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Introduction
What is functional analysis? Essentially, it is linear algebra in infinite dimensions. There are two main sources of
differences that arise as we move to infinite dimensions.

1. Norms are no longer equivalent.

• Recall, that a norm is a function ∥ · ∥ on a vector space satisfying the following.
(a) ∥λx∥ = |λ|∥x∥.
(b) ∥x+ y∥ ≤ ∥x∥ + ∥y∥.
(c) ∥x∥ = 0 if and only if x = 0.

• Norms ∥ · ∥1 and ∥ · ∥2 are equivalent if there exists a constant c such that

1
c

∥ · ∥2 ≤ ∥ · ∥1 ≤ c∥ · ∥2.

2. Linear operators. We can represent linear operators as matrices acting on vectors.
a11 a12 . . .

a21
. . .

...


x1
x2
...

 =


∑∞
k=1 a1kxk

...

...

 .

From which questions about convergence arise.
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1 Topological and Metric Spaces
1.1 Topological Spaces
Let X be a set.

Definition 1.1.1. A subset O of P(X) is a topology if the following hold.

1. ∅, X ∈ O.

2. For a family (Oi)i∈I ⊆ O we have
⋃
i∈I Oi ∈ O.

3. For a family (Oi)ni=1 ⊆ O we have
⋂n
i=1 Oi ∈ O.

Elements of the topology are called open.

Definition 1.1.2. For a topology (X,O), a sequence (xn)n∈N ⊆ X converges to x if for all O ∈ O with x ∈ O,
there exists an N ∈ N such that xn ∈ O for n ≥ N .

Example 1.1.3. Topologies for a set X include the following.

• O = {∅, X}.

• O = P(X).

1.2 Metric Spaces
Let X be a set.

Definition 1.2.1. A metric is an application d : X ×X → [0,∞) with the following properties.

1. Definite. That is, d(x, y) = 0 if and only if x = y.

2. Symmetric. That is, d(x, y) = d(y, x).

3. Satisfies the triangle inequality. That is, d(x, y) ≤ d(x, z) + d(z, y).

A set X with a metric d is called a metric space, denoted (X, d).

Definition 1.2.2. The ball with centre x ∈ X and radius r ≥ 0 is the set

Br(x) = B(x, r) = {y ∈ X : d(x, y) < r}.

Definition 1.2.3. A set O ⊆ X is open if for all x ∈ O there exists an r > 0 such that B(x, r) ⊆ O.

Definition 1.2.4. A set is closed if its complement is an open set.

Example 1.2.5. Some examples of sets with metrics are the following.

• Rn and d(x, y) =
∑n
i=1 |xi − yi|.

• C([0, 1];R), the set of continuous functions from [0, 1] → R, and d(f, g) = supx∈[0,1] |f(x) − g(x)|.
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Proposition 1.2.6. Let (X, d) be a metric space, and let O be the set of open sets. Then O is a topology.

Proof.

• Clearly X ∈ O, as for any r > 0 and x ∈ X we have that Br(x) ⊆ X. Moreover, ∅ ∈ O, as Definition
1.2.3 holds trivially for the set has no elements.

• Let (Oi)i∈I ⊆ O. Then for any x ∈
⋃
i∈I Oi we have x ∈ Oi for some i ∈ I, and so there exists an r > 0

such that Br(x) ⊆ Oi ⊆
⋃
i∈I Oi. Therefore,

⋃
i∈I Oi ∈ O.

• Let (Oi)ni=1 ⊆ O. Then for any x ∈
⋂n
i=1 Oi there exists an ri > 0 such that Bri

(x) ⊆ Oi for each
i = 1, . . . , n. Let r = min(r1, . . . , rn) > 0, then Br(x) ⊆

⋂n
i=1 Oi. Therefore,

⋂n
i=1 Oi ∈ O.

With each of these, we conclude that O is a topology.

In Definition 1.1.2, the notion of convergence is formulated in a topology. In a metric space xn n→∞−→ x if and
only if d(xn, x) n→∞−→ 0.

1.2.1 Sets

Definition 1.2.7. Let (X, d) be a metric space with S ⊆ X.

1. S is closed if Sc is open.

2. The closure of S denoted S̄, is the smallest closed set which contains S. One can formulate this as
S̄ =

⋂
C closed,C⊇S C.

• Equivalently, we can say that for any x ∈ S̄ there exists a sequence (xn)n∈N ⊆ S such that xn → x.

3. The interior of S denoted S̊, is the largest open set contained in S. One can formulate this as S̊ =⋃
O open,O⊆S O.

• Equivalent, for every x ∈ S̊ there exists an r > 0 such that B(x, r) ⊆ S.

Definition 1.2.8. A subset A ⊆ X is dense if Ā = X.

Example 1.2.9. The property of being dense is dependent on extrinsic factors, namely the parent set.

• For Q ⊆ R we have Q̄ = R.

• For Z ⊆ R we have Z̄ = Z.

Proposition 1.2.10. Let A ⊆ X. Then A = Å if and only if A is open in (X, d).

Proof. (⇒) If A = Å then A is open as Å is open.
(⇐) If A is open then

Å = A ∪
⋃

V open,V⊆A

V

which implies that A ⊆ Å. Therefore, as Å ⊆ A it follows that A = Å.

Proposition 1.2.11. Let A ⊆ X. Then A = Ā if and only if A is closed in (X, d).
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Proof. (⇒) If A = Ā then A is closed as Ā is closed.
(⇐) If A is closed then

Ā = A ∩
⋂

F closed,A⊆F

F

which implies that Ā ⊆ A and hence A = Ā.

Definition 1.2.12. A subset S ⊆ X is bounded if there exists an x ∈ X and r > 0 such that S ⊆ B(x, r).

1.2.2 Continuity

Let (X, d) and (Y, d′) be metric spaces and let f : X → Y .

Proposition 1.2.13. For x0 ∈ X the following are equivalent.

1. For all ϵ > 0 there exists a δ > 0 such that d(x0, y) < δ implies that

d′(f(x0), f(y)) < ϵ.

2. If (xn)n∈N ⊆ X converges to x0 then f(xn) → f(x0).

Proof. (1) ⇒ (2). Let (xn)n∈N be such that xn → x0. Given an ϵ > 0 let δ > 0 be such that d(x0, y) < δ implies
d′(f(x0), f(y)) < ϵ. There exists an N ∈ N such that d(xn, x0) < δ for n ≥ N . Hence, d′(f(x0), f(xn)) < ϵ for
n ≥ N . Therefore, f(xn) → f(x0).
(2) ⇒ (1). Suppose that for ϵ > 0 no δ > 0 exists such that d(x0, y) < δ implies d′(f(x0), f(y)) < ϵ. Then for
each n ∈ N there exists an xn ∈ X such that d(x0, xn) < 1

n and d′(f(x0), f(xn)) ≥ ϵ. In particular, (xn)n∈N is
a sequence converging to x0, and so by assumption f(xn) → f(x0). However, this contradicts the construction
of the sequence.

Remark 1.2.14. If either of the conditions of Proposition 1.2.13 hold, then f is said to be continuous at x0.

Proposition 1.2.15. The following are equivalent.

1. For any open set O ⊆ Y , the set f−1(O) is open in X.

2. f is continuous at any x0 ∈ X.

Proof. (1) ⇒ (2). For x0 ∈ X, given an ϵ > 0 let O = Bϵ(f(x0)). Then the set f−1(O) is open and such
that x ∈ f−1(O). Hence, there exists a δ > 0 such that Bδ(x) ⊆ f−1(O). In particular, this means that if
d(x0, y) < δ then d′(f(x0), f(y)) < ϵ. Therefore, we conclude that f is continuous at x0 ∈ X by statement 1 of
Proposition 1.2.13.
(2) ⇒ (1). Consider x0 ∈ f−1(O). Since f(x0) ∈ O and O is open, there exists an ϵ > 0 such that Bϵ(f(x0)) ⊆
O. As f is continuous at x0, there exists a δ > 0 such that f(Bδ(x0)) ⊆ Bϵ(f(x0)) ⊆ O, statement 1 of
Proposition 1.2.13. Therefore, Bδ(x0) ⊆ f−1(O) which means that f−1(O) is open.

Remark 1.2.16. If either of the conditions of Proposition 1.2.15 hold, then f is said to be continuous on X.

Proposition 1.2.13 provides a local viewpoint of continuity, whilst Proposition 1.2.15 global viewpoint.

Definition 1.2.17. A map f is uniformly continuous on X if for any ϵ > 0 there exists a δ > 0 such that for
any (x, y) ∈ X ×X with d(x, y) < δ we have that d′(f(x), f(y)) < ϵ.
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Example 1.2.18.

1. Consider f : [1,∞) → R given by f(x) = x2. Then for any δ > 0 we have

|f(x) − f(x+ δ)| =
∣∣(x+ δ)2 − x2∣∣ =

∣∣2xδ + δ2∣∣ .
As the right-hand side tends to infinity as x → ∞, the function f is not uniformly continuous.

2. Consider f : [1,∞) → R given by f(x) = log(x). By the fundamental theorem of calculus we know that

|f(x) − f(y)| =
∣∣∣∣∫ y

x

1
t

dt
∣∣∣∣ ≤ |x− y|.

Therefore, f is uniformly continuous as given any ϵ > 0 we have that

|f(x) − f(y)| < ϵ

for any x, y ∈ [1,∞) satisfying |x− y| < ϵ.

1.2.3 Completeness

Definition 1.2.19. A sequence (xn)n∈N ⊆ X is convergent if there exists an x ∈ X such that d(xn, x) n→∞−→ 0.

Definition 1.2.20. A sequence (xn)n∈N ⊆ X is a Cauchy sequence if for any ϵ > 0 there exists an N ∈ N
such that for n,m > N we have d(xn, xm) < ϵ.

Remark 1.2.21. By the triangle inequality, a convergent sequence is a Cauchy sequence.

Definition 1.2.22. A metric space (X, d) is complete if Cauchy sequences in X are convergent with respect
to the metric d.

7



Example 1.2.23.

1. The set Q with d(x, y) = |x − y| is not complete as there exists a sequence (rn)n∈N ⊆ Q such that∣∣rn −
√

2
∣∣ → 0, but

√
2 ̸∈ Q.

2. The set R with d(x, y) = |x − y| is complete. Indeed, let (xn)n∈N ⊆ R be a Cauchy sequence. Then
there exists an N ∈ N such that

|xN − xm| ≤ 1

for m ≥ N . Therefore,
|xn| ≤ C := max (|x1|, . . . , |xN−1|, |xN | + 1)

for every n ∈ N, which means that (xn)n∈N is bounded. Hence, the sequences (yn)n∈N given by
yn = infm≥n(xm) and (zn)n∈N given by zn = supm≥n(xm) are well-defined. In particular, these
sequences are convergent as they are monotonic and bounded. Let yn → y and zn → z. Then for ϵ > 0
there exists an N1 ∈ N such that

|zn − z| + |yn − y| ≤ ϵ

3
for n ≥ N1. Furthermore, there exists an N2 ∈ N such that

|xn − xm| ≤ ϵ

3 (1.2.1)
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for m ≥ n ≥ N2. Taking the supremum of (1.2.1) we deduce that |xn − zn| ≤ ϵ
3 for n ≥ N2. Similarly,

taking the infimum of (1.2.1) we deduce that |xn−yn| ≤ ϵ
3 for n ≥ N2. Therefore, for n ≥ max(N1, N2)

we deduce that

|z − y| ≤ |z − zn| + |zn − xn| + |xn − yn| + |yn − y|

≤ ϵ

3 + ϵ

3 + ϵ

3
= ϵ.

Therefore, y = z =: x which implies xn → x, and so R with d(x, y) = |x− y| is complete.

Theorem 1.2.24. If (X, d) is a metric space then there exists a metric space (Y, d′) such that

1. Y is complete,

2. there is an injection i : X → Y , and

3. d(x, y) = d′(i(x), i(y)).

Theorem 1.2.25 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space. Let f : X → X
be a contraction, that is there exists a κ ∈ (0, 1) such that d(f(x), f(y)) ≤ κd(x, y) for any x, y ∈ X. Then
f has a unique fixed point, that is there exists a unique x0 ∈ X such that f(x0) = x0.

Proof. Let x1 ∈ X and consider the sequence (xn)n∈N ⊆ X given by xn = f(xn−1) for n ≥ 2. Then

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ κd(xn−1, xn).

Proceeding by induction we deduce that d(xn, xn+1) ≤ κn−1d(x1, x2). Let N ∈ N and consider l > k > N .
Then by the triangle inequality, it follows that

d(xl, xk) ≤ d(xl, xl−1) + d(xl−1, xl−2) + · · · + d(xk+1, xk)
≤
(
κl−2 + κl−3 + · · · + κk−1) d(x1, x2)

≤
(
κl−2 + κl−3 + . . .

)
d(x1, x2)

= κl−2

1 − κ
d(x1, x2)

≤ κN

1 − κ
d(x1, x2)

N→∞−→ 0.

Therefore, the sequence is Cauchy, and hence convergent to some x0 ∈ X as (X, d) is a complete metric space.
The contractive property of f implies it is continuous. As xn → x0 it follows by the continuity of f that
f(xn) → f(x0) and so by the uniqueness of limits x0 = f(x0). Now suppose that there exists another fixed point
y ∈ X of f . Then

d(f(x0), f(y)) = d(x0, y)

which contradicts the contracting property of f . Therefore, the fixed point x0 is unique.
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Figure 1: An illustration of the conditions required for Theorem 1.2.25

Example 1.2.26.

