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Introduction

What is functional analysis? Essentially, it is linear algebra in infinite dimensions. There are two main sources of
differences that arise as we move to infinite dimensions.

1. Norms are no longer equivalent.

= Recall, that a norm is a function || - || on a vector space satisfying the following.
(@) [Az]l = [A[[l«]-
(b) flz +yll < llzll + llyll-
(c) |lz|| =0 if and only if x = 0.

= Norms || - || and || - ||2 are equivalent if there exists a constant ¢ such that

1
. <. < s
Sl < -l < el -2
2. Linear operators. We can represent linear operators as matrices acting on vectors.

o0
ai; a2 ... 1 Ekzl A1kTk

az - T2 | =

From which questions about convergence arise.



1 Topological and Metric Spaces

1.1 Topological Spaces

Let X be a set.

Definition 1.1.1. A subset O of P(X) is a topology if the following hold.

1. 0,Xe0.
2. For a family (O;)icz € O we have | ;.7 O; € O.
3. For a family (0;)!-; C O we have (_, O; € O.

Elements of the topology are called open.

Definition 1.1.2. For a topology (X, ©), a sequence (z,,)nen C X converges to x if for all O € O with xz € O,
there exists an N € N such that x,, € O forn > N.

Example 1.1.3. Topologies for a set X include the following.
» O={0,X}.
» O =PX).

1.2 Metric Spaces

Let X be a set.
Definition 1.2.1. A metric is an application d : X x X — [0,00) with the following properties.
1. Definite. That is, d(x,y) = 0 if and only if x = y.
2. Symmetric. That is, d(x,y) = d(y, x).
3. Satisfies the triangle inequality. That is, d(z,y) < d(z,z) + d(z,y).
A set X with a metric d is called a metric space, denoted (X, d).
Definition 1.2.2. The ball with centre x € X and radius r > 0 is the set

B.(z) = B(z,r) ={y € X :d(z,y) <r}.
Definition 1.2.3. A set O C X is open if for all x € O there exists an r > 0 such that B(x,r) C O.
Definition 1.2.4. A set is closed if its complement is an open set.

Example 1.2.5. Some examples of sets with metrics are the following.
= R" and d(z,y) = > iy @i — yil.
= C([0,1];R), the set of continuous functions from [0,1] — R, and d(f, g) = sup,¢(o 1) |f () — g(2)|.



I Proposition 1.2.6. Let (X,d) be a metric space, and let O be the set of open sets. Then O is a topology.

Proof.

» Clearly X € O, as for any » > 0 and z € X we have that B.(z) C X. Moreover, ) € O, as Definition
holds trivially for the set has no elements.

» Let (O;)ier € O. Then for any = € | J;c; O; we have z € O; for some i € I, and so there exists an r > 0
such that B,.(x) € O; C J,c; Oi. Therefore, | J;.; O; € O.

= Let (O;)~; C O. Then for any z € (), O; there exists an r; > 0 such that B,,(z) C O; for each
i=1,...,n. Let r =min(ry,...,7,) >0, then B,(z) C:_, O;. Therefore, N, O; € O.
With each of these, we conclude that O is a topology. O

In Definition ‘ the notion of convergence is formulated in a topology. In a metric space z, "—3 x if and

only if d(z,,, ) =3 0.

1.2.1 Sets

Definition 1.2.7. Let (X,d) be a metric space with S C X.
1. S is closed if S¢ is open.

2. 7_'he closure of S denoted S, is the smallest closed set which contains S. One can formulate this as
S = ﬂc closed,CD S ©.

» Equivalently, we can say that for any x € S there exists a sequence (Zy)nen C S such that z, — .
q Y, Y y q €

3. The interior of S denoted S, is the largest open set contained in S. One can formulate this as S =
UO open,OCS 0.

= Equivalent, for every z € S there exists an r > 0 such that B(z,r) C S.

Definition 1.2.8. A subset A C X is dense if A = X.

Example 1.2.9. The property of being dense is dependent on extrinsic factors, namely the parent set.
= For Q C R we have Q = R.
» ForZ CR we have Z = Z.

I Proposition 1.2.10. Let A C X. Then A = A if and only if A is open in (X, d).

Proof. (=) If A= A then A is open as A is open.
(<) If A'is open then

A=Au |J vV
V open,VCA

which implies that A C A. Therefore, as A C A it follows that A = A. O

I Proposition 1.2.11. Let A C X. Then A = A if and only if A is closed in (X,d).



Proof. (=) If A= A then A is closed as A is closed.
(<) If Ais closed then

A=AnN ﬂ F

F closed, ACF

which implies that A C A and hence A = A. O

Definition 1.2.12. A subset S C X is bounded if there exists an x € X and r > 0 such that S C B(z,r).

1.2.2 Continuity
Let (X,d) and (Y,d’) be metric spaces and let f : X — Y.

Proposition 1.2.13. For xg € X the following are equivalent.

1. For all € > 0 there exists a § > 0 such that d(zo,y) < ¢ implies that
d'(f(20), f(y)) <e.

2. If (xpn)nen C X converges to xg then f(x,) — f(xo).

Proof. (1) = (2). Let (2 )nen be such that 2, — x¢. Given an e > 0 let § > 0 be such that d(z,y) < ¢ implies
d'(f(zo), f(y)) < €. There exists an N € N such that d(z,, o) < d for n > N. Hence, d'(f(xo), f(z,)) < € for
n > N. Therefore, f(x,) — f(xo).

(2) = (1). Suppose that for € > 0 no § > 0 exists such that d(zg,y) < ¢ implies d'(f (o), f(y)) < €. Then for
each n € N there exists an z,, € X such that d(z,z,) < * and d'(f(z¢), f(x,)) > €. In particular, (2, )nen is

a sequence converging to zg, and so by assumption f(z,) — f(zo). However, this contradicts the construction
of the sequence. O

Remark 1.2.14. [f either of the conditions of Proposition[1.2.13 hold, then f is said to be continuous at x.

Proposition 1.2.15. The following are equivalent.
1. For any open set O CY, the set f‘l(O) is open in X.

2. f is continuous at any xy € X.

Proof. (1) = (2). For myp € X, given an € > 0 let O = B.(f(z0)). Then the set f~1(0) is open and such
that z € f71(0). Hence, there exists a 6 > 0 such that Bs(z) € f~1(O). In particular, this means that if
d(xo,y) < 0 then d'(f(xo), f(y)) < €. Therefore, we conclude that f is continuous at xg € X by statement 1 of
Proposition [1.2.13

(2) = (1). Consider zg € f~1(0). Since f(x) € O and O is open, there exists an € > 0 such that B.(f(z¢)) C
O. As f is continuous at z, there exists a § > 0 such that f(Bs(zo)) C Bc(f(x0)) C O, statement 1 of
Proposition Therefore, Bs(xg) C f~1(O) which means that f~1(O) is open. O

Remark 1.2.16. [f either of the conditions of Proposition hold, then f is said to be continuous on X .

Proposition [1.2.13] provides a local viewpoint of continuity, whilst Proposition [1.2.15] global viewpoint.

Definition 1.2.17. A map f is uniformly continuous on X if for any € > 0 there exists a 6 > 0 such that for
any (z,y) € X x X with d(z,y) < 0 we have that d'(f(x), f(y)) < e.



Example 1.2.18.
1. Consider f : [1,00) — R given by f(x) = x2. Then for any § > 0 we have
(@) = f@+0)] = |(z +0)* — 2% = [226 + 6%]..
As the right-hand side tends to infinity as x — oo, the function f is not uniformly continuous.

2. Consider f : [1,00) — R given by f(x) = log(x). By the fundamental theorem of calculus we know that

g1
/ tdt‘§|xy|.

Therefore, f is uniformly continuous as given any € > 0 we have that

[f(z) = f(y)l <e

|f(z) = f(y)| =

for any x,y € [1,00) satisfying |x — y| < e.
1.2.3 Completeness

Definition 1.2.19. A sequence (z,,)nen C X is convergent if there exists an x € X such that d(z,,, ) "3 .

Definition 1.2.20. A sequence (z,)neny € X is a Cauchy sequence if for any € > 0 there exists an N € N
such that forn,m > N we have d(z,, %) < €.

Remark 1.2.21. By the triangle inequality, a convergent sequence is a Cauchy sequence.

Definition 1.2.22. A metric space (X,d) is complete if Cauchy sequences in X are convergent with respect
to the metric d.



Example 1.2.23.

1. The set Q with d(xz,y) = |x — y| is not complete as there exists a sequence (r,)nen € Q such that

|7 — /2] = 0, but V2 & Q.

2. The set R with d(x,y) = |z — y| is complete. Indeed, let (x,)nen € R be a Cauchy sequence. Then
there exists an N € N such that
ey — 2m| <1

for m > N. Therefore,
|zp| < C :=max (|z1],...,|zN-1], |z~|+ 1)

for every n € N, which means that (z,)nen is bounded. Hence, the sequences (yn)nen given by
Yn = infp>n(zm) and (2n)nen given by z, = sup,,~,(zm,) are well-defined. In particular, these
sequences are convergent as they are monotonic and bounded. Let y,, — y and z, — z. Then for e > 0
there exists an N1 € N such that

€
|zn — 2| + |yn —y| < =
forn > Ny. Furthermore, there exists an Ny € N such that
€
[T — | < = (1.2.1)

-3



form > n > Nj. Taking the supremum of (1.2.1)) we deduce that |x,, — z,| < § for n > Ny. Similarly,
taking the infimum of ([1.2.1)) we deduce that |z, —y,| < § forn > Ns. Therefore forn > max(Ny, N2)
we deduce that

|z =yl < |z = zn| + |20 — Tn| + |Tn — Yu| + |yn — ¥l
<€+6+€
-3'3"3

a

Therefore, y = z =: & which implies x,, — x, and so R with d(x,y) = |x — y| is complete.

Theorem 1.2.24. If (X,d) is a metric space then there exists a metric space (Y,d') such that
1. Y is complete,

2. there is an injection i : X — Y, and

3. d(x,y) = d'(i(z),i(y))-

Theorem 1.2.25 (Banach Fixed Point Theorem). Let (X,d) be a complete metric space. Let f : X — X
be a contraction, that is there exists a k € (0,1) such that d(f(x), f(y)) < kd(z,y) for any x,y € X. Then
f has a unique fixed point, that is there exists a unique xo € X such that f(xo) = xo.

Proof. Let x1 € X and consider the sequence (z,,)neny C X given by @, = f(2,—1) for n > 2. Then

d(xna (En+1) = d(f(wnfl): f(xn)) < /’id(fnflvxn)

Proceeding by induction we deduce that d(z,,z,11) < k" td(x1,72). Let N € N and consider [ > k > N.
Then by the triangle inequality, it follows that

d(zy, xp) < d(xz,xz 1)+d($l 1,T1—2) + -+ d(zp41, Tk)

§( +~-~+/{7)d(x1,x2)
< (k' ) d(z, a0)
= 1_ﬁd($1,$2)
N
< 1I€_ d(z1,22)

Therefore, the sequence is Cauchy, and hence convergent to some zp € X as (X, d) is a complete metric space.
The contractive property of f implies it is continuous. As xz,, — x¢ it follows by the continuity of f that
f(xn) = f(xo) and so by the uniqueness of limits xg = f(x¢). Now suppose that there exists another fixed point
y € X of f. Then

d(f(l?o), f(y)) - d(an y)

which contradicts the contracting property of f. Therefore, the fixed point xg is unique. O



Figure 1: An illustration of the conditions required for Theorem [1.2.25

Example 1.2.26.

1. Translations do not satisfy the conditions of Theorem as k = 1. For example, f(z) =x+ 1 is
such that |f(x) — f(y)| = |z — y|, indeed f(x) = x has no solutions.

2. For a € (0,1), consider the metric space (X, d) where X = R\ {%} and d(z,y) = |z —y|. Then
h: X — X given by h(x) = ax + b is well-defined and a contraction as

[h(z) = h(y)| = alz —yl.

However, h does not have a fixed point in X. Indeed, (X,d) is not a complete metric space, so one
cannot apply Theorem [1.2.25

1.2.4 Compactness
Theorem 1.2.27 (Bolzano-Weierstrass). A bounded sequence of real numbers has a convergent subsequence.

That is, if (zp)neny C R is such that |x,| < R for some R > 0, then there exists an extraction ¢ and y € R
such that x ) — y.

Remark 1.2.28. An extraction ¢ : N — N js a strictly increasing function and can be used to index a
subsequence.

For a metric space (X, d) and S C X, the Bolzano-Weierstrass property says that for all sequences (z,)nen C S
there exists a y € S and extraction ¢ such that z,(,) — y as n — oo,

Definition 1.2.29. A collection of sets (O;)icr is an open cover of S C X if each O; is open and S C | J,.; O;.

Definition 1.2.30. A sub-cover of an open cover (O;);cr of S is a subset J C I such that S C J,.; O;.
The finite open cover property says that for any open cover, one can extract a finite sub-cover.

Example 1.2.31. Let X = R and S = 7Z. Then Z does not satisfy the finite open cover property. Choose
O; = (i — 15,i+ 1) fori € N. Then (O;)ien is an open cover of Z with no finite sub-cover.

10



I Theorem 1.2.32. The Bolzano-Weierstrass property and the finite open cover property are equivalent.

Definition 1.2.33. If either the Bolzano-Weierstrass property or the finite cover property holds, then S is called
compact.

Example 1.2.34.

1. [a,b] C R is compact. By Theorem any sequence in [a,b] has a convergent subsequence. In
particular, the limit of this subsequence is in [a,b] as [a,b] is closed.

2. (a,b) C R is not compact. The cover ((a+ =2,b— b_Ta))neN has no finite subcover.

3. Any finite subset S C R is compact. For any open cover (O;);cn one can extract a finite subcover
(Oin)keqr.... sy Where Oy is such that the k™ element of S is in Oj,.

4. Q C R is not compact. A sequence in Q converging to /2 has no convergent subsequence.

I Lemma 1.2.35. If S C X is compact then it is closed.

Proof. Note that S C X is closed if and only if S = S. By construction S C S and so it suffices to show that
S C S. Choose = € S, then there exists a sequence (Zn)nen C S such that z, — x. By the Bolzano-Weierstrass
property, there exists an extraction ¢ and y € S such that x,(,) — y. However, it must also be the case that
Ty(n) — T, as any subsequence of a convergent sequence converges to the same limit. Therefore, x =y € S,
which implies that S C S which completes the proof. O

I Lemma 1.2.36. If S C X is compact then it is bounded.

Proof. Suppose that S were not bounded. Then one can construct a sequence (z,,)nen such that d(zg,x,) >n
for n € N and some fixed zg € S. The sequence (z,,),en has no convergent subsequence as

n—oo

d(x,xn) > |d (2o, 2n) — d(z,20)] — 00

for any © € S. Therefore, S does not satisfy the Bolzano-Weierstrass property, which contradicts S being
compact. O

Theorem 1.2.37 (Heine-Borel). In the metric space (R",d) where d(z,y) = > i, |z; — yi|, the compact
sets are precisely the closed and bounded sets.

Remark 1.2.38.

1. As all norms are equivalent in finite dimensions, the conclusions of Theorem hold in any finite-
dimensional normed vector spaces.

2. From Lemma and Lemma we see that being closed and bounded is a necessary condition
for a set to be compact. Theorem[1.2.37] then asserts that in finite-dimensional spaces, being closed and
bounded is a sufficient condition for a set to be compact.

3. Compact sets are the same for equivalent metrics.

11



Theorem 1.2.39. If S C X is compact, then the following hold.
1. Any continuous function f : S — R achieves its supremum.

2. Any continuous function f : S — R is uniformly continuous.

Proof.
1. Let M =sup,cg f(x) where f: S — R is a continuous function.

(a) If M = oo, then there exists a sequence (2, )neny C S such that f(z,) — co. However, by compact-
ness, we know there exists an extraction ¢ and y € S such that z(,,) — y. Therefore, by continuity
we have that f(z,(,)) — f(y) € R which contradicts f(x,) — co. Hence, we must have M < oo.

(b) If M < oo, then choose (z,)nen C S such that f(z,) — M. Then by compactness there exists an
extraction ¢ and y € S such that z,(,) — y. By continuity, we have that f(z,)) — f(y) and so
by the uniqueness of limits we conclude that f(y) = M.

2. Let f : S — R be a continuous function. Suppose f is not uniformly continuous. Then, there exists
an € > 0 such that for § = % for any n € N, there exists x,,y, € S with d(x,,y,) < % such that

[f(@n) = fyn)| 2 €

» By compactness, there exists an extraction ¢ and & € S such that x,,) — Z. Similarly, there exists

an extraction v of (xw(n)) and § € S such that yy,,) — 7.

neN
= Given any € > 0, it follows for N sufficiently large with n,m > N that

d(Z,9) < d (T, 2p(n)) +d (§,Ty(n))

(Z,2pm)) +d (Tpim)s Ypm)) + d (Yyom)» )
:
+3+g

d
d

IN A

IN

™ o] v

Therefore, d (Z,§) = 0 which implies that Z = §. On the other hand, by the continuity of f we have
that f(zyn)) — f(2) and f(yym)) — f(7) which implies that |f(Z) — f(7)| > €, which gives rise to
a contradiction. Therefore, f is uniformly continuous.

O

Exercise 1.2.40. Provide an alternative proof of statement 1 of Theorem by using open covers.

Example 1.2.41. The compactness condition of Theorem is essential. Consider the space C((0,1),R)
and the function f(z) = sin (1) € C((0,1),R). The function f(z) is bounded and continuous on (0, 1) but /t is
not uniformly continuous. Similarly, the continuity condition of statement 1 is essential. Consider f : [0,1] —
given by

Then sup,cpo.1) f(z) =1 but f(z) # 1 for any x € [0, 1].

1.3 Solution to Exercises
Exercise

12



Solution. Let € > 0. Then for each x € S there exists a §, > 0 such that |z —y| < J, implies | f(x) — f(y)| < §.

Note that (Bsi(x)) is an open cover for S. Therefore, by the compactness of S, we can extract a finite
2 zeSs

. Sa, .
Let 6 = mmi:lywn( 21). Then for x € S there exists an x; such that

subcover, say (Bami (xl))
2 i=1,...,n

|z — 2;| < < dy,. Therefore, for y such that |y — x| < & we have
ly — il <y —a|+ o — 2] <20 <6,
and so

(@) = F@)] < |f(@) = f)] + @) ~ F@) < 5 + 5 =<

Hence, f is uniformly continuous. O

13



2 The Lebesgue Measure

2.1 Measure Spaces
Let X be a set.
Definition 2.1.1. A o-algebra is a collection of subsets A C P(X), that satisfies the following.
1. X e A
2. IfS € A, then A° € A.

3. If (Si)ieN C A then UieN S; € A.

Remark 2.1.2. By combining statements 2 and 3 in Definition it follows that a o-algebra is closed under

countable intersections.

Definition 2.1.3. A function p : A — [0, 0] is a measure if it satisfies the following.

1. () =o0.
2. If (S;)ien C A are such that S; NS; =0 fori # j then

1 (U Si> =" ul(S).

1€EN 1€EN

Remark 2.1.4. Property 2 of Definition is referred to as countable additivity, and can be thought of as
a continuity property.

1. The countable additivity property implies that if (S;);en C A is an increasing sequence of sets then
I , :
Jim p(S;) = p Us;
jEN

This can be proved by applying countable additivity to the sets E; = S;y1\ S;.

2. A similar result holds for a decreasing sequence of sets. Namely, if (S;);jen C A is a decreasing sequence
of sets and ((Sy) < oo, then

lim p(S;) = p ﬂ S;

j—oo :
JEN

This is shown by using statement 1 on the complements of the S;.

2.2 The Lebesgue Measure on R
Theorem 2.2.1. There exists a o-algebra A C P (Rd), and a measure  such that the following hold.

1. Open sets of Re, under the canonical metric, are in A.
2. The rectangle R = Hle(ai, b;) has measure u(R) = H?Zl(bi —a;).
3. IfAe A with u(A) =0 and B C A then B € A with ;(B) = 0.

14



Remark 2.2.2.

» The o-algebra and measure of Theorem|[2.2.] are known as the Lebesgue o-algebra and Lebesgue measure
respectively.

= The countable intersection of open sets gives rise to many interesting sets, and so by countable additivity
our o-algebra captures a rich collection of sets.

» Statement 2 of Theorem tells us that . extends our intuition on the size of sets in R%.
= Statement 3 of Theorem[2.2.1] emphasises that the measure space is complete.
» Sets in the Lebesgue o-algebra are called measurable sets.

» The Lebesgue measure is invariant under translations, that is for x € R? and A a measurable set we have
(A + ) = p(A).
» For A € R and A a measurable set, the Lebesgue measure has the following scaling property,

p(AA) = Xpu(A).

Example 2.2.3. With the measure and c-algebra of Theorem [2.2.1] we can understand why the requirement
that 11(So) < oo in statement 2 of Remark[2.1.4 is necessary. Indeed, suppose S; = (j,00) for j € N. Then
the sequence of sets (S;);en is decreasing, however

lim p(S;) = oo,

j—o0
whereas,

p|)Si] =wu®=o.

JjEN

I Proposition 2.2.4. A hyperplane in R? has zero Lebesgue measure.

Proof. A hyperplane in R? is of the form
Ay = {wGRd:a1x1+'~'+ad:vd:b},
where a1, ...,aq,b € R are fixed. Due to the translational invariance of the Lebesgue measure, we can consider
A::Aoz{zeRd:a1m1+-~-+adxd=O}.

We will assume without loss of generality that agy # 0. We can isolate the graph of x4 by considering the

continuous function
—(a1z1+ -+ ag-1Ta-1)

f(:cl,...,xd_l) = py .

Consider the compact set K; = 1—[?;11 [—7,7] € R4=L. Then as f is continuous, it is uniformly continuous on

K. Therefore, for a given € > 0 we can partition K; such that in each partition the variation of f is at most
Wﬂjd,l Then
€ €

_ _ and—1 _ €
W (EK5)) = Srarra K = grramra: ()7 = 5

J J
As A C 52, f(K;) it follows that



Therefore, (A) =0 as € > 0 was arbitrary. O

Definition 2.2.5. A function f : R? — R is measurable if f~1((—00,a)) is a measurable set for all a € R.

Proposition 2.2.6.
1. The composition of measurable functions is measurable.

2. If (fn)nen is a sequence of measurable functions such that f,(x) — f(x) for all x, then f is mea-
surable. In other words, the function lim,_,«(fn) is measurable. Moreover, sup,,cn(frn), infren(fn),
lim sup,,_, o (fn) and liminf,,_,(f,) are all measurable.

3. Sums and products of measurable functions are measurable.

4. Continuous functions are measurable.

Definition 2.2.7. A property is true almost everywhere or for almost any x if it is true on the complement of
a zero-measure set.

2.3 The Lebesgue Integral
2.3.1 The Integral of Simple Functions

Definition 2.3.1. A simple function is of the form

N
= Z cila;
i=1

where for eachi=1,...,N the ¢c; € R and the A; is a measurable set of R? of finite measure.

