is bounded and
continuous on R.

Proof. The Lebesgue-Stiltjes measure of an interval corresponding to V x
−∞F is greater than or equal to the

measure of the interval corresponding to F (x). Therefore, the following can be deduced.

1. Note that
|g(λ)| ≤

∫ ∞

−∞

∣∣e−iλx
∣∣ dF (x) ≤

∫ ∞

−∞
dV x

−∞F < ∞.

So g(λ) is bounded.

2. Note that

|g(λ1) − g(λ2)| ≤
∫ N

−N

∣∣e−iλ1x − e−iλ2x
∣∣ dV x

−∞F︸ ︷︷ ︸
I1

+
∫

|x|≥N

∣∣e−iλ1x − e−iλ2x
∣∣ dV x

−∞F︸ ︷︷ ︸
I2

.

Since F is of bounded variation and
∣∣e−iλ1x − e−iλ2x

∣∣ is bounded, the integral I2 can be made arbitrarily
small for large N uniformly over λ1 and λ2. With this fixed N , we note that

∣∣e−iλ1x − e−iλ2x
∣∣ =

∣∣∣∣2 sin
(

(λ1 − λ2)x
2

)∣∣∣∣ |λ1−λ2|→0−→ 0.

Hence, I1 → 0 as |λ1 − λ2| → 0. Therefore, g is uniformly continuous.

Example 3.6.7. Unlike Fourier transforms, Fourier-Stiltjes transforms do not necessarily decay as |λ| → ∞.
Consider

F (x) =
{

1 x ≥ 0
0 x < 0.

Then

g(λ) =
∫ ∞

−∞
e−iλx dF (x)

= e−iλ·0 (F (0+) − F (0−))
= 1,

for all λ ∈ R.

Exercise 3.6.8. Let F (x) ∈ S∞ have Fourier-Stiltjes transform g(λ). Show that,

F (b) − F (a) = 1
2π

∫ ∞

−∞
g(λ)e

iλb − eiλa

iλ
dλ

for a < b.

3.6.1 Convolution

Recall the convolution of f1, f2 ∈ L1(R) as given by Definition 3.2.11. Now let

F (x) =
∫ x

−∞
f(t) dt,
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where f(t) := (f1 ⋆ f2)(t) and
Fj(x) =

∫ x

−∞
fj(t) dt

for j = 1, 2. Using the absolute integrability of f, f1 and f2, it follows by Fubini’s theorem that

F (x) =
∫ x

−∞
f(t) dt

=
∫ x

−∞

∫ ∞

−∞
f1(t− y)f2(y) dy dt

=
∫ ∞

−∞

(∫ x

−∞
f1(t− y) dt

)
f2(y) dy

=
∫ ∞

−∞
F1(x− y) dF2(y).

However, the resulting integral is well-defined more generally, not just when F1 and F2 are absolutely continuous
as is the case here. Indeed, a function of bounded variation F is Borel measurable. Thus, the integral of F1 with
respect to F2 is well-defined provided F1 is of bounded variation. Moreover, the integral is finite provided F2 is
of bounded variation.

Definition 3.6.9. For F1, F2 functions of bounded variation on R, their convolution is given by

F (x) = (F1 ⋆ F2)(x) :=
∫ ∞

−∞
F1(x− y) dF2(y).

Lemma 3.6.10. The function F1 ⋆ F2 from Definition 3.6.9 is of bounded variation on R.

Proof. Observe that

|F (x1) − F (x2)| =
∣∣∣∣∫ ∞

−∞
(F1(x1 − y) − F1(x2 − y)) dF2(y)

∣∣∣∣
≤
∫ ∞

−∞
|F1(x1 − y) − F1(x2 − y)| dV y

−∞F2.

Hence,
Var(F ) ≤ Var(F1)Var(F2) < ∞.

Theorem 3.6.11. Let F = F1 ⋆ F2, where F1 and F2 are of bounded variation on R. Let g, g1 and g2 be
their respective Fourier-Stiltjes transform. Then

g(λ) = g1(λ)g2(λ).

Proof. Let
a = x0 ≤ x1 ≤ · · · ≤ xn = b.

Then for any λ, since e−iλx is continuous, the Lebesgue-Stiltjes integral coincides with the Riemann-Stiltjes
integral ∫ b

a

e−iλx dF (x) = lim
max(∆xk)→0

n∑
k=1

e−iλxk (F (xk) − F (xk−1))

= lim
max(∆xk)→0

∫ ∞

−∞

n∑
k=1

e−iλ(xk−y) (F1 (xk − y) − F1 (xk−1 − y)) e−iλy dF2(y).
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That is, ∫ b

a

e−iλx dF (x) =
∫ ∞

−∞

∫ b−y

a−y

e−iλx dF1(x)e−iλy dF2(y),

where the limit has been brought into the integral using the dominated convergence theorem. By another
application of the dominated convergence theorem, it follows by taking the limit a → −∞ and b → ∞ that∫ ∞

−∞
e−iλx dF (x) =

∫ ∞

−∞
e−iλy dF2(y)

∫ ∞

−∞
e−iλx dF1(x).

In other words, g(λ) = g2(λ)g1(λ).

3.7 Application to Probability
Let ζ and η be independent random variables with distribution functions F1 and F2 respectively. Then F = F1⋆F2
is the distribution function of ζ + η. In probability theory, the Fourier-Stiltjes transform is known as the method
of characteristic functions. That is,

g1(λ) =
∫ ∞

−∞
e−iλx dF1(x)

is known as the characteristic function of ζ. Consequently, we have that the characteristic function of ζ + η is
the product of the characteristic functions of ζ and η.

3.8 Solution to Exercises
Exercise 3.1.1

Solution. With γ1 = [r,R], γ2 = [−R,−r], γr =
{
reiθ : θ ∈ [π, 0]

}
and γR =

{
Reiθ : θ ∈ [0, π]

}
, let

γ = γ1 ∪ γR ∪ γ2 ∪ γr.

Then as eiaz

z is analytic in γ it follows that

0 =
∮

γ

eiaz

z
dz.

Note that ∣∣∣∣∫
γR

eiaz

z
dz
∣∣∣∣ =

∣∣∣∣∣
∫ π

0

eiaReiθ

Reiθ
iReiθ dθ

∣∣∣∣∣
=
∣∣∣∣∫ π

0
e−aR sin θeiaR cos θ dθ

∣∣∣∣
≤
∫ π

0
e−aR sin θ dθ

R→∞−→ 0.

On the other hand, ∫
γr

eiaz

z
dz =

∫ 0

π

ieiareiθ

dθ

r→0−→
∫ 0

π

i dθ

= −iπ.

Therefore, sending R → ∞ and r → 0 it follows that

0 =
∫ ∞

0

eiaz

z
dz + 0 +

∫ 0

−∞

eiaz

z
dz − iπ.
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Looking at the imaginary parts we have

0 =
∫ ∞

−∞

sin(az)
z

dz − π

and so
1 = 1

π

∫ ∞

−∞

sin(az)
z

dz.

Exercise 3.2.4

Solution. Given ϵ > 0, let M ∈ R be such that |f(x)| < ϵ
3 for |x| ≥ M . Then since f is continuous it is

uniformly continuous on [−M,M ]. In particular, let δ > 0 be such that |f(x) − f(y)| < ϵ
3 for x, y ∈ [−M,M ]

with |x− y| < δ. Let x, y ∈ R be such that |x− y| < δ.

• If x, y ∈ [−M,M ] we have
|f(x) − f(y)| < ϵ

3 < ϵ.

• If |x|, |y| > M , then
|f(x) − f(y)| < |f(x)| + |f(y)| < ϵ

3 + ϵ

3 < ϵ.

• If x ∈ [M − δ,M ] and y > M , then

|f(x) − f(y)| ≤ |f(x) − f(M)| + |f(M) − f(y)|

≤ ϵ

3 + |f(M)| + |f(y)|

<
ϵ

3 + ϵ

3 + ϵ

3
= ϵ.

Therefore, in any case, for x, y ∈ R with |x− y| < δ we have |f(x) − f(y)| < ϵ, which implies that f is uniformly
continuous.

Exercise 3.2.7

Solution. Using Remark 3.2.6 we have that
|F [f ](λ)| ≤ C

λ2

for all λ ∈ R. Therefore, as 1
λ2 ∈ L1(R) it follows that F [f ] ∈ L1(R).

Exercise 3.5.3

Proof. Note that ∫ ∞

0
y(3)(x)e−px dx = p3Y (p) − y′′(0) − py′(0) − p2y(0) = p3Y (p),

and ∫ ∞

0
e−px dx = 1

p
.

Hence, (
p3 + 1

)
Y (p) = 1

p
.

Thus,
y(x) = 1

2πi

∫ ∂+i∞

∂−i∞

eipx

p (p3 + 1) dp
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for ∂ > 0 larger than the real component of any pole. For x > 0, taking the left semi-circle contour and using
Jordan’s lemma it follows that

y(x) = Res
(

eipx

p (p3 + 1) , 0
)

+ Res
(

eipx

p (p3 + 1) ,−1
)

+ Res
(

eipx

p (p3 + 1) , e
πi
3

)
+ Res

(
eipx

p (p3 + 1) , e
−πi

3

)
= 1 − 1

3e
−x − 1

3e
1
2 x
(
ei

√
3

2 x + e−i
√

3
2 x
)

= 1 − 1
3e

−x − 2
3e

1
2 x cos

(√
3

2 x

)
.

For x < 0, taking the right semi-circle contour and using Jordan’s lemma it follows that

y(x) = 0.

Exercise 3.6.8

Solution. We have
g(λ) =

∫ ∞

−∞
e−iλx dF (x), (3.8.1)

thus for fixed ρ we have

g(λ)eiρλ =
∫ ∞

−∞
e−i(x−ρ)λ dF (x) =

∫ ∞

−∞
e−iλx dF (x+ ρ) (3.8.2)

Subtracting (3.8.1) from (3.8.2) it follows that

g(λ)
(
eiρλ − 1

)
=
∫ ∞

−∞
e−iλx (dF (x+ ρ) − dF (x)) .

Letting G(x) = F (x+ ρ) − F (x) we have

g(λ)
(
eiρλ − 1

)
=
∫ ∞

−∞
e−iλx dG(x).

As |x| → ∞ note that G(x) → 0, and so

g(λ)
(
eiρλ − 1

)
=
∫ ∞

−∞
e−iλx dG(x)

=
([
e−iλxG(x)

]∞
−∞ +

∫ ∞

−∞
iλe−iλxG(x) dx

)
= iλ

∫ ∞

−∞
e−iλxG(x) dx.

Since, G(x) ∈ S∞ we can apply the inverse Fourier transform to deduce that

G(x) = 1
2π

∫ ∞

−∞
g(λ)e

iρλ − 1
iλ

eiλx dx.

Setting ρ = b− a and x = a it follows that

F (b) − F (a) = 1
2π

∫ ∞

−∞
g(λ)e

i(b−a)λ − 1
iλ

eiaλ dλ

= 1
2π

∫ ∞

−∞
g(λ)e

ibλ − eiaλ

iλ
dλ.
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4 Linear Functionals on Normed Linear Spaces
4.1 Linear Functionals

Definition 4.1.1. Let L be a linear space. Then f : L → C, or R, is a functional on L. It is linear if

f(x+ y) = f(x) + f(y)

and
f(αx) = α(x)

for all x, y ∈ L and α ∈ C, or R.

Definition 4.1.2. For f a linear functional on a linear space L, the kernel of f is

ker(f) := {x ∈ L : f(x) = 0}.

Lemma 4.1.3. The codimension of the kernel of a linear functional on a linear space is one.

Proof. Let f : L → C be a non-zero linear functional. Then there exists an x0 ∈ L such that f(x0) ̸= 0. In
particular, using the linearity of f we can assume without loss of generality that f(x0) = 1. Note that for x ∈ L
we have f(x− f(x)x0) = f(x) − f(x)f(x0) = 0, which implies that x− f(x)x0 ∈ ker(f). Hence, we can write
x = f(x)x0 + y for some y ∈ ker(f). Moreover, suppose that x = λx0 + ỹ for some λ ∈ C and ỹ ∈ ker(f).
Then,

0 = f((λ− f(x))x0 + ỹ − y) = (λ− f(x))f(x0) + f(ỹ) − f(y) = λ− f(x),

and so λ = f(x). This implies that ỹ = y and so the representation x = f(x)x0 + y is unique. Thus, we deduce
that L/ ker(f) = span(x0) and so the codimension of the kernel of f is 1.

Lemma 4.1.4. Suppose that f is a non-zero linear functional on a linear space L. Then f is uniquely
determined by {x ∈ L : f(x) = 1}.

Proof. Let f : L → C be a linear functional and let Ef := {x ∈ L : f(x) = 1}. For x ∈ L note that f
(

x
f(x)

)
= 1

and so x
f(x) ∈ Ef . Thus, f is determined by Ef . For another linear functional f̃ : L → C suppose that Ef = Ef̃ .

For x ∈ L, as x
f(x) ∈ Ef it follows that x

f(x) ∈ Ef̃ . Therefore,

1 = f̃

(
x

f(x)

)
= f̃(x)
f(x)

which implies that f(x) = f̃(x). As x ∈ L was arbitrary, we deduce that f ≡ f̃ . Therefore, Ef uniquely
determines a linear functional.

Definition 4.1.5. A function ∥ · ∥ : E → R on a linear space E is a norm if the following statements are
satisfied.

1. ∥x∥ ≥ 0, with ∥x∥ = 0 if and only if x = 0.

2. ∥αx∥ = |α|∥x∥ for α ∈ C, or α ∈ R if E is a real linear space.

3. ∥x+ y∥ ≤ ∥x∥ + ∥y∥.

A linear space E with a norm ∥ · ∥ is a normed linear space.
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Remark 4.1.6. Note that a normed vector space E is a metric space with

ρ(x, y) = ∥x− y∥.

Thus a normed vector is induced with a topology.

Henceforth, E will denote a normed linear space.

Definition 4.1.7. A functional f on E is continuous if for any x0 ∈ E and ϵ > 0, there exists a neighbourhood
U of x0 such that

|f(x) − f(x0)| < ϵ

for x ∈ U .

Exercise 4.1.8. Suppose that E is a finite-dimensional normed vector space. Show that any linear functional
is continuous.

Lemma 4.1.9. If a linear functional is continuous at some x ∈ E then it is continuous on E.

Proof. Suppose a linear functional f : E → C is continuous at x ∈ E. Let y ∈ E and ϵ > 0. There exists
a neighbourhood U ⊆ E of x such that |f(x) − f(t)| < ϵ for t ∈ U . Let V := U + (y − x). Then V is a
neighbourhood of y, such that for z ∈ V we have z + x− y ∈ U and so

ϵ > |f(x) − f(z + x− y)| = |f(y) − f(z)|,

where in the second equality we have used the linearity of f . It follows that f is continuous at y ∈ E, and thus
f is continuous on E.

Theorem 4.1.10. A linear functional f on E is continuous if and only if there is a neighbourhood of 0 ∈ E
on which f is bounded.

Proof. (⇒). As f is continuous on E it is continuous at 0 ∈ E. As f(0) = 0, it follows that for any ϵ > 0 there
exists a neighbourhood U ⊆ E of 0 ∈ E such that |f(x)| < ϵ for x ∈ U .
(⇐). Let V ⊆ E be a neighbourhood of 0 ∈ E such that |f(x)| < c for x ∈ V . For ϵ > 0, using the linearity of
f , we have ∣∣∣f ( ϵ

c
x
)∣∣∣ = ϵ

c
|f(x)| < ϵ

c
c = ϵ.