1. Translations do not satisfy the conditions of Theorem 1.2.25 as κ = 1. For example, f(x) = x + 1 is
such that |f(x) − f(y)| = |x− y|, indeed f(x) = x has no solutions.

2. For a ∈ (0, 1), consider the metric space (X, d) where X = R \
{

b
1−a

}
and d(x, y) = |x − y|. Then

h : X → X given by h(x) = ax+ b is well-defined and a contraction as

|h(x) − h(y)| = a|x− y|.

However, h does not have a fixed point in X. Indeed, (X, d) is not a complete metric space, so one
cannot apply Theorem 1.2.25.

1.2.4 Compactness

Theorem 1.2.27 (Bolzano-Weierstrass). A bounded sequence of real numbers has a convergent subsequence.
That is, if (xn)n∈N ⊆ R is such that |xn| ≤ R for some R > 0, then there exists an extraction φ and y ∈ R
such that xφ(n) → y.

Remark 1.2.28. An extraction φ : N → N is a strictly increasing function and can be used to index a
subsequence.

For a metric space (X, d) and S ⊆ X, the Bolzano-Weierstrass property says that for all sequences (xn)n∈N ⊆ S
there exists a y ∈ S and extraction φ such that xφ(n) → y as n → ∞.

Definition 1.2.29. A collection of sets (Oi)i∈I is an open cover of S ⊆ X if each Oi is open and S ⊆
⋃
i∈I Oi.

Definition 1.2.30. A sub-cover of an open cover (Oi)i∈I of S is a subset J ⊆ I such that S ⊆
⋃
i∈J Oi.

The finite open cover property says that for any open cover, one can extract a finite sub-cover.

Example 1.2.31. Let X = R and S = Z. Then Z does not satisfy the finite open cover property. Choose
Oi =

(
i− 1

10 , i+ 1
10
)

for i ∈ N. Then (Oi)i∈N is an open cover of Z with no finite sub-cover.
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Theorem 1.2.32. The Bolzano-Weierstrass property and the finite open cover property are equivalent.

Definition 1.2.33. If either the Bolzano-Weierstrass property or the finite cover property holds, then S is called
compact.

Example 1.2.34.

1. [a, b] ⊆ R is compact. By Theorem 1.2.27, any sequence in [a, b] has a convergent subsequence. In
particular, the limit of this subsequence is in [a, b] as [a, b] is closed.

2. (a, b) ⊆ R is not compact. The cover
((
a+ b−a

n , b− b−a
n

))
n∈N has no finite subcover.

3. Any finite subset S ⊆ R is compact. For any open cover (Oi)i∈N one can extract a finite subcover
(Oik )k∈{1,...,|S|} where Oik is such that the kth element of S is in Oik .

4. Q ⊆ R is not compact. A sequence in Q converging to
√

2 has no convergent subsequence.

Lemma 1.2.35. If S ⊆ X is compact then it is closed.

Proof. Note that S ⊆ X is closed if and only if S = S̄. By construction S ⊆ S̄ and so it suffices to show that
S̄ ⊆ S. Choose x ∈ S̄, then there exists a sequence (xn)n∈N ⊆ S such that xn → x. By the Bolzano-Weierstrass
property, there exists an extraction φ and y ∈ S such that xφ(n) → y. However, it must also be the case that
xφ(n) → x, as any subsequence of a convergent sequence converges to the same limit. Therefore, x = y ∈ S,
which implies that S̄ ⊆ S which completes the proof.

Lemma 1.2.36. If S ⊆ X is compact then it is bounded.

Proof. Suppose that S were not bounded. Then one can construct a sequence (xn)n∈N such that d(x0, xn) ≥ n
for n ∈ N and some fixed x0 ∈ S. The sequence (xn)n∈N has no convergent subsequence as

d (x, xn) ≥ |d (x0, xn) − d(x, x0)| n→∞−→ ∞

for any x ∈ S. Therefore, S does not satisfy the Bolzano-Weierstrass property, which contradicts S being
compact.

Theorem 1.2.37 (Heine-Borel). In the metric space (Rn, d) where d(x, y) =
∑n
i=1 |xi − yi|, the compact

sets are precisely the closed and bounded sets.

Remark 1.2.38.

1. As all norms are equivalent in finite dimensions, the conclusions of Theorem 1.2.37 hold in any finite-
dimensional normed vector spaces.

2. From Lemma 1.2.35 and Lemma 1.2.36, we see that being closed and bounded is a necessary condition
for a set to be compact. Theorem 1.2.37 then asserts that in finite-dimensional spaces, being closed and
bounded is a sufficient condition for a set to be compact.

3. Compact sets are the same for equivalent metrics.

11



Theorem 1.2.39. If S ⊆ X is compact, then the following hold.

1. Any continuous function f : S → R achieves its supremum.

2. Any continuous function f : S → R is uniformly continuous.

Proof.

1. Let M = supx∈S f(x) where f : S → R is a continuous function.

(a) If M = ∞, then there exists a sequence (xn)n∈N ⊆ S such that f(xn) → ∞. However, by compact-
ness, we know there exists an extraction φ and y ∈ S such that xφ(n) → y. Therefore, by continuity
we have that f(xφ(n)) → f(y) ∈ R which contradicts f(xn) → ∞. Hence, we must have M < ∞.

(b) If M < ∞, then choose (xn)n∈N ⊆ S such that f(xn) → M . Then by compactness there exists an
extraction φ and y ∈ S such that xφ(n) → y. By continuity, we have that f(xφ(n)) → f(y) and so
by the uniqueness of limits we conclude that f(y) = M .

2. Let f : S → R be a continuous function. Suppose f is not uniformly continuous. Then, there exists
an ϵ > 0 such that for δ = 1

n , for any n ∈ N, there exists xn, yn ∈ S with d(xn, yn) < 1
n such that

|f(xn) − f(yn)| ≥ ϵ.

• By compactness, there exists an extraction φ and x̃ ∈ S such that xφ(n) → x̃. Similarly, there exists
an extraction ψ of

(
xφ(n)

)
n∈N and ỹ ∈ S such that yψ(n) → ỹ.

• Given any ϵ̃ > 0, it follows for N sufficiently large with n,m ≥ N that

d (x̃, ỹ) ≤ d
(
x̃, xψ(n)

)
+ d

(
ỹ, xψ(n)

)
≤ d

(
x̃, xψ(n)

)
+ d

(
xψ(n), yψ(m)

)
+ d

(
yψ(m), ỹ

)
≤ ϵ̃

3 + ϵ̃

3 + ϵ̃

3
= ϵ̃.

Therefore, d (x̃, ỹ) = 0 which implies that x̃ = ỹ. On the other hand, by the continuity of f we have
that f(xψ(n)) → f(x̃) and f(yψ(n)) → f(ỹ) which implies that |f(x̃) − f(ỹ)| ≥ ϵ, which gives rise to
a contradiction. Therefore, f is uniformly continuous.

Exercise 1.2.40. Provide an alternative proof of statement 1 of Theorem 1.2.39 by using open covers.

Example 1.2.41. The compactness condition of Theorem 1.2.39 is essential. Consider the space C((0, 1),R)
and the function f(x) = sin

( 1
x

)
∈ C((0, 1),R). The function f(x) is bounded and continuous on (0, 1) but it is

not uniformly continuous. Similarly, the continuity condition of statement 1 is essential. Consider f : [0, 1] → R
given by

f(x) =


2x x ∈

[
0, 1

2
)

0 x = 1
2

2 − 2x x ∈
( 1

2 , 1
]
.

Then supx∈[0,1] f(x) = 1 but f(x) ̸= 1 for any x ∈ [0, 1].

1.3 Solution to Exercises
Exercise 1.2.40
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Solution. Let ϵ > 0. Then for each x ∈ S there exists a δx > 0 such that |x− y| < δx implies |f(x) − f(y)| < ϵ
2 .

Note that
(
B δx

2
(x)
)
x∈S

is an open cover for S. Therefore, by the compactness of S, we can extract a finite

subcover, say
(
B δxi

2
(xi)

)
i=1,...,n

. Let δ = mini=1,...,n

(
δxi

2

)
. Then for x ∈ S there exists an xi such that

|x− xi| < δ < δxi . Therefore, for y such that |y − x| < δ we have

|y − xi| ≤ |y − x| + |x− xi| < 2δ < δxi ,

and so
|f(x) − f(y)| ≤ |f(x) − f(xi)| + |f(xi) − f(y)| < ϵ

2 + ϵ

2 = ϵ.

Hence, f is uniformly continuous.
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2 The Lebesgue Measure
2.1 Measure Spaces
Let X be a set.

Definition 2.1.1. A σ-algebra is a collection of subsets A ⊆ P(X), that satisfies the following.

1. X ∈ A.

2. If S ∈ A, then Ac ∈ A.

3. If (Si)i∈N ⊆ A then
⋃
i∈N Si ∈ A.

Remark 2.1.2. By combining statements 2 and 3 in Definition 2.1.1, it follows that a σ-algebra is closed under
countable intersections.

Definition 2.1.3. A function µ : A → [0,∞] is a measure if it satisfies the following.

1. µ(∅) = 0.

2. If (Si)i∈N ⊆ A are such that Si ∩ Sj = ∅ for i ̸= j then

µ

(⋃
i∈N

Si

)
=
∑
i∈N

µ(Si).

Remark 2.1.4. Property 2 of Definition 2.1.3 is referred to as countable additivity, and can be thought of as
a continuity property.

1. The countable additivity property implies that if (Sj)j∈N ⊆ A is an increasing sequence of sets then

lim
j→∞

µ(Sj) → µ

⋃
j∈N

Sj

 .

This can be proved by applying countable additivity to the sets Ej = Sj+1 \ Sj .

2. A similar result holds for a decreasing sequence of sets. Namely, if (Sj)j∈N ⊆ A is a decreasing sequence
of sets and µ(S0) < ∞, then

lim
j→∞

µ(Sj) → µ

⋂
j∈N

Sj

 .

This is shown by using statement 1 on the complements of the Sj .

2.2 The Lebesgue Measure on Rd

Theorem 2.2.1. There exists a σ-algebra A ⊆ P
(
Rd
)
, and a measure µ such that the following hold.

1. Open sets of Rd, under the canonical metric, are in A.

2. The rectangle R =
∏d
i=1(ai, bi) has measure µ(R) =

∏d
i=1(bi − ai).

3. If A ∈ A with µ(A) = 0 and B ⊆ A then B ∈ A with µ(B) = 0.
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Remark 2.2.2.

• The σ-algebra and measure of Theorem 2.2.1 are known as the Lebesgue σ-algebra and Lebesgue measure
respectively.

• The countable intersection of open sets gives rise to many interesting sets, and so by countable additivity
our σ-algebra captures a rich collection of sets.

• Statement 2 of Theorem 2.2.1 tells us that µ extends our intuition on the size of sets in Rd.

• Statement 3 of Theorem 2.2.1 emphasises that the measure space is complete.

• Sets in the Lebesgue σ-algebra are called measurable sets.

• The Lebesgue measure is invariant under translations, that is for x ∈ Rd and A a measurable set we have

µ(A+ x) = µ(A).

• For λ ∈ R and A a measurable set, the Lebesgue measure has the following scaling property,

µ(λA) = λdµ(A).

Example 2.2.3. With the measure and σ-algebra of Theorem 2.2.1 we can understand why the requirement
that µ(S0) < ∞ in statement 2 of Remark 2.1.4 is necessary. Indeed, suppose Sj = (j,∞) for j ∈ N. Then
the sequence of sets (Sj)j∈N is decreasing, however

lim
j→∞

µ(Sj) = ∞,

whereas,

µ

⋂
j∈N

Sj

 = µ(∅) = 0.

Proposition 2.2.4. A hyperplane in Rd has zero Lebesgue measure.

Proof. A hyperplane in Rd is of the form

Ab =
{
x ∈ Rd : a1x1 + · · · + adxd = b

}
,

where a1, . . . , ad, b ∈ R are fixed. Due to the translational invariance of the Lebesgue measure, we can consider

A := A0 =
{
x ∈ Rd : a1x1 + · · · + adxd = 0

}
.

We will assume without loss of generality that ad ̸= 0. We can isolate the graph of xd by considering the
continuous function

f(x1, . . . , xd−1) = −(a1x1 + · · · + ad−1xd−1)
ad

.

Consider the compact set Kj =
∏d−1
i=1 [−j, j] ⊆ Rd−1. Then as f is continuous, it is uniformly continuous on

Kj . Therefore, for a given ϵ > 0 we can partition Kj such that in each partition the variation of f is at most
ϵ

2j+d−1jd−1 . Then
µ(f(Kj)) = ϵ

2j+d−1jd−1µ(Kj) = ϵ

2j+d−1jd−1 (2j)d−1 = ϵ

2j .

As A ⊆
⋃∞
j=1 f(Kj) it follows that

µ(A) ≤
∞∑
j=1

ϵ

2j = ϵ.
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Therefore, µ(A) = 0 as ϵ > 0 was arbitrary.