The integral of a simple function is
N
flz)de = Z cit(A;).
Re i=1
Similarly, for a measurable set S the integral of a simple function on S is
/f(x) dz :/ f@)1g(z)da.
s Rd

Henceforth, we will often use the abbreviated notation

y f(z)dz = /fdx

2.3.2 The Integral of Non-Negative Functions

Let f: RY — [0,00] be a non-negative function on R?. The integral of f is taken to be
/fdx = sup ({/sdx :0<s< f, sasimple function}) .

Proposition 2.3.2. Let f be a non-negative function on R<.

1 If [ fdz < oo then f < oo almost everywhere.

16



I 2. If [ fdz =0 then f =0 almost everywhere.

Example 2.3.3. The converse of statement 1 of Proposition does not hold. Consider f(x) = 1. Then
f < oo almost everywhere but [ fdx = occ.

2.3.3 The Integral of Real-Valued Functions
A measurable function f : R¢ — (—00, 00) admits the representation f = f, — f_ where

» fi =max(0, f), and
= f_ =max(0,—f).

We say that f is integrable, written f € L* (R?), if [ f; < oo and [ f_ < co. The integral of an integrable

function is taken to be
/fdx:/erdxf/f_dx.

Proposition 2.3.4.
1. Fora,f €R and f,g € L* (R?) we have that

/af+ﬂfdx:a/fdx+ﬂ/gdx.
‘/fd:c < [ 1114

3. A function f € L* (R?) is zero almost everywhere if and only if [ f dz = 0 for all measurable sets S.

2. For f € L' (R?) we have that

Proposition 2.3.5. Let f,g: S — R be integrable measurable functions that satisfy f < g almost everywhere

in S. Then,
/fé/g
s s

Proof. Suppose that f and ¢ are non-negative measurable functions. Then for any simple function s such that
0 < s < f, there exists an equal almost everywhere simple function § such that 0 < § < g and fs = [s
Therefore,

{/sdz :0<s< f, sasimple function} C {/sdx :0<s<g, sasimple function}
which implies that

sup ({/sdx :0<s< f, sasimple function}) < sup ({/s dr:0<s<g, sasimple function})

which then implies that [ f < [ g. For arbitrary integrable measurable functions f and g we can write f = f, —f_
and g = g1 — g— where fi, f_,g+,g_ are non-negative. As f < g almost everywhere it follows that f; < g,
almost everywhere and g_ < f_ almost everywhere. Hence,

1= 1= [ fooe o

17



In light of Proposition a reasonable suggestion for a distance on L' is d(f,g) = [ |f — g| dz. However, this
is not a metric as if f,g € L' are such that d(f, g) = 0 then we can only say that f(x) = g(x) for almost all x.

= For continuous functions f and g such that d(f,g) = 0 it is possible to conclude that f(x) = g(z) for all
x.

= However, for f =0 and g = 170} we have d(f,g) = 0 but f(0) # g(0).

———

\

Figure 2: An illustration as to why continuous functions equal almost everywhere must be equal exactly.

To overcome this issue, we use equivalence classes. For f € L' let
[fl={g€L": f(x) = g(x) almost everywhere} .

Consequently, d(f,g) = 0 if and only if [f] = [g]. Abusing notation we will still speak of "functions" rather than
"equivalence classes".

2.3.4 Connection to the Riemann Integral

Throughout let I = [a, b] where —oco < a < b < 0.

Definition 2.3.6. A set of points P = (xl)f\io for N € N, is a partition of I if

a=zr9g<x1<--<axNy_1<xTN =D

Definition 2.3.7. A function F : I — R is a step function if there exists a partition P such that

N—-1
F(J,‘) = Z ai1[$i71i+1)
1=0

where each a; € R.

Definition 2.3.8. For f : [ — R a bounded function and P = (x;)X_, a partition of I let

= the upper sum of f with respect to P be

N-1
Upi1(f) = Z ( sup f(ﬂ) (Tit1 — 1),
i—0 \t€zi,zit1)

18



= and the lower sum of f with respect to P be

N—1
Lraf)= X (L inf £0)) @i =)

Li,Ti41

Definition 2.3.9. A bounded function f : I — R is Riemann integrable if for every ¢ > 0 there exists a
partition P of I such that

|Up 1(f) — Lp1(f)| <e

Proposition 2.3.10. If f is Riemann integrable then

I%f U’py[(f) = sup L'p’[(f).
P

We denote the Riemann integral on I of a Riemann integrable function f as

b
| =it Upa(r) = sup Lp.s (1)
a P

Theorem 2.3.11. Every Riemann integrable function on I is Lebesgue integrable and

/abf(m)dx:/lf(x)dx.

Remark 2.3.12. All the facts and techniques for Riemann integration extend to Lebesgue integrals of Riemann
integrable functions.

With this equivalence, we can characterise the set of Riemann integrable functions using measure theory.

Theorem 2.3.13. Let f be bounded on I. Then f is Riemann integrable on I if and only if it is continuous
almost everywhere.

One can readily extend Riemann integration to unbounded domains. In this case, a function is Riemann integrable
if the upper and lower sums are absolutely convergent and coincide. Similarly, an unbounded function on a finite
or infinite domain is Riemann integrable if the upper and lower sums are absolutely convergent and coincide. We
refer to both cases as improper Riemann integration.

Proposition 2.3.14. For a function f, if the improper Riemann integral absolutely converges, then f is also
Lebesgue integrable and the integrals coincide.

2.4 Convergence of Functions and Convergence of Integrals

Example 2.4.1.
1. Let fr, =1y, n41) onR. Then [ fr, =1 and fn(x) = f(x) =0 for all x € R. However, [ fn / [ f.
2. let f, = nl(o 1y on R. Then [ f, =1 and f,(z) — f(z) =0 for all z € R. However, [ f, /4 [ f.

I Lemma 2.4.2. Let (f,)nen be a sequence of functions such that supp(f,) C K for every n € N with K a
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n—roo

compact set independent of n € N. Moreover, suppose sup,, | fn(x) — f(xz)| — 0. Then,

/fndx"ii‘”/fdx.

Proof. As K is compact we know that u(K) < co. Therefore,

’/fnda:/fd:z: _‘/fnfdx

< / o — flda
< /K sup |fu(y) — f(y)| da

Y

= u(K) sup |fn(y) — f(y)l

Therefore,

Figure 3: For the supremum between a sequence of functions and its limit to converge it must be the case that
the functions lie within an ever-decreasing bounded region of the limit function.

Example 2.4.3. Consider f, = 21y ,. Even though sup, |f,(z)| = 1 — 0 as n — oo, there does not exist
a compact set K such that supp(f,) C K for every n € N. Thus, Lemma cannot be applied, indeed

[ fndz=1+40.

Theorem 2.4.4 (Monotone Convergence Theorem). Let (f,)nen be a sequence of non-negative measurable
functions such that f,1(z) > fn(z) for almost all x.

1. Then fp(x) — f(x) = sup,cy fn(z) almost everywhere.

2. Furthermore, [ f,, — [ f. In particular, if the right-hand side is finite, then we also have convergence
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in LY. That is,
[t -n=%0

Example 2.4.5. The sequence of functions (f,)nen must be non-decreasing to apply Theorem Indeed,
let f, = %1[0,71}, then fn(z) — 0 but [ fo /> [ f.

Remark 2.4.6. Note that the monotonicity condition is only required to hold almost everywhere. The zero
measure sets on which monotonicity may not hold can depend on n. What's more, the zero-measure set on
which monotonicity does not can depend on the function f,, since the countable union of zero-measure sets is
still a zero-measure set.

Figure 4: For a sequence of functions to converge monotonically from below to its limit, the graph of a function
in the sequence must lie between the limiting function and the graph of the previous function in the sequence.

Theorem 2.4.7 (Dominated Convergence Theorem). Let (f,)nen be a sequence of measurable functions
such that the following hold.

1. f.(x) — f(z) for almost all x.

2. There exists a g € L' such that | f,,(z)| < g(z) for almost any x.

[ [ 1

Example 2.4.8. Recall Example where we had pointwise convergence but not the convergence of the
integrals.

Then,

1. To apply Theorem we would need g(x) = sup,,en(fn(7)) = 1jo,00) to be integrable, which it is not
the case.

2. To apply Theorem we would need g(x) = sup,en(fn(z)) to be integrable, however it is bounded

below by n on {n%rl, L| for every n € N. Consequently,
= /1 1 = 1 = 1
> — — = _— = = .
[o23 (G-am) =2 (mrm) =D =

Therefore, no g € L' exists such that | f,(x)| < g(z) for almost any x.
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Theorem and Theorem imply convergence in L' starting from pointwise convergence.

Example 2.4.9. Pick a sequence (x,,)nen such that the following hold.
1. =z, is increasing.
2. xpy1 — 2y, — 0 asn — oo.
3. x, — 0.

For example, z,, = \/n. Let y, € [0,1) be such that x,, — y, € Z, for instance y,, = T, — |z |, then let
I = Ly yni1)- Note that a correction needs to be made when y,+1 < y,. From this we have that

n—,oo

/fn:yn-l-l_yn:xn-‘rl_l'n — 0,

and so convergence in the L' sense. However, f,(x) / 0 for all x as the y,, continually traverse the interval
[0,1).

I Proposition 2.4.10. If f,, — f in L*, then there exists an extraction ¢ such that f,(,(x) — f(x) for almost
all x.

Theorem 2.4.11 (Fatou's Lemma). Let (f,)nen be a sequence of non-negative measurable functions, then
lim inf </fn> > /liminf(fn).
n—r oo n—oo

Example 2.4.12. The sequence of functions (f,)nen must be non-negative to apply Theorem|(2.4.11 Indeed,
consider f,(z) = 1[0 1_i](m) —(n— 1)1(1_; 1] Then,

lim inf (/ fn) = lim inf(0)
n— o0 n— oo
=0
71

= /1[0,1)

= /liminf(fn).

n—oo
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3 Banach Spaces
3.1 Norms

Throughout let E be a vector space over R or C. For simplicity, we will assume it to be R.

Definition 3.1.1. A norm || - || : E — [0, 00) satisfies the following.
1. ||z|| = 0 if and only if x = 0.
2. || Az|| = |Al||x|| for all x € E and X € R.

3 Nz +yll < ll=ll + llyll for all z,y € E.

Example 3.1.2. The following are examples of norms on vector spaces.
1. On R, the map | -| is a norm.
2. On RY the following are norms.

(a) |zl = XL, |-

(b) l[#lloc = maxi=1, a2l

Definition 3.1.3. A vector space endowed with a norm is called a normed vector space.

Remark 3.1.4. For a norm || - ||, the application d(z,y) = ||z — yl|| is a metric, referred to as the induced

metric by the norm.

Definition 3.1.5. A Banach space is a normed vector space that is complete with respect to the induced
metric.

Definition 3.1.6. Norms || - ||y and || - |

o, are equivalent if there exists a constant C' > 0 such that

1
-t <l-le<ll s
all-lisl-ll2<Cl-lh

Remark 3.1.7. From a norm, we get a metric, from which we define a topology, and thus establish a notion
of convergence. Equivalent norms induce the same topology and notion of convergence.

Theorem 3.1.8. In finite dimensions, norms are equivalent. In other words, if dim(E) < co then any norms
on E are equivalent in the sense of Definition[3.1.6,
Proof. Let (e;)1<i<q be a basis of E. Consider the norm

: }
2 =1

d
E xT;€;
i=1
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Then consider another norm || - || on E. On the one hand,

d
E Ti€4
i=1
I

T.
<> llziedll
=1

d
Homo.
22N il lledl
i=1

< . .
< d max (|zi]) max (Jleil)

]l =

} |
< (s e )
< Mijal 1)

On the other hand, consider the set
S={ze€E:|z||=1}.

Then S is clearly bounded, and it is closed as || - ||2 is a continuous function. Therefore, S is compact by Theorem
Note that the map x — ||z|| is continuous on (E, || -||2) as from it follows that the map is bounded
with respect to || - ||2. Therefore, this map reaches its infimum on S, say m. Observe that m # 0 as otherwise
there would exist an = € S such that ||z|| = 0 which implies = 0, however, 0 & S. Hence, ||z| > m > 0 for
|lz|l2 = 1. Applying this to y = m we deduce that

]| = mllz]]2
for all 2 € E. Combining this with (3.1.1)) we conclude that
mllz|lz < flzf] < Mllz|]2
for all z € E. Thus the norms || - || and || - ||2 are equivalent. O

Example 3.1.9. [n infinite dimensions, metrics no longer ought to be equivalent. Let X = C([0,1],R). Then
the following are metrics.

= di(f,9) = sup,epo, (If(2) — g(2)]).

= da(f.9) = Jo 1f(2) ~ g()|da.

These are not equivalent, as for f,(x) = ™ and g = 0 we have
» di(fn,0) =1, but
o dZ(me) = %

With d; the space X is complete but with ds the space X is not complete. Figure[5is an example of a sequence
of functions in X that converge in ds to something not in X.
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Figure 5: An example of how metrics in infinite dimensions need not be equivalent.

3.2 Spaces of Continuous Functions

We will consider functions on R? or on open sets 2 C R<.

Definition 3.2.1.
= The set of bounded functions 0 — R is denoted B(Q, R).

= The set of continuous and bounded functions  — R is denoted C°(£2, R).

Remark 3.2.2.

= As we will only work with real functions, we will simply denote these spaces as B(§)) and C°(§2) respectively.
Moreover, when the context is clear these function spaces may be denoted by B and C° respectively.
Sometimes CY is also written as C.

» The function spaces B and C are vector spaces, usually equipped with the uniform norm.

Definition 3.2.3. The uniform norm is the map
1 flleo = sup (|f(z)])
zEQ

on B(Q) and C(Q2).

n—oo

Definition 3.2.4. If f, — f with respect to | - ||, then we say the sequence (f,)nen converges to f
uniformly.

I Theorem 3.2.5. The uniform limit of continuous functions is continuous.

Proof. Given € > 0 there exists an N € N such that for all n > N we have

€
I = flloe < 5.

For fixed x, as fx is continuous, there exists a § > 0 such that if |z — y| < ¢ then

) = ()l < 5
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Therefore, for |x — y| < § we have that

1f (@) = f)l < (@) = (@) + [ (@) = In @) + v (y) = f(y)l

cELELE
3 3 3
:67

where the first and the third differences are bounded by the uniform convergence, and the second difference is
bounded by the continuity of fy. This shows that f is continuous at z. O

I Theorem 3.2.6. With the uniform norm, the spaces B(€2) and C(2) are Banach spaces.
Proof. We will only carry out the proof for C(Q). Let (fn)nen C C(Q2) be a Cauchy sequence.

Step 1. Find a candidate for the limit.
For any x € Q consider the sequence (f,(z))neny C R. As

[fa(@) = fn(@)] < | fu = finllos =30

we deduce that the sequence (f,,(x))nen C R is a Cauchy sequence and hence convergent as R is complete. Let
f(z) :==lim, o f(x). Note that f € B(Q).

Step 2. Show that (f,)nen converges to f uniformly.

Choose € > 0. Then there exists an N € N such that for n,m > N we have that ||f, — fi|| < ¢. Therefore, for
all x € Q we have

‘fn(x) - fm(l.)| <e.

Sending m — oo we deduce that | f,(x) — f(x)] < €, which implies that

||fn - f”oo < €.

Step 3. Show that f € C(f2).
Using step 2 we can apply Theorem to conclude. O

3.3 Spaces of Differentiable Functions
For a = (a1,...,aq) € Nd let
" |o|=a1+ -+ g, and

. 92 =90 00

Definition 3.3.1. The function space C*(Q) contains functions on Q which are k times differentiable with
continuous derivatives 02 f for all |a| < k.

The space C*() is a vector space which we endow with the norm
. = Oy .
I les = max 92 ..
With this norm, C¥(€2) is a normed vector space.

Theorem 3.3.2. The vector space C*(Q2) with || - ||cx is a complete normed vector space, that is a Banach
space.
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Proof. Consider a Cauchy sequence (f)nen C C*(9).

Step 1. Find a candidate for the limit.

For |a| < k, the sequence (05 fn),cy is @ Cauchy sequence for (C,|| - [|o). Therefore, by Theorem there
exists a limit f € C for (f,)nen and there exists a limit g, € C for (0% f,,)
Step 2. Show that f € C* and g, = 02 f.

neN:

» For the case k = 1 and d = 1. We know that f,(z) — f(x) and 0, fn(z) — g(z) in | - ||ec. By the
fundamental theorem of calculus, we have that

x

fa(@) = fuly) = /la,vfn(t) dt.

Y

Recall that the integral of uniformly convergent function converges to the integral of the limit. Hence, as
n — oo we get that

f@) = ) = [ gty
y
Applying the fundamental theorem of calculus once again, it follows that f is differentiable with derivative
g.

= For the case k£ > 2 and d = 1 we proceed by induction and use a similar approach to the previous case for
the inductive step.

= For the case kK =1 and d > 2. The case follows analogously to the first case, where we instead apply the
fundamental theorem of calculus component-wise. That is,

¢
fn(@) — frlz +tej) :/0 0; fn(x + sej)ds

where ¢; is the canonical 5™ unit vector.
= For the case k > 2 and d > 2 we proceed by induction.

Step 3. Show that f,, converges to f in C*.
Given € > 0 there exists an N € N such that || f,, — fim|lcr < € for n,m > N. This means that

mi}fc 10 fr — agfm”oo <e

|

Letting m — oo we deduce that
105 fr = galloe < €.

Previously we showed that g, = 0% f. Therefore,

— = ) PR, <e.
I fr = fllex Irglgllamfn Op flloe <€

O
Example 3.3.3. Consider functions in C*((—1,1)). The map
[F1F'= 110z flloo
is not a norm, as it is not definite. For example, ||1|| = 0. The map
LAl = 119=Flloo + |£(0)]
is a norm. The fundamental theorem of calculus tells us f(x) = f(0) + [ f'(t)dt. Hence, | f|| = 0 if and

only if f = 0. With this norm the space C*((—1,1)) is a Banach space.
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3.4 Function Spaces on Compact Sets

In the previous sections, we considered spaces of real-valued functions defined on open sets @ C R?. Here we will
suppose that © C R? is open and bounded, and then consider spaces of real-valued functions defined on Q.

I Theorem 3.4.1. The space B (), with norm || - ||« is a Banach space.

Proof. Let (fn)nen C B (Q) be a Cauchy sequence. Observe that there exists an NV € N such that for every
m > N we have

”fN - f’rn“OO <L

As fx is a bounded function there is an M > 0 such that |fx(z)| < M for all z € Q. Therefore, for sufficiently
large m we have
|[fm ()| < M +1 (3.4.1)

for all z € Q. As
n,m—00
—

the sequence (f.(2))nen C R is a Cauchy sequence, and hence convergent as R is complete. Let f(x) be this
limit. By (3.4.1), we deduce that f(x) < M + 1, as inequalities are preserved under limits. This holds for all
z € Qthus f € B(Q), hence, B () with the uniform norm is complete. O

I Theorem 3.4.2. The space C* (Q0), for k € N, with norm || - ||cx is a Banach space.

Proof. The proof proceeds in the same way as the proof of Theorem however, need to additionally check
that the candidate limits are continuous up to the boundary of 2. We check continuity up to the boundary for f,
with the understanding that the other cases follow similarly. More specifically, consider x € 02 and a sequence
(Yn)nen C € converging to x. Observe that for any n,m € N we have

Therefore, given € > 0 let m € N be such that

sup o () = fW)] < 5.
rcQ)

which we can do as we have already established that f,, — f uniformly. Then let n € N be such that

‘fm(yn) - fm(x)l < g’

which we can do as f,, € C° (). Then
[fyn) — f(2)] <€,

and so f(yn) — f(z), which means that f is continuous up to the boundary of €. O

Remark 3.4.3. A function f is in C* (Q) if for any points x € 92 and o € N® with |a| < k, the sequence
(0%f(Yn)) pen admits a limit when (yn)nen € € is such that y,, — x. That is, there exists a 3 € R such that
for every sequence (Yn)nen C Q with y, — x we have 0% f(y,) — 8.

I Corollary 3.4.4. The space C° (Q0) is a closed subset of B ().

Proof. Continuous functions on compact domains are bounded so that C° (Q) C B (Q). As || [lso = || - [|co we
know by Theorem that (C° (Q), | - ls) is a Banach space. Hence, C® (Q2) is a closed subset of B (Q2). O

28



4 [P Spaces
4.1 The L? Norm

Functions throughout this section are defined on R? or Q C R? open.

Definition 4.1.1. If f is a measurable function, its LP norm is

i1z = | If(w)lpdxy

| fllpe =inf {M > 0:|f(z)| < M almost everywhere} .

for 1 < p < oo and

Remark 4.1.2. Integrals are of non-negative functions, and so are well-defined despite taking potentially infinite
value.

Definition 4.1.3. The set L, more specifically L? (R%,R), is the set of measurable functions f : R? — R,
such that || f||z» < oco.

Remark 4.1.4.

= For Q C R? open, we can similarly define the LP(Q2) norm as

1fll o) = (/Q |f(x)|de>; .

= Note that LP(2) is a space of equivalence classes rather than functions. That is, f and g are equivalent
if and only if f = g is almost everywhere.

Proposition 4.1.5 (Young's Inequality). If% + % =1, for1 < p,q < oo, then for all z,y > 0 we have
1 1
zy < —aP + —yL.
p q
Proof. Using the fact that log(-) is a concave function we deduce that
1 1 1 1
log <xp + yq) > —log (zP) + —log (y7) .
p q p q
Exponentiating both sides we get

1 1
—xP + —a? > ay.
p q

O

Proposition 4.1.6 (Holder's Inequality). For Q C R? open, let p,q,r € [1,00] be such that % +% = % Then

If9llzr) < I fllze@llgllLea)-

Proof.
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= Consider p =7 so that ¢ = co. As

llgll Lo (@) = inf {M > 0: |g(z)] < M almost everywhere in 2}

we have that |g| < [|g||z(q) almost everywhere in 2. Hence

1 1
<Afmﬂ <mmwm<éﬂﬂ — il llgll e .