Hence, ϵ
cV ⊆ E is a neighbourhood of 0 ∈ E such that |f(x) − f(0)| = |f(x)| < ϵ. Therefore, f is continuous

at 0 ∈ E which implies that it is continuous on E by Lemma 4.1.9.

Corollary 4.1.11. A linear functional f on E is continuous if and only if it is bounded on {x ∈ E : ∥x∥ ≤ 1}.

Proof. Any neighbourhood of 0 ∈ E contains a ball of sufficiently small radius. Being bounded on this ball is
equivalent to being bounded on {x ∈ E : ∥x∥ ≤ 1} through linearity. Therefore, using Theorem 4.1.10, a linear
functional is continuous if and only if it is bounded on {x ∈ E : ∥x∥ ≤ 1}.

Exercise 4.1.12. Let E be a normed linear space and let f be a linear functional on E. Show that the following
are equivalent.

1. f is continuous on E.

2. There exists an open set U ⊆ E and a t ∈ R such that t ̸∈ f(U).
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3. The kernel of f is closed in E.

4. f is bounded on any bounded subset of E.

Definition 4.1.13. Let f be a continuous linear functional on E. Then the norm of f is

∥f∥ := sup
∥x∥≤1

|f(x)|.

Equivalently,
∥f∥ = sup

x∈E\{0}

|f(x)|
∥x∥

.

Remark 4.1.14.

1. Note that Definition 4.1.13 is well-defined due to Corollary 4.1.11.

2. From Definition 4.1.13, it is clear that
|f(x)| ≤ ∥f∥∥x∥ (4.1.1)

for all x ∈ E.

Example 4.1.15.

1. Consider the Euclidean space Rn, and the linear function f : Rn → R given by f(x) = (x, a) for some
a ∈ Rn. Using Cauchy-Schwartz we have

|f(x)| = |(x, a)| ≤ ∥x∥∥a∥,

and so f is bounded on the unit ball by ∥a∥. Thus, f is continuous. In particular, it follows that

∥f∥ = sup
x∈Rn\{0}

|f(x)|
∥x∥

≤ ∥a∥.

However, for x = a we have
|f(x)|
∥x∥

= ∥a∥2

∥a∥
= ∥a∥.

Therefore,
∥f∥ = sup

x∈Rn\{0}

|f(x)|
∥x∥

= ∥a∥.

• More generally, for a ∈ X, where X is a Euclidean space, the linear functional f(x) = (x, a) is
continuous with ∥f∥ = ∥a∥.

2. Consider the space C([a, b]) with norm ∥x∥ = maxt∈[a,b] |x(t)|. Then

I(x) :=
∫ b

a

x(t) dt
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is a linear functional of C([a, b]). In particular,

|I(x)| =

∣∣∣∣∣
∫ b

a

x(t) dt

∣∣∣∣∣
≤ (b− a) max

t∈[a,b]
|x(t)|

= ∥x∥(b− a).

We note that equality is reached when x ∈ C([a, b]) is constant, and so we conclude that I(x) is a
continuous linear functional with ∥I∥ = b− a.

3. For y0 ∈ C([a, b]) consider the linear functional

F (x) :=
∫ b

a

x(t)y0(t) dt.

Then,

|F (x)| =

∣∣∣∣∣
∫ b

a

x(t)y0(t) dt

∣∣∣∣∣
≤
∫ b

a

|x(t)||y0(t)| dt

≤ ∥x∥
∫ b

a

|y0(t)| dt.

Therefore, F is bounded by
∫ b

a
|y0(t)| dt ≤ ∥y0∥(b − a) < ∞ on the unit ball of C([a, b]) and so is a

continuous linear functional, with

∥F∥ = sup
x∈C([a,b])\{0}

|F (x)|
∥x∥

≤
∫ b

a

|y0(t)| dt.

If y0(t) ≡ 0, then ∥F∥ =
∫ b

a
|y0(t)| dt = 0. So suppose y0(t) ̸= 0 and let xn(t) = y0(t)

|y0(t)|+ 1
n

, which is
continuous as |y0(t)| + 1

n ̸= 0. Observe that

|F (xn)| =

∣∣∣∣∣
∫ b

a

y0(t)2

|y0(t)| + 1
n

dt

∣∣∣∣∣
=
∫ b

a

y0(t)2

|y0(t)| + 1
n

dt.

In particular, y0(t)2

|y0(t)|+ 1
n

→ |y0(t)| as n → ∞ with y0(t)2

|y0(t)|+ 1
n

≤ |y0(t)| which is integrable. Therefore, by
the dominated convergence theorem it follows that

lim
n→∞

|F (xn)| = lim
n→∞

∫ b

a

y0(t)2

|y0(t)| + 1
n

dt =
∫ b

a

|y0(t)| dt,

which implies that ∥F∥ ≥
∫ b

a
|y0(t)| dt. Therefore,

∥F∥ =
∫ b

a

|y0(t)| dt.
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4. Let t0 ∈ [a, b], and consider the linear functional δt0(x) := x(t0) on C([a, b]). Then

|δt0(x)| = |x(t0)| ≤ ∥x∥

with equality when x is constant. Therefore, δt0(x) is continuous with ∥δt0∥ = 1.

Suppose f is a linear functional on the normed vector space E, and consider the hyperplane F = {x ∈ E : f(x) =
1}. The distance from the origin to F is given by

d := inf
x∈F

∥x∥.

Using (4.1.1), on F we have that ∥x∥ ≥ 1
∥f∥ and so

d ≥ 1
∥f∥

.

On the other hand, by Definition 4.1.13, for all ϵ > 0 there exists an xϵ ∈ F such that 1 = f(xϵ) > (∥f∥−ϵ)∥xϵ∥.
Consequently,

d <
1

∥f∥ − ϵ

which implies that
d = 1

∥f∥
.

Thus, we can geometrically interpret the norm of a linear functional as the reciprocal of the distance between the
origin and the unit level-set of the functional.

Definition 4.1.16. Let p be a non-negative functional on a linear space L. Then p is convex if

p(x+ y) ≤ p(x) + p(y)

and
p(αx) = |α|p(x)

for all x, y ∈ L and α ∈ C.

Remark 4.1.17. A norm is a convex functional.

Theorem 4.1.18 (Hanh-Banach). Let L be a linear space, and let p be a convex functional on L. Suppose
that f0 is a linear functional on a subspace L0 ⊆ L and is such that |f0(x)| ≤ p(x) for all x ∈ L0. Then there
exists a linear functional f , on L such that the following are satisfied.

1. f(x) = f0(x) for all x ∈ L0.

2. |f(x)| ≤ p(x) for all x ∈ L.

Theorem 4.1.19 (Hanh-Banach on Normed Linear Spaces). Let E be a normed linear space, and let f0 be a
continuous linear functional defined on a subspace E0 ⊆ E. Then there exists a continuous linear functional
on E such that the following are satisfied.

1. f(x) = f0(x) for all x ∈ E0.

2. ∥f∥E→C = ∥f0∥E0→C.

Proof. Let ∥f0∥E0→C = c. Note that p(x) := c · ∥x∥ is a convex functional on E such that |f0(x)| ≤ p(x).
Applying Theorem 4.1.18 we obtain a linear functional f on E such that f(x) = f0(x) for all x ∈ E0 and
|f(x)| ≤ c∥x∥. In particular, since ∥f0∥E0→C = c it must be the case that ∥f∥E→C = c as E0 ⊆ E.
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Corollary 4.1.20. Let E be a normed linear space, and let x0 ∈ E \ {0}. Then there exists a linear functional
f on E such that ∥f∥ = 1 and f(x0) = ∥x0∥.

Proof. Let E0 = {αx0 : α ∈ C}, and let f0 : E0 → C be given by αx0 7→ α∥x0∥. Clearly, ∥f0∥E0→C = 1, and
so by Theorem 4.1.19, there exists a functional f : E → C such that

∥f∥E→C = ∥f0∥E0→C = 1

and
f(x0) = f0(x0) = ∥x0∥.

4.2 The Adjoint Space
So far we have been considering linear functionals individually. However, we can also view linear functionals as a
space in their own right. Throughout, E is a linear space, with f1, f2 linear functionals on E.

Definition 4.2.1. The sum of linear functionals f1, f2 is given by f(x) = f1(x)+f2(x) for all x ∈ E. Similarly,
the product of the linear functional f1 by α ∈ C is given by f(x) = αf1(x) for all x ∈ E.

Remark 4.2.2. With the operations of Definition 4.2.1, the space of linear functionals satisfies the axioms of
a linear space. In particular, if E is a normed space then f1 + f2, and αf1 are continuous if f1 and f2 are
continuous.

Definition 4.2.3. For a normed linear space E, the adjoint space to E denoted E∗, is the space of continuous
linear functionals on E with operations as given by Definition 4.2.1.

Exercise 4.2.4. Verify that the map given in Definition 4.1.13 is a norm on E∗.

Definition 4.2.5. With Exercise 4.2.4, we have that E∗ is a normed linear space with the corresponding induced
topology referred to as the strong topology on E∗.

Theorem 4.2.6. For a normed linear space E, the adjoint space is complete.

Proof. Let (fn)n∈N ⊆ E∗ be a Cauchy sequence. In particular, for ϵ > 0 there exists an N ∈ N such that
∥fn − fm∥ < ϵ for every m > n ≥ N . Therefore,

|fn(x) − fm(x)| ≤ ∥fn − fm∥∥x∥ < ϵ∥x∥ (4.2.1)

for all x ∈ E. Hence, for fixed x ∈ E the sequence (fn(x))n∈N ⊆ C is Cauchy and thus convergent as C is
complete. Let f : E → C be given by f(x) := limn→∞ fn(x). Observe that

f(αx+ βy) = lim
n→∞

fn(αx+ βy)

= lim
n→∞

(αfn(x) + βfn(y))

= αf(x) + βf(y),

and so f is linear. Moreover, taking m → ∞ in (4.2.1) it follows that

|fn(x) − f(x)| ≤ ϵ∥x∥, (4.2.2)
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which implies that fn − f is bounded on {x ∈ E : ∥x∥ ≤ 1}. Using Corollary 4.1.11 we deduce that fn − f is
continuous and thus f is continuous as fn is continuous. Moreover, from (4.2.2) we have

∥f − fn∥ ≤ ϵ

for all n ≥ N , that is fn → f in E∗, and so E∗ is complete.

Remark 4.2.7. Note that in Theorem 4.2.6 we do not require that E is complete. A consequence of this is
explored in Corollary 4.2.8.

For a linear space E, we denote by Ē the completion of E. That is, Ē is E along with the limits of all Cauchy
sequences in E. Furthermore, linear spaces E and F are isometric, written E = F , if there exists an isomorphism,
that is a bijective map preserving linear operations, that also preserves the norm.

Corollary 4.2.8. Let E be a linear space. Then E∗ and
(
Ē
)∗ are isometric.

Proof. Note that E ⊆ Ē is everywhere dense, and so f ∈ E∗ is uniquely extended to a functional f̄ on Ē using
continuity. In particular, as E ⊆ Ē we have that ∥f∥ =

∥∥f̄∥∥. Conversely, any functional f̄ on Ē restricts to
a functional f on E, which is such that

∥∥f̄∥∥ = ∥f∥. Therefore, the correspondence of f to f̄ is a bijective
correspondence that preserves the norm. That is, E∗ =

(
Ē
)∗.

Example 4.2.9. Consider an n-dimensional linear space E. Let {e1, . . . , en} be a basis for E, so that any
x ∈ E can be written as

x =
n∑

j=1
xjej

for xj ∈ R. For a linear functional f : E → R we have

f(x) =
n∑

j=1
xjf(ej).

In particular, this means that f is determined by {f(e1), . . . , f(en)}. Consider the linear functionals g1, . . . , gn

given by

gk(ej) =
{

1 j = k

0 j ̸= k.

It is clear that {g1, . . . , gn} is linearly independent. Moreover,

f(x) =
n∑

j=1
fjgj(x),

where fj := f(ej). Therefore, {g1, . . . , gn} forms a basis for E∗ which means that E∗ is also n-dimensional.

Exercise 4.2.10. Let E be an n-dimensional linear space.

1. Show that the norm ∥x∥ =
(∑n

j=1 |xj |2
) 1

2 on E induces the norm ∥f∥ =
(∑n

j=1 |fj |2
) 1

2 on E∗.

2. For p > 1, show that the norm ∥x∥ =
(∑n

j=1 |xj |p
) 1

p on E induces the norm ∥f∥ =
(∑n

j=1 |fj |q
) 1

q ,
where 1

p + 1
q = 1, on E∗.
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3. Show that the norm ∥x∥ =
∑n

j=1 |xj | on E induces the norm ∥f∥ = sup1≤j≤n |fj | on E∗.

4. Show that the norm ∥x∥ = sup1≤j≤n |xj | on E induces the norm ∥f∥ =
∑n

i=1 |fj | on E∗.

Remark 4.2.11. As E is finite-dimensional, all the norms identified in Exercise 4.2.10 induce the same topology.

Lemma 4.2.12. Consider the space

C0 :=
{
x = (x1, x2, . . . ) : lim

n→∞
xn = 0

}
with norm ∥x∥ = supn∈N |xn|. Then (C∗

0 , ∥ · ∥) is isometric to ℓ1.

Proof. Let f = (f1, f2, . . . ) ∈ ℓ1, so that
∑∞

n=1 |fn| = ∥f∥ℓ1 < ∞. Consider the linear map f̂ : C0 → C given
by

f̂(x) =
∞∑

n=1
fnxn.

Observe that ∣∣∣f̂(x)
∣∣∣ ≤ ∥x∥

∞∑
n=1

|fn| = ∥x∥∥f∥ℓ1 ,

which shows that f̂ is bounded and thus it must be continuous as it is linear. Hence, the map φ : ℓ1 → C∗
0 given

by f 7→ f̂ is well-defined. In particular,
∥∥∥f̂∥∥∥ ≤ ∥f∥ℓ1 . On the other hand, consider

x(N) =
N∑

n=1

fn

|fn|
en,

where en = (0, . . . , 1︸ ︷︷ ︸
n

, 0 . . . ), and fn

|fn| is set to zero in the case when fn = 0. Then x(N) ∈ C0 with
∥∥x(N)

∥∥ ≤ 1.

Moreover,

f̂
(
x(N)

)
=

n∑
n=1

f̂(en) fn

|fn|
=

N∑
n=1

|fn|.

Therefore,
lim

N→∞
f̂
(
x(N)

)
= ∥f∥ℓ1

which implies that
∥∥∥f̂∥∥∥ ≥ ∥f∥ℓ1 . Thus,

∥∥∥f̂∥∥∥ = ∥f∥ℓ1 . This means that φ preserves the norm between ℓ1 and
C∗

0 . Furthermore, if φ(f1) = φ(f2), then

(f1)n = φ(f1)(en) = φ(f2)(en) = (f2)n .

Hence, f1 = f2 which shows that φ is injective. Now, let f̂ ∈ C∗
0 . For any x = (x1, x2, . . . ) ∈ C0 one can write

x =
∞∑

n=1
xnen,

as ∥∥∥∥∥x−
N∑

n=1
xnen

∥∥∥∥∥ = sup
n>N

|xn| N→∞−→ 0.
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Thus, using the continuity of f̂ we deduce that

f̂(x) =
∞∑

n=1
xnf̂(en).

Now set

x(N) =
N∑

n=1

f̂(en)∣∣∣f̂(en)
∣∣∣en.