Definition 2.2.5. A function f : Rd → R is measurable if f−1((−∞, a)) is a measurable set for all a ∈ R.

Proposition 2.2.6.

1. The composition of measurable functions is measurable.

2. If (fn)n∈N is a sequence of measurable functions such that fn(x) → f(x) for all x, then f is mea-
surable. In other words, the function limn→∞(fn) is measurable. Moreover, supn∈N(fn), infn∈N(fn),
lim supn→∞(fn) and lim infn→∞(fn) are all measurable.

3. Sums and products of measurable functions are measurable.

4. Continuous functions are measurable.

Definition 2.2.7. A property is true almost everywhere or for almost any x if it is true on the complement of
a zero-measure set.

2.3 The Lebesgue Integral
2.3.1 The Integral of Simple Functions

Definition 2.3.1. A simple function is of the form

f =
N∑
i=1

ci1Ai

where for each i = 1, . . . , N the ci ∈ R and the Ai is a measurable set of Rd of finite measure.

The integral of a simple function is ∫
Rd

f(x) dx =
N∑
i=1

ciµ(Ai).

Similarly, for a measurable set S the integral of a simple function on S is∫
S

f(x) dx =
∫
Rd

f(x)1S(x) dx.

Henceforth, we will often use the abbreviated notation∫
Rd

f(x) dx =
∫
f dx

2.3.2 The Integral of Non-Negative Functions

Let f : Rd → [0,∞] be a non-negative function on Rd. The integral of f is taken to be∫
f dx = sup

({∫
sdx : 0 ≤ s ≤ f, s a simple function

})
.

Proposition 2.3.2. Let f be a non-negative function on Rd.

1. If
∫
f dx < ∞ then f < ∞ almost everywhere.
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2. If
∫
f dx = 0 then f = 0 almost everywhere.

Example 2.3.3. The converse of statement 1 of Proposition 2.3.2 does not hold. Consider f(x) ≡ 1. Then
f < ∞ almost everywhere but

∫
f dx = ∞.

2.3.3 The Integral of Real-Valued Functions

A measurable function f : Rd → (−∞,∞) admits the representation f = f+ − f− where

• f+ = max(0, f), and

• f− = max(0,−f).

We say that f is integrable, written f ∈ L1 (Rd), if
∫
f+ < ∞ and

∫
f− < ∞. The integral of an integrable

function is taken to be ∫
f dx =

∫
f+ dx−

∫
f− dx.

Proposition 2.3.4.

1. For α, β ∈ R and f, g ∈ L1 (Rd) we have that∫
αf + βf dx = α

∫
f dx+ β

∫
g dx.

2. For f ∈ L1 (Rd) we have that ∣∣∣∣∫ f dx
∣∣∣∣ ≤

∫
|f | dx.

3. A function f ∈ L1 (Rd) is zero almost everywhere if and only if
∫
S
f dx = 0 for all measurable sets S.

Proposition 2.3.5. Let f, g : S → R be integrable measurable functions that satisfy f ≤ g almost everywhere
in S. Then, ∫

S

f ≤
∫
S

g.

Proof. Suppose that f and g are non-negative measurable functions. Then for any simple function s such that
0 ≤ s ≤ f , there exists an equal almost everywhere simple function s̃ such that 0 ≤ s̃ ≤ g and

∫
s =

∫
s̃.

Therefore, {∫
sdx : 0 ≤ s ≤ f, s a simple function

}
⊆
{∫

sdx : 0 ≤ s ≤ g, s a simple function
}

which implies that

sup
({∫

sdx : 0 ≤ s ≤ f, s a simple function
})

≤ sup
({∫

s dx : 0 ≤ s ≤ g, s a simple function
})

which then implies that
∫
f ≤

∫
g. For arbitrary integrable measurable functions f and g we can write f = f+−f−

and g = g+ − g− where f+, f−, g+, g− are non-negative. As f ≤ g almost everywhere it follows that f+ ≤ g+
almost everywhere and g− ≤ f− almost everywhere. Hence,∫

f =
∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.
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In light of Proposition 2.3.4, a reasonable suggestion for a distance on L1 is d(f, g) =
∫

|f − g| dx. However, this
is not a metric as if f, g ∈ L1 are such that d(f, g) = 0 then we can only say that f(x) = g(x) for almost all x.

• For continuous functions f and g such that d(f, g) = 0 it is possible to conclude that f(x) = g(x) for all
x.

• However, for f ≡ 0 and g = 1{0} we have d(f, g) = 0 but f(0) ̸= g(0).

Figure 2: An illustration as to why continuous functions equal almost everywhere must be equal exactly.

To overcome this issue, we use equivalence classes. For f ∈ L1 let

[f ] =
{
g ∈ L1 : f(x) = g(x) almost everywhere

}
.

Consequently, d(f, g) = 0 if and only if [f ] = [g]. Abusing notation we will still speak of "functions" rather than
"equivalence classes".

2.3.4 Connection to the Riemann Integral

Throughout let I = [a, b] where −∞ < a < b < ∞.

Definition 2.3.6. A set of points P = (xi)Ni=0, for N ∈ N, is a partition of I if

a = x0 < x1 < · · · < xN−1 < xN = b.

Definition 2.3.7. A function F : I → R is a step function if there exists a partition P such that

F (x) =
N−1∑
i=0

ai1[xi,xi+1)

where each ai ∈ R.

Definition 2.3.8. For f : I → R a bounded function and P = (xi)Ni=0 a partition of I let

• the upper sum of f with respect to P be

UP,I(f) =
N−1∑
i=0

(
sup

t∈[xi,xi+1)
f(t)

)
(xi+1 − xi),
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• and the lower sum of f with respect to P be

LP,I(f) =
N−1∑
i=0

(
inf

t∈[xi,xi+1)
f(t)

)
(xi+1 − xi).

Definition 2.3.9. A bounded function f : I → R is Riemann integrable if for every ϵ > 0 there exists a
partition P of I such that

|UP,I(f) − LP,I(f)| < ϵ.

Proposition 2.3.10. If f is Riemann integrable then

inf
P
UP,I(f) = sup

P
LP,I(f).

We denote the Riemann integral on I of a Riemann integrable function f as∫ b

a

f = inf
P
UP,I(f) = sup

P
LP,I(f).

Theorem 2.3.11. Every Riemann integrable function on I is Lebesgue integrable and∫ b

a

f(x) dx =
∫
I

f(x) dx.

Remark 2.3.12. All the facts and techniques for Riemann integration extend to Lebesgue integrals of Riemann
integrable functions.

With this equivalence, we can characterise the set of Riemann integrable functions using measure theory.

Theorem 2.3.13. Let f be bounded on I. Then f is Riemann integrable on I if and only if it is continuous
almost everywhere.

One can readily extend Riemann integration to unbounded domains. In this case, a function is Riemann integrable
if the upper and lower sums are absolutely convergent and coincide. Similarly, an unbounded function on a finite
or infinite domain is Riemann integrable if the upper and lower sums are absolutely convergent and coincide. We
refer to both cases as improper Riemann integration.

Proposition 2.3.14. For a function f , if the improper Riemann integral absolutely converges, then f is also
Lebesgue integrable and the integrals coincide.

2.4 Convergence of Functions and Convergence of Integrals

Example 2.4.1.

1. Let fn = 1[n,n+1] on R. Then
∫
fn = 1 and fn(x) → f(x) = 0 for all x ∈ R. However,

∫
fn ̸→

∫
f .

2. Let fn = n1(0, 1
n ) on R. Then

∫
fn = 1 and fn(x) → f(x) = 0 for all x ∈ R. However,

∫
fn ̸→

∫
f .

Lemma 2.4.2. Let (fn)n∈N be a sequence of functions such that supp(fn) ⊆ K for every n ∈ N with K a
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compact set independent of n ∈ N. Moreover, suppose supx |fn(x) − f(x)| n→∞−→ 0. Then,∫
fn dx n→∞−→

∫
f dx.

Proof. As K is compact we know that µ(K) < ∞. Therefore,∣∣∣∣∫ fn dx−
∫
f dx

∣∣∣∣ =
∣∣∣∣∫ fn − f dx

∣∣∣∣
≤
∫

|fn − f | dx

≤
∫
K

sup
y

|fn(y) − f(y)| dx

= µ(K) sup
y

|fn(y) − f(y)|

n→∞−→ 0.

Therefore, ∫
fn dx n→∞−→

∫
f dx.

Figure 3: For the supremum between a sequence of functions and its limit to converge it must be the case that
the functions lie within an ever-decreasing bounded region of the limit function.

Example 2.4.3. Consider fn = 1
n1[0,n]. Even though supx |fn(x)| = 1

n → 0 as n → ∞, there does not exist
a compact set K such that supp(fn) ⊆ K for every n ∈ N. Thus, Lemma 2.4.2 cannot be applied, indeed∫
fn dx = 1 ̸→ 0.

Theorem 2.4.4 (Monotone Convergence Theorem). Let (fn)n∈N be a sequence of non-negative measurable
functions such that fn+1(x) ≥ fn(x) for almost all x.

1. Then fn(x) → f(x) = supn∈N fn(x) almost everywhere.

2. Furthermore,
∫
fn →

∫
f . In particular, if the right-hand side is finite, then we also have convergence
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in L1. That is, ∫
|fn − f | n→∞−→ 0.

Example 2.4.5. The sequence of functions (fn)n∈N must be non-decreasing to apply Theorem 2.4.4. Indeed,
let fn = 1

n1[0,n], then fn(x) → 0 but
∫
fn ̸→

∫
f .

Remark 2.4.6. Note that the monotonicity condition is only required to hold almost everywhere. The zero
measure sets on which monotonicity may not hold can depend on n. What’s more, the zero-measure set on
which monotonicity does not can depend on the function fn since the countable union of zero-measure sets is
still a zero-measure set.

Figure 4: For a sequence of functions to converge monotonically from below to its limit, the graph of a function
in the sequence must lie between the limiting function and the graph of the previous function in the sequence.

Theorem 2.4.7 (Dominated Convergence Theorem). Let (fn)n∈N be a sequence of measurable functions
such that the following hold.

1. fn(x) → f(x) for almost all x.

2. There exists a g ∈ L1 such that |fn(x)| ≤ g(x) for almost any x.

Then, ∫
fn →

∫
f.

Example 2.4.8. Recall Example 2.4.1 where we had pointwise convergence but not the convergence of the
integrals.

1. To apply Theorem 2.4.7 we would need g(x) = supn∈N(fn(x)) = 1[0,∞) to be integrable, which it is not
the case.

2. To apply Theorem 2.4.7 we would need g(x) = supn∈N(fn(x)) to be integrable, however it is bounded
below by n on

[
1

n+1 ,
1
n

]
for every n ∈ N. Consequently,

∫
g ≥

∞∑
n=1

(
1
n

− 1
n+ 1

)
n =

∞∑
n=1

(
1

n(n+ 1)

)
n =

∞∑
n=1

1
n+ 1 = ∞.

Therefore, no g ∈ L1 exists such that |fn(x)| ≤ g(x) for almost any x.
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Theorem 2.4.4 and Theorem 2.4.7 imply convergence in L1 starting from pointwise convergence.

Example 2.4.9. Pick a sequence (xn)n∈N such that the following hold.

1. xn is increasing.

2. xn+1 − xn → 0 as n → ∞.

3. xn → ∞.

For example, xn =
√
n. Let yn ∈ [0, 1) be such that xn − yn ∈ Z, for instance yn = xn − ⌊xn⌋, then let

fn = 1(yn,yn+1). Note that a correction needs to be made when yn+1 < yn. From this we have that∫
fn = yn+1 − yn = xn+1 − xn

n→∞−→ 0,

and so convergence in the L1 sense. However, fn(x) ̸→ 0 for all x as the yn continually traverse the interval
[0, 1).

Proposition 2.4.10. If fn → f in L1, then there exists an extraction φ such that fφ(n)(x) → f(x) for almost
all x.

Theorem 2.4.11 (Fatou’s Lemma). Let (fn)n∈N be a sequence of non-negative measurable functions, then

lim inf
n→∞

(∫
fn

)
≥
∫

lim inf
n→∞

(fn).

Example 2.4.12. The sequence of functions (fn)n∈N must be non-negative to apply Theorem 2.4.11. Indeed,
consider fn(x) = 1[0,1− 1

n ](x) − (n− 1)1(1− 1
n ,1]. Then,

lim inf
n→∞

(∫
fn

)
= lim inf

n→∞
(0)

= 0
̸≥ 1

=
∫

1[0,1)

=
∫

lim inf
n→∞

(fn).
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3 Banach Spaces
3.1 Norms
Throughout let E be a vector space over R or C. For simplicity, we will assume it to be R.

Definition 3.1.1. A norm ∥ · ∥ : E → [0,∞) satisfies the following.

1. ∥x∥ = 0 if and only if x = 0.

2. ∥λx∥ = |λ|∥x∥ for all x ∈ E and λ ∈ R.

3. ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ E.

Example 3.1.2. The following are examples of norms on vector spaces.

1. On R, the map | · | is a norm.

2. On Rd the following are norms.

(a) ∥x∥1 =
∑d
i=1 |xi|.

(b) ∥x∥∞ = maxi=1,...,d |xi|.

Definition 3.1.3. A vector space endowed with a norm is called a normed vector space.