For r =1 and 1 < p < oo, from Proposition we have that

1 1
/Ifglé/*\fl’”rflglq
Q Qb q

1 1
< ey + 219070y
p @) T 9l La(@)

Therefore, if || f||zr(0) = 1 and [|g|| £e() = 1, it follows that

1 1
[1tolz=2+ o=t
Q p q

Hence, for arbitrary f € LP(Q2) and g € L1(Q2) we have

J

[ 183 <11 Lol
which is equivalent to || fgll 1) < [[flzr@) 9]l Le()-
= For r # 1, note that A4 L

@ m

/ g !
I flle ) lgllzay | —

which implies that

=1. Let p = £ and ¢ = Z. Then using the result for 7 = 1 we deduce that

91" L@y < MA Loy 191" Lo

() ()
()’ = (o) (o)

I fallzr) < Ifller@llgllzr)-

Q=

Therefore,

and thus
Example 4.1.7. Ifp=q=2 andr =1. Then

o= (/) (] )

and we recover the Cauchy-Schwartz inequality.
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Proposition 4.1.8 (Minkowski's Inequality). For Q C R4(Q), if f,g € LP(Q2), then f + g € LP(Q) and

If +9gllee) < I1fllze) + 9llze@)-

Proof. For 1 < p < oo we have that
If +9||1£p(9) = [ |f+gl”
Q

TI pi ol
g/ﬂlfllf+g| +/Q|g\|f+g\

Prop. [A.1.6] _ _
B a7 + 92k + gl o 7 + 61750y

Dividing both sides by ||f + 9||I£;(19) we deduce that
1f + gllr@) < I lle@) + l9llze )
When p = oo we note that if
myp€{M >0:|f(z)] < M almost everywhere in Q}

and
mg € {M > 0:|g(x)] < M almost everywhere in Q}

then
[f (@) + g(@) < [f(@)] + 1g(x)| < ms +my.
Taking infimums we conclude that

1f + gllL=@) < [1flle(@) + 9]~ (@)

I Theorem 4.1.9. For 1 < p < oo the map || - || () is @ norm on L*().
Proof. Note || f||1r(q) = 0 if and only if f is zero almost everywhere, and thus equivalent to zero. Furthermore,

for X € R we have ||Af||Lrq) = [All|fllzr()- The triangle inequality is Proposition Therefore, || - || Lr(q)
is a norm on LP(9). O

Proposition 4.1.10 (Generalised Minkowski Inequality).
H / f(z,y)dy

Remark 4.1.11. In Proposition[4.1.10 the y can be thought of as the summation variable and x as the variable
with respect to which we are computing the norm.

< / 1£(, 91 dy
LY

Example 4.1.12. Consider the function f : R — R given by

131(0)
||

/1 1 q =00 ap>1
i
0 |x|op <oo ap<l.

31

fx) =

where a € R®. Recall that




This implies that f € LP (R) if and only if « < %. More generally, in R? as f is a radial function we know that
dz = Cr?=1 dr where C is the volume of the unit sphere in Re. Therefore,

1 i . 1 s
/ ——dx | =C? (/ pd=l-ap dr) .
B1(0) 1Z|°P 0

Consequently, f € LP (R?) if and only if a < g

The space LP can contain surprisingly exotic functions as its regularity is only formulated as an integral, which
disregards behaviour at individual points.

Exercise 4.1.13.
1. Find a function in LP(R) which is essentially unbounded on any [n,n + 1| for n € Z.

2. Find a function in LP((0,1)) which is unbounded on any (a,b) for a,b € (0,1).

4.2 Convergence

We have established that (L?, || - ||z») is a normed vector spaces. Consequently, we can start asking questions
about convergence in this space, and how spaces with different values of p are related.

I Theorem 4.2.1. The space LP with norm || - ||z» is a Banach space.
Proof. Let (fn)nen be a Cauchy sequence with respect to |-|. Then we can extract a subsequence (f,, )xen such
that

1
|f7lk - fnk+1| < 27]C

As the sequence (fy)nen is Cauchy, if the limit of (fy, )ken exists then (f,)nen converges to the same limit.
Indeed, suppose f,, — f. Given an e > 0 let N1 € N be such that |f, — f,| < § for n,m > Ny. Similarly, let
Ny € N be such that |f — f,,,| < § for n > Ny. Then

€

‘f_fn‘ < |f_fnk‘+|f71/k' _fn| < 5"’ 92

for n,ng > max(Ny, Na2). Hence, it suffices to consider a sequence (fy,)nen € LP such that

||fn+1 - anLP < ﬁ

With this consider the following.
= f=fo+ > o(for1 — fn)
— This is only formal now as we have no way to make sense of the convergence.
= g =1fol + 3020 [fatr = ful-
— The convergence here has a pointwise meaning as we are dealing with non-negative functions.
= Sif = fot+ Xnsolfarr — fu).

= Srg=|fol + Zf;:o | frt1 — ful-

Step 1: Show the candidate f is well-defined and in LP.
By Minkowski's inequality we have that

k k
1 -
I1Skgllee < W follee + Y fnsr = fallr <C+ g SC <oo.
n=0

n=0
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As Srg /" g pointwise, we can conclude by the monotone convergence theorem that

J1ar =t [ 1.9l <.

k—o0
This implies that g € LP, and g < oo almost everywhere. Consequently ZZOZO | fn+1— fnl| is absolutely convergent
which implies that f is absolutely convergent. Therefore, as |f| < |g| we conclude that f € LP.

Step 2. Show f, converges to f in LP.
Note that

|f = SkfI < fI+[Skfl <29

so that | f — Sk f|P < 2PgP. Therefore, as |f — Sk f|P — 0 pointwise almost everywhere, by step 1 we can conclude
by the dominated convergence theorem that

If = SefIE, = / = SifP = 0.

I Proposition 4.2.2. IfQ) C R? is bounded, then LP(2) C L%(Q2) whenever p > q.

Proof. Let f € L?(Q2). Note that % =
by Holder's inequality

% + . Letr:= %, then ||1{| (o) < oo as €2 is bounded. Therefore,
rP—q

I fllLac) = 1f U zace) < I fller@) 1 Lr @) < oo
Therefore, f € LI(Q). O

Example 4.2.3. The condition that §) is bounded in Proposition is necessary for the inclusion to hold.
Consider Q = (1,00) and f(x) = L. Then

1
°© q 3
||f||L2((1,oo)) = / T3 dz < 00,
1 =

<1
fllzra,00)) = / — dz = oo.
|| ”L ((1,00)) ) |LL“

however,

Therefore, L?((1,00)) € L'((1,00)).

4.3 Convolution

Throughout, we will only be dealing with functions defined on R?. Let CO denote the set of compactly supported
continuous functions, with analogous definitions for C¥ and C2°.

Definition 4.3.1. For f € L' and ¢ € C?, their convolution is

(F+8)@) = [ 1otz =)y,

Remark 4.3.2.

» The integral of Definition makes sense as the integrand is in L'. Note LP C L' locally. That is, if
f € LP? and K is a compact set, then

Hoélder's
/ frde < flloe ke
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for L + 1 = 1. Therefore, as |1k ||z« < 0o we conclude that on K we have f € L'. Consequently,
convolutions still make sense for f € LP when ¢ has compact support.

» If both f,¢p € C°, then fx ¢ = px f.

= The convolution operation (f,$) — f x ¢ is bilinear.

" ’f(ﬁ(x 3 P
< Pl

A gl

x J

M

Figure 6: An illustration of how the convolution can be interpreted as a smoothing operation for a rough function
f, by taking a weighted average at = over the compact support of ¢.

Definition 4.3.3. For f € L', the support of f denoted supp(f) is the smallest closed set such that f = 0
almost everywhere in R \ supp(f).

Definition 4.3.4. For sets A and B let

A+B={a+b:a€ Abe B}

Lemma 4.3.5. For f € L' and ¢ € CO we have
supp(f * ¢) C supp(f) + supp(¢).

Intuition. ldeally, one would say that if [ f(y)¢(x —y)dy = (f * ¢)(z) # O then there exists a y such that
f(y) # 0 and ¢(x —y) # 0. Therefore, z = y+ (z —y) € supp(f) +supp(¢). However, f here is an equivalence
class, and it doesn't make sense to talk about evaluating f at points. One instead has to work with small open
sets. O

ATy

A
. -_

- —- -

Figure 7: Thinking about a convolution as a weighted sum over a compact support, then graphically this is what
we would expect the support of f x ¢ to be.

Proposition 4.3.6. If f € L? and ¢ € C? then f x ¢ € L? and

If % ollce < I fllzellllzr-
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Proof. For p =1 we can write

Jisso@ias=[ | [ ot - as
= [[1rwloe - layas

Fubini.
2[5 [ 1ot~ v)ldzdy
= £l lloll -

For the case when p > 1 we use Proposition [4.1.10] to deduce that

H [ 1=t ay

P
< _ . d
PRy AL OIPEY

= [ 16wl - )2z
= gl

Where in the last inequality we have pulled out || f|r» as by translational invariance ||f(z — )| 2 = [f ()] L2,
and so is independent of y.

Exercise 4.3.7.
1. Show that if f € LP and ¢ € L' then f % ¢ € LP.
2. Show that if f € L. and ¢ € CO then f x ¢ € C°.

loc

p
loc

» The space LY _ is the space of functions for which on every compact set K we have || f1k||r» < 00.

Proposition 4.3.8. If f € L}_and ¢ € C¥, then f x ¢ € Ck. What's more
O (fx¢) = f 0%
if o) < k.
Proof. We proceed for k = 1. Let G(z) := (¢ f)(z). Fixi € {1,...,d} and z € R%. Consider

Gz + hnei) — Glz) _ / P(x + hpei —y) — o(x —y)
i h

fy)dy

n

Fi(y)

where h, — 0. We know that F7(y) is supported on Bg(z) for R sufficiently large. As ¢ € C¥ (R%) we know
that

FWFy) =3 f(y)0id(z —y)

pointwise almost everywhere. Moreover,

FEZ W< 1f W 10ller(my) -

As f € Li_ we know the right-hand side of the above is in L'(Bp). Hence, by the dominated convergence

loc

theorem & hoes) — C(x)
. T+ nNne€;) — x
i (R ) = [oota - nswan
It follows that 0;(f  ¢)(x) = ((0;¢)  f) (z) for all i € {1,...,d} and all z € R%. As 9;¢ € C? it follows that
0i(fx¢)eC? (Rd). Proceed by induction to complete the proof. O
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4.4 Mollifer
For a function ¢ € C° with [ ¢ =1 we define the sequence of mollifiers (¢;,)nen Where
pn(x) = nlp(nz).

Note that, supp(¢n) = ~supp(y), whilst [, = 1. Intuitively, f x ¢, should converge in some sense to f.
As f x p, can be thought of as a weighted average of f over supp(y,,), thus we are performing an increasingly
concentrated average.

Figure 8: A graphical representation of a mollifer, ¢, and subsequent ,,.

Theorem 4.4.1.
1. If f €C°, then f* ¢, "% f under the uniform topology on C.
2. IffeLP, forl <p< oo, then f p, "—3 f in LP.
Proof.

1. Given an € > 0, there exists a § > 0 such that for |z — y| < § we have that |f(z) — f(y)| < e. Note that
(Fron)(@) = $@) = [ enle = )f ) dy - f(2)
= [ente = (7w - F@) d.

The last equality follows from the fact that f(z) is independent of y and [ ¢, (z —y)dy = 1. We can
choose N € N such that for x,y € supp(epn) we have |z — y| < §. Then for n > N we have

(Frpn)la) = f@) e [ lonle = y)ldy < eC:
Hence, we have uniform convergence.

2. Let f € LP. Using the fact that C? is dense in LP, given an ¢ > 0 there exists a g € C0 and h € LP such
that f = g+ h, and ||h||z» < e. Hence,

fron—f=g%pon—g+hxp, —h
so that

If % @n = flle < llgx@n = gllee + [ x @nllLe + [|All -

The second and third terms on the right-hand side are less than or equal to € by construction. The function
in the first term has compact support, that is independent of n, and so gx¢,, —g — 0 uniformly. Therefore,
—
lg * ¢n = gllzr =5 0.
O
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I Corollary 4.4.2. For 1 < p < oo, the space CS° is dense in LP.

Theorem breaks down for p = co. If it were true then we could choose f € L° \ C° and find a sequence
(fn) € C*> such that f, — f in L. However, for continuous functions ||f||p=~ = | f|lco. Therefore, the
sequence is convergent in C° with the uniform topology, which implies that f € C°, which is a contradiction.
4.5 Solution to Exercises

Exercise 4.1.13]

Solution.

1. Foragiven plet f,(x) = 1jp nyq —L . By Example[4.1.12|the LP-norm of f,, is finite and is independent
|z—n]|2pP
of n € Z since the measure is translationally invariant. Therefore,

=3 @)

ne”Z

is absolutely convergent. As LP(R) is complete we deduce that f € LP(R). Notice that f is unbounded at
n € Z and so satisfies the requirements of the exercise.

2. As QN [0,1] is countable we can enumerate it as (g, )nen. As before we consider

Lo Z n2

Note that f € LP(IR) by similar arguments and satisfies the requirement of the exercise as QN [0, 1] is dense
in [0,1] and f is unbounded at each ¢,.

T —qn |2p

O
Exercise [.3.7]

Solution.

1. Observe that

6% £, = H [ owire - ay

LE
Applying the generalised Minkowski inequality we deduce that
6 £, < [ 16 = )2z do
— [16@I1 712z
= I8l fll -

Therefore, ¢ x f € LP as ||¢||L1 and || f||z» are finite by assumption.

2. Fix z € R%. For z € R? observe that
[(@x f)(z) = (o f)(2)| < /\f(y)|\¢($ —y) — ¢(z—y)|dy.
Assume that supp(¢) C Bg, so that supp(¢(- — z)) € Br(x) and supp(¢(- — 2)) € Br(z). Suppose that

|z — x| = J so that
supp(¢(- — ) — ¢(- — 2)) € Bryas(x).
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Then
(@ * f)(@) = (¢* f)(2)] < / lfW)llo(z —y) — d(z — y)| dy.

Bry2s(z)

As ¢(- —x) — ¢(- — z) is continuous and compactly supported, it is also uniformly continuous on Bras(x).
Therefore, for € > 0 there exists a § > §y > 0 such that |§ — y| < o implies that

¢ (@) =0 @) <e

Hence,

(6% F)(z) — (6% N)(2)] < / )] dy.

Brt2s(x)

Thus we have continuity, but we do not have uniform continuity as the right-hand side is dependent on .
O
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5 (P Spaces

In this section, we will briefly explore ¢? spaces which can be thought of as a discrete analogue of LP, but with
some key differences.

5.1 (? Norm
Definition 5.1.1. For 1 < p < oo define the real vector space

P = {x = (zk)keny CR: Z |z, |P < oo}.

keN

When p = oo define the real vector space

2 = {(fﬁk)keN C R :sup (|zx]) < oo} .
kEN

For 1 < p < oo the space (P consists of absolutely summable sequences. Whereas ¢*° deals with bounded
sequences, which is a significant distinction between the spaces.

Definition 5.1.2. For1 <p < oo let || - /e : ¢/ — R be given by

Forp = 00 let || . ||gao I = R be given by

[2le=e = sup(|zx])-
kEN

Remark 5.1.3. If f = >"° ( cilyg pv1], for (ck)ren € R, then

[fllze = ll(er)nenller-

Proposition 5.1.4 (Holder's Inequality). Let 1 < p,q < oo be such that % + é = 1. Then,

1fgller < 1Ifllerllgllea
for x € (P and y € /9.
Proof.

» For 1 < p < o0, from Proposition [4.1.5| we get that

oo

1 1
S o] < > (w n W)
pt P q

<y kel + I3l
qk:l

‘3»—!

If 2+ ¢ =1 llzlle =1 and |lylles = 1, then

Z |zryk| < *Ilwllw + *Ilyllzq =1
k=1
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Therefore, for arbitrary x € P and y € £9 we have that

o0

Z Tk Yk
2 |Teler Tyllen | =
which implies that
oo
D lzwysl < lallevllyllea-
k=1

Thus,

zyller < llllerllylles-

= When p = o0, then ¢ =1 and

o0
lzylle = Z E757%
k=1

o0
< <Sup |$k|) k|
7 \keN

o
= ||zlle > lxl
k=1

= [[zlle=llyller-

Proposition 5.1.5 (Minkowski's Inequality). Ifz,y € ¢? then x +y € ¢? and
1z +yller < llzller + llyller-
Proof.

= |f1<p< oo, then
o0
e+ yllfs = |z + yal?
k=1

TIE >0
< laklloe +yelP T+ e + oyl
k=1 k=1

rop. [f.1.9] -1 -1
< lzlleelle+ ol + lyllee =+ yllz

Dividing both sides by ||z + y||% " we conclude that
2+ yller < [l2ller + lyller-
= If p =00, then

[+ ylle= = sup (Jzx + yl)
keN

IN

sup |z | + sup |yx|
keN keN

[2]le + [lylle== -
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I Theorem 5.1.6. For 1 < p < co the map || - ||¢r is a norm on ¢P.

Proof. Clearly, ||z|l¢» = 0 if and only if 3, = 0 for all £ € N. Furthermore, for A € R we have || Az||;e = |A|||x]|ee-
The triangle inequality is Proposition Therefore, || - ||¢» is a norm on ¢7. O

Consequently, we can consider /” as a normed vector space with norm || - ||¢».

5.2 Convergence

I Theorem 5.2.1. For 1 < p < oo, the space ¢P is a Banach space.
Proof.
= Consider the case when 1 < p < oco. Let (x(”))neN C P be a Cauchy sequence. Then given an € > 0,

there exists an N € N such that for all n,m > N we have

<€

me) _
/P

so that for any k € N we have
‘ml(:/) — mém)‘ < €.

Hence the sequence (x,(c")) C R is a Cauchy sequence and therefore converges to a limit we will denote
neN
x,(coo). The sequence (a:("))neN is Cauchy and thus bounded so that for some M > 0 we have

me)

<M
op

for all n € N. Therefore, for any N € N we have

1
N P
— 1 (n)|? : H
(b ) “ i () < g ], <o
k=1
Sending N — oo gives
‘ x <M,
¢p
meaning z(°°) € P, Recall, that
o], <
P
for any n,m > N. Therefore, for any N € N we have
N 1
p p
(Z ‘a?én) - m,ﬁm)‘ ) < €.
k=1
Sending m — oo gives
1
N (n) p\?
Z ‘a:k < €.
k=1
Sending N — oo we conclude that, (™ — 2(°°) in 7. Hence (¢, || - ||¢») is a Banach space when

1 <p<oo.
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= Now consider the case when p = co. Let (:c(”))neN C £*° be a Cauchy sequence. As ‘m,& )

Hm(”) - m(m)Héw, it follows that (x,(cn))k C R is Cauchy. Therefore, as before, we can construct the
eN

sequence (%) where m,(:o) =lim,_ s (xi")) For any N € N we have

sup ‘ngo) = lim sup ’xk < lim H H
k=1,...,N =0 k—1,..,N n—0o0

As the sequence (ac("))neN

as (m,(gn)> N is Cauchy there exists an IV € N such that
ne

(n) (m) €
— < =,
‘x’“ N
sending m — oo gives
‘x;") — xffo) < %

Taking the supremum over k € N we deduce that

Hx(") — 1'(00)’ <€
YA

which shows that 2™ — 2(°) in £>°. Hence, (£, ]| - ||¢=) is a Banach space.

I Proposition 5.2.2. [fp < q then (P C (9.

is Cauchy it is bounded, hence 2(%) is bounded and thus is in £>°. Furthermore,

Proof. If p = oo then ¢ = oo and so ¢? C ¢2. Similarly, ¢ C ¢ for all p € [1,00) as absolutely summable

sequences are bounded. For 1 < p < oo let « € ¢P and consider p < g < co. As

oo
lzllfr = D laxl? < oo,
k=0

it must be the case that |x;[? — 0 as k — co. More specifically there exists a K € N such that |x;| < 1 for

k > K which implies that |z|? < |xg|P for k > K. Thus,

[(@x)renllfa = Z|$k|q

K—1 N
= E |xg]? + lim E | |
N—o0
k=0 k=K

K-1 N
< |zg|?T+ lim E |z [P
N—oo
k=0 k=K

K-1

<Y ekl + (@) kel
k=0

< 00.

Therefore, x € /9.

Remark 5.2.3. Note the difference between Proposition and Proposition [4.2.2
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6 Linear Maps

6.1 Continuous Maps

Let E and F be normed vector spaces. The set of continuous linear maps from E to F' is denoted by L(E, F).

Proposition 6.1.1. Let E and F be normed vector spaces, and consider T € L(E, F). Then the following
are equivalent.

= T s continuous at zero.
= T js continuous on F.

= T js bounded, that is

Tx F
IT|g—F := sup 7] < 00

zeE\{0} Izl

Proposition 6.1.2. The space L(E, F) endowed with || - ||[g— r is a normed vector space. Moreover, if F' is
a Banach space, then L(E, F') is a Banach space.

Proof. Let (T,)neny € L(E, F') be a Cauchy sequence. Fix z € E'\ {0}. Given an € > 0 there exists an N € N
such that || T, — Tonllc(p,r) < TaTg for all n,m = N. Hence,

[Tn(2) = T (@) < T = Tonllce.m Izl <€

Therefore, the sequence (T),(z))nen C F' is Cauchy which implies that T),(z) — y, € F. Let T : E — F be
given by T'(z) = y,. For z1,z2 € E and A € R, note that

T(z1 4+ A\x2) = lim T, (z1 + Axa)
n—oo
= nh_{rgo To(x1) + /\nli_{rgo T (x2)

Therefore, T : E — F'is linear. As the sequence (T},)neny € L(E, F) is Cauchy it is bounded. That is, there
exists a M > 0 such that for all n € N we have

1Tl e,y < M.
Moreover, for any x € E, with ||z||r = 1, and € > 0, there exists an N, € N such that
[Tn(x) = T(z)||F <€
for n > N,. Therefore, for n > N, we deduce that
[Tz||p < [ Tn(z) = T(@)|p + [|Tn(z)|F < e+ M,

which implies that ||T'||z(g,7) < o0 and so T' € L(E,F) as T is linear. Moreover, as (T),)nen € L(E,F) is
Cauchy, given an € > 0 we have

Sup 1T0(z) = Ton (@) p = 1Tn = Tl 2,p) <€
z||=1

Hence, sending m — oo gives

Sup [Tn(z) =T()|pr = Tn = Tllzer) <€
z||=1

so that T, — T in L(E, F). O
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6.2 Dual Spaces
Throughout, let E be a Banach space.

Definition 6.2.1. A linear form on E is a linear map of the form E — R (or C).

Definition 6.2.2. The dual of E denoted E’, is the set of continuous linear forms. That is, E' = L(E,R).

Example 6.2.3. Let E = R?. Then o : E — R given by (z1,...,x4) — x; is a linear form. In fact, any linear
form on R? can be written as

d
x:(xla"'axd)Hx'y:inyi
i=1

for some y € R%. Note that p(x) =z -y wherey = (0,...,1,...,0).
——

Exercise 6.2.4. Show that for p € (1,00), we have that (£7)" = (1 where L + 1 =1.

Theorem 6.2.5 (Hahn-Banach). Let G C E be a linear subspace, and g € L(G,R) be bounded. Then there
exists an extension f € E' such that

= f=gonG, and
* [lflle—r = llglle—r-
Proof. Let P = {h: D(h) C E — R, satisfying 1 — 5}.
1. D(h) is a linear subspace.
2. he L(D(h),R).
3. G = D(g) € D(h).
4. h=gonG.

(6]

- Nhllpmwy—= = lglle—r.

Let us introduce an order relation < on P where hy < hs if and only if the following hold.
L. D(h1) € D(h2).
2. ha = hy on D(hy).

Step 1: P is inductive.

Let Q) C P be a totally ordered subset. Then let (h, D(h)) be given by D(h) =, .o D(q) and h(z) = q(z) if
x € D(q). This is well-defined, and & is an upper bound of @, implying P is inductive.