Then
N∑

n=1

∣∣∣f̂(en)
∣∣∣ =

N∑
n=1

f̂(en)f̂(en)∣∣∣f̂(en)
∣∣∣ = f̂

(
x(N)

)
≤
∥∥∥f̂∥∥∥ ,

where the inequality follows as x(N) ∈ C0 and
∥∥x(N)

∥∥ ≤ 1. Therefore,
∑∞

n=1

∣∣∣f̂(en)
∣∣∣ < ∞ and so

(
f̂(en)

)
n∈N

∈

ℓ1. Therefore, as φ
((

f̂(en)
)

n∈N

)
= f̂ we deduce that φ is surjective and thus an isometry between (C∗

0 , ∥ · ∥)

and ℓ1.

Lemma 4.2.13. Consider the space

m :=
{
x = (x1, x2, . . . ) : sup

n∈N
|xn| < ∞

}
with norm ∥x∥ = supn∈N |xn|. Then

((
ℓ1)∗

, ∥ · ∥ℓ1

)
is isometric to m.

Proof. Let f := (f1, f2, . . . ) ∈ m. Let f̂ : ℓ1 → C be given by

f̂(x) =
∞∑

n=1
xnfn.

Note that, f̂ is linear. Furthermore, ∥∥∥f̂∥∥∥ = sup
x∈ℓ1\{0}

|
∑∞

n=1 xnfn|
∥x∥ℓ1

≤ sup
x∈ℓ1\{0}

∑∞
n=1 |xn||fn|

∥x∥ℓ1

≤ sup
x∈ℓ1\{0}

supn∈N |fn|∥x∥ℓ1

∥x∥ℓ1

= sup
n∈N

|fn|. (4.2.3)

Hence, f̂ is bounded as (fn)n∈N ∈ m and thus continuous which means that f̂ ∈
(
ℓ1)∗. Moreover, let

x = sgn(fp)ep

where p is such that |fp| = supn∈N |fn| and ep = (0, . . . , 1︸ ︷︷ ︸
p

, . . . ). Then,

∣∣∣f̂(x)
∣∣∣

∥x∥ℓ1
= |sgn(fp)fp|

|sgn(fp)|
= |fp|
= sup

n∈N
|fn|.
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Hence,
∥∥∥f̂∥∥∥ = supn∈N |fn|. Note that the map f 7→ f̂ is injective as evaluating f̂ at en recovers the components

of f . On the other hand, for f̂ ∈
(
ℓ1)∗ one can write

f̂(x) =
∞∑

n=1
fnxn

where fn = f̂(en). As f̂ ∈
(
ℓ1)∗ we know that

∥∥∥f̂∥∥∥ = M < ∞. Thus, letting x = en we note that

|fn| =
∣∣∣f̂(en)

∣∣∣ ≤
∥∥∥f̂∥∥∥ ∥en∥ =

∥∥∥f̂∥∥∥
and so supn∈N |fn| ≤ M < ∞ which implies that f := (f1, f2, . . . ) ∈ m. Furthermore, using (4.2.3) we deduce
that supn∈N |fn| =

∥∥∥f̂∥∥∥. Therefore, the map f 7→ f̂ is an isometry.

Exercise 4.2.14. Consider the space ℓp, for p > 1, of sequences x = (xn)n∈N such that

∥x∥ =
( ∞∑

n=1
|xn|p

) 1
p

< ∞.

Show that (ℓp)∗ is isometric to ℓq, where 1
p + 1

q = 1.

Theorem 4.2.15. Let H be a Hilbert space. Then for any f ∈ H∗ there is a unique x0 ∈ H such that
f(x) = (x, x0) for every x ∈ H and ∥f∥ = ∥x0∥. Conversely, for any x0 ∈ H if f(x) = (x, x0) for every
x ∈ H then f ∈ H∗ with ∥f∥ = ∥x0∥. Consequently, the map f 7→ x0 is an isometry between H and H∗,
with the conjugate-linear isomorphism λx0 7→ λ̄f if H is complex.

Proof. (⇐). For any x0 ∈ H consider the map f : H → C given by f(x) = (x, x0). Observe that

|f(x)| = |(x, x0)| ≤ ∥x∥∥x0∥.

In particular, as |f(x0)| = ∥x0∥2 we have ∥f∥ = ∥x0∥ and so f is bounded. Moreover, f is linear by the properties
of the inner product so that f is continuous.
(⇒). If f = 0, then f(x) = (x, x0) with x0 = 0. Suppose instead that f ̸= 0 and let

H0 := ker(f) = {x : f(x) = 0}.

By Lemma 4.1.3, the codimension of H0 is one. As f is continuous H0 is closed by statement 3 of Exercise
4.1.12. Consequently, for some y0 ∈ H⊥

0 , we can write any x ∈ H as x = λy0 + y for some λ ∈ C and y ∈ H0.
We can assume without loss of generality that ∥y0∥ = 1. Now let x0 = f(y0)y0, then for any x ∈ H note that
f(x) = λf(y0), and thus

(x, x0) =
(
x, f(y0)y0

)
=
(
λy0, f(y0)y0

)
= λf(y0)(y0, y0)
= λf(y0)
= f(x).

Now suppose there exists another x′
0 ∈ H such that f(x) = (x, x′

0). Then

0 = (x, x0 − x′
0)

for every x ∈ H. In particular, this holds for x = x0 − x′
0 which implies that ∥x0 − x′

0∥ = 0 and so x0 = x′
0.
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Remark 4.2.16. From Theorem 4.2.15, we have that H = H∗ in the sense of linear spaces. Thus, as the
completion Ē of a linear space E is a Hilbert space, we have that Ē =

(
Ē
)∗ = E∗.

4.2.1 Second Adjoint Space

For a linear normed space E, the adjoint space E∗ is itself a linear normed space. Thus we can consider its adjoint
space. More specifically, fix x0 ∈ E and let φx0 : E∗ → C be given by

φx0(f) = f(x0). (4.2.4)

Note that φx0 is linear as

φx0 (f1 + λf2) = (f1 + λf2) (x0)
= f1(x0) + λf2(x0)
= φx0(f1) + λφx0(f2).

Moreover, note that
|φx0(f)| = |f(x0)| ≤ ∥f∥∥x0∥.

Which shows that φx0 is bounded on the closed unit ball of E∗, and so by Corollary 4.1.11 we have that
φx0 ∈ (E∗)∗ = E∗∗.

Definition 4.2.17. The map π : E → E∗∗ given by x 7→ φx, in the sense of (4.2.4), is called the natural map
of E into E∗∗.

Exercise 4.2.18. The natural map, as given by Definition 4.2.17, is an isomorphism between E and π(E) ⊆
E∗∗.

Lemma 4.2.19. Let E be a normed linear space. Then the natural map, as given by Definition 4.2.17, is an
isometry between E and π(E) ⊆ E∗∗.

Proof. For x ∈ E let ∥x∥ be its norm in E and let ∥x∥2 = ∥φx∥ be the norm in E∗∗ of its image under the
natural map. Let f ∈ E∗ \ {0}. Then |f(x)| ≤ ∥f∥∥x∥, and so

∥x∥ ≥ |f(x)|
∥f∥

.

Taking the supremum over f ∈ E∗ we deduce that

∥x∥ ≥ sup
f∈E∗\{0}

|f(x)|
∥f∥

= ∥x∥2.

On the other hand, for any x0 ∈ E \ {0} by Corollary 4.1.20 there exists an f0 ∈ E∗ \ {0} such that |f0(x0)| =
∥f0∥∥x0∥. In particular, taking x0 = x it follows that

∥x∥2 = sup
f∈E∗\{0}

|f(x)|
∥f∥

≥ ∥x∥.

Therefore, ∥x∥ = ∥x∥2, and so in conjunction with Exercise 4.2.18 we have that the natural map is an isometry
between E and π(E) ⊆ E∗∗.

Definition 4.2.20. A normed linear space E is reflexive if π(E) = E∗∗, where π is the natural map between
E and E∗∗.
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Example 4.2.21.

1. Finite-dimensional Euclidean spaces and Hilbert spaces are reflexive. Indeed, in these cases, we also have
E = E∗.

2. For the space C0, sequences converging to zero, we have (C0)∗ = ℓ1 from Lemma 4.2.12 and (C0)∗∗ = m
for Lemma 4.2.13. Therefore, C0 is not reflexive.

3. The space C([a, b]) is not reflexive.

4. Using Exercise 4.2.14, the space ℓp for p > 1 is reflexive. More specifically, (ℓp)∗ = ℓq and so (ℓp)∗∗ = ℓp.
If p ̸= 2 then ℓp ̸= (ℓp)∗, but for p = 2 we have ℓ2 =

(
ℓ2)∗, which is to be expected as ℓ2 is a Hilbert

space.

4.3 Linear Topological Spaces

Definition 4.3.1. A set E is a linear topological space if the following statements hold.

1. E is a linear space over the real or complex numbers.

2. E is a topological space.

3. Linear operations are continuous in E.

Remark 4.3.2. Statement 3 of Definition 4.3.1 means that the following statements hold.

1. If z0 = x0 + y0, then for any neighbourhood U of z0 there are neighbourhoods V of x0 and W of y0,
such that V +W ⊆ U .

2. If α0x0 = y0, then for any neighbourhood U of y0 there is a neighbourhood V of x0 and an ϵ-
neighbourhood of α0 such that for |α− α0| < ϵ and x ∈ V we have αx ∈ U .

Consequently, the topology on E is fully defined by specifying a set of neighbourhoods of zero. Let x ∈ E and
U be a neighbourhood of zero, then U + x is said to be a neighbourhood of x. Refer to Section 6.1 for more
details.

Exercise 4.3.3. Let E be a linear topological space.

1. If U and V are open in E, then

U + V := {u+ v : u ∈ U, v ∈ V }

is open.

2. If U is open in E, then
αU := {αu : u ∈ U}

is open for α ̸= 0.

3. If F is closed in E, then αF is closed for all α ∈ R.

4. Let U open with 0 ∈ U . Then there exists a W open with 0 ∈ W , W = −W and W +W ⊆ U .

5. If F ⊆ E is closed, and x ∈ E \ F , then x and F have non-intersecting neighbourhoods.
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Proposition 4.3.4. The set {0} is closed if and only if the intersection of all neighbourhoods of zero does
not contain non-zero elements.

Proof. (⇒). Let x ∈ E \ {0} be in every neighbourhood of zero. Since {0} is closed, by statement 5 of Exercise
4.3.3, there exist disjoint neighbourhoods of x and zero which is a contradiction.
(⇐). Let x ∈ E \ {0}. Then there exists a neighbourhood U of zero such that x ̸∈ U . The set Vx := E \ U is
closed with 0 ̸∈ Vx. Therefore, by statement 5 of Exercise 4.3.3 there exists a neighbourhood Ux of Vx such that
0 ̸∈ Ux. Note that E \ {0} =

⋃
x∈E\{0} Ux is an open set, meaning {0} is closed.

Proposition 4.3.5. If {x0} ⊆ E is closed, then E is Hausdorff.

Proof. If {0} is closed then {x} is closed for all x ∈ E. Therefore, by statement 5 Exercise 4.3.3, for any x, y ∈ E
distinct we can find disjoint neighbourhoods. Therefore, E is Hausdorff.

Example 4.3.6.

1. A normed linear space is a linear topological space where the topology is induced by a norm. Indeed, the
linear operations are continuous due to the properties of the norm.

2. Let K([a, b]) be the space of continuously differentiable functions on (a, b). For m ∈ N and ϵ > 0 let

Um,ϵ :=
{
φ ∈ K([a, b]) :

∣∣∣φ(k)(x)
∣∣∣ < ϵ for every k = 0, . . . ,m

}
.

The collection of neighbourhoods of zero (Um,ϵ)k∈N,ϵ>0 induces a topology on K([a, b]) that is a linear
topological space.

Definition 4.3.7. Let E be a linear topological space. Then M ⊆ E is bounded if for any neighbourhood U
of zero there exists a n > 0 such that

M ⊆ λU

for all |λ| ≥ n.

Remark 4.3.8. If E is a normed linear space, then Definition 4.3.7 coincides with boundedness in the norm.

Exercise 4.3.9. Show that a set A ⊆ E is bounded if and only if for any sequence (xn)n∈N ⊆ A and any
(ϵn)n∈N ⊆ R>0 with ϵn → 0 we have that (ϵnxn)n∈N converges to zero.

Note that Definition 4.1.7 holds on a linear topological space as well.

Lemma 4.3.10. Let E be a linear topological space. Then a linear functional f on E is continuous if and
only if there is a neighbourhood of zero on which f is bounded.

Proof. Follows in the same way as the proof for Theorem 4.1.10.

Lemma 4.3.11. If f1, f2 are continuous functions on E, and α ̸= 0 then f1 + f2 and αf1 are continuous.

Proof. This follows directly from statement 1 and statement 2 of Exercise 4.3.3.
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Many of the notions we encountered for normed linear spaces extend to linear topological spaces. For example,
for a linear topological space E, the adjoint space E∗, as in Definition 4.2.3, is well-defined by Lemma 4.3.11.
However, E is only equipped with a topology which does not necessarily correspond to a norm. Thus, we
cannot define a topology on E∗ as we did in the case of normed linear spaces, we instead appeal to systems of
neighbourhoods, Definition 6.1.1. For a normed linear space E on the adjoint space E∗, as constructed using the
norm of E, the system of neighbourhoods

Uϵ = {f ∈ E∗ : |f(x)| < ϵ for x ∈ B}

where B = {x : ∥x∥ ≤ 1} is an open base. Indeed, for any open neighbourhood U of 0 ∈ E∗ in the topology
induced by the norm ∥ · ∥ on E∗, there exists an ϵ > 0 such that

V := {f ∈ E∗ : ∥f∥ < ϵ} ⊆ U.

In particular, as |f(x)| ≤ ∥x∥∥f∥ it is clear that V = Uϵ. Hence, the collection B = (Uϵ)ϵ>0 is an open base,
as in the sense of statement 2 Remark 6.1.5, of the strong topology on E∗ for a normed linear space E. This
motivates Definition 4.3.12 which induces the strong topology on the adjoint space of a linear topological space.

Definition 4.3.12. For a linear topological space E, the strong topology on E∗ is induced by the local base
of E∗ where open neighbourhoods of zero are

Uϵ,A = {f ∈ E∗ : |f(x)| < ϵ for x ∈ A} ,

for ϵ > 0 and A a bounded set in E.

Remark 4.3.13.

1. Indeed,
Umin(ϵ1,ϵ2),A1∪A2 ⊆ Uϵ1,A1 ∩ Uϵ2,A2

which equivalently shows that the system of neighbourhoods of Definition 4.3.12 is a local base. Moreover,
page 42 of [1] shows that the defining system of Definition 4.3.12 makes E∗ a linear topological space.

2. The sets Uϵ,A are neighbourhoods of zero in E∗. However, as linear operations are continuous, we can
translate the sets to obtain neighbourhoods for arbitrary points in E∗.

Exercise 4.3.14. Verify that if E is a normed linear space, Definition 4.3.12 coincides with Definition 4.2.5.

Having endowed E∗ with a topology we can consider the second adjoint and define the natural map. However,
with the lack of norms on these spaces, we no longer have the notion of an isometry.

Definition 4.3.15. A linear topological space E is reflexive if π is continuous and π(E) = E∗∗.

4.4 Weak Convergence
4.4.1 Topological Spaces

Exercise 4.4.1. Let E be a linear topological space. Let ϵ > 0 and f1, . . . , fn ∈ E∗ for n ∈ N. Show that

U := {x ∈ E : |fj(x)| < ϵ, j = 1, . . . , n}

is an open neighbourhood of zero in E. Show also that the system of open neighbourhoods of the form U is
defining.
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Definition 4.4.2. The topology generated by the local base of Exercise 4.4.1 is called the weak topology on
E.