Remark 3.1.4. For a norm ∥ · ∥, the application d(x, y) = ∥x − y∥ is a metric, referred to as the induced
metric by the norm.

Definition 3.1.5. A Banach space is a normed vector space that is complete with respect to the induced
metric.

Definition 3.1.6. Norms ∥ · ∥1 and ∥ · ∥2, are equivalent if there exists a constant C > 0 such that

1
C

∥ · ∥1 ≤ ∥ · ∥2 ≤ C∥ · ∥1.

Remark 3.1.7. From a norm, we get a metric, from which we define a topology, and thus establish a notion
of convergence. Equivalent norms induce the same topology and notion of convergence.

Theorem 3.1.8. In finite dimensions, norms are equivalent. In other words, if dim(E) < ∞ then any norms
on E are equivalent in the sense of Definition 3.1.6.

Proof. Let (ei)1≤i≤d be a basis of E. Consider the norm∥∥∥∥∥
d∑
i=1

xiei

∥∥∥∥∥
2

=
(

d∑
i=1

|xi|2
) 1

2

.
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Then consider another norm ∥ · ∥ on E. On the one hand,

∥x∥ =

∥∥∥∥∥
d∑
i=1

xiei

∥∥∥∥∥
T.I
≤

d∑
i=1

∥xiei∥

Homo.=
d∑
i=1

|xi|∥ei∥

≤ d max
1≤i≤d

(|xi|) max
1≤i≤d

(∥ei∥)

≤
(
d max

1≤i≤d
(∥ei∥)

)
∥x∥2

≤ M∥x∥2. (3.1.1)

On the other hand, consider the set
S = {x ∈ E : ∥x∥2 = 1}.

Then S is clearly bounded, and it is closed as ∥ ·∥2 is a continuous function. Therefore, S is compact by Theorem
1.2.37. Note that the map x 7→ ∥x∥ is continuous on (E, ∥·∥2) as from (3.1.1) it follows that the map is bounded
with respect to ∥ · ∥2. Therefore, this map reaches its infimum on S, say m. Observe that m ̸= 0 as otherwise
there would exist an x ∈ S such that ∥x∥ = 0 which implies x = 0, however, 0 ̸∈ S. Hence, ∥x∥ ≥ m > 0 for
∥x∥2 = 1. Applying this to y = x

∥x∥2
we deduce that

∥x∥ ≥ m∥x∥2

for all x ∈ E. Combining this with (3.1.1) we conclude that

m∥x∥2 ≤ ∥x∥ ≤ M∥x∥2

for all x ∈ E. Thus the norms ∥ · ∥ and ∥ · ∥2 are equivalent.

Example 3.1.9. In infinite dimensions, metrics no longer ought to be equivalent. Let X = C([0, 1],R). Then
the following are metrics.

• d1(f, g) = supx∈[0,1] (|f(x) − g(x)|).

• d2(f, g) =
∫ 1

0 |f(x) − g(x)| dx.

These are not equivalent, as for fn(x) = xn and g ≡ 0 we have

• d1(fn, 0) = 1, but

• d2(fn, 0) = 1
n .

With d1 the space X is complete but with d2 the space X is not complete. Figure 5 is an example of a sequence
of functions in X that converge in d2 to something not in X.
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Figure 5: An example of how metrics in infinite dimensions need not be equivalent.

3.2 Spaces of Continuous Functions
We will consider functions on Rd or on open sets Ω ⊆ Rd.

Definition 3.2.1.

• The set of bounded functions Ω → R is denoted B(Ω,R).

• The set of continuous and bounded functions Ω → R is denoted C0(Ω,R).

Remark 3.2.2.

• As we will only work with real functions, we will simply denote these spaces as B(Ω) and C0(Ω) respectively.
Moreover, when the context is clear these function spaces may be denoted by B and C0 respectively.
Sometimes C0 is also written as C.

• The function spaces B and C are vector spaces, usually equipped with the uniform norm.

Definition 3.2.3. The uniform norm is the map

∥f∥∞ = sup
x∈Ω

(|f(x)|)

on B(Ω) and C(Ω).

Definition 3.2.4. If fn
n→∞−→ f with respect to ∥ · ∥∞, then we say the sequence (fn)n∈N converges to f

uniformly.

Theorem 3.2.5. The uniform limit of continuous functions is continuous.

Proof. Given ϵ > 0 there exists an N ∈ N such that for all n ≥ N we have

∥fn − f∥∞ <
ϵ

3 .

For fixed x, as fN is continuous, there exists a δ > 0 such that if |x− y| < δ then

|fN (x) − fN (y)| < ϵ

3 .
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Therefore, for |x− y| < δ we have that

|f(x) − f(y)| ≤ |f(x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − f(y)|

<
ϵ

3 + ϵ

3 + ϵ

3
= ϵ,

where the first and the third differences are bounded by the uniform convergence, and the second difference is
bounded by the continuity of fN . This shows that f is continuous at x.

Theorem 3.2.6. With the uniform norm, the spaces B(Ω) and C(Ω) are Banach spaces.

Proof. We will only carry out the proof for C(Ω). Let (fn)n∈N ⊆ C(Ω) be a Cauchy sequence.
Step 1. Find a candidate for the limit.
For any x ∈ Ω consider the sequence (fn(x))n∈N ⊆ R. As

|fn(x) − fm(x)| ≤ ∥fn − fm∥∞
n→∞−→ 0

we deduce that the sequence (fn(x))n∈N ⊆ R is a Cauchy sequence and hence convergent as R is complete. Let
f(x) := limn→∞ f(x). Note that f ∈ B(Ω).
Step 2. Show that (fn)n∈N converges to f uniformly.
Choose ϵ > 0. Then there exists an N ∈ N such that for n,m > N we have that ∥fn − fm∥ < ϵ. Therefore, for
all x ∈ Ω we have

|fn(x) − fm(x)| < ϵ.

Sending m → ∞ we deduce that |fn(x) − f(x)| < ϵ, which implies that

∥fn − f∥∞ < ϵ.

Step 3. Show that f ∈ C(Ω).
Using step 2 we can apply Theorem 3.2.5 to conclude.

3.3 Spaces of Differentiable Functions
For α = (α1, . . . , αd) ∈ Nd0 let

• |α| = α1 + · · · + αd, and

• ∂αx = ∂α1
x1
. . . ∂αd

xd
.

Definition 3.3.1. The function space Ck(Ω) contains functions on Ω which are k times differentiable with
continuous derivatives ∂αx f for all |α| ≤ k.

The space Ck(Ω) is a vector space which we endow with the norm

∥f∥Ck = max
|α|≤k

∥∂αx f∥∞ .

With this norm, Ck(Ω) is a normed vector space.

Theorem 3.3.2. The vector space Ck(Ω) with ∥ · ∥Ck is a complete normed vector space, that is a Banach
space.
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Proof. Consider a Cauchy sequence (fn)n∈N ⊆ Ck(Ω).
Step 1. Find a candidate for the limit.
For |α| ≤ k, the sequence (∂αx fn)n∈N is a Cauchy sequence for (C, ∥ · ∥∞). Therefore, by Theorem 3.2.6 there
exists a limit f ∈ C for (fn)n∈N and there exists a limit gα ∈ C for (∂αx fn)n∈N.
Step 2. Show that f ∈ Ck and gα = ∂αx f .

• For the case k = 1 and d = 1. We know that fn(x) → f(x) and ∂xfn(x) → g(x) in ∥ · ∥∞. By the
fundamental theorem of calculus, we have that

fn(x) − fn(y) =
∫ x

y

∂xfn(t) dt.

Recall that the integral of uniformly convergent function converges to the integral of the limit. Hence, as
n → ∞ we get that

f(x) − f(y) =
∫ x

y

g(t) dt.

Applying the fundamental theorem of calculus once again, it follows that f is differentiable with derivative
g.

• For the case k ≥ 2 and d = 1 we proceed by induction and use a similar approach to the previous case for
the inductive step.

• For the case k = 1 and d ≥ 2. The case follows analogously to the first case, where we instead apply the
fundamental theorem of calculus component-wise. That is,

fn(x) − fn(x+ tej) =
∫ t

0
∂jfn(x+ sej) ds

where ej is the canonical jth unit vector.

• For the case k ≥ 2 and d ≥ 2 we proceed by induction.

Step 3. Show that fn converges to f in Ck.
Given ϵ > 0 there exists an N ∈ N such that ∥fn − fm∥Ck ≤ ϵ for n,m ≥ N . This means that

max
|α|≤k

∥∂αx fn − ∂αx fm∥∞ ≤ ϵ.

Letting m → ∞ we deduce that
∥∂αx fn − gα∥∞ ≤ ϵ.

Previously we showed that gα = ∂αnf . Therefore,

∥fn − f∥Ck = max
|α|≤k

∥∂αx fn − ∂αx f∥∞ ≤ ϵ.

Example 3.3.3. Consider functions in C1((−1, 1)). The map

∥f∥ = ∥∂xf∥∞

is not a norm, as it is not definite. For example, ∥1∥ = 0. The map

∥f∥ = ∥∂xf∥∞ + |f(0)|

is a norm. The fundamental theorem of calculus tells us f(x) = f(0) +
∫ x

0 f ′(t) dt. Hence, ∥f∥ = 0 if and
only if f = 0. With this norm the space C1((−1, 1)) is a Banach space.
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3.4 Function Spaces on Compact Sets
In the previous sections, we considered spaces of real-valued functions defined on open sets Ω ⊆ Rd. Here we will
suppose that Ω ⊆ Rd is open and bounded, and then consider spaces of real-valued functions defined on Ω̄.

Theorem 3.4.1. The space B
(
Ω̄
)
, with norm ∥ · ∥∞ is a Banach space.

Proof. Let (fn)n∈N ⊆ B
(
Ω̄
)

be a Cauchy sequence. Observe that there exists an N ∈ N such that for every
m ≥ N we have

∥fN − fm∥∞ < 1.

As fN is a bounded function there is an M > 0 such that |fN (x)| ≤ M for all x ∈ Ω̄. Therefore, for sufficiently
large m we have

|fm(x)| ≤ M + 1 (3.4.1)
for all x ∈ Ω̄. As

|fn(x) − fm(x)| ≤ ∥fn − fm∥∞
n,m→∞−→ 0

the sequence (fn(x))n∈N ⊆ R is a Cauchy sequence, and hence convergent as R is complete. Let f(x) be this
limit. By (3.4.1), we deduce that f(x) ≤ M + 1, as inequalities are preserved under limits. This holds for all
x ∈ Ω̄ thus f ∈ B

(
Ω̄
)
, hence, B

(
Ω̄
)

with the uniform norm is complete.

Theorem 3.4.2. The space Ck
(
Ω̄
)
, for k ∈ N, with norm ∥ · ∥Ck is a Banach space.

Proof. The proof proceeds in the same way as the proof of Theorem 3.3.2, however, need to additionally check
that the candidate limits are continuous up to the boundary of Ω. We check continuity up to the boundary for f ,
with the understanding that the other cases follow similarly. More specifically, consider x ∈ ∂Ω and a sequence
(yn)n∈N ⊆ Ω converging to x. Observe that for any n,m ∈ N we have

|f(yn) − f(x)| ≤ |fm(yn) − f(yn)| + |fm(yn) − fm(x)| + |fm(x) − f(x)|.

Therefore, given ϵ > 0 let m ∈ N be such that

sup
x∈Ω̄

|fm(x) − f(y)| < ϵ

3 ,

which we can do as we have already established that fn → f uniformly. Then let n ∈ N be such that

|fm(yn) − fm(x)| < ϵ

3 ,

which we can do as fm ∈ C0 (Ω̄). Then
|f(yn) − f(x)| < ϵ,

and so f(yn) → f(x), which means that f is continuous up to the boundary of Ω̄.

Remark 3.4.3. A function f is in Ck
(
Ω̄
)

if for any points x ∈ ∂Ω and α ∈ Nd with |α| ≤ k, the sequence
(∂αf(yn))n∈N admits a limit when (yn)n∈N ⊆ Ω is such that yn → x. That is, there exists a β ∈ R such that
for every sequence (yn)n∈N ⊆ Ω with yn → x we have ∂αf(yn) → β.

Corollary 3.4.4. The space C0 (Ω̄) is a closed subset of B
(
Ω̄
)
.

Proof. Continuous functions on compact domains are bounded so that C0 (Ω̄) ⊆ B
(
Ω̄
)
. As ∥ · ∥∞ = ∥ · ∥C0 we

know by Theorem 3.4.2 that
(
C0 (Ω̄) , ∥ · ∥∞

)
is a Banach space. Hence, C0 (Ω̄) is a closed subset of B

(
Ω̄
)
.
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4 Lp Spaces
4.1 The Lp Norm
Functions throughout this section are defined on Rd or Ω ⊆ Rd open.

Definition 4.1.1. If f is a measurable function, its Lp norm is

∥f∥Lp =
(∫

|f(x)|p dx
) 1

p

for 1 ≤ p < ∞ and
∥f∥L∞ = inf {M > 0 : |f(x)| < M almost everywhere} .

Remark 4.1.2. Integrals are of non-negative functions, and so are well-defined despite taking potentially infinite
value.