Step 2: Apply Zorn's Lemma.

By Lemma [10.1.5| there exists a maximal element f.

Step 3: Show that D(f) = E.

Proceed by contradiction, and assume that D(f) # E. Then choose ¢ € E\ D(f). Let (h, D(h)) be given by
D(h) = D(f) +Raxq and h(z 4 tzg) = f(x) + at for (z,t) € D(f) x R. Let Cp = ||g]|c—r- We want to choose
« such that

|f(2) + ta] < Collz + taol|

44



By positive homogeneity we note that |f(z) + ta| = |t |f (%) + |, so it suffices to consider ¢ = +1. Thus, it
suffices to require that

f(x) +a < Collz + zo|
f(z) — a < Gollz + x|

which is equivalent to

sup (J(y) - Colly +oll) < a < ( it Collz + ol —f(z>).
yED(h) z€D(h)

For such an « to exists we need
f(y) = Colly + xoll < Collz + ol — f(2)
for all y and z, which happens if and only if
fly—2) = Ffly) = f(2) < Collz + xoll + Colly + .

This holds since
fly—2) < Colly — 2|l < Collly + zoll + ||z + 2oll)

by the triangle inequality. Therefore, by the construction of f it follows that ||h||p(n) = I|gllc—»r and so h € P.
In particular, f < h which contradicts f being a maximal element as h # f. O

6.3 Applications of the Hahn-Banach Theorem

Theorem 6.3.1. If E is a normed vector space and x € E, then there exits a p € E' such that

p(x)
lzllz =
ol &
where lloll i = l1pll 5.
Proof. Let p: Rz — R be given by p(tx) =t. Note that
plta) 1
lzllz  lltzlls  lzle

Thus, we can extend p to E using Theorem such that ||p||g = —=—. Then,

=zl

o) — 1 — lals

so that
p(z)
ol &

lzlle =

Remark 6.3.2.
= Equivalently, we can say that there exists a p € E' with ||p||gr = 1 such that p(z) = ||z| .

= In finite dimensions, say with E = RY, any linear form can written as p, : R? — R where z + -y =
Z?Zl x;y;. Note that
|z -yl

loyll = sup — <yl
serd\{o} 12l
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by Cauchy-Schwartz. More specifically,

lz-yl _ |py(2)]
[yl [yl

= |||

if and only if y is parallel to x.

Theorem 6.3.3. Let E be a normed vector space with F C E a linear subspace. Then if F # E, it follows
that there exists a p € E’ such that p # 0 and

p(@) = (p,x) =0
for all x € F.

Proof. Letv € E\ F and define F = F +span(v). Note that for each u € F' we can write u = f + Av uniquely,
for f€e Fand A € R. Let g: F — R be given by

U — A

Note that g(u) = 0 for all u € F. Asv ¢ F there exists an € > 0 such that ||v— f||g > e>0forall f € F. As F
is a linear subspace we note that f € I if and only if 7{ € F. So we can equivalently say that Hv + {HE >e>0
for all f € F. Hence, for u € F we have that

loll gy = sup 190
wer\joy 1ulle

Al
= Ssup T
weirjoy 1A+ flle

sp AL
Do 4];

1
<=,
€

As g is linear, it follows that g € (F’), Therefore, by Theorem this can be extended to p € E’. O

6.4 Riesz Representation Theorem

For p, ¢ € [1,00] such that § + 2 = 1, we say that p and g are dual, and usually write ¢ = p. Let f € L?" and
consider the linear form py : L? — R where

= /fgod:v.

Note that by Holder's inequality this is well-defined and bounded,

o5l = | [ £6] < N1 ol

Consequently, py € (LP)" with
logllzry < NNz

Exercise 6.4.1. Show that ||py|(Lry = || fll s -
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Theorem 6.4.2 (Riesz Representation Theorem). If1 < p < oo, then any element of (L?) can be represented
as py for some f € LP .

Remark 6.4.3. The same holds if LP is replaced with (P.

The statement of Theorem breaks down for p = co. One can see how for the space ¢P. Observe that

Py ()] = < llle<llyller-

Which means that ¢' provides linear forms on (>, namely p, € (¢°)' for y € ¢*. Now let X C (> be the
sequences with a limit. Then define p on X by p((2)nen) = lim, o0 (7). By the Theorem p can be
extended to ¢>°. Hence, we get a p € (£°) such that p(x) = lim, oo (z,) if (2,)nen converges. Suppose
p(z) = py(z) = 3, cn@nyn for some y € 1. As y € (', given an € > 0 there exists an N € N such that

> nsn lUnl <€ Let z € £ be given by
{o n<N
Ty =

1 n>N.

Then as lim,,_, o0 (2,) = 1 we have
1= p( |p1/( xn nEN Z Yn| < €.
n>N

Therefore, p cannot be equal to p, for any y € ¢!, and so the statement of Theorem cannot hold.

Exercise 6.4.4. Show that the f in the statement of Theorem[6.4.2)is unique, up to equality almost everywhere.

Example 6.4.5.

1. Consider T : £2 — R given by

_ § xnean

neN

Z |ean ‘ 62(1

neN
it follows by Theorem and Exercise that

1
62(1 2

T = — o

ey = (15 )

2. For I = (0,00) and p = (1, 00) consider the operator T : LP(I) — R given by

where a € R. Since

T(f) = / arctan(y) f(y) dy.

1

As T is linear, if it were were bounded then T € (L”)". So by Theorem there would exist g € LP'
such that
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However, this would imply that arctan(y) € LP' (I), which is not the case. Therefore, T cannot be a
bounded operator.

6.5 Bi-dual Space

For E a Banach space the bi-dual of E is the dual of E’, namely E”. On E” we have the norm

£l = sup WO,
peE\{0} ||PHE’

There is a natural map from ® : E — E” given by « — f, where f, : E/ — R is such that p — p(z).

Exercise 6.5.1. Verify that f, is linear.

Observe that

I foller = sup | f2(p)]
peE\{0} ol &
wp @)

B peE\{0} ol &

(1)
= |z[le.

To justify (1) recall that |p(z)| < ||p||&||x|| g and note that by Theorem we can construct a p that achieves
this upper bound. Thus, f, € E” and so ® is well-defined. In particular, we deduce that ® is an isometry, which
implies that @ is an injective linear operator. If ® is also surjective, we call E a reflexive space.

Example 6.5.2.
1. On R? with the Euclidean norm, any linear form is bounded and can be represented as

py(T) = (y,7)

for some y € R%. Furthermore,

(y, )
”py”(]Rd)’: sup  ———

=yl
sera\{o} ||zl

It is easy to check then that ® is an isomorphism. Consequently, R® with the Euclidean norm is reflexive.

2. Consider LP for 1 < p < co. By Theorem (LP)' ~ L¥". Consequently,

N\
(LP)" =~ (Lp) ~ L7 (6.5.1)
Therefore, LP is reflexive for 1 < p < oc.

3. Forp € {1, 00}, the space L? is not reflexive. Note that although the first equality in (6.5.1)) holds for
p = 1, the second inequality does not hold as p' = ooc.

4. The same conclusions made for LP hold for ¢P.

6.6 Solution to Exercises
Exercise [0.2.4

Solution. Let p,q € (1,00) be such that % + % =1. Forv € ¢4 let T'(v) : /? — R be given by

U Z Uy, .

neN
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Step 1: Show that the map T'(v) : £7 — R is well-defined for v € ¢1.
Observe that

T(v) (u)]

E UpUn

neN

< o]

neN

< [Jvlfea fluller

< 00.

Therefore, T'(v) is well-defined.

Let T : £9 — (¢7) be given by v — T'(v).

Step 2: Show that T : £7 — (¢P)" is well-defined and continuous.

The map v + T(v) is well-defined as from step 1 we know that T(v) € (¢)". For v',v? € £?, A € R, and fixed
u € P we have that

T (v' + M?) (u) = Z (vp, + Mv2) u

neN
_ 1 2
= E Up Uy + A g Uy, Un,
neN neN

=T (v') (u) + AT (v?) (u).

Hence v — T'(v) is linear. Next observe that for u € ¢ \ {0} we have that

T@) @) _ XnenVntnl _ [[0lles[[ller

= >~ = ||U||¢a-
Taller Tl fler 11
Hence

1T ()]l (ery < ll0]lea.
Therefore,

1T (0)]] ¢gay
IT ooy = sup ———rC <1
vera\{0} [[v]]er

which implies that the map is bounded and hence continuous as it is also linear.
Step 3: Show that T is injective.

Suppose that for u,v € £9 we have that T'(u) = T'(v). For i € N, consider e € (P where

i 1 n=q
en = .
0 otherwise.

Then u; = T'(u) (¢') = T(v) (¢") = v;. Therefore, u = v and so v — T'(v) is injective.
Step 4: Show that T is surjective.

Let £ € (7)" and consider v = (v,,)nen Where v, = £(e,,). For u € 7 let uN = (Uunlp<n),cy- Observe that

N
§ Un€n

N)

n)-
S
3 ctn
(>
¢ (u
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which implies ’T(v) ()| < . Moreover,
o0
||uN—uHZ) = Z [t |P NZge .
n=N+1
Hence,
[ T(0) (V) = ()] = [¢ (u¥ u)! |s||< |, 0.

Therefore, T'(v) (u") — &(u) in R as N — co. As T'(v) (uV) — ) as N — oo by the continuity of T, it
follows using the uniqueness of limits that T'(v)u = 5( ). As this holds for any u € (P it follows that T'(v) = ¢
in the (¢7)" sense. As ¢ € (¢7)" was arbitrary we conclude that 7' is surjective.

Step 5: Deduce that (¢7) = (4.

The map T is a bijective and continuous map, so (¢?)" = /4. O

Exercise [6.4.1]
Solution. Let p(z) = sgn(f(z))|f ()| ~!. Then

|mm:/mmq>

so that f € LP. Therefore, as

or)l [

el e (f|f|p/)%

/ 1_
- (Jur)
= || fll -
it follows that [p¢|l Loy = [[fll s - -

Exercise [6.4.4]
Solution. Suppose that for f,g € LP" we have pf = pg. Then

/fwdx=/gs0dx

= gppdz =0

for all p € LP. Letting ¢ = sgn(f — g)1_,, n¢ we deduce that h,, = [f — g|1[_, nj¢ = 0 almost everywhere. As
hn — |f — g| pointwise almost everywhere we deduce using the dominated convergence theorem that

0= lim hndx:/|f—g|dx,

for all ¢ € LP. In particular,

n—oo
which implies that f = g almost everywhere. O
Exercise [0.5.1]

Solution. Note that for p1,p2 € E/ and A € R we have

fo(p1 + Ap2)(x) = (p1 + Ap2) ()
= p1(x) + Ap2(z)
= fz(p1) + Afz(p2).

Hence, f, is linear. O
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7 Compactness in Normed Vector Spaces

7.1 Compact Sets

In metric spaces the equivalent Bolzano-Weierstrass property and the open-covering property characterise com-
pactness. For finite-dimensional vector spaces, Theorem [1.2.37| identifies compact sets. For infinite-dimensional
vector spaces, the identification of compact sets is not as straightforward.

Lemma 7.1.1. Let E be a normed vector space, and let M C E be a closed linear subspace where M # E.
Then for all ¢ > 0 there exists uw € E such that,

1. |lu| =1, and
2. dist(u, M) >1—e.

Proof. Pick v € E\ M. Then d :=dist(v, M) > 0asv & M and M is closed. So there exists an mgy € M such
that

d
d<||lv— < .
< flo - mol < T

Now let u = =100 It is clear that |lu]] = 1. Moreover, for m € M we have

v —mo
Ju—m| = | =t —m
o= mal
1
= v = mo = llo = molm|
[[v = mol|
1
> = fo—m|

where m/ is some element of M. Hence as ||[v — m’|| > d we have that
lu—m| >1-—e.

O

Example 7.1.2. Let E = R? with the Euclidean norm, and let M C E be a linear subspace with M # E.
Then one considers the line orthogonal to M passing through the origin. Choosing a point where this line
intersects the unit ball will provide a satisfactory vector u.

Theorem 7.1.3 (Riesz). Let E be a normed vector space of infinite dimension. Then the closed unit ball is
not compact.

Proof. Let ugp € E be of unit norm. Then, by Lemma for € € (0,1) there exists a unit vector such that
[lui]] = 1 and dist(uq,span(ug)) > 1 — €. As E is infinite-dimensional, we can continue to find a unit vector w,,
such that dist(u,, span(ug, ..., un—1)) > 1 — €. The sequence (u,)nen is such that ||u, — uy| > 1 — € for all
n # m. Therefore, the sequence has no convergent subsequence and so does not satisfy the Bolzano-Weierstrass
property. Therefore, the closed-unit ball is not compact. O

Theorem shows that extending our notions of compactness to infinite dimensions fails rather fundamentally.
Theorem [7.1.7] will give us a characterisation of compactness for the set of continuous functions on the closure
of open and bounded sets €2, denoted C° ().
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— e

e |

-

T AL =t

A
(a) A sequence of functions that is (b) A sequence of functions converg- (c) A sequence of functions that os-
unbounded. ing to a step function. cillate at an ever-increasing rate.

Figure 9: Examples illustrating some necessary conditions for sequences of functions to admit convergent subse-
quences.

From Figure [9al we note that we must require a sequence of functions to be bounded to admit a convergence

subsequence. Similarly, Figures [b] and [0 show that we must have a condition which ensures the derivatives of
these functions are bounded.

Definition 7.1.4. A sequence (f,)nen C C° (Q) is bounded with constant C, if

| falloo < C

for every n € N.

Definition 7.1.5.

= A sequence (fy)nen C CY (Q) is equicontinuous at x € S if for all ¢ > 0 there exists a & > 0 such that
for y € Q with |x —y| < & we have |f,(x) — fn(y)| < € for all n € N,

= A sequence (f,)nen C C° (Q) is uniformly equicontinuous if for all ¢ > 0 there exists a § > 0 such that
for y € Q with |x —y| < & we have | f.(x) — fu(y)| < € for all n € N.

Example 7.1.6. Let f,, : Bga(0,1) — R be given by f,(z) = e ™I°ll. As 2 — % and z — ||z| are
continuous their composition f,(x) is continuous. Moreover, the sequence of functions (fy,)nen is bounded.
However, let z =0 and e = . Then for any § > 0 let y € Bga(0,1) be such that ||y|| = . Then

)

£2(0) = fuly)] = |t =%

n— oo

— 1.

Therefore, there exists an n € N such that

N | —

and so the sequence (f,)nen is not equicontinuous.
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Figure 10: Intuitively the functions referenced in Example are not equicontinuous as the gradients of the
function near the origin diverge as n gets large.

Theorem 7.1.7 (Arzela-Ascoli). Let (f,)nen € C° (Q) be a sequence that is bounded, with constant C, and
equicontinuous. Then the sequence (f,)nen admits a convergent subsequence.

Proof. To simplify the proof we suppose (f,)nen is uniformly equicontinuous.
Step 1: Finding a dense set of points.

Arrange the rational numbers in Q into a sequence (7 )nen-
Step 2: Apply the Cantor diagonal argument.

Let o1 : N — N be such that (f,,(n) (rl))neN converges. This is possible since the sequence (f,,(r1))nen is
bounded and so has a convergent subsequence. Now let (f,,(n))nen be a subsequence of (f‘»"l(”)>neN such
that (fW(TL)(T?))neN converges. Again we can do this as the sequences are bounded and so admit convergent

subsequences. Note that (f4p2(")(rl))n,eN converges as (fu,(n))neN € (fo,(n))nen. Continue in this way to
determine ¢ : N — N such that (fs%("))neN C (f%fl("))neN and (fw(n) (rk))neN converges. Again note that
(for(n) (Tj))nEN converges for all j =1,...,k — 1. Now set ¢(n) = p,(n). Then (f‘p(”)(rj))neN converges for
any j € N as (fﬂ"("))nEN - (f‘PJ'("))nEN for all j € N.

Step 3: The candidate limit.

Let f(r) = limy o0 fo@m)(r) for allr € QN Q.

Step 4: Extend f using uniform equicontinuity.

For any € > 0, by uniform equicontinuity, there exists a & > 0 such that [z —y[ < & implies | fo,(n) (%) = fo(n) ()] < €
for all n € N. Thus, we can extend f to Q by letting f(z) = lim,_,, f(r).

Step 5: f,(m) converges to fin || - |-

Fix € > 0.

= Choose ¢ > 0 such that |z —y| < d implies | f,,(z) — fn(y)| < § for all n € N.
= Choose N € N such that for all z € Q) there exists a j € {1,..., N} such that |z — r;| < 6.

= Choose M € N such that for all j € {1,..., N} if m > M, then | f,m)(r;) — f(r;)] < 5.

For € , choose jo such that |rj, — x| < 4. If n > M then

|f(2) = foey(@)] <1 (@) = F)+[F(rs) = Fom) ()| + | Fom) (1) = Fom) ()]
37373

IN A

IN

Example 7.1.8. Consider the sequence (f,)nen C C° (BRd(O, 1)) from Example|7.1.6, Suppose that f, ) —
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fin C°(0,1). Then f,m)(x) — f(x) for each z € (0,1). However,

1 z=0

(@) = el
fom) () 0 otherwise,

which is not a continuous function. Therefore, there cannot exist a convergent subsequence ( f‘»@(n))n o S
C%(0,1). Recall, that the sequence (f,)nen was shown not to be equicontinuous. Hence, the requirement of
equicontinuity in Theorem is necessary.

7.2 Compact Operators
Let F and F be Banach spaces. Recall that L(E, F) is the set of bounded linear operators E — F. Moreover,

Tx
HT|‘E~>F = sup ” ||F
zeE\{0} [E41¥>

Thus,
|Tz||r < T e—rllz|e.

Definition 7.2.1. A set S C X is pre-compact if S is compact.

Definition 7.2.2. The operator T € L(E, F) is compact if T (B¥) is pre-compact, where

BE .= {r e E:|z|| <1}

Example 7.2.3.

1. Using Theorem it follows that for a Banach space E, the operator Id : E — E is compact if and
only if dim(E) < oo. Therefore, in some sense, compact operators must shrink sets on which they are
applied.

2. Consider 1d : C* (Q) — C°(Q). The unit ball consists of functions f € C' () such that || f|s +
Z?:l 10s flloo < 1. In particular,

[f(z) = f(y)l < Cllz =yl

for any x,y € Q by the mean value theorem. Therefore, using Theorem we deduce that the image
of the unit ball is compact.

3. ForT: E — F where dim(F') < oo, the image of the unit ball is bounded and so by Theorem its
closure is compact and hence the set is pre-compact. Therefore, T is compact.

4. Let T : L*(0,1) — C°(0,1) where f — [ K(z,y)f(y)dy for K € C* ([0,1]%). This is well-defined by
Hélder’s inequality. Moreover,

Tf(2) - Tf ()] = \ | @ - K@) 1) ay
< [ 1K) - K@l )y

(2) ,
< Clz = 2|1 flzr,

where (1) is the generalised triangle inequality, and (2) follows from Hoélder's inequality and the mean
value theorem applied to K. Therefore, by Theorem[7.1.7] the operator is compact.
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5 LetT : /P — (P be given by
T(e;) = {O i even

€it+1 1 odd.

As
1T (x)ller < [|2][ee,

we have that T € L (¢P). However, T is not compact since for the sequence (e2;+1)ien C BY the
sequence (T' (e2i+1));en = (€2:);en has no convergent subsequence as

1
lle2i — eajller = 270y

which implies that any subsequence is not Cauchy.

I Theorem 7.2.4. The set of compact operators denoted KC(E, F), is closed in L(E, F).

Proof. Let (T})ien C K(E, F) be a sequence converging to T € L(E, F). Let (zj);en € BF. We can use a
diagonal argument to find an extraction ¢ : N — N such that (Ti (x‘P(j)))jeN converges for each ¢ € N. We can
write

| T2 pm) = T2 om) || < [T o) = Texom|| + (| Trzomn) — Teoim) || + || Tkt oim) — Txo(m)||

where the first term can be made small for large k as || T2y () — Tk o) | < |7 =Tk || ||2p(n)|| where | T—T|| — 0
and ||:cg,(n)|| < 1, similarly for the third term. The second term can be made small by the fact that (Tkxw(n))

neN
is convergent. Hence, we deduce that (T:v<p(n))neN is Cauchy, and thus it converges as F' is a Banach space.
Therefore, T' (B¥) is pre-compact and thus 7' € K(E, F). O

Definition 7.2.5. Let T € L(H). The range of T is Ran(T) := T'(H). If dim(Ran(T")) < oo, then T is said
to be a finite range or a finite rank operator.

Exercise 7.2.6. Let E be a Banach space and consider T € L(E) a finite range operator. Show thatT € K(E).
I Corollary 7.2.7. Let T, : E — F be a sequence of finite range operators. If T,, — T, then T' is compact.
Proof. Using Exercise [7.2.6| we know that T, is compact. Therefore, if T;, — T exists, Theorem [7.2.4| says that

T is compact. O

Example 7.2.8. Let T : (> — (2 be given by (Z,)nen + (€nTn)nen. One can think of this operator as the
matrix

» T is bounded if and only if |c,| < C for all n € N.

» T is compact if and only if ¢, — 0. To see the suppose that ¢, — 0. Then consider the operator T}
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given by the matrix

o

Ck
Observe that

T—T)(z
IT — Tkllz—e2 = sup w

z€2\{0} l|]| ¢2
\/Eyonozk+1 lemTm |?
= sup
w2\ {0} |22
< o SPmksr enllele
zel2\{0} || ¢
= sup |cml
m>k+1

Hence, T, — T and so by Corollary [7.2.74, the operator T is compact. For the converse assume T is
compact and suppose that ¢, # 0 as n — oco. Then for some € > 0 there exists an extraction ¢(n)

such that |c,(n)| > € for alln € N. Let (m("))neN be the sequence where mgn) = bip(n). It follows that
Hac(")Hé2 =1 foralln € N and

froo -], 2

for all n # m. Hence, the sequence (Tz™) _ C T (BF) has no convergent subsequence and so

T (BE ) is not pre-compact. This contradicts T being compact, therefore, we must have that ¢, — 0 as
n — oQ.

7.3 Solution to Exercises

Exercise [£.2.0
Solution. As T (B¥) C Ran(T) it follows that dim (T (B¥)) < co. Moreover, T (B¥) is bounded as T € L(E).

In particular, T (BE) is a closed and bounded finite-dimensional set, which implies that it is compact. Therefore,
T (B¥) is pre-compact, meaning that 7" is compact. O

56



8 Hilbert Spaces

Throughout let H be a real vector space.

8.1 Inner Product

Definition 8.1.1. An inner product on H is an application (-,-) : H x H — R that satisfies the following.

1. It is bilinear. That is,
(az + by, 2) = a(z, z) + b(y, 2)

and
(#,az + by) = a(z,x) + b(z,y)

for all x,y,z € H and a,b € R.
2. It is symmetric. That is, (z,y) = (y,z) for all z,y € H.

3. It is positive definite. That is (x,z) > 0 for all x € H and (z,z) = 0 if and only if x = 0.
Remark 8.1.2. Elements x,y € H are orthogonal if (x,y) = 0.