Remark 4.4.3.

1. The sets of Exercise 4.4.1 are open in E, meaning the topology they generate is weaker than the original
topology on E. In particular, the weak topology is the weakest topology on E such that all f ∈ E∗ are
continuous.

2. The space E with the weak topology is a linear topological space since linear operations are continuous.

3. Convergence in E under the weak topology is referred to as weak convergence, whereas convergence
under the original topology is referred to as strong convergence. In particular, for (xn)n∈N ⊆ E, if
xn → x strongly then xn → x weakly. One often writes xn

w−→ x to denote weak convergence.

Proposition 4.4.4. A sequence (xn)n∈N ⊆ E converges in the weak topology to x0 ∈ E if and only if for all
f ∈ E∗ the sequence (f(xn))n∈N ⊆ C converges to f(x0).

Proof. Without loss of generality, we consider x0 = 0.
(⇒). For any U there exists an N ∈ N such that xn ∈ U for n ≥ N . Consequently, for any fixed f ∈ E∗ we
have |f(xn)| < ϵ for n ≥ N , and so f(xn) → 0 = f(0) as n → ∞.
(⇐). Let

U = {x : |fj(x)| < ϵ, j = 1, . . . , n}
be a weak neighbourhood of 0 ∈ E. For each j = 1, . . . , n, there exists an Nj ∈ N such that |fj(xn)| < ϵ for all
n ≥ Nj . Letting N := maxj=1,...,n(Nj) we have xn ∈ U for all n ≥ N . Hence, (xn)n∈N ⊆ E converges in the
weak topology.

4.4.2 Normed Spaces

Theorem 4.4.5. Let E be a linear normed space. If (xn)n∈N ⊆ E is weakly convergent, then there exists a
C > 0 such that

∥xn∥ ≤ C

for all n ∈ N.

Proof. Let
Ak,n := {f ∈ E∗ : |f(xn)| ≤ k} ⊆ E∗

for k, n ∈ N. Since f(xn) for fixed xn is a continuous function in f , the sets Ak,n are closed, and thus
Ak :=

⋂∞
n=1 Ak,n is closed. Since (xn)n∈N is weakly convergent, the sequence (f(xn))n∈N ⊆ C is bounded for

each f ∈ E∗. Therefore, each f ∈ E∗ is in some Ak which implies that E∗ =
⋃∞

k=1 Ak. Since E∗ is complete it
cannot be represented as a countable union of nowhere-dense sets, by Baire’s theorem, hence, for some k = k0
we must have that Ak0 is dense in some Bϵ(f0). As Ak0 is closed, we have Bϵ(f0) ⊆ Ak0 which implies that the
sequence (xn)n∈N ⊆ E∗∗ is bounded on Bϵ(f0), and therefore must be bounded on the unit ball around zero.
Since E and π(E) ⊆ E∗∗ are isometric, Lemma 4.2.19, it follows that (xn)n∈N ⊆ E is also bounded.

Proposition 4.4.6. For a normed linear space E, a set A ⊆ E is bounded if and only if any f ∈ E∗ is bounded
on A.

Proof. (⇒). Note that for any f ∈ E∗ we have |f(x)| ≤ ∥f∥∥x∥ for each x ∈ E. Since A is bounded, for x ∈ A
we have |f(x)| ≤ C∥f∥ where C = supx∈A ∥x∥. Therefore, f is bounded on A.
(⇐). Suppose that A is not bounded. Then there exists an unbounded sequence (xn)n∈N ⊆ A. Consider the
sets

Ak,n := {f ∈ E∗ : |f(xn)| ≤ k} .
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Then Ak :=
⋂

n∈NAk,n is the collection of linear functionals that are bounded by k on (xn)n∈N ⊆ A. Therefore,
by assumption, E∗ =

⋃
k∈NAk. By the same arguments as those made in Theorem 4.4.5 we deduce that (xn)n∈N

is bounded, which is a contradiction.

Theorem 4.4.7. Let E be a linear normed space. Then (xn)n∈N ⊆ E converges weakly to x ∈ E if the
following statements hold.

1. (xn)n∈N is bounded in norm. That is, for some c > 0 we have ∥xn∥ ≤ c for every n ∈ N.

2. f(xn) → f(x) for any f ∈ ∆, where ∆ ⊆ E∗ is a complete system in E∗ with respect to the strong
topology.

Proof. If φ ∈ E∗ is a finite linear combination of elements of ∆, it follows by condition 2 that φ(xn) → φ(x).
For φ ∈ E∗ there exists a sequence (φk)k∈N ⊆ E∗ such that φk → φ in the norm of E∗ with each φk a finite
linear combination of elements of ∆. In particular, for fixed ϵ > 0 there exists a K ∈ N such that

∥φk − φ∥ < ϵ

3c
for k ≥ K. Furthermore, there exists a N ∈ N such that

|φK(xn) − φK(x)| < ϵ

3
for n ≥ N . Therefore, for n ≥ N it follows that

|φ(xn) − φ(x)| ≤ |φ(xn) − φK(xn)| + |φK(xn) − φK(x)| + |φK(x) − φ(x)|
≤ ∥φ− φK∥ ∥xn∥ + |φK(xn) − φK(xn)| + ∥φK − φ∥ ∥x∥

≤ ϵ

3cc+ ϵ

3 + ϵ

3cc

= ϵ.

Therefore, φ(xn) → φ(x) for all φ ∈ E∗ and so (xn)n∈N converges weakly to x by Proposition 4.4.4.

Proposition 4.4.8. Let E be a finite-dimensional Euclidean space. Then weak convergence and strong
convergence are equivalent.

Proof. Let (xn)n∈N ⊆ E converge weakly to x ∈ E. Let {e1, . . . , en} ⊆ E be a basis. Then

xk =
n∑

j=1
x

(j)
k ej

for each k ∈ N, and

x =
n∑

j=1
x(j)ej .

As the inner product (·, ej) is a continuous linear functional for each j = 1, . . . , n it follows that

x
(j)
k = (xk, ej) k→∞−→ (x, ej) = x(j),

meaning xk → x coordinate-wise. Therefore,

∥xk − x∥ =

√√√√ n∑
j=1

(
x

(j)
k − x(j)

)2 k→∞−→ 0,

which means xk → x strongly. Conversely, strong convergence implies weak convergence, even in infinite dimen-
sions.
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Example 4.4.9.

1. Consider the space ℓ2. Suppose (xk)k∈N ⊆ ℓ2 is bounded, and such that

(xk, ej) = x
(j)
k → x(j) = (x, ej)

for j = 1, 2, . . . where ej = (0, . . . , 1︸ ︷︷ ︸
j

, . . . ). Then as
(
ℓ2)∗ = ℓ2 and (ej)j∈N ⊆ ℓ2 is complete system, it

follows from Theorem 4.4.7 that xn
w→ x. On the other hand, consider (ej)j∈N ⊆ ℓ2 as a sequence. It

does not converge strongly to any limit, however, for any f ∈
(
ℓ2)∗ we can write f(x) = (x, a) for some

a = (a1, a2, . . . , ) ∈ ℓ2. In particular, f(ej) = āj → 0 as j → ∞ since
∑∞

j=1 |aj |2 < ∞. Therefore,
ej

w→ 0, thus strong and weak convergence do not coincide in ℓ2.

2. Consider the space C([a, b]) with supremum norm. Let (xn)n∈N ⊆ C([a, b]) be such that xn
w→ x. Then

by Theorem 4.4.5 the sequence (xn)n∈N is bounded in norm. For t0 ∈ [a, b], consider the functional
δt0 ∈ C([a, b])∗ given by δt0(x) = x(t0). Then since xn(t) w→ x(t) it follows that δt0(xn) → δt0(x) which
implies that xn(t0) → x(t0). Therefore, we conclude that xn

w→ x when there exists a C > 0 such that
|xn(t)| ≤ C for all t ∈ [a, b] and n ∈ N, that is the sequence (xn(t))n∈N is uniformly bounded. Moreover,
the sequence converges pointwise.

Theorem 4.4.10. Suppose (xn)n∈N ⊆ H, where H is a Hilbert space, converges weakly to x ∈ H and
∥xn∥ → ∥x∥ as n → ∞. Then xn → x strongly.

Proof. As H and H∗ are isometric through z 7→ (·, z), it follows that for any z ∈ H we have that (xn, z) → (x, z)
as n → ∞ because f(xn) → f(x) as n → ∞. In particular, (xn, x) → (x, x) as n → ∞. Therefore,

∥xn − x∥2 = (xn, xn) − (xn, x) − (x, xn) + (x, x)
n→∞−→ (x, x) − (x, x) − (x, x) + (x, x)
= 0,

where we have used (xn, xn) = ∥xn∥2 → ∥x∥2 = (x, x). Therefore, xn → x strongly.

4.4.3 Adjoint Space

Definition 4.4.11. For a linear topological space E, the weak-∗ topology on E∗ is induced by the local base
of E∗ where open sets are given by

Uϵ,A = {f ∈ E∗ : |f(x)| < ϵ for x ∈ A} ,

where ϵ > 0 and A is a finite set in E.

Remark 4.4.12.

1. The weak-∗ topology on E∗ is weaker than the strong topology on E∗. Indeed, the strong topology on
E∗ is characterised by neighbourhoods of the same form as those in Definition 4.4.11 but where A is a
bounded set. Thus, as any finite set is bounded it follows that the weak-∗ topology on E∗ is weaker than
the strong topology on E∗.

2. Convergence with respect to the weak-∗ topology is referred to as weak-∗ convergence.
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Proposition 4.4.13. A sequence (fn)n∈N ⊆ E∗ converges ∗-weakly denoted fn
w∗

−→ f , if and only if for all
x ∈ E the sequence (fn(x))n∈N ⊆ C converges to f(x).

Remark 4.4.14. Clearly, if fn → f strongly then fn
w∗

−→ f .

Theorem 4.4.15. Let E be a Banach space. Then if (fn)n∈N ⊆ E∗ is ∗-weakly convergent, then there exists
a C > 0 such that

∥fn∥ ≤ C

for all n ∈ N.

Proof. We proceed as in the case of Theorem 4.4.5 with the sets

Ak,n := {x ∈ E : |fn(x)| ≤ k} .

Where now the application of Baire’s theorem is justified as E is Banach and thus complete.

Theorem 4.4.16. Let E be a Banach space. Then (fn)n∈N ⊆ E∗ is ∗-weakly convergent to f ∈ E∗ if the
following statements hold.

1. (fn)n∈N is bounded in norm.

2. (fn, x) → (f, x) for any x ∈ ∆, where ∆ ⊆ E is a complete system in E with respect to the strong
topology.

Proof. We proceed as in the case of Theorem 4.4.7, arriving at

|fn(x) − f(x)| ≤ |fn(x) − fn(xK)| + |fn(xK) − f(xK)| + |f(xK) − f(x)|
≤ ∥fn∥∥x− xK∥ + |fn(xK) − f(xK)| + ∥f∥∥xK − x∥

≤ ϵ

3cc+ ϵ

3 + ϵ

3cc

= ϵ.

Example 4.4.17. Consider the space C([a, b]) and the δ-function given by δ(x) = x(0). Let (φn)n∈N ⊆ C([a, b])
be such that for every n ∈ N the following statements hold.

1. φn(t) ≥ 0 with φn(t) = 0 for |t| > 1
n .

2.
∫ b

a
φn(t) dt = 1.

Then for any x ∈ C([a, b]) note that

Φn(x) :=
∫ b

a

φn(t)x(t) dt

=
∫ 1

n

− 1
n

φn(t)x(t) dt

n→∞−→ x(0)
= δ(x).
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As (Φn)n∈N ⊆ C([a, b])∗ it follows that Φn
w∗

→ δ. That is, the δ-function can be represented as a limit, in the
weak-∗ sense, of functions (φn)n∈N.

Remark 4.4.18. Considering E∗ as a linear topological space, we can also consider the weak topology on E∗.
We note that the weak-∗ topology on E∗ is weaker than the weak topology on E∗, and they coincide when E
is reflexive.

Theorem 4.4.19 (Banach-Alaoglu). For a separable normed linear space E, the closed unit ball in E∗ is
compact with respect to the weak-∗ topology.

Corollary 4.4.20. Let E be a separable normed linear space. Then a bounded sequence (xn)n∈N ⊆ E∗ has
a ∗-weakly convergent subsequence.

4.5 Countably-Normed Spaces

Definition 4.5.1. Let E be a linear space and let ∥ ·∥1, ∥ ·∥2 be norms on E. If for any sequence (xn)n∈N ⊆ E
that is Cauchy in ∥ · ∥1 and ∥ · ∥2 we have that convergence to x ∈ E in ∥ · ∥1 means convergence to x ∈ E in
∥ · ∥2, then ∥ · ∥1 and ∥ · ∥2 are said to be compatible.

Definition 4.5.2. A linear space E is countably-normed if a countable system of pairwise compatible norms is
given on E.

The topology for a countable-normed space is generated by the defining system of neighbourhoods of 0 ∈ E given
by

Ur,ϵ := {x ∈ E : ∥x∥0 < ϵ, . . . , ∥x∥r < ϵ} (4.5.1)
for ϵ > 0 and r ∈ N.

Exercise 4.5.3. Verify that a countably-normed space E is a topological linear space with the topology gen-
erated by (4.5.1).

Lemma 4.5.4. Let E be a countably-normed linear space. Then (xn)n∈N ⊆ E converges to x ∈ E if and
only if xn → x with respect to each norm.

Proof. (⇒). Without loss of generality suppose that (xn)n∈N ⊆ E converges to 0 ∈ E. Then fix m ∈ N and
ϵ > 0. For Um,ϵ there exists an N ∈ N such that xn ∈ Um,ϵ for all n ≥ N . In particular, ∥xn∥m ≤ ϵ for all
n ≥ N . Thus, xn → 0 with respect to ∥ · ∥m.
(⇐). Without loss of generality suppose that (xn)n∈N ⊆ E converges to zero with respect to ∥ · ∥m for each
m ∈ N. Then for any m ∈ N and ϵ > 0 let N = maxj=1,...,m(Nj) where Nj is such that ∥xn∥j ≤ ϵ for n ≥ Nj .
It follows that xn ∈ Um,ϵ for all n ≥ N . This implies that xn → 0 in E.

The norms on a countably-normed space E can always be considered such that

∥x∥k ≤ ∥x∥l (4.5.2)

for k < l and all x ∈ E. Indeed if this is not the case, then we can instead consider (∥ · ∥′
k)k∈N where

∥x∥′
k = sup

i=0,...,k
(∥x∥i), (4.5.3)

without affecting the generated topology on E.
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Exercise 4.5.5. Verify that replacing a system of compatible norms (∥ · ∥k)k∈N with ∥·∥′
k)k∈N, as given by

(4.5.3), does not affect the induced topology on the countable normed space.

Lemma 4.5.6. A countably-normed space E is metrizable.

Proof. Consider ρ : E × E → R given by

ρ(x, y) =
∞∑

n=0

1
2n

∥x− y∥n

1 + ∥x− y∥n
.

Note that ρ(x, y) is well-defined, since

|ρ(x, y)| ≤
∞∑

n=0

1
2n

∥x− y∥n

1 + ∥x− y∥n

≤
∞∑

n=0

1
2n

< ∞.