Definition 4.1.3. The set Lp, more specifically Lp
(
Rd,R

)
, is the set of measurable functions f : Rd → R,

such that ∥f∥Lp < ∞.

Remark 4.1.4.

• For Ω ⊆ Rd open, we can similarly define the Lp(Ω) norm as

∥f∥Lp(Ω) =
(∫

Ω
|f(x)|p dx

) 1
p

.

• Note that Lp(Ω) is a space of equivalence classes rather than functions. That is, f and g are equivalent
if and only if f = g is almost everywhere.

Proposition 4.1.5 (Young’s Inequality). If 1
p + 1

q = 1, for 1 ≤ p, q ≤ ∞, then for all x, y > 0 we have

xy ≤ 1
p
xp + 1

q
yq.

Proof. Using the fact that log(·) is a concave function we deduce that

log
(

1
p
xp + 1

q
yq
)

≥ 1
p

log (xp) + 1
q

log (yq) .

Exponentiating both sides we get
1
p
xp + 1

q
xq ≥ xy.

Proposition 4.1.6 (Hölder’s Inequality). For Ω ⊆ Rd open, let p, q, r ∈ [1,∞] be such that 1
p + 1

q = 1
r . Then

∥fg∥Lr(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

Proof.
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• Consider p = r so that q = ∞. As

∥g∥L∞(Ω) = inf {M > 0 : |g(x)| < M almost everywhere in Ω}

we have that |g| ≤ ∥g∥L∞(Ω) almost everywhere in Ω. Hence(∫
Ω

|fg|r
) 1

r

≤ ∥g∥L∞(Ω)

(∫
Ω

|f |r
) 1

r

= ∥f∥Lr(Ω)∥g∥L∞(Ω).

• For r = 1 and 1 < p < ∞, from Proposition 4.1.5 we have that∫
Ω

|fg| ≤
∫

Ω

1
p

|f |p + 1
q

|g|q

≤ 1
p

∥f∥pLp(Ω) + 1
q

∥g∥qLq(Ω).

Therefore, if ∥f∥Lp(Ω) = 1 and ∥g∥Lq(Ω) = 1, it follows that∫
Ω

|fg| ≤= 1
p

+ 1
q

= 1.

Hence, for arbitrary f ∈ Lp(Ω) and g ∈ Lq(Ω) we have∫
Ω

∣∣∣∣ f

∥f∥Lp(Ω)

g

∥g∥Lq(Ω)

∣∣∣∣ ≤ 1

which implies that ∫
Ω

|fg| ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω)

which is equivalent to ∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

• For r ̸= 1, note that 1
( p

r ) + 1
( q

r ) = 1. Let p̃ = p
r and q̃ = q

r . Then using the result for r = 1 we deduce that

∥|fg|r∥L1(Ω) ≤ ∥|f |r∥Lp̃(Ω) ∥|g|r∥Lq̃(Ω

=
(∫

Ω
|f |rp̃

) 1
p̃
(∫

Ω
|g|rq̃

) 1
q̃

.

Therefore, (∫
Ω

|fg|r
) 1

r

≤
(∫

Ω
|f |p

) 1
p
(∫

Ω
|g|q
) 1

q

and thus
∥fg∥Lr(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lr(Ω).

Example 4.1.7. If p = q = 2 and r = 1. Then∫
|fg| ≤

(∫
f2
) 1

2
(∫

g2
) 1

2

and we recover the Cauchy-Schwartz inequality.
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Proposition 4.1.8 (Minkowski’s Inequality). For Ω ⊆ Rd(Ω), if f, g ∈ Lp(Ω), then f + g ∈ Lp(Ω) and

∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω).

Proof. For 1 ≤ p < ∞ we have that

∥f + g∥pLp(Ω) =
∫

Ω
|f + g|p

T.I
≤
∫

Ω
|f ||f + g|p−1 +

∫
Ω

|g||f + g|p−1

Prop. 4.1.6
≤ ∥f∥Lp(Ω)∥f + g∥p−1

Lp(Ω) + ∥g∥Lp(Ω)∥f + g∥p−1
Lp(Ω).

Dividing both sides by ∥f + g∥p−1
Lp(Ω) we deduce that

∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω).

When p = ∞ we note that if
mf ∈ {M > 0 : |f(x)| < M almost everywhere in Ω}

and
mg ∈ {M > 0 : |g(x)| < M almost everywhere in Ω}

then
|f(x) + g(x)| ≤ |f(x)| + |g(x)| < mf +mg.

Taking infimums we conclude that
∥f + g∥L∞(Ω) ≤ ∥f∥L∞(Ω) + ∥g∥L∞(Ω).

Theorem 4.1.9. For 1 ≤ p ≤ ∞ the map ∥ · ∥Lp(Ω) is a norm on Lp(Ω).

Proof. Note ∥f∥Lp(Ω) = 0 if and only if f is zero almost everywhere, and thus equivalent to zero. Furthermore,
for λ ∈ R we have ∥λf∥Lp(Ω) = |λ|∥f∥Lp(Ω). The triangle inequality is Proposition 4.1.8. Therefore, ∥ · ∥Lp(Ω)
is a norm on Lp(Ω).

Proposition 4.1.10 (Generalised Minkowski Inequality).∥∥∥∥∫ f(x, y) dy
∥∥∥∥
Lp

x

≤
∫

∥f(x, y)∥Lp
x

dy.

Remark 4.1.11. In Proposition 4.1.10 the y can be thought of as the summation variable and x as the variable
with respect to which we are computing the norm.

Example 4.1.12. Consider the function f : Rd → R given by

f(x) =
1B1(0)

|x|α

where α ∈ Rd. Recall that ∫ 1

0

1
|x|αp

dx
{

= ∞ αp ≥ 1
< ∞ αp < 1.
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This implies that f ∈ Lp (R) if and only if α < d
p . More generally, in Rd as f is a radial function we know that

dx = Crd−1 dr where C is the volume of the unit sphere in Rd. Therefore,(∫
B1(0)

1
|x|αp

dx
) 1

p

= C
1
p

(∫ 1

0
rd−1−αp dr

) 1
p

.

Consequently, f ∈ Lp
(
Rd
)

if and only if α < d
p

The space Lp can contain surprisingly exotic functions as its regularity is only formulated as an integral, which
disregards behaviour at individual points.

Exercise 4.1.13.

1. Find a function in Lp(R) which is essentially unbounded on any [n, n+ 1] for n ∈ Z.

2. Find a function in Lp((0, 1)) which is unbounded on any (a, b) for a, b ∈ (0, 1).

4.2 Convergence
We have established that (Lp, ∥ · ∥Lp) is a normed vector spaces. Consequently, we can start asking questions
about convergence in this space, and how spaces with different values of p are related.

Theorem 4.2.1. The space Lp with norm ∥ · ∥Lp is a Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence with respect to | · |. Then we can extract a subsequence (fnk
)k∈N such

that
|fnk

− fnk+1 | < 1
2k .

As the sequence (fn)n∈N is Cauchy, if the limit of (fnk
)k∈N exists then (fn)n∈N converges to the same limit.

Indeed, suppose fnk
→ f . Given an ϵ > 0 let N1 ∈ N be such that |fn − fm| < ϵ

2 for n,m ≥ N1. Similarly, let
N2 ∈ N be such that |f − fnk

| < ϵ
2 for nk ≥ N2. Then

|f − fn| ≤ |f − fnk
| + |fnk

− fn| < ϵ

2 + ϵ

2
for n, nk ≥ max(N1, N2). Hence, it suffices to consider a sequence (fn)n∈N ⊆ Lp such that

∥fn+1 − fn∥Lp ≤ 1
2n .

With this consider the following.

• f = f0 +
∑∞
n=0(fn+1 − fn).

– This is only formal now as we have no way to make sense of the convergence.

• g = |f0| +
∑∞
n=0 |fn+1 − fn|.

– The convergence here has a pointwise meaning as we are dealing with non-negative functions.

• Skf = f0 +
∑k
n=0(fn+1 − fn).

• Skg = |f0| +
∑k
n=0 |fn+1 − fn|.

Step 1: Show the candidate f is well-defined and in Lp.
By Minkowski’s inequality we have that

∥Skg∥Lp ≤ ∥f0∥Lp +
k∑

n=0
∥fn+1 − fn∥Lp ≤ C +

k∑
n=0

1
2n ≤ C̃ < ∞.
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As Skg ↗ g pointwise, we can conclude by the monotone convergence theorem that∫
|g|p = lim

k→∞

∫
|Skg|p ≤ C̃.

This implies that g ∈ Lp, and g < ∞ almost everywhere. Consequently
∑∞
n=0 |fn+1 −fn| is absolutely convergent

which implies that f is absolutely convergent. Therefore, as |f | ≤ |g| we conclude that f ∈ Lp.
Step 2. Show fn converges to f in Lp.
Note that

|f − Skf | ≤ |f | + |Skf | ≤ 2g
so that |f−Skf |p ≤ 2pgp. Therefore, as |f−Skf |p → 0 pointwise almost everywhere, by step 1 we can conclude
by the dominated convergence theorem that

∥f − Skf∥pLp =
∫

|f − Skf |p → 0.

Proposition 4.2.2. If Ω ⊆ Rd is bounded, then Lp(Ω) ⊆ Lq(Ω) whenever p ≥ q.

Proof. Let f ∈ Lp(Ω). Note that 1
q = 1

p + 1
pq

p−q
. Let r := pq

p−q , then ∥1∥Lr(Ω) < ∞ as Ω is bounded. Therefore,
by Hölder’s inequality

∥f∥Lq(Ω) = ∥f1∥Lq(Ω) ≤ ∥f∥Lp(Ω)∥1∥Lr(Ω) < ∞.

Therefore, f ∈ Lq(Ω).

Example 4.2.3. The condition that Ω is bounded in Proposition 4.2.2 is necessary for the inclusion to hold.
Consider Ω = (1,∞) and f(x) = 1

x . Then

∥f∥L2((1,∞)) =
(∫ ∞

1

1
|x|2

dx
) 1

2

< ∞,

however,
∥f∥L1((1,∞)) =

∫ ∞

1

1
|x|

dx = ∞.

Therefore, L2((1,∞)) ̸⊆ L1((1,∞)).

4.3 Convolution
Throughout, we will only be dealing with functions defined on Rd. Let C0

c denote the set of compactly supported
continuous functions, with analogous definitions for Ckc and C∞

c .

Definition 4.3.1. For f ∈ L1 and ϕ ∈ C0
c , their convolution is

(f ⋆ ϕ)(x) =
∫
Rd

f(y)ϕ(x− y) dy.

Remark 4.3.2.

• The integral of Definition 4.3.1 makes sense as the integrand is in L1. Note Lp ⊆ L1 locally. That is, if
f ∈ Lp and K is a compact set, then∫

f1K dx
Hölder’s

≤ ∥f∥Lp∥1K∥Lq

33



for 1
p + 1

q = 1. Therefore, as ∥1K∥Lq < ∞ we conclude that on K we have f ∈ L1. Consequently,
convolutions still make sense for f ∈ Lp when ϕ has compact support.

• If both f, ϕ ∈ C0
c , then f ⋆ ϕ = ϕ ⋆ f .

• The convolution operation (f, ϕ) 7→ f ⋆ ϕ is bilinear.

Figure 6: An illustration of how the convolution can be interpreted as a smoothing operation for a rough function
f , by taking a weighted average at x over the compact support of ϕ.

Definition 4.3.3. For f ∈ L1, the support of f denoted supp(f) is the smallest closed set such that f = 0
almost everywhere in R \ supp(f).

Definition 4.3.4. For sets A and B let

A+B = {a+ b : a ∈ A, b ∈ B}.

Lemma 4.3.5. For f ∈ L1 and ϕ ∈ C0
c we have

supp(f ⋆ ϕ) ⊆ supp(f) + supp(ϕ).

Intuition. Ideally, one would say that if
∫
f(y)ϕ(x − y) dy = (f ⋆ ϕ)(x) ̸= 0 then there exists a y such that

f(y) ̸= 0 and ϕ(x− y) ̸= 0. Therefore, x = y+ (x− y) ∈ supp(f) + supp(ϕ). However, f here is an equivalence
class, and it doesn’t make sense to talk about evaluating f at points. One instead has to work with small open
sets.

Figure 7: Thinking about a convolution as a weighted sum over a compact support, then graphically this is what
we would expect the support of f ⋆ ϕ to be.

Proposition 4.3.6. If f ∈ Lp and ϕ ∈ C0
c then f ⋆ ϕ ∈ Lp and

∥f ⋆ ϕ∥Lp ≤ ∥f∥Lp∥ϕ∥L1 .
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Proof. For p = 1 we can write∫
|(f ⋆ ϕ)(x)| dx =

∫ ∣∣∣∣∫ f(y)ϕ(x− y) dy
∣∣∣∣ dx

T.I
≤
∫∫

|f(y)||ϕ(x− y)| dy dx

Fubini.=
∫

|f(y)|
∫

|ϕ(x− y)| dx dy

= ∥f∥L1∥ϕ∥L1 .

For the case when p > 1 we use Proposition 4.1.10 to deduce that∥∥∥∥∫ f(x− y)ϕ(y) dy
∥∥∥∥p
Lp

x

≤
∫

∥f(x− y)ϕ(y)∥Lp
x

dy

=
∫

|ϕ(y)|∥f(x− y)∥Lp
x

dy

= ∥ϕ∥L1∥f∥Lp .