Lemma 8.1.3 (Cauchy-Schwartz). For z,y € H we have that

(2, 9)| < V(@ 2)V/(y,9)- (8.1.1)

Proof. The map t — (x + ty,x + ty) is a non-negative polynomial in ¢ € R. Hence, its discriminant is negative.
Thus,

2(z,y))* — Aly,y)(z,x) <0,

(@, 9)] < V(@ 2)V/ (9, 9)-

which is equivalent to

O
Remark 8.1.4. Note that equality in (8.1.1) holds if and only if x = Ay for some A € R.
Proposition 8.1.5. If (-,-) is an inner product on H, then
2] = +/(z, z) (8.1.2)

is a norm on H.

Proof. By the positive definiteness of the inner product, ||z|| = 0 if and only if z = 0. By the bilinearity of the
inner product, homogeneity of the norm follows. Moreover, using the Cauchy-Schwartz inequality
lz+yl* = (& +y,z +y)
= (z,2) + 2(z,9) + (v,9)
= Jlz]|* + 2(z,y) + |ly?
< el + 2ll2llllyll + llylf?
= (ll=]l + llwl*,

which implies that ||z + y|| < ||lz|| + ||y||. Hence, || - || is a norm on H. O
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For a norm || - || given by for some inner product (-,-) through (8.1.2), the following identities hold.

= Parallelogram law,

uto|®  Ju—ol  [ul®+v)?
2 2 B 2 '
= Polarization identity,
1
(u,0) = 5 (lu+ ol = flul® = lvl?) .
UtV
EoV,
Vi
2l Lol
B AN vl
e e
| ) Vg

Figure 11: Parallelogram law

Definition 8.1.6. A Hilbert space is a complete normed vector space whose norm is given by an inner product

as in (8.1.2)).

Remark 8.1.7. We only consider real Hilbert spaces, however, the theory can be extended to complex vector
spaces by replacing symmetry in Definition [8.1.1 with conjugate symmetry. That is,

» x> (x,y) for all y is linear, and

» y— (x,y) for all x is anti-linear.

In other words, (z,y) = (y, ).

Example 8.1.8.

1. The space R¢ with the Euclidean inner product

d
(z,y) = Z TiYi
i=1

is a real Hilbert space. Similarly, C% with inner product

d
=il

is a complex Hilbert space.

2. The space (2 with the inner product

((xn)neN> (yn)nEN) = Z TnYn
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is a real Hilbert space.

3. The space L*()) with the inner product

(f,9) = /Q f(@)g(@) dz

is a real Hilbert space.
» LP(Q) forp # 2 is not a Hilbert space.
8.2 Projection

Theorem 8.2.1. Let H be a Hilbert space. Let K C H be a closed and convex set. Then for every f € H
there exists a unique u € K such that

1 = ull = min | o) = dist(f, K). (82.1)

Moreover, u is characterised by the property that w € K and

(f—u,v—u) <0 (8.2.2)
forallv e K.
Proof. Step 1: Existence of min, ||f — v|.
Consider a sequence (v, )neny € K such that
dp = ||f —vnll = d:= qr}nelir(l 1f =

Applying the parallelogram identity to ||f — v,|| and ||f — v, || we deduce that

2

Up + U Up — U Lo | 2
_ =P =2 (d d
Hf 5 5 5 (dn +d7)
which implies that
2
Up — VU 1 T,mM—>00
n <~ (d2 d?) - d* ST .
2 - 2( nt m) 0

Hence (v, )nen is Cauchy, which implies that it is convergent to some u € H. Passing to the limit we conclude
that

IF = ull = min | f — v

Step 2: Equivalence of the characterisations.
Assume that u satisfies ([8.2.1]) and consider a v € K. By the convexity of K it follows that

1-thu+tve K

for all ¢ € [0, 1]. Therefore,
If = (1= tyut to)[* = |Lf = ul.

The left-hand side is polynomial in ¢ and can be expanded as
If = ull® = 2t(f —u,v —u) + O ().

As t — 0, the assumption of ([8.2.1)) can only hold if (f —u,v —u) < 0. Conversely, suppose that (8.2.2) holds,
then for all v € K it follows that

lu—fII* = llo = fI* = 2(f —w,v —u) = Ju—v[|* <0
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which implies that [[u — f[| < [lv — f|| for all v € K.
Step 3: Uniqueness.

Suppose uq and uy satisfy (8.2.2)), then
1. (f —up,v—wuy) <O0forallve K, and

2. (f —ug,v—wuz) <0forallveK.

Choosing v = ug and v = u; in the first and second conditions respectively it follows that
1. (f—up,u2 —up) <0, and
2. (f —ug,u1 —u2) <0.

Adding these together it follows that |ju; — uz||? < 0 which implies that u; = us. O

Figure 12: An illustration of the condition stated in ([8.2.2)).

Proposition 8.2.2. An alternative characterisation of u in Theorem [8.2.1 when K is additionally a linear
subspace of H, isu € K and

(f —u,v) =0 (8.2.3)
forallv € K.

Proof. Suppose that u € K satisfies (8.2.3). Then for v € K we have u — v € K so that

1f = ol = If - u—of?
= [1f —ull? +2(F — wu— ) + Ju— o]
€23, _

ull* + fJu — v]|*.

In particular, this implies that || f —v||? > || f —u||?. Conversely, suppose that (8.2.1)) is satisfied for u € K. Then
forv e K andt € R, as K is a linear subspace of H, we have that u+tv € K and so || f —u||? < || f — (u+tv)|?.
Consider,

0<If = (utt)|* = If = ull® = 2t(u — f,0) + [[v]|* =: g(t).

If (u— f,v) #0, then g(t) is minimised at t = —(“”;ﬁ’z”), giving a minimum value
g((Uﬁw>:_JUﬁw2 (f — w)’
Il [l ]2
_ (U - fa U)2
o]

which is strictly negative as we are assuming (u — f,v) # 0. This is a contradiction and so it must be the case
that (f —u,v) =0. O
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Remark 8.2.3.

1. Suppose that M is a closed linear subspace. Then P : H — M given by f +— u, as in Theorem|[8.2.1) is
a linear operator. It is characterised by the property that Pf € M and

£ = Pl = min [If — .
Equivalently, it can be characterised by the property that Pf € M and
(f = Pf,0)=0
for allv € M. In particular, (f — Pf,Pf) =0, and so we recover a Pythagoras type relation
I£1% = 11f = PfI* + IPfII2.

2. Convexity is necessary for the uniqueness statement of Theorem|8.2.1l Consider H = R?, f = (0,0) and
K the annulus with centre (0,0). Although the distance from f to K is well-defined, the projection of f
to K is not unique.

Figure 13: A non-convex set that does not satisfy the uniqueness statement of Theorem Note that the
angle between v and f is obtuse.

For a linear subspace F' of a Hilbert space H, the orthogonal complement of F' in H is the set

Ft={yeH:(yx)=0forallzec F}.

Proposition 8.2.4. Let F be a closed subspace of a Hilbert space H. Then H = F @ F~*. In particular, for
v € H we have that v = Pv + P+v, where Puv is the projection of v onto F, and Pt is the projection of v
onto F+.

Proof.

= Suppose that y € F'N F+ then (y,2) = 0 for all € F. In particular, (y,y) = 0 which implies that y = 0,
hence, F N F+ C {0}. As I and F'* are linear subspaces we have 0 € ' F+ and so {0} C F N F+,
meaning F' N F+ = {0}.

» Let v € H. Then for & € F- we have that

(v—(v—=Pv),v— (v— Pv)) = (Pv,0 —v+ Pv)
= (Pv, Pv —v)
= (v — Pv,0 — Pv).
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As 0 € F we use the fact that Pv is the projection of v onto F to note that (v — Pv,0 — Pv) < 0. Hence,
(v — (v — Pv),? — (v — Pv)) <0 which implies that v — Pv = PYv and so v = Pv + P1u.

O
Corollary 8.2.5. Let F' be a closed subspace of a Hilbert space H. Then for v € H it follows that
D) 2
loliFr = I1Pullyy + [ Poll
where Puv is the projection of v onto F' and P+uv is the projection of v onto F=.
Proof. Note that (Pv,PJ-v) =0as Pv e F and PLv e FL. Hence,
lvllZ = (v,v)
( Pv+ Pty, Pv+ Pty )
= (Pv, Pv) + 2 (Pv, P™v) + (P*v, P1)
= 1Pollf + || Po* -
O

Corollary 8.2.6. For every closed and non-empty subspace F' of a Hilbert space H, there exists a unique
linear map w : H — F such that

L |ml|lg—n =1,
2. w2 =, and
3. ker(m) = FL.
Proof. For v € H, let w(v) = Pwv.
1. Using Corollary it is clear that ||v||g > ||7(v)| m. Hence,

Tl = sup H ()|l <1.
vemvoy vl

However, as for v € F'\ {0} we have ||v||g = ||7(v)| z it follows that ||7||g—mr = 1.
2. As Pv € F it is clear that P(Pv) = Pv and so 72 = .

3. If v € F*, then w(v) = 0 and so v € ker(w). On the other hand, if 7(v) = 0, then v € F* by Proposition
O

Exercise 8.2.7. Let F' and G be linear subspaces of a Hilbert space H. Prove the following statements.
1. H+ = {0} and {0}*+ = H
2. F* is a closed linear subspace of H.
3. IfF C G then G+ C F+.
4 (FHY =F.
5. If F and G are closed, show that the following hold.

(a) FNG = (F-+G4Y)*
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(b) FL NGt = (F+G) .
(c) (FNG)t =FL+GL.
@) (F-nGYH" =F+G.

Example 8.2.8. Consider
E={geL*0,1): g >0 almost everywhere} .

Then for g1,92 € E and t € [0, 1] we have
tgi(x) + (1 —t)ga(z) >0

almost everywhere. Moreover, for (gn)nen C E converging to g, there exists a subsequence (gn,,),cn Which
converges pointwise almost everywhere to g. Therefore, g(x) > 0 almost everywhere as g, (x) > 0 almost
everywhere for each k € N. By Theorem for f € L?(0,1) there exists a unique projection onto E. More
specifically, considering f € E given by

we note that for g € E we have

(f_faf g >(f_f7f_g)
{arj f(w)>0} {x f(z)<0}

/x f(a:)<0}
0,

where the inequality follows as f(x) < 0 and g(x) > 0 on the specified domain. Therefore, by the uniqueness
of the projection we deduce that Pf = f. Furthermore, by Proposition we deduce that

_Jo f(z) >0
PH(w)—{ <0

IN

8.3 The Dual Space

Observe that for any u € H, the map ¢, : H — R given by v — (u,v) is in the dual space of H, denoted H*.
Moreover, using the Cauchy-Schwartz inequality we can show that the map H — H* given by u +— ¢, is an
isometry. If dim(H) < oo, then it follows by arguments involving linear algebra, that any element of H* is of the
form ¢, for some u € H.

Theorem 8.3.1 (Riesz-Frechet Representation Theorem). For any ¢ € H*, there exists a u € H such that
¢ = pu and |p]a- = [ulla-

Proof. For ¢ € H*, let M = »~1({0}). By the continuity of ¢ we know that M is a closed subspace. If p =0
then M = H, so we assume instead that there exists a go € H \ M. Let Pj; be the projection on M, and let
91 = Prrgo and g = ﬁ. Then g is such that ||g|| = 1 and (g,v) = 0 for all v € M. In particular, this means
that g ¢ M which implies that ¢(g) # 0. For uw € H we have p(u—Ag) =0 for A = "g Thus, (g,u—Ag) =0
which implies that

p(u)
g,u) = —=,
(94 ¢(9)
so that p(u) = ©(g)(g,u). Therefore, p = @ g)4- O
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Remark 8.3.2. As u +— @, is an isometry it is injective. As Theorem [8.3.1] shows that u — ¢, is surjective,
we have that H = H* for H a Hilbert space. As (LP)' = LP" by Theorem it follows that LP can only be
a Hilbert space if p = p’, which is only true for p = 2.

Theorem 8.3.3 (Lax-Milgram). Let H be a real Hilbert space. Assume a : H x H — R is such that the
following hold.

1. It is bilinear, that is a(x,-) and a(-,y) are linear for all x,y € H.
2. It is continuous, that is |a(x,y)| < C||lz||||ly|| for all x,y € H.
3. It is coercive, that is |a(z,x)| > c||z||? for all x € H.

Then for f € H there exists a unique u such that
a(u,v) = (f,v)
for allv € H.

Proof. Step 1: The linear operator associated with a.
For fixed u, we look at v — a(u,v) € H*. By Theorem there exists A(u) € H such that

a(u,v) = (A(u),v)
for every v € H. Observe that A : H — H is linear. Moreover, A is bounded as
[(A(u), )] = |a(u, v)| < Cllull||v]|
and so continuous. Furthermore, A is non-degenerate as
lulll| Aull > (Au, u) = a(u, u) = cl|ul|?

and so [|Aul| > ¢||u].
Step 2: Solving Au = f.

1. Ais injective as ||Au|| > c||ul|.
2. Suppose (gn)nen € Ran(A) converges to g in H. We know that there exists a u,, € H such that
A(uyp) = gn. In particular, A(u, — tm) = gn — gm- Hence, by coercivity it follows that

1
Hun - umH S 7Hg’n - gm”-
c

Therefore, as (g, )nen converges it is Cauchy and so (uy,)neny € H is Cauchy. Using completeness it follows
that u, — u in H. Passing to the limit we deduce that A(u,) = g, — g = A(u) where A(u) € Ran(A).
Thus we conclude that Ran(A) is closed.

3. Suppose that Ran(A) is not dense. Then its orthogonal complement is non-zero. That is, there exists a
v # 0 such that (A(u),v) =0 for all w € H. In particular, choosing u = v we obtain

0 = (Av,v) > c||v|)?
which is a contradiction. Therefore, Ran(A) is dense.

Using statements 2 and 3 it follows that Ran(A) = H, meaning A is surjective. Combining this with statement
1 we deduce that A is bijective and so a unique solution u € H to A(u) = f exists. O
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Remark 8.3.4.

1. Note that (f,u) = ¢(u) for some ¢ € H*. So taking a(u,v) = (u,v) the problem solved by Theorem
is equivalent to the problem solved by Theorem Hence, one can view Theorem |8.3.3 as an
extension of Theorem

2. Note that a is not symmetric and so in general not an inner product.

Theorem has applications in partial differential equations. For a domain 2 C R? and f € C2_, the Dirichlet
problem is to solve

—Au=f inQ
u=20 on 0N.

Taking the inner product of the first equation with ¢ € C2°(£2) yields

—/(Au)-gpdxz /- eda.
Q Q

Integrating by parts gives

Vu -Vedr= [ f-edx (8.3.1)
Q Q

as ¢ vanishes on 9. Note that the right-hand of (8.3.1]) is the inner product of f and ¢ on L?(f2) and the
left-hand side is of the form a(u,¢). The idea now is to use Theorem [8.3.3]to solve the Dirichlet problem. To do
this H needs to be chosen such that a satisfies the conditions of Theorem [8.3.3]

8.4 Hilbert Sums and Orthonormal Bases

If H is a finite-dimensional Hilbert space, there exists a bases (e,,)¢_; C H such that for any x € H we can write

d
Tr = E ITn€n
n=1

for some x,, € R. In particular, if (e, )2_; is an orthonormal basis it follows that

d
)% = llnll. (8.4.1)
n=1

We would like to generalise the idea of a basis for infinite dimensional Hilbert spaces. Using the relation (8.4.1]),
which holds for orthonormal bases, this generalisation amounts to understanding the convergence of sums.

Definition 8.4.1. Let (E,)ncn be a sequence of closed subspaces of a Hilbert space H. Then H is a Hilbert
sum of the (Ey,)nen, written H = @, | E,, if the following hold.

1. The E,, are mutually orthogonal. Namely, (z,y) =0 ifx € E,, and y € E,,, for n # m.

2. The subspace span (J,—, E,) is dense in H.

Remark 8.4.2. The span of a set of vectors refers to all finite linear combinations of the vectors.

I Lemma 8.4.3. Let (vn)nen C H be such that (v, v,) = 0 forn # m and .2 |lv|> < oo. Then
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Sp =Y p_, Uk converges, to S say. Furthermore,

oo
IS12 = llowll*.
k=1

Proof. For n < m, using ([8.4.1)) we have that

150 = Sml® =D llowl®. (8.4.2)
k=n-+1
Since, Y7o, |lvgl|? < oo, it follows from (8.4.2) that (S,)neny C H is Cauchy. Therefore, by completeness

(Sn)nen has a limit, say S. Furthermore, using (8.4.1)) we know that ||S,||* = >"7_, [lvx]|* and so passing to

the limit we deduce that
oo

ISIZ =D llowl®.

k=1
O

Theorem 8.4.4. Assume that H = @ZOZI E,, is a Hilbert sum of the closed subspaces (E,,)nen. Foru € H,
let w, = Pg,w and S, =Y _, ug. Then S, — u as n — co and

%)
D Nl = lull®. (8.4.3)
n=1

Proof. Step 1: Show that the limit exists.
On the one hand,

n

15all® =D lluxl?

k=1
using (8.4.1). On the other hand, as u,, = Pg,u we have that

(u, un) = ||

which implies that (u,S,) = >°,_, |[ux||® using the orthogonality of the Ei,...,E,. Therefore, from the
Cauchy-Schwartz inequality it follows that

1Sull* = (u, Sn) < [[ulllISnll,

which implies that

(Z ||uk||2) — 1Sl < [lul]-
k=1

Passing to the limit it follows that
o0
DMkl < Jlul* < oe.
k=1

Hence, the conditions of Lemma are satisfied and thus we deduce that S,, converges to S with

o0
ISI12 = > .
k=1

Step 2: Identification of the limit.

Note that (u— S,,,v) = 0 for all v € E,,, where m < n, by the characterisation of the projection. Letting n — oo
it follows that (u — S,v) = 0 for all v € E,,, where m € N. By linearity it follows that (v — S,v) = 0 for all
v € span(|J,,cy Em). Moreover, by the density of span (U,,cy Em) it follows that (u — S,v) =0 for all v € H.
Therefore, u = S. H
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Remark 8.4.5.
1. Equation (8.4.3)) is often referred to as the Bessel-Parseval identity.

2. The vector S,, in Theorem is the projection of u onto span (|J,_, E,) and so the convergence
Sp — u is expected from statement 2 of Definition Moreover, (8.4.1)) is reasonable due to the
orthogonality assumptions we impose on the (Ey,)nen-

3. Henceforth, we write Zflozl U, = u to mean lim,,_,o S, = u.

Definition 8.4.6. A sequence (e, )nen C H is an orthonormal basis if the following hold.
1. (ena em) = 6nm

2. span((en)nen) = H.
Remark 8.4.7. An orthonormal basis of a Hilbert is sometimes referred to as a Hilbert basis.

Exercise 8.4.8. Let H be a Hilbert space and let V := span(v) forv € H \ {0}. Show that V is a closed

linear subspace of H. Moreover, for w € H show that Pyu = (H’;ﬁg)y

Corollary 8.4.9. If (e,)nen € H is an orthonormal basis, then for all uw € H we have

o

u= Z(u, €n)én

n=1

and

lull® = ZI U, en)

Proof. Consider the subspaces (E,)nen of H given by E,, = span(e,). By Exercise the subspace E,, is
closed and u,, := Pg,u = (u,ey,)e,. Moreover, if ¢ € E,, and y € E,,, for n # m, then x = Ae,, and y = pe,,.
Using the orthogonality of (e, )nen it follows that that

<J?, y> = AN’<€7L3 em> =0.

Similarly, as (€n)nen € U, en En We have that

H = span ((en)nen) C span <U En> CH,

neN

which implies that span ({J,,c En) = H. Therefore, we can apply Theorem to conclude that

oo
E (u,en)e
n=1

and

o0
Jull? = Znuen enll? =3 [(uen)?
n=1



Definition 8.4.10. A Hilbert space H is separable if it admits a countably dense subset.

I Theorem 8.4.11. A Hilbert space H is separable if and only if H has an orthonormal basis.

Proof. (<). Let (ep)nen be an orthonormal basis of H and consider the subset

{Zrkek:rkeQ,neN}gH.

k=1

Let w € H and € > 0. By Corollary we know that u =) 7 (u,ex)ex and

o0
> l(u,e)]? = [Jul? < oo.
k=1
Hence, we can find an N € N such that
o0
€
> e < 5.
k=N+1

Moreover, for k < N we can find ry € Q such that |(u,e,) — 7]? < 55. Let

N
U = Zrkek € F,
k=1

then
- 2
lu—al* = Z u, ex)eg — Zrkek
=1
N 2
Z ue;~C —rk er + Z ue;~C €k
k=1 k=N+1
o
S e) i b 3 el
k=1 k=N-+1

[NCN e

N
€
< JE—
> vt
k=1
=€

Therefore, F is a countable dense subset of H.

(=). Let (un)nen € H be a countably dense subset. Construct the sequence (e, )nen in the following way.
1. Fy :=span(uy), and let e; = H%II

2. E5 := span(u1,ug) and choose e such that {ej, ea} is an orthonormal basis for Es.

= Note that we assume that u; and wus are not aligned. We label the subset (u,,)n,en in this way as the
subset is countably dense.

3. For general k € N, let Ey := span(uq,...,ux) and choose ej such that {ej,...,ex} is an orthonormal
basis for E},.

= Again we can assume that the uq, ..., uy are not aligned by the fact that (u,,)nen is countably dense.

The sequence (e, )nen is an orthonormal basis of H. O
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Remark 8.4.12. Let H and H' be separable real Hilbert spaces. Then orthonormal bases (e,)neny € H and
(e) C H' exist. Hence, we can consider the map J : H — H' given by

neN =
0 [eS)
§ : 2 : I
Tp€n Tn€y-
n=1 n=1

This is an isometric isomorphism. In particular, fix H = {? and consider the orthonormal basis (e, )nen Where

en=(0,...,1,0,...).
——

n

Then the above arguments imply that any separable real Hilbert space has the same structure as (. One
may think then that we can characterise all properties of general Hilbert spaces by investigating £>. After
all the isometric isomorphism captures all the structural information regarding the inner product and norm.
However, certain interesting Hilbert spaces have additional structures that are not captured within this isometric
isomorphism.

Example 8.4.13. Let H = L?(0,27) be a complex Hilbert space and consider e, (z) = \/%em” forn € N.
Then

2
(en,em) = i/ i eMTIMT o = §
ny~m - 2ﬂ' 0 - nm-

With additional computations one can show that span((ey,)nen) = H. With this it follows that (e, )nen € H
is an orthonormal basis of H.

8.5 Linear Operators
8.5.1 Adjoint Operators
Consider the finite-dimensional real Hilbert space H = R?. Let 2,y € R? and M € R¥*?_ Then
(Mz,y) = <x,MTy>.
For H = L* (R?) consider
(Lu)@) = [ Kwg)ulw) v

where K (x,y) is sufficiently smooth and decays fast enough such that the map u — Lu is well-defined. Then
under sufficient assumptions, we can write

(Lu,v) = / ( / K (2, y)u(y) dy) u(w) da
— [ (] KGpute)as ) utmay

= (u, L*v),

where

(L*u)(x) = / K(y, 2)u(y) dy.