Clearly, ρ(x, y) = ρ(y, x). Moreover, ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if ∥x− y∥n = 0 for all n ∈ N which
happens if and only if x = y. Observe that

d
dx

x

1 + x
= 1

(1 + x)2 > 0

for x ≥ 0. Therefore, as
∥x− z∥n ≤ ∥x− y∥n + ∥y − z∥n,

it follows that

∥x− z∥n

1 + ∥x− z∥n
≤ ∥x− y∥n

1 + ∥x− y∥n + ∥y − z∥n
+ ∥y − z∥n

1 + ∥x− y∥n + ∥y − z∥n

≤ ∥x− y∥n

1 + ∥x− y∥n
+ ∥y − z∥n

1 + ∥y − z∥n
.

Therefore, ρ(x, z) ≤ ρ(x, y) + ρ(y, z), and thus ρ is a metric. Now suppose that (xm)m∈N ⊆ E converges to
x ∈ E with respect to the topology on E, and fix an ϵ > 0. Note that

x

1 + x
= 1 + x− 1

1 + x
= 1 − 1

1 + x
< 1

for x > 0 and
x

1 + x
→ 0

as x ↘ 0. Therefore, ∥x−y∥n

1+∥x−y∥n
< 1 for all x, y ∈ E and n ∈ N. As

∑∞
n=0

1
2n < ∞ there exists an N ∈ N such

that
∑∞

n=N+1
1

2n < ϵ
2 . Moreover, by Lemma 4.5.4 we have that (xm)m∈N converges with respect to each norm

∥ · ∥n. In particular, for each n ∈ {1, . . . , N} there exists an Mn ∈ N such that

∥x− xm∥n

1 + ∥x− xm∥n
<

2N

2N+1 − 1
ϵ

2
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for m ≥ Mn. Taking M = maxn=0,...,N (Mn), it follows for n ≥ M that

ρ(x, xn) =
∞∑

n=0

1
2n

∥x− xn∥n

1 + ∥x− xn∥n

=
N∑

n=0

1
2n

∥x− xn∥n

1 + ∥x− xn∥n
+

∞∑
n=N+1

1
2n

∥x− xn∥n

1 + ∥x− xn∥n

≤
N∑

n=0

1
2n

∥x− xn∥n

1 + ∥x− xn∥n
+

∞∑
n=N+1

1
2n

≤ ϵ

2
2N

2N+1 − 1

N∑
n=0

1
2n

+ ϵ

2

= ϵ

2 + ϵ

2
= ϵ.

Therefore, (xm)m∈N converges to x ∈ E with respect to ρ. Conversely, let (xm)m∈N ⊆ E converge with respect
to ρ. Then for n ∈ N and ϵ > 0 there exists a M ∈ N such that for m ≥ M we have ρ(x, xm) < ϵ

(1+2nϵ) . Hence,
for m ≥ M we have

1
2n

∥x− xm∥n

1 + ∥x− xm∥n
≤

∞∑
k=0

1
2k

∥x− xm∥k

1 + ∥x− xm∥k

= ρ(x, xm)

<
ϵ

(1 + 2nϵ) .

Therefore, ∥x − xm∥n < ϵ for m ≥ M . This implies that (xm)m∈N converges to x ∈ E with respect to ∥ · ∥n

for every n ∈ N. So by Lemma 4.5.4 it follows that (xm)m∈N ⊆ E converges to x ∈ E with the topology of
E. In conclusion, the topology induced by ρ on E is equivalent to the inherent topology of E, and thus E is
metrizable.

Remark 4.5.7. Despite a countably normed space being metrizable, it is not necessarily a normed space. That
is, a single norm on a countably normed space may not necessarily be able to generate the topology induced
by (4.5.1), however, the metric of Lemma 4.5.6 does.

Exercise 4.5.8. To show the metric of Lemma 4.5.6 induces the same topology, it was shown that convergence
under the metric coincides with convergence in the underlying topology. Equivalently show that the metric of
Lemma 4.5.6 induces the same topology by showing the open sets under the metric coincide with the open sets
defined on the original topology.

Example 4.5.9.

1. The space K([a, b]) is a countably normed space with

∥f∥m := sup
t∈[a,b],0≤k≤m

∣∣∣f (k)(t)
∣∣∣

for m = 0, 1, . . . . Indeed, one can verify the compatibility of the norms by verifying the compatibility of
∥ · ∥p and ∥ · ∥p+1. On the one hand, suppose that (φn)n∈N ⊆ K([a, b]) converges to zero with respect to
∥ · ∥p and is Cauchy with respect to ∥ · ∥p+1. Then

(
φ

(k)
n (x)

)
n∈N

converges uniformly to zero as n → ∞
for k = 0, 1 . . . , p, and converges uniformly to some θ(x) for k = p + 1. However, it must be the case
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that θ(x) = 0 and so ∥φn∥p+1 → 0. Conversely, if ∥φ∥p+1 → 0 then

∥φn∥p ≤ ∥φn∥p+1 → 0.

Therefore, ∥ · ∥p and ∥ · ∥p+1 are compatible.

2. The space S∞ is a countably normed space with

∥f∥m := sup
t∈R,k,q≤m

∣∣∣tkf (q)(t)
∣∣∣

for m = 0, 1, . . . . Indeed, suppose that (φn)n∈N ⊆ S∞ converges to zero with respect to ∥ · ∥m1 and is
Cauchy with respect to ∥ · ∥m2 . Then,

|φn(t)| ≤ ∥φn∥m1
n→∞−→ 0,

which means that (φn)n∈N uniformly converges to zero. Thus, since the sequence of derivatives
(
φ

(q)
n

)
n∈N

is Cauchy for each q ≤ m2 it converges and must do so to zero. Therefore,

∥φn∥m2
n→∞−→ 0,

and so the norms are compatible.

Proposition 4.5.10. Let E be a countably-normed linear space. Let f be a linear functional on E. Then f
is continuous on E if and only if f is continuous with respect to ∥ · ∥k for some k ∈ N.

Proof. (⇒). Using Theorem 4.1.10 there exists some neighbourhood U of 0 ∈ E such that f is bounded on U .
By construction of the topology of E there exists some ϵ > 0 and k ≥ 0 such that

Bk,ϵ := {x : ∥x∥k < ϵ} ⊆ U.

Consequently, f is bounded on Bk,ϵ meaning f is continuous with respect to ∥ · ∥k by Theorem 4.1.10.
(⇐). By Theorem 4.1.10, f is bounded with respect to ∥ · ∥k, on a neighbourhood of 0 ∈ E in the topology of
∥ · ∥k. Without loss of generality let f be bounded with respect to ∥ · ∥k on Bk,ϵ := {x : ∥x∥k < ϵ}. Using the
convention that ∥ · ∥l ≤ ∥ · ∥k for l < k it follows that Bl,ϵ ⊆ Bk,ϵ for l < k. Hence, f is also bounded on each
Bl,ϵ for l < k. Therefore, f is bounded on

U := {x : ∥x∥0 < ϵ, . . . , ∥x∥k < ϵ} .

Thus, using Theorem 4.1.10 it follows that f is continuous on E.

Corollary 4.5.11. Let E be a countably-normed linear space. Then

E∗ =
∞⋃

n=0
E∗

n

where E∗
n is the space of continuous linear functionals on E with respect to ∥ · ∥n. In particular, assuming

that (4.5.2) holds, we have that
E∗

0 ⊆ . . . E∗
n ⊆ . . . .

Definition 4.5.12. Let E be a countably-normed linear space. Let f ∈ E∗. Then the smallest n ∈ N such
that f ∈ E∗

n is referred to as the order of f .
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Remark 4.5.13. From Corollary 4.5.11, any f ∈ E∗ has finite order.

4.6 Solution to Exercises
Exercise 4.1.8

Solution. Let {e1, . . . , en} be a basis for E, such that for any x ∈ E one can write

x =
n∑

i=1
xiei

for xi ∈ R. As norms on finite-dimensional spaces are equivalent, we can assume without loss of generality that
the norm on E is given by

∥x∥ =
n∑

i=1
|xi|.

Let f : E → R be a linear functional and let x ∈ E. Given ϵ > 0, let U := Bδ(x), where δ = ϵ
maxi=1,...,n|f(ei)| .

Then, for y ∈ U it follows that

|f(x) − f(y)| =

∣∣∣∣∣
n∑

i=1
(xi − yi)f(ei)

∣∣∣∣∣
≤ max

i=1,...,n
|f(ei)|

n∑
i=1

|xi − yi|

= ∥x− y∥ max
i=1,...,n

|f(ei)|

<
ϵ

maxi=1,...,n |f(ei)|
max

i=1,...,n
|f(ei)|

= ϵ.

Therefore, f is continuous at x ∈ E.

Exercise 4.1.12

Solution. (1) ⇒ (2). Since f is continuous it is bounded on an open neighbourhood U of zero. In particular,

|f(x)| ≤ M

for all x ∈ U and for some M > 0. Hence, for t = M + 1 we have that t ̸∈ f(U).
(2) ⇒ (1). Without loss of generality, we can suppose that U is a neighbourhood of zero. Moreover, we can
suppose that U = {x ∈ E : ∥x∥ < ϵ} for some ϵ > 0. In particular, if x ∈ U then for α ∈ [−1, 1] we have

∥αx∥ = |α|∥x∥ ≤ ∥x∥ < ϵ,

which implies that αx ∈ U . Therefore, if t ̸∈ f(U) it must also be the case that 1
α t ̸∈ f(U), when |α| > 1. It

follows that |f(x)| ≤ |t| for all x ∈ U which implies that f is continuous.
(1) ⇒ (3). Observe that {0} is closed, and so ker(f) = f−1({0}) is closed.
(3) ⇒ (2). The set U := C \ ker(f) is open and such that 0 ̸∈ f(U).
(1) ⇒ (4). Let U ⊆ E be a bounded set, namely

U ⊆ {x ∈ E : ∥x∥ ≤ R}

for some R > 0. A continuous linear functional is bounded on {x ∈ E : ∥x∥ ≤ 1}, that is

|f(x)| ≤ M
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for x ∈ {x ∈ E : ∥x∥ ≤ 1} and some M > 0. Therefore, for x ∈ U we have

|f(x)| = ∥x∥
∣∣∣∣f ( x

∥x∥

)∣∣∣∣ ≤ RM.

Hence, f is bounded on U .
(4) ⇒ (1). As U = {x ∈ E : ∥x∥ ≤ 1} is a bounded set we have that f is bounded on the unit ball and therefore
continuous by Corollary 4.1.11

Exercise 4.2.4

Solution.

1. ∥f∥ ≥ 0 with ∥f∥ = 0 if and only if f(x) = 0 for all x ∈ E \ {0}, which happens if and only if f = 0.

2. Clearly, ∥αf∥ = |α|∥f∥ for α ∈ C.

3. For f1, f2 ∈ E∗ we have

∥f1 + f2∥ = sup
x∈E\{0}

|f1(x) + f2(x)|
∥x∥

≤ sup
x∈E\{0}

|f1(x)| + |f2(x)|
∥x∥

= ∥f1∥ + ∥f2∥.

Exercise 4.2.10

Solution. Throughout let {e1, . . . , en} be a basis for E such that

x =
n∑

i=1
xiei

and
f(x) =

n∑
i=1

fixi,

where fi := f(ei).

1. Observe that

∥f∥ = sup
x∈E\{0}

|f(x)|
∥x∥

= sup
x∈E\{0}

|
∑n

i=1 fixi|
∥x∥

≤ sup
x∈E\{0}

(∑n
i=1 |fi|2

) 1
2 (∑n

i=1 |xi|2
) 1

2

∥x∥

=
(

n∑
i=1

|fi|2
) 1

2

.

With equality when x = (f1, . . . , fn), and so

∥f∥ =
(

n∑
i=1

|fi|2
) 1

2

.
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2. Observe that

∥f∥ = sup
x∈E\{0}

|f(x)|
∥x∥

= sup
x∈E\{0}

|
∑n

i=1 fixi|
∥x∥

≤ sup
x∈E\{0}

(
∑n

i=1 |fi|q)
1
q (
∑n

i=1 |xi|p)
1
p

∥x∥

=
(

n∑
i=1

|fi|q
) 1

q

.

With equality when x =
(
sgn(f1)|f1|q−1, . . . , sgn(fn)|fn|q−1), and so

∥f∥ =
(

n∑
i=1

|fi|q
) 1

q

.

3. Observe that

∥f∥ = sup
x∈E\{0}

|f(x)|
∥x∥

= sup
x∈E\{0}

|
∑n

i=1 fixi|
∥x∥

≤ sup
x∈E\{0}

maxi=1,...,n |fi|
∑n

i=1 |xi|
∥x∥

= max
i=1,...,n

|fi|.

Suppose that |fj | = maxi=1,...,n |fi|. Then equality arises when x = (x1, . . . , xn) where

xi =
{

sgn(fj) i = j

0 otherwise

for i = 1, . . . , n. So
∥f∥ = max

i=1,...,n
|fi|.

4. Observe that

∥f∥ = sup
x∈E\{0}

|f(x)|
∥x∥

= sup
x∈E\{0}

|
∑n

i=1 fixi|
∥x∥

≤ sup
x∈E\{0}

maxi=1,...,n |xi|
∑n

i=1 |fi|
∥x∥

=
n∑

i=1
|fi|.

With equality when x = (sgn(f1), . . . , sgn(fn)) and so

∥f∥ =
n∑

i=1
|fi|.
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Exercise 4.2.14

Solution. Let (f1, f2, . . . ) ∈ ℓq, so that (
∑∞

n=1 |fn|q)
1
q = ∥f∥ℓq < ∞. Let f̂ : ℓp → C be given by

f̂(x) =
∞∑

n=1
fnxn.

Clearly f̂ is linear. Furthermore, ∥∥∥f̂∥∥∥ = sup
x∈ℓp\{0}

|
∑∞

n=1 fnxn|
∥x∥ℓp

≤ sup
x∈ℓp\{0}

∥x∥ℓp∥f∥ℓq

∥x∥ℓp

= ∥f∥ℓq .

Hence, f̂ is bounded which means that f̂ ∈ (ℓp)∗. More specifically, let

x =
(
sgn(f1)|f1|q−1, sgn(f2)|f2|q−1, . . .

)
.

Note that

∥x∥p
ℓp =

∣∣∣∣∣
∞∑

n=1
|fn|p(q−1)

∣∣∣∣∣
=

∞∑
n=1

|fn|q

= ∥f∥q
ℓq

< ∞,

so that x ∈ ℓp. Moreover, ∣∣∣f̂(x)
∣∣∣ =

∣∣∣∣∣
∞∑

n=1
sgn(fn)fn|fn|q−1

∣∣∣∣∣
=

∞∑
n=1

|fn|q

= ∥f∥q
ℓq ,

so that ∣∣∣f̂(x)
∣∣∣

∥x∥
=

∥f∥q
ℓq

∥f∥
q
p

ℓq

= ∥f∥q− q
p

ℓq

= ∥f∥ℓq ,

which implies that
∥∥∥f̂∥∥∥ = ∥f∥ℓq . Conversely, let f̂ ∈ (ℓp)∗. Then one can write

f̂(x) =
∞∑

n=1
fnxn
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where fn = f̂(en). Let f = (f1, f2, . . . ). As f̂ ∈ (ℓp)∗ we know that
∥∥∥f̂∥∥∥ = M < ∞. In particular, letting

xn =
(
sgn(f1)|f1|q−1, . . . , sgn(fn)|fn|q−1, 0, . . .

)
we have xn ∈ ℓp and so we can deduce from our above computations that(

n∑
i=1

|fi|q
) 1

q

≤ M < ∞.

Sending n → ∞ we deduce that
∥f∥ℓq ≤ M < ∞,

that is f ∈ ℓq. As before we deduce that M = ∥f̂∥, thus the map f 7→ f̂ is an isometry.