Where in the last inequality we have pulled out ∥f∥Lp as by translational invariance ∥f(x− y)∥Lp
x

= ∥f(x)∥Lp
x
,

and so is independent of y.

Exercise 4.3.7.

1. Show that if f ∈ Lp and ϕ ∈ L1 then f ⋆ ϕ ∈ Lp.

2. Show that if f ∈ L1
loc and ϕ ∈ C0

c then f ⋆ ϕ ∈ C0.

• The space Lploc is the space of functions for which on every compact set K we have ∥f1K∥Lp < ∞.

Proposition 4.3.8. If f ∈ L1
loc and ϕ ∈ Ckc , then f ⋆ ϕ ∈ Ckc . What’s more

∂α(f ⋆ ϕ) = f ⋆ ∂αϕ

if |α| ≤ k.

Proof. We proceed for k = 1. Let G(x) := (ϕ ⋆ f)(x). Fix i ∈ {1, . . . , d} and x ∈ Rd. Consider

G(x+ hnei) −G(x)
hn

=
∫
ϕ(x+ hnei − y) − ϕ(x− y)

hn︸ ︷︷ ︸
Fx

n (y)

f(y) dy

where hn → 0. We know that F xn (y) is supported on BR(x) for R sufficiently large. As ϕ ∈ Ckc
(
Rd
)

we know
that

f(y)F xn (y) n→∞−→ f(y)∂iϕ(x− y)
pointwise almost everywhere. Moreover,

|f(y)F xn (y)| ≤ |f(y)| ∥ϕ∥C1(BR) .

As f ∈ L1
loc we know the right-hand side of the above is in L1(BR). Hence, by the dominated convergence

theorem
lim
n→∞

(
G(x+ hnei) −G(x)

hn

)
=
∫
∂iϕ(x− y)f(y) dy.

It follows that ∂i(f ⋆ ϕ)(x) = ((∂iϕ) ⋆ f) (x) for all i ∈ {1, . . . , d} and all x ∈ Rd. As ∂iϕ ∈ C0
c it follows that

∂i(f ⋆ ϕ) ∈ C0
c

(
Rd
)
. Proceed by induction to complete the proof.
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4.4 Mollifer
For a function φ ∈ C∞

c with
∫
φ = 1 we define the sequence of mollifiers (φn)n∈N where

φn(x) = ndφ(nx).

Note that, supp(φn) = 1
n supp(φ), whilst

∫
φn = 1. Intuitively, f ⋆ φn should converge in some sense to f .

As f ⋆ φn can be thought of as a weighted average of f over supp(φn), thus we are performing an increasingly
concentrated average.

Figure 8: A graphical representation of a mollifer, φ, and subsequent φn.

Theorem 4.4.1.

1. If f ∈ C0
c , then f ⋆ φn

n→∞−→ f under the uniform topology on C.

2. If f ∈ Lp, for 1 ≤ p < ∞, then f ⋆ φn
n→∞−→ f in Lp.

Proof.

1. Given an ϵ > 0, there exists a δ > 0 such that for |x− y| < δ we have that |f(x) − f(y)| < ϵ. Note that

(f ⋆ φn)(x) − f(x) =
∫
φn(x− y)f(y) dy − f(x)

=
∫
φn(x− y)(f(y) − f(x)) dy.

The last equality follows from the fact that f(x) is independent of y and
∫
φn(x − y) dy = 1. We can

choose N ∈ N such that for x, y ∈ supp(φN ) we have |x− y| < δ. Then for n ≥ N we have

|(f ⋆ φn)(x) − f(x)| ≤ ϵ

∫
|φn(x− y)| dy ≤ ϵC.

Hence, we have uniform convergence.

2. Let f ∈ Lp. Using the fact that C0
c is dense in Lp, given an ϵ > 0 there exists a g ∈ C0

c and h ∈ Lp such
that f = g + h, and ∥h∥Lp ≤ ϵ. Hence,

f ⋆ φn − f = g ⋆ φn − g + h ⋆ φn − h

so that
∥f ⋆ φn − f∥Lp ≤ ∥g ⋆ φn − g∥Lp + ∥h ⋆ φn∥Lp + ∥h∥Lp .

The second and third terms on the right-hand side are less than or equal to ϵ by construction. The function
in the first term has compact support, that is independent of n, and so g ⋆φn−g → 0 uniformly. Therefore,
∥g ⋆ φn − g∥Lp

n→∞−→ 0.
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Corollary 4.4.2. For 1 ≤ p < ∞, the space C∞
c is dense in Lp.

Theorem 4.4.1 breaks down for p = ∞. If it were true then we could choose f ∈ L∞ \ C0 and find a sequence
(fn) ⊆ C∞ such that fn → f in L∞. However, for continuous functions ∥f∥L∞ = ∥f∥C0 . Therefore, the
sequence is convergent in C0 with the uniform topology, which implies that f ∈ C0, which is a contradiction.

4.5 Solution to Exercises
Exercise 4.1.13

Solution.

1. For a given p let fn(x) = 1[n,n+1]
1

|x−n|
1

2p
. By Example 4.1.12 the Lp-norm of fn is finite and is independent

of n ∈ Z since the measure is translationally invariant. Therefore,

f(x) =
∑
n∈Z

1
n2 fn(x)

is absolutely convergent. As Lp(R) is complete we deduce that f ∈ Lp(R). Notice that f is unbounded at
n ∈ Z and so satisfies the requirements of the exercise.

2. As Q ∩ [0, 1] is countable we can enumerate it as (qn)n∈N. As before we consider

f(x) = 1[0,1]

∞∑
n=1

1
n2

1
|x− qn|

1
2p

.

Note that f ∈ Lp(R) by similar arguments and satisfies the requirement of the exercise as Q∩ [0, 1] is dense
in [0, 1] and f is unbounded at each qn.

Exercise 4.3.7

Solution.

1. Observe that

∥ϕ ⋆ f∥p
Lp

x
=
∥∥∥∥∫ ϕ(y)f(x− y) dy

∥∥∥∥p
Lp

x

.

Applying the generalised Minkowski inequality we deduce that

∥ϕ ⋆ f∥p
Lp

x
≤
∫

∥ϕ(y)f(x− y)∥Lp
x

dy

=
∫

|ϕ(y)|∥f∥Lp
x

dy

= ∥ϕ∥L1∥f∥Lp .

Therefore, ϕ ⋆ f ∈ Lp as ∥ϕ∥L1 and ∥f∥Lp are finite by assumption.

2. Fix x ∈ Rd. For z ∈ Rd observe that

|(ϕ ⋆ f)(x) − (ϕ ⋆ f)(z)| ≤
∫

|f(y)||ϕ(x− y) − ϕ(z − y)| dy.

Assume that supp(ϕ) ⊆ BR, so that supp(ϕ(· − x)) ⊆ BR(x) and supp(ϕ(· − z)) ⊆ BR(z). Suppose that
|z − x| = δ so that

supp(ϕ(· − x) − ϕ(· − z)) ⊆ BR+2δ(x).
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Then
|(ϕ ⋆ f)(x) − (ϕ ⋆ f)(z)| ≤

∫
BR+2δ(x)

|f(y)||ϕ(x− y) − ϕ(z − y)| dy.

As ϕ(· −x) −ϕ(· − z) is continuous and compactly supported, it is also uniformly continuous on BR+2δ(x).
Therefore, for ϵ > 0 there exists a δ > δ0 > 0 such that |ỹ − ȳ| < δ0 implies that

|ϕ (ỹ) − ϕ (ȳ)| < ϵ.

Hence,
|(ϕ ⋆ f)(x) − (ϕ ⋆ f)(z)| ≤ ϵ

∫
BR+2δ(x)

|f(y)| dy.

Thus we have continuity, but we do not have uniform continuity as the right-hand side is dependent on x.
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5 ℓp Spaces
In this section, we will briefly explore ℓp spaces which can be thought of as a discrete analogue of Lp, but with
some key differences.

5.1 ℓp Norm

Definition 5.1.1. For 1 ≤ p < ∞ define the real vector space

ℓp =
{
x = (xk)k∈N ⊆ R :

∑
k∈N

|xk|p < ∞

}
.

When p = ∞ define the real vector space

ℓ∞ =
{

(xk)k∈N ⊆ R : sup
k∈N

(|xk|) < ∞
}
.

For 1 ≤ p < ∞ the space ℓp consists of absolutely summable sequences. Whereas ℓ∞ deals with bounded
sequences, which is a significant distinction between the spaces.

Definition 5.1.2. For 1 ≤ p < ∞ let ∥ · ∥ℓp : ℓp → R be given by

∥x∥ℓp =
(∑
k∈N

|xk|p
) 1

p

.

For p = ∞ let ∥ · ∥ℓ∞ : ℓ∞ → R be given by

∥x∥ℓ∞ = sup
k∈N

(|xk|).

Remark 5.1.3. If f =
∑∞
k=0 ck1[k,k+1], for (ck)k∈N ⊆ R, then

∥f∥Lp = ∥(ck)k∈N∥ℓp .

Proposition 5.1.4 (Hölder’s Inequality). Let 1 ≤ p, q ≤ ∞ be such that 1
p + 1

q = 1. Then,

∥fg∥ℓ1 ≤ ∥f∥ℓp∥g∥ℓq

for x ∈ ℓp and y ∈ ℓq.

Proof.

• For 1 ≤ p < ∞, from Proposition 4.1.5 we get that
∞∑
k=1

|xkyk| ≤
∞∑
k=1

(
1
p

|xk|p + 1
q

|yk|q
)

≤ 1
p

∞∑
k=1

|xk|p + 1
q

∞∑
k=1

|yk|q.

If 1
p + 1

q = 1, ∥x∥ℓp = 1 and ∥y∥ℓq = 1, then
∞∑
k=1

|xkyk| ≤ 1
p

∥x∥ℓp + 1
q

∥y∥ℓq = 1.
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Therefore, for arbitrary x ∈ ℓp and y ∈ ℓq we have that
∞∑
k=1

∣∣∣∣ xk
∥x∥ℓp

yk
∥y∥ℓq

∣∣∣∣ ≤ 1

which implies that
∞∑
k=1

|xkyk| ≤ ∥x∥ℓp∥y∥ℓq .

Thus, ∥xy∥ℓ1 ≤ ∥x∥ℓp∥y∥ℓq .

• When p = ∞, then q = 1 and

∥xy∥ℓ1 =
∞∑
k=1

|xkyk|

≤
∞∑
k=1

(
sup
k∈N

|xk|
)

|yk|

= ∥x∥ℓ∞

∞∑
k=1

|yk|

= ∥x∥ℓ∞∥y∥ℓ1 .

Proposition 5.1.5 (Minkowski’s Inequality). If x, y ∈ ℓp then x+ y ∈ ℓp and

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp .

Proof.

• If 1 ≤ p < ∞, then

∥x+ y∥pℓp =
∞∑
k=1

|xk + yk|p

T.I
≤

∞∑
k=1

|xk||xk + yk|p−1 +
∞∑
k=1

|yk||xk + yk|p−1

Prop. 5.1.4
≤ ∥x∥ℓp∥x+ y∥p−1

ℓp + ∥y∥ℓp∥x+ y∥p−1
ℓp .

Dividing both sides by ∥x+ y∥p−1
ℓp we conclude that

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp .

• If p = ∞, then

∥x+ y∥ℓ∞ = sup
k∈N

(|xk + yk|)

≤ sup
k∈N

|xk| + sup
k∈N

|yk|

= ∥x∥ℓ∞ + ∥y∥ℓ∞ .
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Theorem 5.1.6. For 1 ≤ p ≤ ∞ the map ∥ · ∥ℓp is a norm on ℓp.

Proof. Clearly, ∥x∥ℓp = 0 if and only if xk = 0 for all k ∈ N. Furthermore, for λ ∈ R we have ∥λx∥ℓp = |λ|∥x∥ℓp .
The triangle inequality is Proposition 5.1.5. Therefore, ∥ · ∥ℓp is a norm on ℓp.

Consequently, we can consider ℓp as a normed vector space with norm ∥ · ∥ℓp .

5.2 Convergence

Theorem 5.2.1. For 1 ≤ p ≤ ∞, the space ℓp is a Banach space.

Proof.

• Consider the case when 1 ≤ p < ∞. Let
(
x(n))

n∈N ⊆ ℓp be a Cauchy sequence. Then given an ϵ > 0,
there exists an Ñ ∈ N such that for all n,m ≥ Ñ we have∥∥∥x(n) − x(m)

∥∥∥
ℓp
< ϵ

so that for any k ∈ N we have ∣∣∣x(n)
k − x

(m)
k

∣∣∣ < ϵ.

Hence the sequence
(
x

(n)
k

)
n∈N

⊆ R is a Cauchy sequence and therefore converges to a limit we will denote

x
(∞)
k . The sequence

(
x(n))

n∈N is Cauchy and thus bounded so that for some M > 0 we have∥∥∥x(n)
∥∥∥
ℓp

≤ M

for all n ∈ N. Therefore, for any N ∈ N we have(
N∑
k=1

∣∣∣x(∞)
k

∣∣∣p)
1
p

= lim
n→∞

(
N∑
k=1

∣∣∣x(n)
k

∣∣∣p)
1
p

≤ lim
n→∞

∥∥∥x(n)
∥∥∥
ℓp

≤ M.