Proposition 8.5.1. Let H be a real Hilbert space and consider T € L(H). Then there exists a unique
T* € L(H) such that

<T33, y> = <$7 T*y>
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I for all z,y € H with | T| ey = 1T o sy

Proof. For fixed y € H let ¢, : H — R be given by z — (T'z,y). Note that ¢, € H*, and so by Theorem [8.3.]]
there exists a u, € H such that (T'z,y) = (z,u,) for all x € H with |yl g+ = ||uyllg. Let T* : H — H be
given by y > u,, then

(Tz,y) = (2,uy) = (z, T"y)
for all x,y € H. For y1,y2 € H, A € R and any x € H we have that

Tx,y1 + Ay2)

(x,T*(y1 + Ay2)) = (
= (Tz,y1) + MT'z,y2)
=(
=

x, XT*y1) + (@, \T™y2)
x, Ty + AT y2).

As this holds for all z € H it follows that T*(y; + y2) = T*y1 + AT*y2 meaning the operator T™* is linear. Recall
eyl ez = 1Tyl a, where

_ 1{Tz, y)|
oyl = sup
zeH\{0} /| e
g oyl
cemvfoy  lzlm
Hence,
. Ty
1T ey = sup 17"yl

yeH\{0} llyll &

I N
yeH\{0} ||ZJHH

< | Tz||
S p sup
yer\{o} zer\{o} ||zllm

Tzl

B zeH\{0} ||

=Tl £(ay-

As T € L(H) it is bounded and so as T* is linear it follows that T* € £(H). Through similar computations one
deduces that ||T'||z(my < || 7| £(m) to conclude that | T z(qy = [|T7 || £(#)- O

Remark 8.5.2. The operator T* of Proposition is known as the adjoint of T'.

Definition 8.5.3. An operator T is self-adjoint if T* =T.

From our previous discussions, it follows that operators in finite-dimensional real Hilbert spaces are self-adjoint if
the corresponding matrices are symmetric. Similarly, a kernel operator of the form

mmmszmwﬂm@
is self-adjoint if K(z,y) = K(y,x).

I Theorem 8.5.4 (Schauder). An operator T € L(H) is compact if and only if its adjoint, T*, is compact.
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Proposition 8.5.5. Let T € L(H) be a self-adjoint operator. Then

1T 2y = HSlHlEl (T, z)|.

Proof. Let M = sup, 1 [(I'r,x)|. Then by the Cauchy-Schwartz inequality it follows that

M < sup [Tzl = sup |T=|a =T zcm)-
lzl=1 lzf=1

Now consider =,y € H with ||z|| = ||y|]| = 1. Using the self-adjoint property of T note that
(T(x+y)z+y —(T(x-y)z -y = (Te,2) + (Tz,y) + (Ty,z) + (Ty,y))

= (Tz,2) = (Tx,y) = (Ty,2) + (Ty, y))
= 4Tz, y).

Therefore,

< Mllz +y|* + Ml — y|?
= 4

(lz +l? + llz = %)

(1 + lly11%)

(Tz, y)l

—~

)

SSERS

)

where (1) in application of the parallelogram law. Setting y = ”g—ﬁu it follows that ||Tz| < M, and so

T\l ey = HSIHIP |Tz| < M.
x||=1

Therefore, we conclude that

1Ty = M = Sup (T, )]
z||=1

8.5.2 Fredholm’s Theory

Fredholm's theory aims to solve problems of the form

ﬂ@—/Twwﬂw®=h@L

where f is unknown, h is given and T is an operator. The term h is often referred to as the inhomogeneous
component of the problem. To make progress we focus on the case when T is compact and reduce the problem
to one of the form

(Id—-T)f = h. (8.5.1)

Finding solutions to is equivalent to determining Ran(Id — 7).
Theorem 8.5.6 (Fredholm's Alternative). Let T' € K(H). Then the following hold.
1. ker(Id — T') is finite-dimensional.
2. Ran(Id — T) is closed, in particular, Ran(Id — T) = ker (Id — T*)™*.
3. ker(Id — T') = {0} if and only if Ran(Id — T') = H.
4. dim (ker(Id — T')) = dim (ker (Id — T™)).
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Proof.

1. Let E =ker(Id = T) = {z: Tz = z}. Note that E is closed by the continuity of 7. Furthermore,

T(B) 21 ([55) 2 B”,

where (1) follows as B D B¥ and (2) follows as T is the identity of E. By assumption T is compact and

soT (BH) is compact. So as B” is closed it must also be compact. However, by Theorem we know
that B¥ is only compact if it is of finite dimension.

. Let (fu)nen € Ran(Id — T'), with f,, = (Id — T)u,,, be a sequence converging to f in H.

Step 1: Project u,, onto ker(Id — 7).
Let d,, = dist(uyn,ker(Id — T)). By statement 1 we know that ker(Id — T) is finite-dimensional and thus
closed, moreover, it is a subspace and hence convex. Therefore, by Theorem we can write

Un :Un+(un _Un)

where v,, € ker(Id — T') and u,, — v,, € ker(Id — T)*. Note that ||u, — v,|| = d,, by Corollary
Step 2: Show that (d,,)nen is bounded.
For contradiction suppose that, up to subsequences, we have d,, — co. Let

Up — Un Up — Un

W, = =
" l[tn — vnl| dn

so that ||wy,|| = 1. As v, € ker(Id — T) it follows that (Id — T')(u,, — vy,) = frn so we deduce that

(Id — T)w, = Jo noge (8.5.2)
dn

By compactness of T" we can assume that T'w,, — z, up to subsequences. Hence, by it follows that
wy, — z with z € ker(Id — T'). However, this is a contradiction as w,, € ker(Id — T')* which is a closed
subspace by statement 2 of Exercise[8.2.7]
Step 3: Show that f € Ran(Id — T'), meaning that Ran(Id — T) closed.
From step 2 we know that (u,, — v, )nen is a bounded sequence, and so using the compactness of T' we can
assume that (T'(u, — vy,))nen converges to [, up to subsequences. Hence,

Up — Uy = (Id = T)(up, —vy) + T(up —vn) = f+1:=g.
Consequently, we can use the continuity of Id — T to deduce that
(Id — T)(up — v,) — (Id — T)g.
On the other hand, we know that
(Id — T)(up — vy) = (Id = T)u,, — f,

and so we see that (Id — T)g = f.
Step 4: Show that Ran(Id — T') = ker (Id — 7).

(Q). Lety=(Id—T)z € Ran(Id —T'). As Id —T)* =Id — T, for z € ker(Id — T™*) we have
(y,2) =(Id — Tz, z) = (x,(Id = T*) z) = 0.

Therefore, Ran(Id — T') C ker (Id — T*)*.
(D). Assume that ker (Id — 7%)" \ Ran(Id—T') # {0}. Let 2 € ker (Id — T*)" \ Ran(Id—T') be non-zero.
Since Ran(Id—T) is closed, the orthogonal projection on Ran(Id —T') is well-defined as it is also a subspace
and so convex. Let

x = Pz + (z — Px)
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where z € Ran(Id — T') and (x — Pz) € Ran(Id — T')*. By assumption we know that = € Ker(Id — 7*)*,
and as Ran(Id—T') C (ker(Id—T7*)* we know that Px € ker(Id—T*)*. Therefore, z— Pz € ker(Id—T"*)*
as it is a linear subspace. It follows that 4 := 2 — Pz € Ran(Id — T')* Nker(Id — T*)*. Where we also note
that y # 0 as ¢ Ran(Id — T') by assumption. Using that y € Ran(Id — T')* it follows that for all c € H
we have (y, (Id — T')¢) = 0 which happens if and only if {(Id — T*)y,c) = 0 for all ¢ € H. Consequently,
T*y =0 and y € ker(Id — T*), but we know y € ker(Id — T*)L. Thus y = 0, which is a contradiction.

. Suppose that ker(Id — T) = {0} but Ran(Id — T') # H. Let Y;, = Ran ((Id — T)") for n € N. Note that
the set of inclusions
H=Y,2YiD2Y:D... (8.5.3)

are proper due to our assumption that Id — 7" is injective but not surjective. Moreover, note that

" n
d—7T)"=1d — TF = 1d —
(Id—T)" =1d ;(J d—8

where S is a compact operator as T is compact. Therefore, applying statement 2 to Id — S it follows that Y,
is closed for every n € N. Applying Theorem mto Y, 11 CY,, we find an element ¢, € L(Y,,R) given
by ¢y, () = (fn, ) such that ¢y, (z) = 0 for all Y, and ||y, |2y, k) = 1. Consequently, f, € Y, and
| fnllzr = 1. By Theorem [6.2.5|we can extend ¢y, to L(H,R). For n > m observe that

1T fn =T full = 1T (f = S
1Ad =T*)(fn = fm) + (fm = Fu)l

2 S%p |<(Id_T*)(fn_fm)+(fm_fn)ax>|
z€BYn

= Sup |<fn_fm7(1d_T)x>+<fm_fnaw>|-
zEBYn

As f, = fm € Yy and (Id — T)x € Y, it follows that (f,, — fy,, (Id — T)z)=0. Similarly, as n > m we
have f,, € Y, so that (f,,,2) =0 as x € Y,,. Hence,

NT* fro = T finll = sup [{fn,z)| = 1.
rEBYn

Therefore, (T*f,) contains no convergent subsequences and so cannot be compact. This contradicts
Theorem as T is compact. So it must be the case that the inclusions are not proper meaning
Id — T is surjective. Conversely, if we assume that Ran(Id — T') = H, then using statement 2 it follows
that ker(Id — T*) = {0}. So from the arguments we have just made it follows that Ran(Id — T*) = H,
and so we can apply statement 2 again to conclude that ker(Id — T") = {0}.

. Consider the following quantities.

» o =dim(ker(Id — 7).

» f=dim (H/Ran(ld — T)).

» o = dim(ker(Id — T%)).

« 3* = dim (H/Ran(Id — T*))
By statement 1 we know that a,a* < co. Also note that by statement 2 we have that Ran(Id — T') is
closed with Ran(Id — T') = ker(Id — T*)~+. As ker(Id — T*) is finite-dimensional and thus closed it follows
that Ran(Id — T')* = ker(Id — T*). Therefore, H = Ran(Id — T') @ ker(Id — T*). Consequently, one can

show that H/Ran(Id — T') C ker(Id — T™) which implies that 5 < a*. Similarly, 8* < «. Now suppose
that a > . Then we can write

H=ker(Id-T)®E=Ran(Id—-T) & F

for E and F closed subspaces of H with dim(F') = 3. For x € H write © = x1 + x5 for x1 € ker(Id — T))
and 23 € E. Let 7 : H — ker(Id — T') be the continuous map given by 7z = x;. As we assume a > £,
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it follows that there is a surjective linear map ¢ : ker(Id — T)) — F such that there exists xg # 0 with
¢xo = 0. Note that ¢ is a finite range operator and so compact. Hence, the operator ® =T + ¢ o is also
compact as it is bounded. Moreover,

(® —1d)(F) =Ran(Id —T)

and
(® —Id)(ker(Id — T")) = ¢(ker(Id — T")) = F.

Therefore,
Ran(® —Id) D Ran(Id - T) + F = H.

However, this contradicts statement 3 as ker(® — Id) # {0}. Therefore, o < 8 which implies that o < a*.
Similarly, one shows that a* < « to deduce that a = a*.
O

Remark 8.5.7.

1. We can explore each of the components of Theorem[8.5.6] in the context of finite-dimensional real Hilbert
spaces. Statement 1 is meaningless in finite dimensions. Similarly, statement 2 is meaningless as any
finite-dimensional vector space is closed. The equality of statement 2 follows from standard manipulations
in linear algebra. Let y = (Id — T)x € Ran(Id — T') and z € ker (Id — T™*). Then as,

Id-T)"=(Id-T)' =ld-TT =1d—T*

we have
(y,2) =(Id —T)x, z) = (x,(Id = T*) z) = 0.

Therefore, y € ker (Id — T*)™ meaning Ran(Id — T') C ker (Id — T*)l. To argue for equality one uses
the rank-nullity theorem. In our setting, statement 3 says that the operator Id — T is injective if and
only if it is surjective. Statement 4 is the fundamental theorem of linear algebra. Consequently, we see
that Theorem establishes conditions for when standard properties familiar from finite-dimensional
operators also hold for infinite-dimensional operators.

2. As Theorem gives a correspondence between Ran(Id —T') = ker (Id — T*)™, it reduces the problem
of determining Ran(Id — T)) to a finite set of orthogonality conditions as Theorem also tells us that
ker (Id — T™*) finite-dimensional.

3. The alternative nature of Theorem refers to the fact that either ker(Id — T') # {0} so the homoge-
neous formulation of ([8.5.1)) has a non-zero solution. Or, ker(Id — T') = {0} so that Ran(Id —T) = H
meaning the inhomogeneous variation of (8.5.1)) always has a solution.

8.5.3 Spectral Theory

In finite dimensions linear operators are represented by matrices and there exists a concise understanding of the
properties of this matrix when the operator is self-adjoint, that is when the matrix is symmetric. We will now try
and generalise such a result to the infinite-dimensional case. However, we will only be able to consider compact
self-adjoint operators. Removing the compactness assumptions leads to a result attributed to von Neumann that
is beyond our scope.

Theorem 8.5.8 (The Spectral Theorem in Finite Dimensions). Let H be a finite-dimensional real Hilbert
space. Consider M € L(H) a symmetric matrix, then there exists an orthonormal basis (e,,)¢_, C H such

that
d

Mz = Z An{T, €n)en,

n=1
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I where the \,, are the eigenvalues of M and e,, are the corresponding eigenvectors.

When we transition to infinite dimensions terms become more nuanced. In the finite-dimensional case let M :
H — H be an operator. Then the spectrum of M can be formulated in different ways.

1. The union of the eigenvalues, which are the A such that ker(M — AId) # {0}.
2. The union of A such that M — AId is not invertible.

In infinite dimensions, these notions are no longer equivalent and require use to make a distinction.

Definition 8.5.9. Let T € L(H) be a self-adjoint operator.
1. X is an eigenvalue if there exists an € H \ {0} such that (T — Ald)z = 0.
2. X is in the spectrum if T — Ald : H — H is not invertible.

3. The resolvent set is the complement of the spectrum.

Example 8.5.10. To see why we require Definition to distinguish these notions in infinite dimensions
consider the following. Let T : L*(0,1) — L2(0,1) be given by f — mf. Let m € L*>(0,1) so that
T € £ (L*(0,1)). Moreover, suppose the measure of m~'({y}) is zero for any y.

= T has no eigenvalues. Suppose T has an eigenvalue X then (m(z) — X)f(x) = 0 which cannot be the
case for f € L?(0,1) unless f = 0.

= The spectrum of f is m([0,1]). To see this observe that
(T = Md)(z) = (m — \)(=)
is invertible with inverse f +— % which is in £ (L?(0,1)) if and only if X & m([0, 1]).

Thus in infinite dimensions, there exists operators whose eigenvalues and spectrum do not coincide.

Proposition 8.5.11. Let H be an infinite-dimensional Hilbert space. Let T € L(H) be a self-adjoint compact
operator. Then either £||T'|| () is an eigenvalue of T'.

Proof. Let X\ = £||T'||z(sr). Then using Proposition [8.5.5] there exists a sequence (z,)nen € H with |lz,][z =1
such that (T'z,,z,) — \. Hence,

0 < || T2y — Azl
= ”TIHH%I + )‘2”3771”2 = 2MTzy, zn)
<N+ N2 2N (T2, 20)
n—oo
— 0
Using the compactness of T we also know that there is a subsequence (2, )ken € (n)nen such that Tx,,, g
for some z € B, We note x # 0 as ||z, ||z = 1. Therefore, as Tx,,, — Az, — 0 it follows that Az, — z,

and so
Tz = lim T(Axy,,) = A lim Tx,, = \z.

k—o0 k—o0

We conclude that A is an eigenvalue of T O

Theorem 8.5.12. For an infinite-dimensional separable Hilbert space H, let T € L(H) be a compact self-
adjoint operator. Then the following hold.
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1. Zero is in the spectrum of T

. If X is in the spectrum and non-zero then X\ is an eigenvalue.

2

3. The eigenvalues can be ordered as a sequence )\, — 0.

4. The eigenspaces ker(T — )\, 1d) = E,, are finite-dimensional.
5

- D, 20 En ® ker(T) = H.
Proof.

1. Suppose that T were invertible with inverse T~!. As T~! € L(H) it is bounded and so T~ (B*) C KB
for some K > 0. Therefore,

BY =T (1} (BM)) =T (KB") = KT (B"),

which implies that

B" C KT (BH) (8.5.4)
As T is compact we know that T (BT) is compact. Thus, as B is closed, ([8.5.4) implies that B
is compact. However, this contradicts Theorem [7.1.3| as H is infinite-dimensional. Therefore, T is not
invertible and so zero is in the spectrum of 7.

2. For X\ # 0 the operator %T is compact. Hence, using Theorem we have that the operator T'— Ald =
A (3T —1d) is invertible if and only if it is injective. Hence, if A is in the spectrum it follows that
ker(T' — Ad) # {0}. Which implies that there exists an = € H \ {0} such that (7' — AId)z = 0, meaning
A is an eigenvalue.

3. Suppose that A, /4 0. Then we can extract a subsequence (A, )ren such that |A,, | > € for some € > 0.
Moreover, as (Te,, )xen C T (B¥), and T is compact, it follows that (Te,, )keny admits a convergent
subsequence. In particular, the subsequence is Cauchy. For simplicity, we will also denote this subsequence
(Ten, )ken. However,

[Ten, ~Tes |

|

= ||)\nk6nk - Ankzenk/

[\

> V2

= /2,

where (1) is an application of Parseval’s identity. This contradicts the (T'e,, )xen being Cauchy, and so it
must be the case that A\, — 0.

4. Note that dim(ker(T—\,1d)) = dim (ker (ﬁT - Id)). As =T is also compact it follows from statement
1 of Theorem that dim(ker(T" — A,Id)) is finite-dimensional.

5. Let z,, € B, \ {0} and z, € E,, \ {0} for n # m, so that A, # A\, Then using the self-adjoint property
of T it follows that

A7z<xnvxm> - <Txn7:17m> = <£L'n,TIm> - )\m<xn7I7n>~
Hence,
A — Am) (@, Tm) =0

which implies that (z,,2,,) = 0 as A\, — A\, # 0. Similarly, for = € ker(T) \ {0} and z,, € E,, \ {0} we
have
0= (Tx,x,) = (2, Txn) = A (T, Tp).

So that (x,z,) = 0 as A, # 0. Now let x € H. As Ej is a closed linear subspace, the projection of x
onto Ej is well-defined. In particular, we write x = x1 + &1 for x1 € Fy and Z; € Ef- By Theorem

76



we know that Fi- = Ran(T — \;1d) is a closed linear subspace, which means that it is also a Hilbert
space that is separable as H is separable. Let 75 = T'|gan(r—x,1d)- As ker(T — A,Id) € Ran(T" — A;1d)
for all n > 2 it follows that A, for n > 2 is in the spectrum of T5. Moreover, Ay is not in the spectrum
of Ty as To — A\11d is invertible by statement 3 of Theorem From Proposition we know that
| T2 2(ry = |[A2|, as we have assumed the ordering of statement 3. Similarly to before, we can consider
the projection of #; € Ran(T — A\;Id) onto Ey and write 2 = 21 + x5 + &2 where 25 € F5 and 5 € Ej-.
Then we can let T3 = T5|gan(7—x,1d), Noting that || T3]y = [A3| by Proposition [8.5.11

= If | Tq1llz(ery = O for some n € N, it follows that - = >7'_, 2 + &;,, where &,, € ker(T'). Therefore,

@ € span (ker(T) U U, ey En)-
» I | Ts1llzcary > 0 for all n € N we have
n
Tz —T <Z xn> = ||TZn ||l
k=1 H

= HTn—&-ljnHH

<N Tns1llccnllZall

< Paslllzla,

where the right-hand side tends to zero as n — co. It follows that span (ker(T) U, oy En) is dense

in H.
Therefore, the conditions of Definition are satisfied and so H = P, En @ ker(T).
O
Remark 8.5.13.
1. The sequence in statement 3 of Theorem may be set to be eventually zero if there are only finitely

many eigenvalues of T'.

2. By Theorem if T' is compact then we can represent

Tz = Z An{z, en)en

An7#0

fore, € E,,.

8.6 Solution to Exercises
Exercise [8.2.7]
Solution.

1. If y € H* then (y,y) = 0 which implies y = 0. On the other hand, for y € H it follows that (y,0) =
(y,0 4+ 0) = 2(y, 0) which implies that (y,0) = 0 and so y € {0}.

2. By the bilinearity of (-,-), we have that F'* is a linear subspace. Let (y,)nen € F'* converge to y in H.
Then for any « € F' it follows that

(¥, 2) = (Yn> )| = [(Y = Yn, 7)]
C.S
< Ny = ynllllz|l

where the right-hand side converges to zero by the assumption that ||y — y,|| — 0 and z € F is fixed.
Therefore, y € F- which implies that F* is closed.

3. Let y € G+. Then for z € F it follows that z € G which implies (y,2) =0 and so y € F*.
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4. Suppose F'is closed. Then for x € F it follows that (z,y) = 0 for all y € F*+ which implies that = € (FL)L.
Hence, we have F' C (FL)L. Let z € (FL)L, then we can consider # = Ppx € F C (Fl)l. As F
is closed we know that # = Ppx + Prix and so x — & € F-. As (FJ-)L is a linear space we also have
thatz — % € (FJ-)J'. Therefore, as F+ N (FJ-)J' = {0} we deduce that z — Z = 0 which implies that
x =2 € F. Hence, F = (FL)L. For general F', we know by the continuity of (-,-) that Ft = Ft.

Therefore, (F‘L)L = (FJ-)J‘. Using the fact that F is closed we deduce that F = (FJ-)J'.
5. Let F' and G be closed.

(a) If z € FNG then for y; +y2 € FX + G we have that (z,y1 +y2) = (z,y1) + (2,92) =0+ 0= 0
andso FNG C (FJ‘ + GJ-)J'. On the other hand, if x € (FJ- + GJ-)J', then (x,y1 +y2) = 0 for all
y1 € F+ and y € G*. In particular, for 3 = 0 we get that = € (Gl)l = G and for yo = 0 we get
that z € (F+)" = F. Therefore, z € FNG.

(b) Replacing F with F+ and G with G in statement 5(a) gives

Frnet = ((F4) 0 (GL)i)L — (F+@)*

as I’ and G are closed.
(c) Note that
at 5(a 1 .
(FnG)*:*2@ ((Fr+chy) 2 Fig et

(d) Follows by similar arguments as statement 5(c) where instead we use statement 5(b) and statement
4.