Exercise 4.2.18

Solution. Let x1, x2 ∈ E with λ ∈ R. Then

φx1+λx2(f) = f (x1 + λx2)
= f(x1) + λf(x2)
= φx1(f) + λφx2(f)
= (φx1 + λφx2) (f).

Therefore, x 7→ φx is a linear map. Suppose x ∈ ker(π). Then f(x) = 0 for all f ∈ E∗. Which means that
x = 0 and so ker(π) = {0} meaning π is injective. Therefore, we conclude that π is an isomorphism onto it
image π(E) ⊆ E∗∗.

Exercise 4.3.3

Solution.

1. For fixed u ∈ U , the map φ(v) = v − u is linear and thus continuous. Hence, u+ V = φ−1(V ) is an open
set. Therefore,

U + V =
⋃

u∈U

u+ V

is open.

2. For α ̸= 0, the map φ(u) = 1
αu is linear and thus continuous. Hence, αU = φ−1(U) is an open set.

3. If α = 0, then αF is closed since its complement is E which is open. If α ̸= 0, then αF c is the complement
of αF . Since F c is open, it follows by statement 2 that αF c is open meaning αF is closed.

4. Since 0 + 0 ∈ U there exists neighbourhoods V1 and V2 of zero such that V1 + V2 ⊆ U by statement 1
of Remark 6.1.5. By statement 2, the sets −V1 and −V2 are open and also contain zero since −0 = 0.
Therefore,

W := V1 ∩ V2 ∩ (−V1) ∩ (−V2)

is an open set containing zero. In particular, we note that if w ∈ W then −w ∈ W so that −W = W .
Moreover, for w1, w2 ∈ W we have that w1 ∈ V1 and w2 ∈ V2 so that

w1 + w2 ∈ V1 + V2 ⊆ U,

meaning W +W ⊆ U .
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5. Note that E \ F − x is an open set containing zero. Therefore, by statement 4 there exists an open set V ′
x

of zero such that V ′
x + V ′

x ⊆ E \ F − x. Similarly, as V ′
x is an open set containing zero, by statement 4

there exists an open set Vx of zero such that Vx + Vx ⊆ V ′
x. In particular, we have that

Vx + Vx + Vx + Vx ⊆ E \ F − x,

or equivalently
x+ Vx + Vx + Vx + Vx ⊆ E \ F.

Since, 0 ∈ Vx it follows that
x+ Vx + Vx + Vx ⊆ E \ F.

Now suppose that
(x+ Vx + Vx) ∩ (F + Vx) ̸= ∅.

Then there exists u1, u2, u3 ∈ Vx and f ∈ F such that x + u1 + u2 = f + u3 which implies that
f = x+ u1 + u2 − u3. However, since −u3 ∈ Vx it follows that

f ∈ x+ Vx + Vx + Vx,

which is a contradiction. Therefore, x+Vx +Vx and F +Vx are non-intersecting neighbourhoods of x and
F respectively.

Exercise 4.3.9

Solution. (⇒). Let U be a neighbourhood of zero. Let k ∈ R be such that A ⊆ λU for every |λ| ≥ k.
Equivalently, 1

λA ⊆ U for every |λ| ≥ k. As there exists an N ∈ N such that ϵn ≤ 1
k for n ≥ N it follows that

ϵnxn ∈ U for every n ≥ N . Hence, ϵnxn → 0 as n → ∞.
(⇐). Let x ∈ A. Take xn = x for every n ∈ N and (ϵn)n∈N ⊆ R>0 such that ϵn → 0 as n → ∞. Then given an
open neighbourhood U of zero there exists an N ∈ N such that ϵnx ∈ U . In particular, this means that αx ∈ U
for 0 < α < supn≥N (ϵn). Let k > 1

supn≥N ϵn
. Then x ∈ λU for every |λ| ≥ k. As k is independent of x it follows

that A ⊆ λU for every |λ| ≥ k. Therefore, A is bounded.

Exercise 4.3.14

Solution. Assuming the topology of Definition 4.3.12, we have already seen that (Uϵ,B)ϵ>0 is an open base for
the strong topology as given by Definition 4.2.5. On the other hand, suppose E is a normed linear space with
E∗ having the strong topology as given by Definition 4.2.5. Consider the set Uϵ,A. Then for g ∈ Uϵ,A it must
be the case that |g(x)| ≤ δ < ϵ. Otherwise, the function 1

ϵ−|g(x)| would be continuous and unbounded on A,
which cannot be the case. Then as the set A is bounded, there exists an R such that ∥x∥ ≤ R for every x ∈ A.
Therefore, one can take the open set

U :=
{
f ∈ E∗ : ∥f∥ < ϵ− δ

R

}
and observe that

|g(x) + f(x)| ≤ |g(x)| + |f(x)|
≤ δ + ∥f∥∥x∥

< δ + ϵ− δ

R
R

= ϵ.

Thus, U + g ⊆ Uϵ,A which means that Uϵ,A is open.

Exercise 4.4.1
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Solution. Since the pre-images of open sets under continuous functionals are open, it follows that U is the finite
intersection of open sets and thus open. Suppose

U1 = {x ∈ E : |fj(x)| < ϵ1, j = 1, . . . , n1}

and
U2 = {x ∈ E : |fj(x)| < ϵ2, j = n1 + 1, . . . , n2} .

Then,
U1 ∩ U2 ⊇ {x ∈ E : |fj(x)| < min(ϵ1, ϵ2), j = 1, . . . , n2} .

Therefore, the system is an open base.

Exercise 4.5.3

Solution. It suffices to check that linear operations are continuous on E.

• For fixed λ ̸= 0 consider f : E → E given by f(x) = λx. For x0 ∈ E consider the neighbourhood
Ur,ϵ + f(x0). Note that for x ∈ Ur, ϵ

|λ|
+ x0 it follows that

∥f(x) − f(x0)∥l = ∥λx− λx0∥l

= |λ|∥x− x0∥l

≤ |λ| ϵ
|λ|

= ϵ,

for l = 0, . . . , r, which implies that f(x) ∈ Ur,ϵ + f(x0). Therefore, f is continuous at x0 and hence
continuous on E. If λ = 0 then f(x) = 0 which is continuous.

• For fixed y ∈ E consider f : E → E given by f(x) = x + y. For x0 ∈ E consider the neighbourhood
Ur,ϵ + f(x0). Note that for x ∈ Ur,ϵ + x0 it follows that

∥f(x) − f(x0)∥l = ∥x− x0∥l

≤ ϵ,

for l = 0, . . . , r, which implies that f(x) ∈ Ur,ϵ + f(x0). Therefore, f is continuous at x0 and hence
continuous on E.

Exercise 4.5.5

Solution. Let
Ur,ϵ = {x ∈ E : ∥x∥0 < ϵ, . . . , ∥x∥r < ϵ}

and
U ′

r,ϵ = {x ∈ E : ∥x∥′
0 < ϵ, . . . , ∥x∥′

r < ϵ} ,

with (Ur,ϵ)r∈N,ϵ>0 generating the topology τ and
(
U ′

r,ϵ

)
r∈N,ϵ>0 generating the topology τ ′.

• If x ∈ U ′
r,ϵ then

∥x∥k ≤ sup
l=0,...,r

(∥x∥l) = ∥x∥′
r < ϵ,

for any k = 0, . . . , r. Therefore, x ∈ Ur,ϵ and so U ′
r,ϵ ⊆ Ur,ϵ. So by linearity, we deduce that τ ⊆ τ ′.

• If x ∈ Ur, ϵ
2

then
∥x∥′

k = sup
l=0,...,k

(∥x∥l) ≤ ϵ

2 < ϵ

for any k = 0, . . . , r. Therefore, x ∈ U ′
r,ϵ and so Ur, ϵ

2
⊆ U ′

r,ϵ. So by linearity, we deduce that τ ′ ⊆ τ .
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Exercise 4.5.8

Solution. LetNρ be an open neighbourhood with respect to the metric ρ. For x0 ∈ Nρ consider the neighbourhood
Nρ − x0 of zero. Then there exists a neighbourhood

B = {x ∈ E : ρ(x, 0) < ϵ}

of zero such that B ⊆ Nρ − x0. Let r ∈ N be such that
∑∞

n=r+1
1

2n < ϵ
2 . Then for x ∈ Ur, ϵ

4
it follows that

ρ(x, 0) =
∞∑

n=0

1
2n

∥x∥n

1 + ∥x∥n

=
r∑

n=0

1
2n

∥x∥n

1 + ∥x∥n
+

∞∑
n=r+1

1
2n

∥x∥n

1 + ∥x∥n

≤
r∑

n=0

1
2n

∥x∥n

1 + ∥x∥n
+ ϵ

2

≤
r∑

n=0

1
2n

ϵ
4

1 + ϵ
4

+ ϵ

2

≤ ϵ

4

r∑
n=0

1
2n

+ ϵ

2

≤ ϵ

2 + ϵ

2
= ϵ.

Therefore, Ur, ϵ
4

⊆ B, implying that B is open in the topology of the countably normed space. Conversely,
consider

Ur,ϵ = {x ∈ E : ∥x∥j < ϵ for j = 0, . . . , r}

and
B = {x ∈ E : ρ(x, 0) < ϵ̃}.

For x ∈ B we have 1
2n

∥x∥n

1+∥x∥n
< ϵ̃ for every n ∈ N, in particular, (1 − 2nϵ̃) ∥x∥n < 2nϵ̃. Therefore, for sufficiently

small ϵ̃ we have 1 − 2nϵ̃ > 0 for n = 0, . . . , r so that

∥x∥n <
2nϵ̃

1 − 2nϵ̃
.

As ϵ̃ ↘ 0 it follows that ∥x∥n ↘ 0 for n = 0, . . . , r. Therefore, for ϵ̃ sufficiently small we have ∥x∥n < ϵ
for n = 0, . . . , r which implies that x ∈ Ur,ϵ. Hence, B ⊆ Ur,ϵ meaning Ur,ϵ is open in the topology of the
metric.
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5 Distributions
Consider f : R → R a locally integrable function and φ : R → R a compactly supported function. Then

T (f) = (f, φ) =
∫ ∞

−∞
f(x)φ(x) dx, (5.0.1)

is a well-defined linear functional on the space of compactly supported functions φ. More generally, the space
of linear functionals that can be identified with a function f in the form of (5.0.1) increases as the space of
functions, on which (5.0.1) is to be well-defined, decreases. This is because as the space of functions decreases,
the regularity of f required for (5.0.1) to be well-defined also decreases which increases the opportunity for a
function f to determine a well-defined linear functional. However, the space of all linear functionals on a space
of functions extends beyond those of the form (5.0.1).

5.1 The Space of Test Functions
For A ⊆ R, let C∞

c (A) denote the linear space of infinitely differentiable functions on A with compact support.
Let D(A) = C∞

c (A) and let D = D(R).

Example 5.1.1. Consider

φ(x) =
{

exp
(

− 1
(b−x)(x−a)

)
x ∈ (a, b)

0 otherwise.

Then φ ∈ D.

Definition 5.1.2. The linear space D is referred to as the space of test functions, with elements of D known
as test functions.

Let Dm ⊆ D consist of the test functions vanishing outside [−m,m] such that (Dm)m∈N is an increasing sequence
of sets with D =

⋃
m∈N Dm. The space Dm is countably-normed with

∥φ∥(m)
n = sup

0≤k≤n,|t|≤m

∣∣∣φ(k)(t)
∣∣∣

for n ∈ N. A set U is a neighbourhood of 0 ∈ D if for all m ∈ N we have that U ∩ Dm is a neighbourhood of
0 ∈ Dm. The topology on D induced by these neighbourhoods makes D a topological linear space.

Lemma 5.1.3. The sequence (φn)n∈N ⊆ D converges to φ ∈ D if and only if the following statements hold.

1. There is an interval [a, b] such that for all n ∈ N we have φn(x) = 0 for x ∈ R \ [a, b].

2. For fixed k ∈ N, the sequence
(
φ

(k)
n (x)

)
n∈N

⊆ R converges to φ(k)(x) uniformly.

Proof. (⇒). Suppose that (φn)n∈N ⊆ D converges to zero in D.

• Suppose that 1 does not hold. Then for each j ∈ N there exists nj ∈ N with |xnj
| > j such that

φnj
(xnj

) =: ϵj > 0. Since φnj
→ 0, every neighbourhood of zero contains a tail of this sequence.

However, let U be a neighbourhood of zero containing distributions such that if ψ ∈ D1 then ∥ψ∥(1)
0 < ϵ0

2 ,
if ψ ∈ D2 \ D1 then ∥ψ∥(2)

0 < 1
2 min(ϵ0, ϵ1) and so on. By construction, the set U cannot contain a tail of

φnj , which is a contradiction.

• Note that statement 1 implies that for every n ∈ N we have φn ∈ Dm for some m ∈ N. Since (φn)n∈N
converges in D it also converges in Dm. In particular, it converges with respect to each norm of Dm by
Lemma 4.5.4. Hence, φ(k)

n → 0 uniformly as n → ∞ for each k ∈ N.
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(⇐). Suppose for (φn)n∈N ⊆ D we have φn(x) = 0 for x ∈ R \ [−m,m] and every n ∈ N. Moreover, suppose
that

(
φ

(k)
n

)
n∈N

converges uniformly to zero for every k ∈ N. Then (φn)n∈N ⊆ Dm converges to zero in Dm.
Therefore, for any neighbourhood U of zero in D, there exists a N ∈ N such that for every n ≥ N we have

φn ∈ U ∩ Dm ⊆ U.

Thus, φn → φ in D.

Definition 5.1.4. A functional f is a distribution or a generalised function if f ∈ D∗. We use D′ = D∗ to
denote the space of distributions.

Lemma 5.1.5. A linear functional f on D is continuous if and only if f(φn) → f(φ) when φn → φ in D.

Proof. (⇒). Without loss of generality suppose that (φn)n∈N ⊆ D is such that φn → 0. In particular, by
statement 1 of Lemma 5.1.3 there exists a M > 0 such that for all n ∈ N we have φn(x) = 0 for all x ∈
R \ [−M,M ]. Given an ϵ > 0, by the continuity of f , there exists an open neighbourhood U of 0 ∈ D such that
|f(φ)| < ϵ for all φ ∈ D. In particular U ∩ DM is open so that there exists a δ > 0 such that

Ur,δ =
{
φ ∈ D : ∥φ∥(M)

0 < δ, . . . , ∥φ∥(M)
r < δ

}
⊆ U.

By statement 2 of Lemma 5.1.3 there exists a N ∈ N such that for each k = 0, . . . , r we have ∥φn∥(M)
k < δ for

n ≥ N . Therefore,
φn ∈ Ur,δ ⊆ U,

and so |f(φn)| < ϵ. Thus, f(φn) → 0.
(⇐). Suppose f is not continuous at zero. Then for some ϵ > 0 it follows that for any neighbourhood U of
0 ∈ D there exists a φ ∈ U such that |f(φ)| ≥ ϵ. Note that

Un :=
{
φ : ∥φ∥(M)

k <
1
n

for k = 0, . . . , n ∈ N
}

is an open neighbourhood of 0 ∈ D. Let φn ∈ Un be such that |f(φn)| ≥ ϵ, in particular we can choose φn

such that φn(x) = 0 for x ∈ R \ [−M,M ]. Since, ∥φn∥(M)
k → 0 as n → ∞ for any k ∈ N it follows that(

φ
(k)
n (x)

)
n∈N

converges uniformly to zero for each k ∈ N. Therefore, φn → 0 in D by Lemma 5.1.3. However,
this is a contradiction, as this would imply that f(φn) → 0 which is not the case. Hence, f must be continuous
at zero.

Remark 5.1.6. By linearity, it is sufficient to check the criterion of Lemma 5.1.5 for φn → 0 in D.