Sending N → ∞ gives ∥∥∥x(∞)
∥∥∥
ℓp

≤ M,

meaning x(∞) ∈ ℓp. Recall, that ∥∥∥x(n) − x(m)
∥∥∥
ℓp
< ϵ

for any n,m ≥ Ñ . Therefore, for any N ∈ N we have(
N∑
k=1

∣∣∣x(n)
k − x

(m)
k

∣∣∣p)
1
p

< ϵ.

Sending m → ∞ gives (
N∑
k=1

∣∣∣x(n)
k − x

(∞)
k

∣∣∣p)
1
p

< ϵ.

Sending N → ∞ we conclude that, x(n) → x(∞) in ℓp. Hence (ℓp, ∥ · ∥ℓp) is a Banach space when
1 ≤ p < ∞.
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• Now consider the case when p = ∞. Let
(
x(n))

n∈N ⊆ ℓ∞ be a Cauchy sequence. As
∣∣∣x(n)
k − x

(m)
k

∣∣∣ ≤∥∥x(n) − x(m)
∥∥
ℓ∞ , it follows that

(
x

(n)
k

)
k∈N

⊆ R is Cauchy. Therefore, as before, we can construct the

sequence x(∞), where x(∞)
k = limn→∞

(
x

(n)
k

)
. For any N ∈ N we have

sup
k=1,...,N

∣∣∣x(∞)
k

∣∣∣ = lim
n→∞

sup
k=1,...,N

∣∣∣x(n)
k

∣∣∣ ≤ lim
n→∞

∥∥∥x(n)
∥∥∥
ℓ∞
.

As the sequence
(
x(n))

n∈N is Cauchy it is bounded, hence x(∞) is bounded and thus is in ℓ∞. Furthermore,
as
(
x

(n)
k

)
n∈N

is Cauchy there exists an N ∈ N such that∣∣∣x(n)
k − x

(m)
k

∣∣∣ < ϵ

2 ,

sending m → ∞ gives ∣∣∣x(n)
k − x

(∞)
k

∣∣∣ ≤ ϵ

2 .

Taking the supremum over k ∈ N we deduce that∥∥∥x(n) − x(∞)
∥∥∥
ℓ∞

< ϵ

which shows that x(n) → x(∞) in ℓ∞. Hence, (ℓ∞, ∥ · ∥ℓ∞) is a Banach space.

Proposition 5.2.2. If p ≤ q then ℓp ⊆ ℓq.

Proof. If p = ∞ then q = ∞ and so ℓp ⊆ ℓq. Similarly, ℓp ⊆ ℓ∞ for all p ∈ [1,∞) as absolutely summable
sequences are bounded. For 1 ≤ p < ∞ let x ∈ ℓp and consider p ≤ q < ∞. As

∥x∥pℓp =
∞∑
k=0

|xk|p < ∞,

it must be the case that |xk|p → 0 as k → ∞. More specifically there exists a K ∈ N such that |xk| < 1 for
k ≥ K which implies that |xk|q ≤ |xk|p for k ≥ K. Thus,

∥(xk)k∈N∥qℓq =
∞∑
k=0

|xk|q

=
K−1∑
k=0

|xk|q + lim
N→∞

N∑
k=K

|xk|q

≤
K−1∑
k=0

|xk|q + lim
N→∞

N∑
k=K

|xk|p

≤
K−1∑
k=0

|xk|q + ∥(xk)k∈N∥pℓp

< ∞.

Therefore, x ∈ ℓq.

Remark 5.2.3. Note the difference between Proposition 5.2.2 and Proposition 4.2.2.
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6 Linear Maps
6.1 Continuous Maps
Let E and F be normed vector spaces. The set of continuous linear maps from E to F is denoted by L(E,F ).

Proposition 6.1.1. Let E and F be normed vector spaces, and consider T ∈ L(E,F ). Then the following
are equivalent.

• T is continuous at zero.

• T is continuous on E.

• T is bounded, that is
∥T∥E→F := sup

x∈E\{0}

∥Tx∥F
∥x∥E

< ∞.

Proposition 6.1.2. The space L(E,F ) endowed with ∥ · ∥E→F is a normed vector space. Moreover, if F is
a Banach space, then L(E,F ) is a Banach space.

Proof. Let (Tn)n∈N ⊆ L(E,F ) be a Cauchy sequence. Fix x ∈ E \ {0}. Given an ϵ > 0 there exists an N ∈ N
such that ∥Tn − Tm∥L(E,F ) <

ϵ
∥x∥E

for all n,m ≥ N . Hence,

∥Tn(x) − Tm(x)∥F ≤ ∥Tn − Tm∥L(E,F )∥x∥E < ϵ.

Therefore, the sequence (Tn(x))n∈N ⊆ F is Cauchy which implies that Tn(x) → yx ∈ F . Let T : E → F be
given by T (x) = yx. For x1, x2 ∈ E and λ ∈ R, note that

T (x1 + λx2) = lim
n→∞

Tn(x1 + λx2)

= lim
n→∞

Tn(x1) + λ lim
n→∞

Tn(x2)

= T (x1) + λT (x2).

Therefore, T : E → F is linear. As the sequence (Tn)n∈N ⊆ L(E,F ) is Cauchy it is bounded. That is, there
exists a M > 0 such that for all n ∈ N we have

∥Tn∥L(E,F ) ≤ M.

Moreover, for any x ∈ E, with ∥x∥F = 1, and ϵ > 0, there exists an Nx ∈ N such that

∥Tn(x) − T (x)∥F < ϵ

for n ≥ Nx. Therefore, for n ≥ Nx we deduce that

∥Tx∥F ≤ ∥Tn(x) − T (x)∥F + ∥Tn(x)∥F ≤ ϵ+M,

which implies that ∥T∥L(E,F ) < ∞ and so T ∈ L(E,F ) as T is linear. Moreover, as (Tn)n∈N ⊆ L(E,F ) is
Cauchy, given an ϵ > 0 we have

sup
∥x∥=1

∥Tn(x) − Tm(x)∥F = ∥Tn − Tm∥L(E,F ) < ϵ.

Hence, sending m → ∞ gives

sup
∥x∥=1

∥Tn(x) − T (x)∥F = ∥Tn − T∥L(E,F ) < ϵ

so that Tn → T in L(E,F ).
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6.2 Dual Spaces
Throughout, let E be a Banach space.

Definition 6.2.1. A linear form on E is a linear map of the form E → R (or C).

Definition 6.2.2. The dual of E denoted E′, is the set of continuous linear forms. That is, E′ = L(E,R).

Example 6.2.3. Let E = Rd. Then φ : E → R given by (x1, . . . , xd) 7→ xi is a linear form. In fact, any linear
form on Rd can be written as

x = (x1, . . . , xd) 7→ x · y =
d∑
i=1

xiyi

for some y ∈ Rd. Note that φ(x) = x · y where y = (0, . . . , 1︸ ︷︷ ︸
i

, . . . , 0).

Exercise 6.2.4. Show that for p ∈ (1,∞), we have that (ℓp)′ = ℓq where 1
p + 1

q = 1.

Theorem 6.2.5 (Hahn-Banach). Let G ⊆ E be a linear subspace, and g ∈ L(G,R) be bounded. Then there
exists an extension f ∈ E′ such that

• f = g on G, and

• ∥f∥E→R = ∥g∥G→R.

Proof. Let P = {h : D(h) ⊆ E → R, satisfying 1 − 5}.

1. D(h) is a linear subspace.

2. h ∈ L(D(h),R).

3. G = D(g) ⊆ D(h).

4. h = g on G.

5. ∥h∥D(h)→R = ∥g∥G→R.

Let us introduce an order relation ≤ on P where h1 ≤ h2 if and only if the following hold.

1. D(h1) ⊆ D(h2).

2. h2 = h1 on D(h1).

Step 1: P is inductive.
Let Q ⊆ P be a totally ordered subset. Then let (h,D(h)) be given by D(h) =

⋃
q∈QD(q) and h(x) = q(x) if

x ∈ D(q). This is well-defined, and h is an upper bound of Q, implying P is inductive.
Step 2: Apply Zorn’s Lemma.
By Lemma 10.1.5 there exists a maximal element f .
Step 3: Show that D(f) = E.
Proceed by contradiction, and assume that D(f) ̸= E. Then choose x0 ∈ E \D(f). Let (h,D(h)) be given by
D(h) = D(f) +Rx0 and h(x+ tx0) = f(x) +αt for (x, t) ∈ D(f) ×R. Let C0 = ∥g∥G→R. We want to choose
α such that

|f(x) + tα| ≤ C0∥x+ tx0∥.
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By positive homogeneity we note that |f(x) + tα| = |t|
∣∣f (xt )+ α

∣∣, so it suffices to consider t = ±1. Thus, it
suffices to require that {

f(x) + α ≤ C0∥x+ x0∥
f(x) − α ≤ C0∥x+ x0∥

which is equivalent to

sup
y∈D(h)

(f(y) − C0∥y + x0∥) ≤ α ≤
(

inf
z∈D(h)

C0∥z + x0∥ − f(z)
)
.

For such an α to exists we need

f(y) − C0∥y + x0∥ ≤ C0∥z + x0∥ − f(z)

for all y and z, which happens if and only if

f(y − z) = f(y) − f(z) ≤ C0∥z + x0∥ + C0∥y + x0∥.

This holds since
f(y − z) ≤ C0∥y − z∥ ≤ C0(∥y + x0∥ + ∥z + x0∥)

by the triangle inequality. Therefore, by the construction of f it follows that ∥h∥D(h) = ∥g∥G→R and so h ∈ P .
In particular, f ≤ h which contradicts f being a maximal element as h ̸= f .

6.3 Applications of the Hahn-Banach Theorem

Theorem 6.3.1. If E is a normed vector space and x ∈ E, then there exits a ρ ∈ E′ such that

∥x∥E = ρ(x)
∥ρ∥E′

where ∥ρ∥E′ = ∥ρ∥E→R.

Proof. Let ρ : Rx → R be given by ρ(tx) = t. Note that

|ρ(tx)|
∥x∥E

= |t|
∥tx∥E

= 1
∥x∥E

.

Thus, we can extend ρ to E using Theorem 6.2.5 such that ∥ρ∥E′ = 1
∥x∥E

. Then,

ρ(x) = 1 = ∥x∥E
∥x∥E

= ∥x∥E∥ρ∥E′

so that
∥x∥E = ρ(x)

∥ρ∥E′
.

Remark 6.3.2.

• Equivalently, we can say that there exists a ρ ∈ E′ with ∥ρ∥E′ = 1 such that ρ(x) = ∥x∥E .

• In finite dimensions, say with E = Rd, any linear form can written as ρy : Rd → R where x 7→ x · y =∑d
i=1 xiyi. Note that

∥ρy∥ = sup
x∈Rd\{0}

|x · y|
∥x∥

≤ ∥y∥
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by Cauchy-Schwartz. More specifically,

|x · y|
∥y∥

= |ρy(x)|
∥y∥

= ∥x∥

if and only if y is parallel to x.

Theorem 6.3.3. Let E be a normed vector space with F ⊆ E a linear subspace. Then if F̄ ̸= E, it follows
that there exists a ρ ∈ E′ such that ρ ̸= 0 and

ρ(x) := ⟨ρ, x⟩ = 0

for all x ∈ F .

Proof. Let v ∈ E \ F̄ and define F̃ = F + span(v). Note that for each u ∈ F̃ we can write u = f + λv uniquely,
for f ∈ F and λ ∈ R. Let g : F̃ → R be given by

u 7→ λ.

Note that g(u) = 0 for all u ∈ F . As v ̸∈ F̄ there exists an ϵ > 0 such that ∥v−f∥E ≥ ϵ > 0 for all f ∈ F . As F
is a linear subspace we note that f ∈ F if and only if − f

λ ∈ F . So we can equivalently say that
∥∥∥v + f

λ

∥∥∥
E

≥ ϵ > 0
for all f ∈ F . Hence, for u ∈ F̃ we have that

∥g∥(F̃)′ = sup
u∈F̃\{0}

|g(u)|
∥u∥E

= sup
u∈F̃\{0}

|λ|
∥λv + f∥E

= sup
u∈F̃\{0}

1
|λ|

|λ|∥∥∥v + f
λ

∥∥∥
E

≤ 1
ϵ
.

As g is linear, it follows that g ∈
(
F̃
)′. Therefore, by Theorem 6.2.5 this can be extended to ρ ∈ E′.

6.4 Riesz Representation Theorem
For p, q ∈ [1,∞] such that 1

p + 1
q = 1, we say that p and q are dual, and usually write q = p′. Let f ∈ Lp

′ and
consider the linear form ρf : Lp → R where

φ 7→
∫
fφdx.

Note that by Hölder’s inequality this is well-defined and bounded,

|ρf (φ)| =
∣∣∣∣∫ fφ

∣∣∣∣ ≤ ∥f∥Lp′ ∥φ∥Lp .

Consequently, ρf ∈ (Lp)′ with
∥ρf∥(Lp)′ ≤ ∥f∥Lp′ .