O
Exercise [8.4.8

Proof. Let (Agv)ren €V be a sequence converging to u € H. Note that there is a bijection between V' and R,
namely Av — A. As metrics are equivalent in finite dimensions it follows that A, — A € R, and so A\yv — Av € V.
Hence, V is closed. Consequently, we can write H = V @ V= using Proposition In particular, for u € H
we have that u = \v+ Py 1u, where Pyu = Av € V and P,iu € V. Therefore, (u,v) = A(v,v) which implies

that \ = (&) O

BRE
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9 Integral Operators

The theory of bounded linear operators can be harnessed to solve linear differential equations and integral equa-

tions.

9.1 Kernel Functions

Definition 9.1.1. Let X, Y C R be interval. Then an operator A is an integral operator if there exists a
function k : X — Y — R such that

@UX&=Mmﬂ@%=Lﬁm@ﬂ®®

for all t € X and functions f for which A is defined.

Remark 9.1.2. The function k of Definition[9.1.] is referred to as the integral kernel or the kernel function of
A.

Example 9.1.3. Consider [a,b] C R and the initial value problem

u =f

with u(a) = 0, where f € L?(a,b). The solution to the problem is given by u = J f where J is the operator

t b
150 = [ f6)ds = [ 100(9)1(5)ds

a

fort € [a,b]. Letting
k(tws) = l[a,t] (5)

we have that

b
750 = [ Kt.s)f(e)ds
for f € L*(a,b). Therefore, J is an integral operator and k is the kernel function as per Definition

For f a measurable function defined on an interval X, and g a measurable function defined on an interval Y, let

f®g: X xY — R be given by
(f®9)(z,y) = f(z)g(y).

Theorem 9.1.4. Letp € [1,00). If f € LP(X) and g € LP(Y) then f ® g € LP(X X Y') with
If @ gllee(xxvy = I llrx)lgll e (vy-

Moreover,

span{f®g: f € LP(X), g€ Lr(Y)} = LP(X x Y).
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Proof. Note that f ® g is measurable. Moreover,

/Xxy‘f®g|pd/\2:/X/Ylf(:c)g(y)lpdydx

= [ r@r [ o ayas
:/ |f@)IPllglTs () dz
X

= ||f||LP(X)||gHLP(Y)~

Therefore,

1f @ gllLexxyy = 1fllze o lgllLe -

Lemma 9.1.5. Let f € L'(a,b) and
b
(IO = [ Laa(s)£(s)ds.
Then for n > 1 we have
n 1 ! n—
("N O = 5= [ €=t ds (9.1.1)
for all t € [a,b]. In particular, J" is an integral operator with kernel function
1 n—1
kn(t, S) = (n — 1)' 1[a,t] (8)(t — S)
for s,t € [a, b].
Proof. For n =1 it is clear that (9.1.1) holds. Assume (9.1.1)) holds for n < k. Then
(JEE1F) (8) = TEI)(E)
ety 1 /t o1
= t—s Jf(s)ds
ey [ =
1 t X s
- m/ (t—s) *1/ f(u)duds
Fubini 1 bt k—1
= 1) (t—1s5)"""f(u)dsdu
1 ¢ 1 nk
=Gy [, 70 [ o
1 t
=1 (t — )" f(u) du.
Therefore, by induction the proof is complete.

9.2 The Hilbert-Schmidt Kernel Function

Definition 9.2.1. Let X,Y C R be intervals and let k : X xY — R be measurable with respect to the product
measure. If k € L?(X xY), then k is referred to as a Hilbert-Schmidt kernel function.
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Theorem 9.2.2. Let k € L?(X x Y) be a Hilbert-Schmidt kernel function. Then the corresponding integral
operator, A[k], satisfies

||A[k]f||Lz(X) < |kl L2 x xvy 1l 2 vy

for all f € L2(Y). Moreover, the kernel function k is uniquely determined, almost everywhere, by A[k]

Proof. Using Cauchy-Schwartz we have

( dy‘ /Ikﬂsy |dy<(/ IkzdeU) 1Nz v

07 e = | [ mor ]
(] |k<x,y>|2dydx) IFIPL2(Y)

as required. For the uniqueness statement, suppose that k1 and ko are kernel functions of Af;. Then,

for x € [a,b]. Therefore,

dx

(k1 — k2, f® g)r2(xxy) = /X /Y (k1(w,y) — ka(z,y)) f(2)g(y) dy dz
= [ (o - Awg) @1 (@)
=0
for all f € L?(X) and g € L?(Y). Using Theorem We know that

ki —ky€span{f®g: feLr(X),gec LP(Y)}

and so it follows that (k1 — ko, k1 — k2)12(x,y) = 0 which implies that k; = k2 almost everywhere. O

Remark 9.2.3. The integral operator Ay : L*(Y) — L?*(X) associated with a Hilbert-Schmidt kernel k €
L*(X x Y) is referred to as a Hilbert-Schmidt integral operator.

The Hilbert-Schmidt norm for Ay, is

At lls = 1l z20r) = ( [ |k<x,y>|2dxdy) |
X JY

The Hilbert-Schmidt norm for Ay is well-defined as & is almost surely unique by Theorem[9.2.2] Moreover, from
Theorem [3.2.2] we deduce that

Al < 1A llas-
9.2.1 Application to the Poisson Problem
The Dirichlet Laplacian on (a,b) is the operator Ap : H?(a,b) N H}(a,b) — L?(a,b) given by
Apu:=u".

For f € L?(a,b) the Poisson problem is
Au=—f (9.2.1)

with u(a) = u(b) = 0. Equation (9.2.1]) is said to be well-posed if it has a unique solution for each f € L?(X xY)
which depends continuously on f. Equivalently, there exists a continuous operator that maps an input function
to its unique solution.
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Exercise 9.2.4. Show that H?(a,b) N H}(a,b) is a closed subspace of H?(a, b) with respect to || - ||iz-

Definition 9.2.5. For normed spaces, a bounded linear operator T : E — F' is invertible if T is bijective and
T~ is bounded.

Proposition 9.2.6. The Dirichlet Laplacian, Ap, has inverse given by

b
(Ap) 1) =~ [ glt:9)f(5)ds
where
A (b—t)(s—a) s<t
t, — b—a =
g(t,s) { Vt—a) t
is Green's function for the Poisson problem.

Proof. Integrating (9.2.1f) twice yields
u(t)=—(J*f) )+ (t—a)+d

for t € [a,b] and some scalars ¢,d € R. Using u(a) = u(b) = 0 it follows that d = 0 and

c= i (7))
Therefore,
u(t)=—(J2f) (t) + W(t —a)
Using Lemma [0.1.5] we conclude that
t—a

Note that Green's function for the Poisson problem satisfies

l9(t,s) <b—a

b b
//\g(t,s)\zdsdt<oo.

Therefore, Green's function for the Poisson problem is a Hilbert-Schmidt Kernel function. Thus using Theorem
we have that A is a Hilbert-Schmidt integral operator on L?(a,b).

for all s,t € [a,b] and so

Exercise 9.2.7. Show that Ap' : L*(a,b) — H?(a,b) is bounded.

Using Exercise it follows that (9.2.1)) is well-posed.
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9.3 The Neumann Series

In more general settings than the Poisson problem, there is likely no closed form for the solution operator. Instead,
a series of approximate solutions to simplified problems are constructed in what are known as approximation
methods. This motivates the study of sequences of operators. In particular, recall that if E, F' and G are normed
spaces, then

1S7] < 1S117]

for T € L(E,F) and S € L(F,G). Consequently,
1| < 7"
for n € N.

Lemma 9.3.1. Let E, F' and G be normed space. LetT, T, € L(E,F) and S, S,, € L(F,G) forn € N. Then

n—oo n—oo n—roo

T, =3 T and S, "=%° S implies that S, T, =3 ST. Moreover, if f, f, € E forn € N, then T}, =3 T
and f,, "= f implies that T, f =5 T'f.

Proof. Observe that
SpTn — ST = (S, —S) (T, - T)+ ST, —T)+ (S, — S)T.
Taking norms it follows that
[19nTn — ST < [[(Sn = S) (T = D) + 1S(To = D)l + |(Sn — S)T|
< 1Sn = ST =TI + IS Tn = Tl + {150 = SIHIT|

n—,oo O

We similarly conclude that T, f "=3° T'f under the appropriate conditions. O

Remark 9.3.2. A sequence (T),)nen C L(E, F') converges strongly toT € L(E, F) if
T.f =3 Tf
with respect to || - ||z for every f € E.

With these, we study the Neumann series which is a useful approximation method for solving perturbed problems.
In particular, we look at the Neumann series for solving for u € H?(a, b) satisfying

W —Tu=—f (9.3.1)

with u(a) = u(b) = 0 for given f € L?*(a,b). Note that when 7' = 0 becomes (9.2.1)), and so T can
be seen as a perturbation on the Poisson problem. As is well-posed, we would desire that for a small
perturbation, that is small T, would be well-posed. Using the Dirichlet Laplacian operator, is
equivalent to

(I -TAL') Apu

for u € H?(a,b) N H'(a,b). Hence, the well-posedness of (9.3.1) is reduced to understanding when I — TAL! :
L?(a,b) — L*(a,b) is invertible. We study this problem more generally by considering A € L(E) for E a Banach
space and the conditions for unique solutions to the equation (I — A)u = f.

Lemma 9.3.3. Let E be a Banach space and let A € L(E). If f € E is such that u:= )~ A" f converges
in E, then (I — A)u = f.

Proof. Let up := 0 and u, := f + Au, for n > 1. Observe that u,+1 = Tu, where T(-) = f + A(-) is a

continuous. Moreover,
[Tz — Tyl = Az — y)l| = [ Allllz — yl|.
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As >, A™f it must be the case that ||A]| < 1, and so T is a strict contraction. Thus we can apply Theorem
1.2.25| to conclude that (un)nen C E converges to the unique fixed point of 7. So by the uniqueness of limits,
we have that T'u = u which implies that (I — A)u = f. O

Lemma 9.3.4. Let E be a Banach space and let (f,,)nen C E be such that >~ | || full < oo. ThenY " | fn

converges in E. Moreover,
o0 o0
S fall <Dl
n=1 n=1

Proof. Let (s,)nen be given by s, :=3""_, f;. Let m > n then

m
||5m*5nH = Z fj
Jj=n+1

m

>l
j=n+1
0

> sl
Jj=n+1

—
=0.

IN

IN

Moreover, using the continuity of || - || we deduce that

> o
n=1

n
= || lim E fj
n—oo

i=1

n
lim E fj
n—oo
i=1

IN

n
Lim D15
j=1

= lIsl-
j=1

O
Theorem 9.3.5. Let E be a Banach space and let A € L(FE) be such that
Z |A™]| < oo.
n=0
Then I — A is invertible, with its inverse given by
(I-A)t=> A" (9.3.2)
n=0
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Proof. If (I — A)f =0, then Af = f and so
N EDNEWI
n=0 n=0

< > lAmIf]

n=0

< 00.

Therefore, f = 0 which implies that I — A is injective. As F is Banach we have that £(E) is Banach by
Proposition Hence, by Lemma the limit B := Y7 | A" exists in L(E) with respect to the operator
norm. Since convergence with respect to the operator norm implies strong convergence we have that

as a convergent series in E. Therefore, by Lemma it follows that (I — A)Bf = f, meaning (I — A) is
bijective with B as its inverse. O

Remark 9.3.6.
1. The series of (9.3.2)) is known as the Neumann series of A.

2. A sufficient, but by no means necessary, condition for the conditions of Theorem[9.3.5 to hold is that A
is a strict contraction. That is, || A|| < 1.

Using Theorem we see that HTABIH < 1 is sufficient for ((9.3.1)) to be well-posed.

9.3.1 Application to the Volterra Integral Equations

For m : [a,b] x [a,b] — R, the Volterra integral equation is given by

u(t) 7/ m(t, s)u(s)ds = f(t) (9.3.3)

for t € [a,b], and f € C([a,b]) given. Consequently, the Volterra operator V : C([a,b]) — C([a, b]) is the integral
operator with kernel function
k(t7 S) = 1[a7t] (S)m(t7 S)'

Exercise 9.3.7. Verify that the Volterra operator V : C([a, b]) — C([a, b)) is well-defined.

Lemma 9.3.8. Let m : [a,b] x [a,b] — R be continuous, with V its associated Volterra operator. Then

Il Sl flloo (t — @)™
n!

Ve f)] < (9.3.4)

for all f € C([a,b]), t € [a,b] and n € N. Consequently,

[m[|5% (b — a)™

V™l 2e(asy) < n!

for every n € N.
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Proof. For n = 1 we have that

t
VIO~ | [ s
/ |m(t, s)f(s)|ds
< ||muoo|\f||oo/ ds
= [[mlloo | flloo (t — ).
Assume ((9.3.4)) holds for n < k, then
[VERLF)] = [V (VFF) (1)

= / m(t,s)VFf(s)ds

g/ |m(t,s)||ka(s)| ds

k Nk
il [ A e —a) ,

IIWH’““HfIIoo t— a)k+1
(k+1)!

Therefore, (9.3.4) holds for all n € N. Consequently,

V" flloo
||Vn|| " = sup el
FE ™ reeampnioy 11l

SUDsefa,p) |V f(E)]

= sup
FeC(la,b))\{0} [l f1l oo
< sup [m|5, (t — a)
tc(a,b] n!
_lm[5. (b —a)"
o n! ’

O

Corollary 9.3.9. Let m : [a,b] X [a,b] — R be continuous, with V its associated Volterra operator. Then
for every f € C([a,b]) the corresponding Volterra integral equation given by (9.3.3) has a unique solution

u € C([a, b]).

Proof. Using Lemma [9.3.8] it follows that

= \eom = lm||7 (b — a)”
S < S0 PO 2O o (6 — ) < oo
n=0 n=0 ’

Therefore, V satisfies the conditions of Theorem [9.3.5] and so I — V is invertible which implies that (9.3.1)) has

a unique solution.

9.4 Solution to Exercises
Exercise [9.2.4
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Solution. Let (f,)nen € H?(a,b)NH{(a, b) be convergent to f with respect to || |lyz. Then as (H?(a,b), || - [|uz2)
is a Hilbert space it follows that f € H?(a,b). Moreover, as

[l < []f |2
for f € H%(a,b), we have that (f,)nen converges to f in || - ||m. Using Theorem [10.5.23| it follows that
f € Hi(a, b) which implies that f € H2(a,b) N H}(a,b). Therefore, H%(a,b) N Hi(a,b) is closed with respect to
Il Il 0
Exercise [9.2.7

Solution. Using Theorem [9.2.2 and Proposition [0.2.6] it follows that
||A51f||H2(a7b) < llgll2a,02) 1 £l 22 a,b)
for all f € L?(Y). Therefore,

185"l
A_l = —(a’b)< o < .
18501= B Ty = Ml <0

Exercise [9.3./

Solution. For t1,ts € [a, b] it follows that

((VH)(E) = (V)(E2)| = /tQm(t,S)f(S)dS

< Jta = taf[[mlloo [ flloo-

As m and f are continuous functions on a compact domain we know that ||/ cc, || f|lec < 00. Therefore, V f is
continuous, and thus V' : C([a,b]) — C([a, b]) is well-defined. O
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10 Appendix
10.1 Ordered Sets

Let P be a set. Then < is a partial order relation on P if it satisfies the following.
= Reflexivity, a < a for all a € P.
= Anti-symmetry, a < b and b < a implies that a = b for all a,b € P.

= Transitivity, a < b and b < ¢ implies a < ¢ for all a,b,c € P.

Definition 10.1.1. A subset S C P is totally ordered if a < b orb < a for any a,b € S.
Definition 10.1.2. /fQ C P, then c € P is an upper bound for Q if a < ¢ for all a € Q.
Definition 10.1.3. An element m € S C P is maximal if m < x for x € S implies that m = x.
Definition 10.1.4. A set P is inductive if any totally ordered subset (Q has an upper bound.

I Lemma 10.1.5 (Zorn's Lemma). Every non-empty ordered set that is inductive has a maximal element.

10.2 Hardy’s Inequality

Theorem 10.2.1 (Hardy's Inequality). Let 1 < p < oo and let f € LP(0,00). Then there exists a Cp, > 0
such that
f(z)
7

<Gyl (@) zn -
Lp

Equivalently, if F(x) = [ f(t)dt then

F
e AT

Lp

Proof. For a function f let Fi(z) := 1 [* f(
Step 1: Let f € C2°(0,00) be non negatlve Show that F € C1(0,00) and oF' = f — F.
Note that by the fundamental theorem of calculus

F/(x) = 2 f(x) ~ 5 F(a)

x2

and so xF' = f — F. It is clear that ' and F” are continuous. We now show that F' and F’ are bounded to
complete the step. As f is a bounded function the only concerns of unboundedness arise for the i terms as
x — 0. Recall, that f € C°(0,00). Hence, supp(f) = K is a compact set of (0,00). Suppose that for every
€ > 0 the set [0,e] N K # (. Then there exists a sequence (2, )neny C K such that 2, — 0 as n — oco. As K is

closed this would imply that 0 € K which contradicts K C (0, c0). Therefore there exists an ¢ > 0 such that

[0,e] N K = (). Consequently, f(z) = 0 for all z € [0,¢]. Therefore, [ f(z)dz = 0 for all x € [0,¢]. Hence,
1 fo x)dxz = 0 for z € [0, €]. One carries out a similar argument to show that F’ is bounded near zero. Thus,
F and F are continuous and bounded which implies that F' € C!(0, 00).

Step 2: Show that [~ F(z)P dz = —p [;° «F (2)P~ F'(z) dx.
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Consider Ir = fORF(x)p da. Performing integration by parts with u = F(z)? and $ = 1 we deduce that
R R

/ Fla) dz = [2F(2)"]R — / paF (2)PLF (2) da.

0 0

Letting K be the compact support of f we know that K is bounded and so for sufficiently large R it follows that

/Kf(m)da:/oRf(x)dx:/ow fz)da.

As f is bounded on K it follows that
/ flx)de <M
0

for some M > 0 which implies that zF'(x)? < ;}fi. Hence,

[:vF(:r)p]é?‘ 250,
Therefore,

/000 F(x)?dz = _p/ooo cF(z)P~ F'(x) dz,

which is well-defined as the functions F' and F’ are bounded.
Step 3: Deduce that ||F||?, < Cplf|lLe-
Combining steps 1 and 2 we deduce that

F(z)Pdx = —p/ cF(z)P~ F'(z) da
0 0

= [P - F) s
:p/o F(m)pdw—p/o F(z)P ' f(z) da.

Therefore,

~ pw_Loo 2P L () da
| ey 2 [ r@p @) e

As f(x) > 0 for all x € (0,00) it follows that F(x) > 0 for all z € (0,00). Therefore,
1713, = [ IP@)
oo
= / F(z)? dx
0

N N R
=o-1), F(2)P ' f(z) da.

Let p’ be such that 1 = % + 1% so that p’ = ﬁ. Then by applying Hélder's inequality, we deduce that

|wmy:A F(a)P da

p _
L L P

p—1

pfﬂmu<AW@wylyﬂ)p

p—1

=Ll ([ Porar) T

p -1
= —_— P Fpp .
S 1
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Therefore, »
Flpr < —— .
1Pl < L1

Step 4: Extend the result to general g € C2°(0, 00).

For g € C2°(0, 00), note that |g] is still a continuous function with compact support. As the continuous differen-
tiability of f in the previous steps is not used the claims still hold true for |g| as |g(z)| > 0 for all z € (0, 00).

Therefore,
1 xr
I3 [l

As |llglllLr = llgllzr and L [Fg(t)dt < L [7|g(t)|dt for all t € (0, 00) we deduce that

P
< — .
_ 1H|9H|Lf’

1Gls < 2 lgls
where G(z) := 1 fo

Step b: Extend the result to f € LP(0,00).
Recall that C2°(0,00) is dense in LP(0, oo) Therefore, given f € LP(0,00) there exists a sequence (f,) C

C2°(0,00) such that f, £ f. Letting F,(z) = 1 fo fn(t) dt we observe that
P 3
dx)

1
p P
dx)

( () f(xt)dx)dt
1

alt) — L f(0)

0o Z

fn(xt) flat)dt

Il
\H

2 Man — fllze,

where (1) follows from Minkowski's integral inequalityﬂ and (2) follows from the fact that p > 1 and so the

integral is finite. Therefore, F, LN R As fn € €C(0,00) we know that the inequality | Fy|r < Cpllfullzr
holds. Sending n — oo it follows that ||F||r < Cyllf|lLe- O

10.3 Holder Spaces

Definition 10.3.1. For an open set Q C R?, the o € (0,1) Hélder space denoted C® (Q2) is the set of
continuous functions f € C° () such that

wp @)= 1)

P < 0.
sty (zy)ez [T =Yl

The norm on C¢ (Q) is given by

1llea () = I1£1loo + 1f(@) = fW)I,

sup
z#y,(z,y)EN2 ‘(E - y‘a

Thttps://en.wikipedia.org/wiki/Minkowski_inequality
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—fLpsctt— TDcontuous
\/;A74/fwmi«ﬁ/
)

Figure 14: Smooth functions are the strongest class of continuous functions. Lipschitz continuous functions have
joins where the gradients at the joins are finite. Lipschitz continuous functions can be thought of as Holder
continuous with @ = 1. Hélder continuous functions for « € (0,1) can have cusps where the gradient at the
cusp is potentially unbounded. Discontinuous functions contain jumps that do not satisfy the conditions of the
previous spaces.

I Theorem 10.3.2. The space (CO‘ Q)1 llga (Q)) is a Banach space.

Proof. Let (fn)nen C C* (Q) be Cauchy sequence. Then (f,,)nen C C° (Q) is a Cauchy sequence with respect
to || - [ As (C°(Q),] - [l«) is a Banach space we know that f,, — f € C°(Q). It remains to show that
fece (Q) and f,, — finC® (Q) For any (z,y) € Q2 with x # y, let § = |x —y|. Then as f,, — fin || - |loo
it follows that there exists an N € N such that

50(
fnle) = f@)] <
for all z € ). Therefore, for n > N it follows that

[f(@) = FWl _ (@) = fu@)] £ (@) = Fay)l + [ fn(y) = [ ()]

lz —yle — |z —y|*
_ @) = @]+ 1fay) = FOI | [fal2) = fa(y)]
o |z —y|*
CEHT @) - faw)
B |z —yl|*
_ oy @) = Sl
[z —yl|*

As (fn)nen C C* (Q) is Cauchy we know that the sequence (f,,)nen is bounded and so W < C for all
n € N and (x,y) € Q2. Therefore,

wp @ =10

Wicite
z#y,(z,y)EN2 ‘.’E - y|

andso f € C* (Q) By similar arguments we show that given an € > 0 and (z,y) € 2 there exits a N € N such
that for n > N we have that

[f (@) = fn(2) = (f(y) = falw))] _ €
|z —y[® -2
Therefore,
sup Iﬂ@—h@%ﬂﬂw—h@ﬂgg
wty(z,y)€Q? |z —yl* 2

Moreover, there exists a M € N such that for n > M we have that [|f — fullcc < § by the fact that f, — f in
| - ||oo- Therefore,

||f_anca(Q> _ ||f_anoo+ sup |f(w)_fn(x)_(f(y)_fn(y)”

r#y(z,y)€Q? [z —yl*
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Hence, f,, — f in C* (Q). O

Example 10.3.3. Let p € (1,00] and consider the operator T : LP(0,1) — 017%(0, 1) be given by
Tf@) = [ 1)
0
for z € [0,1]. For x <y we have that,

Tf(x) =Tf(y)l =

/wa(z)dz/oyf(z)dz

= /z f(z)dz
Yy
1

Z / 1,.1/(2)|dz

Hélders
= Hl[I»ZI]HLP'(oJ) Hf”LP(O,l)

1
= |z — yIl P ”f”LP(O,l)-

Hence, for 1 — % > 0 we have that Tf € C°(0,1). Moreover, we have that

/090 f(z)dz

< /Ollf(Z)ldz

< 1l 2w o, 1f 1122 (0,1)

HTfHCO(o,l) = Ssup
z€(0,1)

= || fllzr(0,1)-
Therefore,
Tf(x)—-Tf(y
1Ty = ITflony+  sup @ =TIG)
cF(0.1) ety (zy)e0,1)? |z —y| T

<N fllzeco,1y + 1l e,
< 0.