Let f : R → R be a locally integrable function. With f one can identify the linear functional

(f, φ) :=
∫ ∞

−∞
f(x)φ(x) dx.

In particular, if φn → φ, then by statement 1 of Lemma 5.1.3 there exists a compact set K ⊆ R such that

(f, φn) =
∫

K

f(x)φn(x) dx

for every n ∈ N. By statement 2 of Lemma 5.1.3, the sequence (φn(x))n∈N converges uniformly to φ(x) on
K. As φ is bounded, the sequence (φn)n∈N is uniformly bounded on R. Therefore, as f is locally integrable,
|(f, φn)| ≤ M for every n ∈ N. So one can use the dominated convergence theorem to deduce that (f, φn) →
(f, φ) as n → ∞. Thus, using Lemma 5.1.5 we deduce that (f, ·) is continuous and hence defines a distribution.
Distributions that can be identified with an f in such a way are referred to as regular, whilst other distributions
are referred to as singular.
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Example 5.1.7. The following are singular distributions.

1. The δ-function, which is given by δ(φ) = φ(0). Similarly, the distribution δ(x−a) given by δ(x−a)(φ) =
φ(a) is singular. Indeed, suppose that δ(φ) =

∫∞
−∞ f(x)φ(x) dx for some locally integrable function f .

Then for φ ∈ D with 0 ̸∈ supp(φ), it follows that

0 =
∫

supp(φ)
f(x)φ(x) dx.

This implies that f(x) = 0 almost everywhere on R. Hence, if φ ∈ D is such that 0 ∈ supp(φ) it follows
that

0 =
∫ ∞

−∞
f(x)φ(x) dx = δ(φ) = φ(0) > 0,

which is a contradiction. Therefore, the δ-function is a singular distribution.

2. Recall that 1
x is not integrable at zero. However,

f 1
x

(φ) := lim
ϵ↘0

∫
R\[−ϵ,ϵ]

1
x
φ(x) dx

exists for φ(x) ∈ D. In particular, for φ ∈ D there exists an R > 0 such that φ(x) = 0 on x ∈ R\[−R,R].
Thus,

f 1
x

(φ(x)) = lim
ϵ↘0

∫
R\[−ϵ,ϵ]

1
x
φ(x) dx

= lim
ϵ↘0

∫
[−R,R]\[−ϵ,ϵ]

1
x
φ(x) dx

= lim
ϵ↘0

∫
[−R,R]\[−ϵ,ϵ]

φ(x) − φ(0)
x

dx+ φ(0) lim
ϵ↘0

∫
[−R,R]\[−ϵ,ϵ]

1
x

dx

=
∫

[−R,R]

φ(x) − φ(0)
x

dx+ 0.

Then through integration by parts

f 1
x

(φ) = −
∫

[−R,R]
φ′(x) log(|x|) dx

which implies that ∣∣∣f 1
x

(φ)
∣∣∣ ≤ C(R) sup

|x|≤R

|φ′(x)| .

Therefore, if φ → 0 in D then
∣∣∣f 1

x
(φ)
∣∣∣ → 0 by statement 2 of Lemma 5.1.3, and so by Lemma 5.1.5 it

follows that f 1
x

is continuous.

Lemma 5.1.8. A linear functional f on D is continuous if and only if f is continuous as a linear function on
Dm for every m ∈ N.

Proof. (⇒). Note that f were continuous on Dm for every m ∈ N then for every m ∈ N, by Proposition 4.5.10,
there would exist a c > 0 and n ∈ N such that

|f(φ)| ≤ c∥φ∥(m)
n = c sup

0≤k≤n,|x|≤m

∣∣∣φ(k)(x)
∣∣∣

for every φ ∈ Dm. Therefore, for contradiction, suppose that there exists a m ∈ N such that for all n ∈ N and
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c > 0 there exists a φn,c ∈ Dm such that

|f(φn,c)| > c ∥φn,c∥(m)
n .

Let
ψn,c := φn,c

|f (φn,c)| ,

then 1 > c ∥ψn,c∥(m)
n . In particular,

∥ψn,n∥(m)
n <

1
n

which implies that ψn,n → 0 ∈ D by Lemma 5.1.3. However, |f (ψn,n)| = 1 ̸→ 0, which contradicts Lemma
5.1.5.
(⇐). Let φn → φ in D. Then, using statement 1 of Lemma 5.1.3, there exists an interval [a, b] such that
φn(x) = 0 for x ∈ R \ [a, b] and every n ∈ N. In particular, there exists an m ∈ N such that φn(x) = 0 for
x ∈ R \ [−m,m] for every n ∈ N. Therefore, φn → φ in Dm. Hence, f(φn) → f(φ) as f is continuous on Dm.
Thus, f is continuous using Lemma 5.1.5.

One can show that on D′, the convergence of sequences under the strong and weak-∗ topology coincide. This
motivates Definition 5.1.9 for convergence in D′.

Definition 5.1.9. A sequence (fn)n∈N ⊆ D′ converges to f ∈ D′ if fn(φ) → f(φ) for any φ ∈ D.

5.2 Derivative of a Distribution
Suppose that f is a continuously differentiable function, and let

T (φ) =
∫ ∞

−∞
f(x)φ(x) dx,

where φ is differentiable with compact support. Then integrating by parts it follows that∫ ∞

−∞
f ′(x)φ(x) dx = −

∫ ∞

−∞
f(x)φ′(x) dx. (5.2.1)

It is natural to consider the left-hand side of (5.2.1), as the derivative of T , namely T ′(φ). Consequently, as the
right-hand side of (5.2.1) does not require the assumption that f is differentiable, it provides a means by which
to define a derivative more generally.

Definition 5.2.1. For f ∈ D′, its derivative is given by

f ′(φ) = −f (φ′) .

Similarly,
f (k)(φ) = (−1)kf

(
φ(k)

)
for k = 1, 2, . . . .

With this we see that if fn → f in D′, then f (k)
n → f (k) in D′.

Example 5.2.2.

1. If f : R → R is continuously differentiable, then its derivative is identified with the distribution of the
corresponding induced distribution.

2. Let

h(x) =
{

1 x > 0
0 x ≤ 0,
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such that
(h, φ) =

∫ ∞

0
φ(x) dx.

Then

(h′, φ) = − (h, φ′)

= −
∫ ∞

0
φ′(x) dx

= φ(0).

Therefore, h′ = δ.

3. Using statements 1 and 2 we see that if f : R → R is a function with jumps at (xi)i∈N equal to (hi)i∈N
and continuously differentiable everywhere else, then its distributional derivative is the sum of the ordinary
derivative at the points where it exists, and

∑∞
i=1 hiδ(x− xi) otherwise.

4. The distributional derivative of δ is
δ′(φ) = −φ′(0).

5. Consider

f(x) =
∞∑

n=1

sin(nx)
n

=


π−x

2 0 < x ≤ π

− π+x
2 −π ≤ x < 0

0 x = 0,

extended as a 2π periodic function on R. Using the right-hand side it follows from statement 3 that

f ′(x) = −1
2 + π

∞∑
k=−∞

δ(x− 2πk).

However, using the left-hand side it follows that

f ′(x) =
∞∑

n=1
cos(nx)

in the sense of distributions. Therefore,
∞∑

n=−∞
einx = 2π

∞∑
k=−∞

δ(x− 2πk).

5.2.1 Application to Differential Equations

To understand how distributions can be applied to solve differential equations it will be useful to let D(1) denote
the linear subspace of D consisting of distributions φ ∈ D that are the derivative of some distribution ψ ∈ D.

Lemma 5.2.3. Let φ ∈ D. Then φ ∈ D(1) if and only if
∫∞

−∞ φ(x) dx = 0.

Proof. (⇒). Let φ(x) = ψ′(x) for ψ ∈ D. Then∫ ∞

−∞
φ(x) dx = [ψ(x)]∞−∞ = 0.

(⇐). Let
ψ(x) :=

∫ x

−∞
φ(t) dt.
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Note that ψ(x) is infinitely differentiable, with ψ′ = φ. As φ has compact support, there exists a K such that
φ(x) = 0 for x ̸∈ [−K,K]. In particular, as

∫∞
−∞ φ(t) dt = 0 we have that ψ(x) = 0 for x ̸∈ [−K,K]. Therefore,

the support of ψ is bounded and thus must also be compact. Hence, ψ ∈ D which means φ ∈ D(1).

Remark 5.2.4. Lemma 5.2.3 can be interpreted as saying that the kernel of the functional f ≡ 1 is D(1).
Hence, using the general theory of linear functionals on linear spaces any φ ∈ D can be represented as

φ = cφ0 + φ1

for some φ1 ∈ D(1), c ∈ C, with φ0 a fixed element of D \ D(1) that satisfies

(f, φ0) =
∫ ∞

−∞
φ0(x) dx = 1.

Note that c =
∫∞

−∞ φ(x) dx so we deduce that φ1 = φ− cφ0.

Theorem 5.2.5. The only solutions to the equation y′ = 0 in D′ are constant solutions.

Proof. With y′ = 0 it follows that
0 = (y′, φ) = (y,−φ′) (5.2.2)

for all φ ∈ D. In particular, (5.2.2) defines the linear functional y on D(1). To determine the linear functional y
on D, it suffices to determine y on φ0 from Remark 5.2.4. Let (y, φ0) = α for some α ∈ C, then

(y, φ) = (y, cφ0 + φ1)
= c(y, φ0) + (y, φ1)
(5.2.2)= c(y, φ0)
= cα

=
∫ ∞

−∞
αφ(x) dx.

Hence, y = α on D.

Corollary 5.2.6. Let f, g ∈ D′. If f ′ = g′ then f − g = c, where c is a constant.

Theorem 5.2.7. The differential equation y′ = f for f ∈ D′ has a solution y ∈ D′.

Proof. With y′ = f we have
(f, φ) = (y′, φ) = (y,−φ′) (5.2.3)

for all φ ∈ D. From (5.2.3), the linear functional y is defined on all of D(1). In particular, for φ1 ∈ D(1), we have

(y, φ1) =
(
f,−

∫ x

−∞
φ1(t) dt

)
.

Let φ0 ∈ D \ D(1) be as in Remark 5.2.4, and set (y, φ0) = 0. Then for φ ∈ D we have

(y, φ) = (y, φ1)

=
(
f,−

∫ x

−∞
φ1(t) dt

)
(5.2.4)
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where φ1 = φ− cφ0. Note that y as given by (5.2.4) is linear. Moreover, let (φn)n∈N ⊆ D be such that φn → 0.
Let φn = c(n)φ0 + φ

(n)
1 for each n ∈ N. As φ(n) ∈ D(1), it follows that there exists a ψ(n) ∈ D such that(

ψ(n))′ = φ
(n)
1 . Thus,

|(y, φn)| =
∣∣∣∣(f,−∫ x

−∞
φ

(n)
1 (t) dt

)∣∣∣∣
=
∣∣∣∣(f,−∫ x

−∞

(
ψ(n)(t)

)′
dt
∣∣∣∣

=
∣∣∣(f, ψ(n)

)∣∣∣
As φn → 0 it is clear that ψ(n) → 0 and so as f is continuous we have

∣∣(f, ψ(n))∣∣ → 0. Hence, |(y, φn)| → 0
which implies that y is also continuous. Observing that

(y′, φ) = (y,−φ′)
(5.2.4)=

(
f,

∫ x

−∞
φ′(t) dt

)
= (f, φ)

it follows that y′ = f and so y ∈ D′ is a solution to the differential equation.

Remark 5.2.8. By Corollary 5.2.6, the solution given by Theorem 5.2.7 is unique up to an additive constant.

Theorem 5.2.9. Consider a system of differential equations given by

y′
j =

n∑
k=1

ajk(x)yk (5.2.5)

for j = 1, . . . , n, where the ajk are infinitely differentiable functions. Then all solutions to (5.2.5) in D′ are
regular and coincide with the classical solutions.

Theorem 5.2.10. Consider a system of differential equations given by

y′
j =

n∑
k=1

ajk(x)yk + fj (5.2.6)

for j = 1, . . . , n, where the ajk are infinitely differentiable functions and fj ∈ D′. Then a solution (yj)n
j=1 ⊆ D′

to (5.2.6) exists and is unique up to an arbitrary solution of (5.2.5). Moreover, if fj for j = 1, . . . , n are
classical ordinary functions then the solution to (5.2.6) is also classical.

Remark 5.2.11. By a regular distribution, we refer to the distributions that can be identified by a function f
through the equation

T (φ) = (f, φ) =
∫ ∞

−∞
f(x)φ(x) dx.

Note that we could have alternatively defined correspondence between functions f and distributions through
the integral ∫ ∞

−∞
f(x)φ(x) dx.
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Equally, we could have considered ∫ ∞

−∞
f(x)φ(x) dx

or ∫ ∞

−∞
f(x)φ(x) dx.

Each of which would have provided a different way of embedding ordinary functions into distributions.

5.3 Functions of Several Variables
Let φ(x1, . . . , xn) on Rn have partial derivatives of all orders with respect to each of the n variables, and vanish
outside some [a1, b1] × · · · × [an, bn]. One can introduce a topology on this linear space such that φk → φ if
there exists some B := [a1, b1] × · · · × [an, bn] such that φk(x1, . . . , xn) = 0 on Rn \B for all k ∈ N, and

∂rφk

∂xα1
1 . . . ∂xαn

n
→ ∂r

∂xα1
1 . . . ∂xαn

n

for r =
∑n

j=1 αj uniformly on B for any (α1, . . . , αn) ⊆ Nn. We denote this space D (Rn) = C∞
c (Rn).

Definition 5.3.1. A linear continuous functional on D (Rn) is referred to as a distribution of n-variables. The
corresponding space of distributions is denoted D′ (Rn).

Locally integrable functions f , on Rn correspond to the regular distributions

(f, φ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
φ(x1, . . . , xn)f(x1, . . . , xn) dx1 . . . dxn.

All the results derived for single-variable distributions can be extended to the n-variable case. For example, the
derivative of an n-variable distribution is given by(

∂rf

∂xα1
1 . . . ∂xαn

n
, φ

)
= (−1)r

(
f,

∂rφ

∂xα1
1 . . . ∂xαn

n

)
.

5.4 Functions on the Unit Circle
Consider the unit circle in the complex plane, namely

Π :=
{
x ∈ C : x = eiθ, 0 ≤ θ < 2π

}
.

Just as we have consider functions defined on R, we can consider functions defined on Π. Functions on Π can be
viewed as periodic functions on R. For the linear space of infinitely differentiable functions on Π, we can consider
a topology where φn → φ if φ(k)

n (x) → φ(k)(x) uniformly on Π for every k = 0, 1, . . . . As Π is bounded the
property that the functions of D(Π) have compact support is implicit, a property that we had to explicitly require
for D. We denote this space as D(Π).

Definition 5.4.1. An element f ∈ D(Π)∗ is referred to as a distribution on the unit circle.

Functions and distributions on Π can be extended periodically on R.

Definition 5.4.2. An element f ∈ D′ is a periodic distribution with period a if

(f, φ(x− a)) = (f, φ(x))

for every φ ∈ D.

89



Example 5.4.3. Recall from statement 5 of Example 5.2.2 that
∞∑

n=−∞
einx = 2π

∞∑
k=−

δ(x− 2πk)

in the sense of distributions. From the right-hand side, it is clear that this is a distribution of period 2π.

5.5 Tempered Distributions
Let S = S∞ be the space of Schwartz functions on R as given by Definition 3.3.1.

Exercise 5.5.1. Show that S is a countably-normed space with norms

∥φ∥n =
∑

p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x|j
)
φ(k)(x)

∣∣∣
for n = 0, 1, . . . .

Lemma 5.5.2. A sequence (φn)n∈N ⊆ S converges to φ ∈ S if and only if for any q = 0, 1, . . . the sequence(
φ

(q)
n

)
n∈N

converges uniformly on any bounded interval, and∣∣∣xpφ(q)
n (x)

∣∣∣ < Cp,q

holds for some constant Cp,q > 0 independent of n ∈ N.

Proof. From Lemma 4.5.4 we have that φn → φ in S if and only if φn → φ with respect to each norm ∥ · ∥n.
Since S is a linear space, it suffices to consider φ = 0.
(⇒). Let p, q ∈ {0, 1, . . . } and m = p+ q. Since ∥φn∥m → 0, it follows that

sup
x∈R

∣∣∣φ(q)
n (x)

∣∣∣ ≤ ∥φn∥m
n→∞−→ 0

and
sup
x∈R

∣∣∣xpφ(q)
n (x)

∣∣∣ ≤ ∥φn∥m
n→∞−→ 0. (5.5.1)

In particular, (5.5.1) implies that there exists a Cp,q > 0 independent of n ∈ N such that∣∣∣xpφ(q)
n (x)

∣∣∣ ≤ Cp,q

for all x ∈ R.
(⇐). Letm ∈ N. Let j, k ∈ N be such that j+k ≤ m. Let ϵ > 0. Let x̃ > max

(
2(m+1)2

ϵ C1,k,
2(m+1)2

ϵ Cj+1,k, 1
)

.
Let N ∈ N be such that ∣∣∣φ(k)

n (x)
∣∣∣ ≤ ϵ

2x̃j(m+ 1)2
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for |x| ≤ x̃. Then for n ≥ N we have

sup
x∈R

∣∣∣(1 + |x|j
)
φ(q)

n (x)
∣∣∣ = max

(
sup

|x|≤x̃

∣∣∣(1 + |x|j
)
φ(q)

n (x)
∣∣∣ , sup

|x|>x̃

∣∣∣(1 + |x|j
)
φ(q)

n (x)
∣∣∣)

≤ max

 sup
|x|≤x̃

(
2x̃j ϵ

2x̃j(m+ 1)2

)
, sup

|x|>x̃

 |x|
∣∣∣φ(q)

n (x)
∣∣∣

|x|
+

|x|j+1
∣∣∣φ(q)

n (x)
∣∣∣

|x|


≤ max

(
ϵ

(m+ 1)2 ,
C1,k

x̃
+ Cj+1,k

x̃

)
≤ max

(
ϵ

(m+ 1)2 ,
ϵ

2(m+ 1)2 + ϵ

2(m+ 1)2

)
= ϵ

(m+ 1)2 .

Hence,

∥φn∥m =
∑

p+q=m

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x|j
)
φ(k)

n (x)
∣∣∣

≤
∑

p+q=m

ϵ

(m+ 1)2

= (m+ 1)2 ϵ

(m+ 1)2

= ϵ.

Therefore, φn → 0 with respect to ∥ · ∥m. Since m ∈ N was arbitrary it follows by Lemma 4.5.4 that φn → 0 in
S.

Definition 5.5.3. A linear continuous functional on S is referred to as a tempered distribution. The space of
tempered distribution is denoted S ′.

As before regular functionals on S can be identified with a function f through∫ ∞

−∞
f(x)φ(x) dx = (f, φ).

Example 5.5.4. As D ⊆ S it follows that S ′ ⊆ D′. In particular, these inclusions are strict. Indeed, ex2 ∈ D′

since ex2 is locally integrable. However, from Example 3.3.5 we know that e−x2 ∈ S∞. Therefore, since∫ ∞

−∞
ex2

e−x2
dx = ∞,

the regular distribution of ex2 cannot be a tempered distribution.

Lemma 5.5.5. A linear functional f on S is continuous if and only if f(φn) → f(φ) when φn → φ in S.

Definition 5.5.6. A sequence (fn)n∈N ⊆ S ′ converges to f ∈ S ′ if fn(φ) → f(φ) for all φ ∈ S.

5.5.1 Fourier Transform
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Definition 5.5.7. The Fourier transform of a distribution f ∈ S ′ is the distribution F [f ] = g ∈ S ′ given by

(g, φ) = (f, F [φ])

for all φ ∈ S.

Note that
(g, φ1 + λφ2) = (f, F [φ1 + λφ2])

(1)= (f, F [φ1] + λF [φ2])
(2)= (f, F [φ1]) + λ(f, F [φ2])
= (gφ1) + λ(g, φ2),

where in (1) the linearity of the Fourier transform on S is used, and in (2) the linearity of f is used. Thus, we
deduce that g is linear. Moreover, suppose that φn → φ in S. Observe that F [φn] ∈ S and F [φn] → F [φ] in S.
So as f is a distribution on S it follows that

(g, φn) = (f, F [φn])
→ (f, F [φ])
= (g, φ).

Therefore, g as given by Definition 5.5.7 is a distribution on S.

Exercise 5.5.8. As L1(R) ⊆ S ′, as regular distributions, it should be the case that Definition 5.5.7 extends
Definition 3.1.3. Verify that this is indeed the case.

Example 5.5.9. Let ψ = F [φ].

1. Let f(x) = c, where c ∈ R. Then

(F [c], φ) = (f, ψ)

= c

∫ ∞

−∞
ψ(x) dx

= 2πcφ(0),

where for the last equality we have used the inverse Fourier transform of φ. Thus, F [c] = 2πcδ(x).

2. Let f(x) = eiax. Then (
F
[
eiax

]
, φ
)

= (f, ψ)

=
∫ ∞

−∞
eiaxψ(x) dx

= 2πφ(a),

where in the last equality we have used the inverse Fourier transform on φ. Thus F
[
eiax

]
= 2πδ(x−a).

3. Let f(x) = δ(x− a). Then

(F [δ(x− a)] , φ) = (f, ψ)
= ψ(a)

=
∫ ∞

−∞
φ(x)e−iax dx.
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Thus, F [δ(x− a)] = e−iax.

4. Recall, the distribution f 1
x

given by

(
f 1

x
, φ
)

= lim
ϵ↘0

∫
R\[−ϵ,ϵ]

φ(x)
x

dx.

Suppose F
[
f 1

x

]
= g. Then

(g′, φ) = (g,−φ′)

=
(
f 1

λ
,−F [φ′]

)
=
(
f 1

λ
,−iλψ(λ)

)
= −i lim

ϵ↘0

∫
R\[−ϵ,ϵ]

1
λ
λψ(λ) dλ

= −i
∫ ∞

−∞
ψ(λ) dλ

= −2πiφ(0).

As (sgn)′ = 2δ, it follows by Corollary 5.2.6 that

g(x) = −πisgn(x) + c,

for some c ∈ R. In particular, suppose that φ ∈ S is even, then on the one hand we have

F [φ](λ) =
∫ ∞

−∞
φ(x)e−iλx dx

=
∫ ∞

−∞
φ(−x)e−iλ(−x) dx

=
∫ ∞

−∞
φ(x)e−i(−λ)x dx

= F [φ](−λ)

so that (
f 1

x
, F [φ]

)
= lim

ϵ→0

∫
R\[−ϵ,ϵ]

F [φ](x)
x

dx = 0.

On the other hand,

(g, φ) =
∫ ∞

−∞
(−πisgn(x) + c)φ(x) dx

=
∫ 0

−∞
(πi+ c)φ(x) dx+

∫ ∞

0
(−πi+ c)φ(x) dx

= 2c
∫ ∞

0
φ(x) dx.

Therefore, c = 0 and so
F
[
f 1

x

]
= −iπsgn(x).

Definition 5.5.10. Let Z be the linear space consisting of entire functions ψ where for all q = 0, 1, . . . there
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exists Cq(ψ), a(ψ) > 0 such that

|λ|q|ψ(λ)| ≤ Cq(ψ) exp (a(ψ)|Im(λ)|) . (5.5.2)

Lemma 5.5.11. The Fourier transform is a bijection between D and Z, which preserves linear operations.

Proof. Let φ ∈ D, then

ψ(λ) := F [φ](λ)

=
∫ ∞

−∞
e−iλxφ(x) dx

(1)=
∫ a

−a

e−iλxφ(x) dx,

where (1) follows as φ has compact support. As e−iλxφ(x) is analytic in λ and continuous in x, it follows that
ψ(λ) extends to an entire function. Moreover, by integration by parts we obtain

|λ|q|ψ(λ)| =
∣∣∣∣∫ a

−a

φ(q)(x)e−ixλ dx
∣∣∣∣ ≤ Cq exp(a|Im(λ)|),

which means that ψ ∈ Z. Conversely, let ψ ∈ Z and consider

φ(x) := 1
2π

∫ ∞

−∞
ψ(λ)eiλx dλ,

which converges absolutely and uniformly for x ∈ R by taking Im(λ) = 0 in (5.5.2). Similarly,

φ(q)(x) = 1
2π

∫ ∞

−∞
(iλ)qψ(λ)eiλx dλ

for q = 1, 2, . . . is absolutely and uniformly convergent and so φ is infinitely differentiable. Now for x > a(ψ) =: a,
where a(ψ) comes from (5.5.2), consider the integral of ψ(λ)eiλx over the contour γA,τ = γA,τ

1 ∪γA,τ
2 ∪γA,τ

3 ∪γA,τ
4

where 
γA,τ

1 := {λ = σ : σ ∈ [−A,A]}
γA,τ

2 := {λ = A+ iη : η ∈ [0, τ ]}
γA,τ

3 := {λ = σ + iτ : x ∈ [A,−A]}
γA,τ

4 := {λ = −A+ iη : η ∈ [τ, 0]}.

Observe that ∣∣∣∣∣
∫

γA,τ
2

ψ(λ)eiλx dλ

∣∣∣∣∣ =
∣∣∣∣∫ τ

0
ψ(A+ iη)ei(Ai+iη)x dη

∣∣∣∣
(5.5.2)

≤
∫ τ

0

C1(ψ) exp(aη)√
A2 + η2

dη

A→∞−→ 0.

Similarly, ∣∣∣∣∣
∫

γA,τ
4

ψ(λ)eiλx dλ

∣∣∣∣∣ A→∞−→ 0.

Therefore, as ∮
γ

ψ(λ)eiλx dλ = 0
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it follows that,

φ(x) = −
∫

γA,τ
3

ψ(λ)eiλx dσ

= 1
2π

∫ ∞

−∞
ψ(σ + iτ)eiσx−τx dσ

for τ > 0. With s = σ + iτ , using (5.5.2) for q = 0 and q = 2, we obtain

|ψ(λ)| ≤ ea|τ | min
(
C0,

C2

|s|2

)
≤ C

ea|τ |

1 + |s|2

≤ C
ea|τ |

1 + σ2 ,

where C is just some constant. Hence,

|φ(x)| ≤ C

2π

∫ ∞

−∞

e(a−x)τ

1 + σ2 dσ

≤ C ′e−(x−a)τ ,

where C ′ is a constant independent of τ > 0. Since, τ > 0 and x > a, by taking τ → ∞ we deduce that
|φ(x)| = 0. A similar argument shows that |φ(x)| = 0 for x < −a. Therefore, φ has a compact support and
because it is infinitely differentiable we have φ ∈ D. Moreover, φ ∈ D is the unique test function such that
F [φ] = ψ. In conclusion, F : D → Z is a bijection.

Definition 5.5.12. The Fourier transform of a distribution f ∈ D′ is the distribution g = F [f ] ∈ Z∗ = Z ′

given by
(g, φ) = (f, F [φ])

for all φ ∈ Z.

5.6 Solution to Exercises
Exercise 5.5.1

Solution. On the one hand,∑
p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x|j
)
φ(k)(x)

∣∣∣ ≥
∑

p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

|x|j
∣∣∣φ(k)(x)

∣∣∣
≥ sup

0≤j,k≤n

∣∣∣xjφ(k)(x)
∣∣∣ .

On the other hand,∑
p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x|j
)
φ(k)(x)

∣∣∣ ≤
∑

p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x| + · · · + |x|j
)
φ(k)(x)

∣∣∣
≤

∑
p+q=n

sup
x∈R,0≤j≤p,0≤k≤q

∣∣∣(1 + |x|)j
φ(k)(x)

∣∣∣
≤ (n+ 1)2 sup

0≤j,k≤n

∣∣∣xjφ(k)(x)
∣∣∣ .

Therefore, ∥ · ∥n is equivalent to the norm from statement 2 of Example 4.5.9 and thus S with the norms ∥ · ∥n

is a countably normed space.

95



Exercise 5.5.8

Solution. If f ∈ S and φ ∈ S then

(F [f ], φ) =
∫ ∞

−∞
F [f ](z)φ(z) dz

=
∫ ∞

−∞

(∫ ∞

−∞
e−izxf(x) dx

)
φ(z) dz

=
∫ ∞

−∞
f(x)

(∫ ∞

−∞
φ(z)e−ixz dz

)
dx

=
∫ ∞

−∞
f(x)F [φ](x) dx

= (f, F [φ]). (5.6.1)

Using the density of S in L1(R), under an appropriate limit it follows that (5.6.1) holds for all f ∈ L1(R).
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6 Appendix
6.1 Constructing Topologies from Neighbourhoods

Definition 6.1.1. Let T be a non-empty set. For x ∈ T , a system of neighbourhoods N(x) is a collection of
subsets of T such that the following hold.

1. N(x) is not empty.

2. If U ∈ N(x) then x ∈ U .

3. If U, V ∈ N(x) then U ∩ V ∈ N(x).

4. If U ∈ N(x) then there exists a V ∈ N(x) such that V ⊆ U and V =
⋃

y∈V Vy where Vy ∈ N(y).

An element U ∈ N(x) is referred to as a neighbourhood of x.

Definition 6.1.2. When we have a system of neighbourhoods for the elements of a set T , we say a subset
S ⊆ T is open if either S = ∅ or for every s ∈ S there exists a U ∈ N(s) such that U ⊆ S.

Remark 6.1.3. Note that a neighbourhood itself may not be an open set.

Lemma 6.1.4. The collection of open sets given by Definition 6.1.2 defines a topology on T .

Proof.

• The empty set is open.

• Let (Sk)k∈N be a collection of open sets. Then for each s ∈
⋃

k∈N Sk, there exists a k′ ∈ N such that
s ∈ Sk′ . Hence, as Sk′ is open there exists a U ∈ N(s) such that U ⊆ Sk′ ⊆

⋃
k∈N Sk. Therefore,

⋃
k∈N Sk

is open.

• Let (Sk)n
k=1 be open sets. Then for s ∈

⋂n
k=1 Sk, there exists a Uk ∈ N(s) such that Uk ⊆ Sk for each

k = 1, . . . , n. From statement 3 Definition 6.1.1 the set U :=
⋂n

k=1 Uk is open, and in particular is such
that s ∈ U ⊆

⋂n
k=1 Sk. Therefore,

⋂n
k=1 Sk is open.

Remark 6.1.5.

1. The topology of Lemma 6.1.4 is denoted τ , and is referred to as the topology induced by the defining
system of neighbourhoods {N(x) : x ∈ T}.

2. Note that the set V of statement 4 of Definition 6.1.1 is an open set in the sense of Definition 6.1.2.
The collection of such open sets B with ∅ is an open base of τ . Namely, B ⊆ τ with each A ∈ τ a union
of sets from B.

3. With this construction of τ , we can extend the notion of a neighbourhood of x to mean any set U such
that x ∈ U and U contains an open set containing x. Note that if U and V are neighbourhoods of x
then so is U ∩ V .
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