ThusTf € Cl_%(()7 1) and the operator T is well-defined. Moreover,

I

)

1-1 <
LP(0,1)—C" P (0,1)
and so as T is a linear map we deduce that T is continuous. Note that for all f € BX"(%:1) we have that

_1
ITf(x) = Tf(y) < |z —y|'"7,

hence, T (BX"(®1)) C €°(0,1). Moreover, it follows that any sequence (T f,)nen C T (BL*(OD)) C €%(0,1)
is bounded and equicontinuous. Therefore, by Theorem any sequence (T fn)nen € T (BE (1)) admits
a convergent subsequence. Thus, T (BLP(O’U) is pre-compact, implying that T : L?(0,1) — LP(0,1) is a
compact operator.

10.4 Weak Convergence in Hilbert Spaces
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Definition 10.4.1. Let H be a Hilbert space. A sequence (z,,)nen C H weakly converges to x € H if

(Tn,y) = (z,9)

for ally € H.

Remark 10.4.2.
1. Symbolically one writes x,, — x to say that the sequence (x,,)nen € H converges weakly to x € H.

2. If x,, — x in the usual sense, then as

[(@n,y) = (@,9)] < [lz — zn|l[[y]

by Cauchy-Schwarz, it follows that x,, — x.

Example 10.4.3. /n a finite-dimensional Euclidean space, the notions of strong and weak convergence are
equivalent. In Remark[10.4.2 2. we saw that strong convergence implies weak convergence using the Cauchy-
Schwarz inequality. Conversely, consider the finite-dimensional Euclidean space R? and suppose that (x,,)nen C

R? converges weakly to = € R%. Then it follows that (i, e;) "= (z,e;) where e; is the it € R% is the ith
coordinate vector. This implies that 2P "2 20 for each i € {1,...,d}. Consequently,
d
2, — 2| < Z }ZS) _ 2|20,
i=1

and so x,, — x strongly.

Theorem 10.4.4. Let H be a Hilbert space. Then every bounded sequence (z,)nen € H has a weakly
convergent subsequence.

Proof. Let M > 0 be such that ||z,|| < M for all n € N. It follows by Cauchy-Schwarz that for fixed m € N
the sequence (2, Zm)nen C R is bounded. Therefore, it has a convergent subsequence. By Cantor's diagonal
argument we can find a subsequence (2, ) ey € (Zn)nen such that (2, , Zm) ey € (Zn)nen converges for every
m € N as k — oo. Consequently, for y" € span ({z, }nen) =: S it follows that (2., ,9’),cy converges as k — oc.
Now consider y € S. For 3y € S it follows that

‘(I/ﬂg 7$nk7y)| < |(xnj7y7y/)| + ’(I"j 7xnk-7y,)| + |(I”k’yl 7y)|
<2M |ly = ' + [ (20, — 20 9| -

Hence, given € > 0, let y’ € S be such that ||y’ — y|| < ;5. and let j, k be large enough such that | (@, — &n,, )| <
5. It follows that

’(mnj _xnlwy)’ <6

and so |(@n, — @n,,y)| — 0 as j,k — oco. This implies that for y € S the sequence (zy,,y) is Cauchy, and so
has a limit. Let Ly := limy_ o0 (Tn,,y). It is clear that L : S — R is linear. We also note that L is bounded
using Cauchy-Schwarz and the fact that ||z,,|| < M for all n € N. Therefore, by Theorem [8.3.1] there exists an
x € S such that (x,y) = Ly for all y € S. Now as S is closed we can write H = S @ S+ by Proposition
Hence, for any y € H we can write y = y; + 2, where y; € S and y» € S+. It follows that (z,,,y) = (2, y1)
for all n € N. In particular, we have shown that (zy,,¥1),cy converges for any y; € S and so it follows that

(Tny,, Y)pen converges for any y € H. Thus we have that the subsequence (7, ), oy converges weakly. O
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Corollary 10.4.5. Let H be a Hilbert space. If (x,)nen C H converges weakly to x, then

llz|| < liminf ||z,||.
n— oo

Moreover, lim,, o || || = ||z|| if and only if x,, — x strongly in H.
Proof. As
0< (20 — 2,20 — 2) = [lzal® = 2(2n, 2) + ||z (10.4.1)

and (2,,z) = (z,z) as n — oo, it follows that
0 < liminf ||z, |2 — |||/

Moreover, it is clear from ((10.4.1) that if lim, oo ||2n| = ||z|| then (x, — x, z, — 2) — 0 which implies strong
convergence. Conversely, by the triangle inequality, we know that ||z, — z| > |||z.] — ||z|||, and so strong
convergence implies lim,,_, o ||z,] = ||z||- O

Definition 10.4.6. Let H be a Hilbert space. A family (en)nen C H is orthonormal if
(en7 6m) = 0nm

for every n,m € N. If additionally,

= Z(m, €n)én

neN

for every x € H, then the family is complete.

Example 10.4.7. Consider the Hilbert space L*((—m,m)) and the family E = (ey,)nen

1
1. elzﬁ,
1

2. egy = ﬁsin(nm), and
3. 62n+1ﬁ cos(nx)

for n > 1. One can show that E is an orthonormal family. Moreover, one can consider E as an orthonormal
sequence in the infinite-dimensional Hilbert space H = L*((—m,w)). Suppose that (e,)nn did not converge
weakly to zero. Then we can choose a subsequence and an x € H such that

|(z,en)| > € (10.4.2)

for all n € N and some ¢ > 0. Consider E,, = span(e,,), which is a closed subspace of H as it is finite-
dimensional. Hence, by Proposition T = ey, +y for unique A € R and y € E;-, where in particular
Aey, is the projection of x onto E,,. Considering (z,e,,) we see that A\ = (z,ey,), and so (z, e, )en, is the
projection of x onto E,,. Similarly,

N

> (xen)en

n=1
is the projection of z onto E1,  n :=span(ei,...,en). Thus using (10.4.2)) it follows that

2 2

+

N

T — Z(m,en)en

n=1

N

Z(x,en)en

n=1

Il =

N
> ) (z,en)® 2 Ne?
n=1
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which is contradicts ||z||> < oo. Thus we conclude that e, — 0. In particular, we have shown that in the
setting of Coro//ary we cannot ask for equality. Moreover, (en)nen is an example of a sequence that
converges weakly, but whose norm does not converge to the norm of the limit, and so we do not have strong
convergence.

Corollary 10.4.8 (Banach-Saks). Let H be a Hilbert Space. Let (x)nen be such that ||x,|| < K for all

n € N. Then there exists a subsequence (:z:nj)jeN C (xn)nen and x € H such that

T =

k

k—o0
E Tn; — T
j=1

in H.

Proof. Let x be the weak limit of a subsequence (7,,);cy € (Zn)nen as given by Theorem [10.4.4, Now consider
the sequence (y;)ien given by y; := z,, — x. It is clear that y; — 0 and ||y;|| < K’ for some fixed K.
Consequently, one can choose a subsequence (yij) successively such that

)| < 5
J
for | < j. This is because for j € N we have that (yu,yi) % 0 for each I < j — 1. Hence, there exists an [
such that
1
|(Yirs yi)| < S

foralll < jand ¢ > I. Thus, we can let i; = max (I,i;_1). Therefore,

2

1 k 1 k
Ezyij :ﬁz yzuy’LJ
j=1 l,j=1
1 [ =
TR Z (i, wi,) 2 yu,yz])>
7j=1 =1
1
Sﬁ k(K +22j7
_ ()42
- k
2%,

O

I Lemma 10.4.9. Let H be a Hilbert space. Then every weakly convergent sequence (x,,)nen C H is bounded.

Proof. Consider the sequence of linear functions (L, ),en given by L,y := (z,,y). Now suppose that (L, ),en
is not bounded on any closed ball of H. Then there exists a sequence (K;);cn of closed balls such that

L Ki:={y:ly—wl <n},
2. Ki+1 - Ki, and

3. r, — 0.
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Moreover, there exists a subsequence (2, ),y € (Zn)nen With |Ly,y| > i for all y € K;. Note that the (y;)ien
form a Cauchy sequence and so have a limit yo € H. As yo € (.=, K; it follows that |L,,,yo| > i for all i € N.
This contradicts the weak convergence of ()., and so there must exist a closed ball on which the linear
functions (L, ), cy are bounded. It follows by the linearity of the L, that the set of linear functions (L, )nen is

bounded on the closed unit ball, that is || L,y|| = ||(zn,y)|| < M for some M > 0 and for all n € N. In particular,

Tn
i
[zl

letting y = 22— it follows that
for all n € N, hence, the sequence (x,,),en is bounded. O

llznll

Corollary 10.4.10. Let H be a Hilbert space. If K C H is closed and convex, then K is closed with respect
to weak convergence.

Proof. Let (x,)ny € K be weakly convergent to € H. Then by Lemma(10.4.9|the sequence (x,,)nen is bounded,
and by Corollary [10.4.8| there exists a subsequence (mn].)jeN such that

k
E Tn,; — T.
Jj=1

El e

As K is convex we know that %Zle Ty, € K for all j, so because K is closed it follows that z € K. O

10.5 Sobolev Spaces
10.5.1 Weak Derivatives

Definition 10.5.1. Let [a,b] C R be finite. Then a function ¢ € C*([a,b]) with 1(a) = ¥(b) = 0 is referred
to as a test function. The space of all such test functions on [a,b] is denoted C}(|a, b]).

Lemma 10.5.2. For [a,b] C R finite we have that

Ci([a,b]) = L?(a,b).

In particular, if g,h € L?(a,b) are such that

for all 1) € C}([a,b]), then g = h almost everywhere.

Definition 10.5.3. Let f € L?(a,b). A function g € L*(a,b) is said to be the weak derivative of f if

/a ) — = / " F)(s) ds

for all ¢ € C3([a,b]).

Remark 10.5.4. From Lemma it follows that if f has a weak derivative, then it is unique.
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10.5.2 The Fundamental Theorem of Calculus
For f € L?(a,b) let
t
UD0 = [ f@)ds (1051)

for t € [a, b].

Lemma 10.5.5. The operator J : L*(a,b) — C([a,b]) is linear and bounded. Moreover, (Jf) = f in the
weak sense for all f € L*(a,b).

Proof. For t € [a,b] let (t,)nen C [a,b] be such that t,, — t. Clearly, 1j,,, 1(%)f(2) — 1jq4(z)f(z) almost
everywhere. Moreover, by Proposition [4.2.2| we have L?(a,b) C L!(a,b) and so

b
/ |f(z)|dz < .
Therefore, as [11,,1(x) f(x)| < [f(x)| almost everywhere it follows by the dominated convergence theorem that

b b
(TF)(tn) = / Voo () () da "5 / Vo (2)f (2) dz = (JF)(2).

Therefore, Jf € C([a,b]) and J is well-defined. Moreover,

[/ flloc = sup
t€la,b]

/atf(m)d:c

< [ [f(z)|dz.

a

In particular, using the Cauchy-Schwartz inequality it follows that

1 flloe < Vo—al £l (105.2)
Thus, J is bounded. Fix ¢ € C}([a,b]) and consider T : L?(a,b) — R given by

o () +(f, ).

Then T is bounded and using integration by parts we have T'f = 0 for all f € C'([a,b]). Since C'([a,b]) is
dense in L?(a,b) we have T'f = 0 for all f € L?(a,b). From this, we deduce that (Jf,¢') = —(f, ) which is
equivalent to saying that (Jf) = f. O

I Lemma 10.5.6. For I := {¢' : Ci([a,b])} C L*(a,b) and G := 1+ C L*(a,b), show that G = F.

Proof. As ¢ € Cj([a,b]) is such that ¢(a) = ¥(b) = 0, it_is clear that 1 € F-. Therefore, F C 1+ = G and
moreover F' C G = G. On the other hand, by Proposition we have

Ex_[l!] 771
or ’ c L (a,b). In particular, or ’ € C([(Lb}), then

(£,1)
b—a

JPof = Jf — J1 € C([a, b))
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Note that JPg f(a) = 0 by definition of J and similarly,

(TPa)®) = (1H0) ~ L e

’ (£,1) [
:/a (s)ds—b_a/a ds
_<f71>_<f71>

=0.

Therefore, JPgf € C§(la,b]) which implies that Pof € F by Lemma [10.5.5 Hence as C([a,b]) is dense in
L?(a,b), there exists a sequence (fn)nen € C([a,b]) such that f, — fin L?(a,b). As Pg is bounded, and thus
continuous, we have Pgf,, — P f and so Pgf € F. Thus as Ran(Pg) = G we deduce that G C F. O

Proposition 10.5.7. The decomposition

L*(a,b) =R1® {¢ : ¢ € C5([a, b))},

where closure is with respect to || - || L2(q.p)-
Proof. Applying Proposition with F' and using Lemma [10.5.6] the result follows. O

Corollary 10.5.8. Let f € L?(a,b) be such that f' = 0 in the weak sense. Then f is constant almost
everywhere.

Proof. Let f € L?(a,b) with f' = 0 in the weak sense. Then

[ reweas=o

for every ¢ € C{([a,b]). In other words, f € F- where F' = {¢/ : ¢ € C{([a,b])} and in particular f € F'-.
Using Lemma [10.5.6{ we know that F'*+ = ((Rl)l)l = R1. Therefore f € R1 and is thus constant almost

everywhere. 0
Corollary 10.5.9. The inclusion H'(a,b) C C°([a,b]) holds. More specifically, f € H'(a,b) if and only if
f=Jdg+cl

for g € L?(a,b) and ¢ € R are uniquely given by

g=i
and
c= <.f - ']flv 1>
b—a
Moreover, .,
| £6)ds = @) - 10 (105.3)

for every [c,d] C [a,b].
Proof. (=). Let f = Jg+ cl for g € L?(a,b) and ¢c € R. Then

ff=0Ug) +0=g,
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and so f € H'(a,b).
(«<). Let f € HY(a,b), and set g := f’, then

(f=Jg)=f—-g) T="f-g=

Therefore, by Corollary [10.5.8] there exists a ¢ € R such that f — Jg = c1.
For (10.5.3) note that

10.5.3 Sobolev Spaces

Definition 10.5.10. The first-order Sobolev space on [a,b] C R is

H'(a,b) := {f € L?(a,b) : f has a weak derivative} .

Lemma 10.5.11. The map (-, )i : H'(a,b) — R given by
<f7 g>H1 = <f> g>L2 + <flag/>L2 )
where derivatives are in the weak sense, is an inner product on H!(a,b).

Proof. The map (-, )y is clearly symmetric as (-, )2 is symmetric. By the linearity of the integral, if f1, fo €
H'(a,b) have weak derivatives g; and g respectively, then g; + \go is the weak derivative of f; + Afy for A € R.
Therefore, f — f is linear and thus (-, )y is symmetric as (-,-) 2 are symmetric. Similarly,

<faf>H1 = <f7f>L2 +<f/7f/>L2 ZO
for all f € H'(a,b). Moreover, (f, f)m: = 0 if and only if (f, f,)r2 = 0 which happens if and only if f = 0.

Therefore, (-, )y is an inner product. O

Corollary 10.5.12. The map || - || : H'(a,b) — R given by

[ fllm = (f, fla
Proof. This follows from Lemma [10.5.11| and Proposition |8.1.5 O

I Lemma 10.5.13. The map H'(a,b) — L?(a,b) given by f — f’ is linear and bounded.
Proof. Linearity was noted in the proof of [I0.5.11] Moreover, as

2 2
1Nz < W2 + 1 1z = 1l
it follows that f +— f’ is bounded. O

Theorem 10.5.14. For [a,b] C R the following statements hold.
1. The space (H'(a,b),]| - |lu2) is a Hilbert space.
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I 2. The inclusion (H(a,b), || - [la:) € (C°([a,d]), || - [|) is continuous.
Proof.

1. Consider (f,)nen € H'(a,b) a Cauchy sequence. That is,

2 ,m—>
1 = FrullZe + 1 = fiullzz = Ifn = finllFn 7= 0.

Therefore, (fn)nen: (fn)nen © L?(a,b) are Cauchy sequence and thus convergent. Let f,€ L?(a,b) be
such that f,, — f and f) — g in L?(a,b). Then for ¢ € C}([a.b]), by using the fact that f/ is the weak
derivative of f,, it follows that

<g7w>L2 = lim <f1{ww>[,2 = lim (_ <fn,¢,>) = <f7 ¢/> .

n—roo n—roo

In other words, g is the weak derivative of f. Therefore, f € H'(a,b) with f,, converging to f in H!(a,b).
Therefore, H!(a, b) is complete and thus a Hilbert space.

2. For f € HY(a,b), using Corollary [10.5.9 we can write

f=Jdg+c1

for g € L?(a,b) and ¢ € R, where ¢ = w and g = f’. Therefore,

[flloe =179 + cl|oc < | 7gllo + lc]-
Using (10.5.2)) we have that
[7glloc < Vo —allgllzz = Vo —allfl.-

Similarly,

1 b
|c|:—/f—Jf'dx
b—all,

1 /
< b —a (Ifllze + T f )

cs 1 ,
< Il (U fllze + 1TF) )

5.2) 1 ,
< <= (Ifllze+ VE=allf'l )

1

[=)

i

It follows that

[flloo < cll.f ]l

where )
c:=max | vb—a+1, ——
( Vvb— a)
is only dependent on b — a. As this holds for all f € H'(a,b), the inclusion map (H'(a,b),|| - [lm) —
(C%([a,b]), || - llc) is bounded and thus continuous.

O

I Lemma 10.5.15. The map J : L?(a,b) — H'(a,b), given by ([10.5.1)), is bounded.
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Proof. Note that
| f ||
fer2(ap\for |Ifllz2

VITAB + 1002

[ 22 (a.b) > H1 (ab) =

= sup
FEL2(a,b)\{0} (halp
Lem TS VI +11FI13
FeL2(a,b)\{0} I f1 22

Using (110.5.2)) and Proposition we have
1Tl < 1T fllsoltll Lz < (b= a) |l fll 2

Therefore,

NS
17022 (a by —H1(ap) < sup (b=a)® + Al _ Vb= a2 +1< .
FEL2(a,b)\{0} 1£1lz2

I Corollary 10.5.16. For [a,b] C R, we have C1([a,b]) = H'(a,b).

Proof. Let f € H!(a,b) with g := f’. Then by Corollary [10.5.9| we have f = Jg + c1 for some ¢ € R. Since,
n—oo

C%([a, b]) = L*(a,b) there exists a sequence (g, )nen C C%([a, b)) such that ||g, —g|l2 — 0. Then using Lemma
10.5.15 we have that Jg,, "= Jg in H'(a,b). Therefore,

frni=Jdgn+c1 ™ =3 Jg+cl=f

in H'(a,b). As (fn)nen C C([a,b]) we conclude that C'([a,b]) is dense in H'(a,b). O

Definition 10.5.17. The n*" order Sobolev space, forn > 2, on [a,b] C R is
H"(a,b) := {f € H'(a,b) : f' € H" '(a,b)}.
Proceeding in the same way as Lemma [10.5.11] we have that
e =35 (1)
=0

is an inner product on H"(a, b), and thus

1l =\ IFI2s A+ £

is a norm on H"(a,b). Moreover, we have that (H"(a,b), || - ||u~) is a Hilbert space.

Definition 10.5.18. For [a,b] C R, let
H}(a,b) := H(a,b) N Co([a, b)),

where
Co([a,8]) == {¢ : ¢(a) = p(b)} N C°([a, b]).
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Lemma 10.5.19. The map (-, -)p; : Hi(a,b) — R given by

<u’ U>H(1) = <u/7U/>L2

is an inner-product on H}(a,b). Moreover,

“Nm : Hy(a,b) — R given by

lullay = [lu'll -
is a norm on H}(a,b).

Proof. As J is linear, from Lemma|[10.5.13) and (-,-) 2 is an inner product it is clear that (-, ) is bilinear and
symmetric. Moreover, <U7U>H(1) = 0 if and only if v’ = 0 which happens if and only if u = ¢ for some constant
¢ by Corollary As u € H} we have that u(a) = 0 which implies that ¢ = 0. Hence, (u, u)gz > 0 with
equality if and only if w = 0. Therefore, <'>'>Hé is an inner product and so by Proposition we have that
[ - Iz is @ norm. O

Remark 10.5.20. The norm of H} is often referred to as the energy norm.

Lemma 10.5.21. There exists a C > 0, dependent on b — a, such that for all u € H(l)(a, b) we have
ez sy < C 16l 2oy -

Proof. Let u € Hj(a,b). Then by Lemma [10.5.5(we have that (Ju/)’ =/ and so by Corollary [10.5.8] it follows
that Ju' — u = ¢ almost everywhere. As Ju’' — u vanishes at a it follows that ¢ = 0. Therefore, Ju' = u and so

lullzz = lJu'll 2 < C ]2,

where C'is given by the boundedness of .J shown in Lemma O

Remark 10.5.22. From Lemma it follows that on H}(a,b), the norms ||+ ||g and ||- |y are equivalent.
Indeed,
[l < llullae
and
lulldr, = llull3 + l1ll; < (C* + 1) I3 = (C* +1) llulls-

I Theorem 10.5.23. The space Hi(a,b) is || ||m1-closed in H!(a, b) and a Hilbert space with respect to || - [FEee

Proof. Let (fn)nen € H{(a,b) be convergent to f with respect to || - [|g:. As (H'(a,b), | - |[m:) is a Hilbert
space and (f,)nen C H'(a,b) it follows that f € H'(a,b). Similarly, by statement 2. of Theorem [10.5.14| we
have that

[fllos < cll fllm

for all f € H'(a,b) and some ¢ > 0. Therefore, (fn)nen C Hy(a,b) C C([a,b]) converges to f with respect to
[ - Iloc- As (CO([a,b]), || - llo) is a Hilbert space we must have f € CJ([a,b]) and so f € H{(a,b). Showing that
Hg(a, b) is closed. Consequently, as | - ||z and || - || coincide on H we can conclude that H(a,b) is a Hilbert
space. O]
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