Exercise 6.4.1. Show that ∥ρf∥(Lp)′ = ∥f∥Lp′ .
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Theorem 6.4.2 (Riesz Representation Theorem). If 1 ≤ p < ∞, then any element of (Lp)′ can be represented
as ρf for some f ∈ Lp

′ .

Remark 6.4.3. The same holds if Lp is replaced with ℓp.

The statement of Theorem 6.4.2 breaks down for p = ∞. One can see how for the space ℓp. Observe that

|ρy(x)| =

∣∣∣∣∣
∞∑
n=0

xnyn

∣∣∣∣∣ ≤ ∥x∥ℓ∞∥y∥ℓ1 .

Which means that ℓ1 provides linear forms on ℓ∞, namely ρy ∈ (ℓ∞)′ for y ∈ ℓ1. Now let X ⊆ ℓ∞ be the
sequences with a limit. Then define ρ on X by ρ((xn)n∈N) = limn→∞(xn). By the Theorem 6.2.5, ρ can be
extended to ℓ∞. Hence, we get a ρ ∈ (ℓ∞)′ such that ρ(x) = limn→∞(xn) if (xn)n∈N converges. Suppose
ρ(x) = ρy(x) =

∑
n∈N xnyn for some y ∈ ℓ1. As y ∈ ℓ1, given an ϵ > 0 there exists an N ∈ N such that∑

n≥N |yn| < ϵ. Let x ∈ ℓ∞ be given by

xn =
{

0 n < N

1 n ≥ N.

Then as limn→∞(xn) = 1 we have

1 = ρ(x) = |ρy((xn)n∈N)| =

∣∣∣∣∣∣
∑
n≥N

yn

∣∣∣∣∣∣ < ϵ.

Therefore, ρ cannot be equal to ρy for any y ∈ ℓ1, and so the statement of Theorem 6.4.2 cannot hold.

Exercise 6.4.4. Show that the f in the statement of Theorem 6.4.2 is unique, up to equality almost everywhere.

Example 6.4.5.

1. Consider T : ℓ2 → R given by
T (x) =

∑
n∈N

xne
an

where a ∈ R. Since ∑
n∈N

|ean|2 = e2a

1 − e2a ,

it follows by Theorem 6.4.2 and Exercise 6.4.1 that

∥T∥(ℓ2)′ =
(

e2a

1 − e2a

) 1
2

.

2. For I = (0,∞) and p = (1,∞) consider the operator T : Lp(I) → R given by

T (f) =
∫
I

arctan(y)f(y) dy.

As T is linear, if it were were bounded then T ∈ (Lp)′. So by Theorem 6.4.2 there would exist g ∈ Lp
′

such that
T (f) =

∫
I

g(y)f(y) dy.
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However, this would imply that arctan(y) ∈ Lp
′(I), which is not the case. Therefore, T cannot be a

bounded operator.

6.5 Bi-dual Space
For E a Banach space the bi-dual of E is the dual of E′, namely E′′. On E′′ we have the norm

∥f∥E′′ = sup
ρ∈E′\{0}

|f(ρ)|
∥ρ∥E′

.

There is a natural map from Φ : E → E′′ given by x 7→ fx where fx : E′ → R is such that ρ 7→ ρ(x).

Exercise 6.5.1. Verify that fx is linear.

Observe that

∥fx∥E′′ = sup
ρ∈E′\{0}

|fx(ρ)|
∥ρ∥E′

= sup
ρ∈E′\{0}

|ρ(x)|
∥ρ∥E′

(1)= ∥x∥E .

To justify (1) recall that |ρ(x)| ≤ ∥ρ∥E′∥x∥E and note that by Theorem 6.2.5 we can construct a ρ that achieves
this upper bound. Thus, fx ∈ E′′ and so Φ is well-defined. In particular, we deduce that Φ is an isometry, which
implies that Φ is an injective linear operator. If Φ is also surjective, we call E a reflexive space.

Example 6.5.2.

1. On Rd with the Euclidean norm, any linear form is bounded and can be represented as

ρy(x) = (y, x)

for some y ∈ Rd. Furthermore,

∥ρy∥(Rd)′ = sup
x∈Rd\{0}

(y, x)
∥x∥

= ∥y∥.

It is easy to check then that Φ is an isomorphism. Consequently, Rd with the Euclidean norm is reflexive.

2. Consider Lp for 1 < p < ∞. By Theorem 6.4.2, (Lp)′ ≃ Lp
′ . Consequently,

(Lp)′′ ≃
(
Lp

′
)′

≃ Lp. (6.5.1)

Therefore, Lp is reflexive for 1 < p < ∞.

3. For p ∈ {1,∞}, the space Lp is not reflexive. Note that although the first equality in (6.5.1) holds for
p = 1, the second inequality does not hold as p′ = ∞.

4. The same conclusions made for Lp hold for ℓp.

6.6 Solution to Exercises
Exercise 6.2.4

Solution. Let p, q ∈ (1,∞) be such that 1
p + 1

q = 1. For v ∈ ℓq let T (v) : ℓp → R be given by

u 7→
∑
n∈N

vnun.
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Step 1: Show that the map T (v) : ℓp → R is well-defined for v ∈ ℓq.
Observe that

|T (v)(u)| =

∣∣∣∣∣∑
n∈N

vnun

∣∣∣∣∣
≤
∑
n∈N

|vnun|

≤ ∥v∥ℓq ∥u∥ℓp

< ∞.

Therefore, T (v) is well-defined.
Let T : ℓq → (ℓp)′ be given by v 7→ T (v).
Step 2: Show that T : ℓq → (ℓp)′ is well-defined and continuous.
The map v 7→ T (v) is well-defined as from step 1 we know that T (v) ∈ (ℓp)′. For v1, v2 ∈ ℓp, λ ∈ R, and fixed
u ∈ ℓp we have that

T
(
v1 + λv2) (u) =

∑
n∈N

(
v1
n + λv2

n

)
un

=
∑
n∈N

v1
nun + λ

∑
n∈N

v2
nun

= T
(
v1) (u) + λT

(
v2) (u).

Hence v 7→ T (v) is linear. Next observe that for u ∈ ℓp \ {0} we have that

|T (v)(u)|
∥u∥ℓp

≤
∑
n∈N |vnun|
∥u∥ℓp

≤ ∥v∥ℓq ∥u∥ℓp

∥u∥ℓp

= ∥v∥ℓq .

Hence
∥T (v)∥(ℓp)′ ≤ ∥v∥ℓq .

Therefore,
∥T∥ℓq→(ℓp)′ = sup

v∈ℓq\{0}

∥T (v)∥(ℓq)′

∥v∥ℓp

≤ 1

which implies that the map is bounded and hence continuous as it is also linear.
Step 3: Show that T is injective.
Suppose that for u, v ∈ ℓq we have that T (u) = T (v). For i ∈ N, consider ei ∈ ℓp where

ein =
{

1 n = i

0 otherwise.

Then ui = T (u)
(
ei
)

= T (v)
(
ei
)

= vi. Therefore, u = v and so v 7→ T (v) is injective.
Step 4: Show that T is surjective.
Let ξ ∈ (ℓp)′ and consider v = (vn)n∈N where vn = ξ(en). For u ∈ ℓp let uN = (un1n≤N )n∈N. Observe that

T (v)
(
uN
)

=
N∑
n=1

vnun

=
N∑
n=1

ξ(en)un

= ξ

(
N∑
n=1

unen

)
= ξ

(
uN
)
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which implies
∣∣T (v)

(
uN
)∣∣ ≤ ∥ξ∥(ℓp)′

∥∥uN∥∥
ℓp . Moreover,

∥∥uN − u
∥∥p
ℓp =

∞∑
n=N+1

|un|p N→∞−→ 0.

Hence, ∣∣T (v)
(
uN
)

− ξ (u)
∣∣ =

∣∣ξ (uN − u
)∣∣ ≤ ∥ξ∥(ℓp)′

∥∥uN − u
∥∥
ℓp

N→∞−→ 0.
Therefore, T (v)

(
uN
)

→ ξ(u) in R as N → ∞. As T (v)
(
uN
)

→ T (v)(u) as N → ∞ by the continuity of T , it
follows using the uniqueness of limits that T (v)u = ξ(u). As this holds for any u ∈ ℓp it follows that T (v) = ξ
in the (ℓp)′ sense. As ξ ∈ (ℓp)′ was arbitrary we conclude that T is surjective.
Step 5: Deduce that (ℓp)′ = ℓq.
The map T is a bijective and continuous map, so (ℓp)′ = ℓq.

Exercise 6.4.1

Solution. Let φ(x) = sgn(f(x))|f(x)|p′−1. Then

∥φ∥pLp =
∫

|f |p(p
′−1)

=
∫

|f |p
′
,

so that f ∈ Lp. Therefore, as

|ρf (φ)|
∥φ∥Lp

=
∫

|f |p′(∫
|f |p′) 1

p

=
(∫

|f |p
′
)1− 1

p

= ∥f∥Lp′ .

it follows that ∥ρf∥(Lp)′ = ∥f∥Lp′ .

Exercise 6.4.4

Solution. Suppose that for f, g ∈ Lp
′ we have ρf = ρg. Then∫

fφdx =
∫
gφdx

for all φ ∈ Lp. In particular, ∫
(f − g)φdx = 0

for all φ ∈ Lp. Letting φ = sgn(f − g)1[−n,n]d we deduce that hn = |f − g|1[−n,n]d = 0 almost everywhere. As
hn → |f − g| pointwise almost everywhere we deduce using the dominated convergence theorem that

0 = lim
n→∞

∫
hn dx =

∫
|f − g| dx,

which implies that f = g almost everywhere.

Exercise 6.5.1

Solution. Note that for ρ1, ρ2 ∈ E′ and λ ∈ R we have
fx(ρ1 + λρ2)(x) = (ρ1 + λρ2)(x)

= ρ1(x) + λρ2(x)
= fx(ρ1) + λfx(ρ2).

Hence, fx is linear.
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7 Compactness in Normed Vector Spaces
7.1 Compact Sets
In metric spaces the equivalent Bolzano-Weierstrass property and the open-covering property characterise com-
pactness. For finite-dimensional vector spaces, Theorem 1.2.37 identifies compact sets. For infinite-dimensional
vector spaces, the identification of compact sets is not as straightforward.

Lemma 7.1.1. Let E be a normed vector space, and let M ⊆ E be a closed linear subspace where M ̸= E.
Then for all ϵ > 0 there exists u ∈ E such that,

1. ∥u∥ = 1, and

2. dist(u,M) ≥ 1 − ϵ.

Proof. Pick v ∈ E \M . Then d := dist(v,M) > 0 as v ̸∈ M and M is closed. So there exists an m0 ∈ M such
that

d ≤ ∥v −m0∥ ≤ d

1 − ϵ
.

Now let u = v−m0
∥v−m0∥ . It is clear that ∥u∥ = 1. Moreover, for m ∈ M we have

∥u−m∥ =
∥∥∥∥ v −m0

∥v −m0∥
−m

∥∥∥∥
= 1

∥v −m0∥
∥v −m0 − ∥v −m0∥m∥

≥ 1 − ϵ

d
∥v −m′∥

where m′ is some element of M . Hence as ∥v −m′∥ ≥ d we have that

∥u−m∥ ≥ 1 − ϵ.

Example 7.1.2. Let E = Rd with the Euclidean norm, and let M ⊆ E be a linear subspace with M ̸= E.
Then one considers the line orthogonal to M passing through the origin. Choosing a point where this line
intersects the unit ball will provide a satisfactory vector u.

Theorem 7.1.3 (Riesz). Let E be a normed vector space of infinite dimension. Then the closed unit ball is
not compact.

Proof. Let u0 ∈ E be of unit norm. Then, by Lemma 7.1.1, for ϵ ∈ (0, 1) there exists a unit vector such that
∥u1∥ = 1 and dist(u1, span(u0)) ≥ 1 − ϵ. As E is infinite-dimensional, we can continue to find a unit vector un
such that dist(un, span(u0, . . . , un−1)) ≥ 1 − ϵ. The sequence (un)n∈N is such that ∥un − um∥ ≥ 1 − ϵ for all
n ̸= m. Therefore, the sequence has no convergent subsequence and so does not satisfy the Bolzano-Weierstrass
property. Therefore, the closed-unit ball is not compact.

Theorem 7.1.3, shows that extending our notions of compactness to infinite dimensions fails rather fundamentally.
Theorem 7.1.7 will give us a characterisation of compactness for the set of continuous functions on the closure
of open and bounded sets Ω, denoted C0 (Ω̄).
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(a) A sequence of functions that is
unbounded.

(b) A sequence of functions converg-
ing to a step function.

(c) A sequence of functions that os-
cillate at an ever-increasing rate.

Figure 9: Examples illustrating some necessary conditions for sequences of functions to admit convergent subse-
quences.

From Figure 9a we note that we must require a sequence of functions to be bounded to admit a convergence
subsequence. Similarly, Figures 9b and 9c show that we must have a condition which ensures the derivatives of
these functions are bounded.

Definition 7.1.4. A sequence (fn)n∈N ⊆ C0 (Ω̄) is bounded with constant C, if

∥fn∥∞ ≤ C

for every n ∈ N.

Definition 7.1.5.

• A sequence (fn)n∈N ⊆ C0 (Ω̄) is equicontinuous at x ∈ Ω̄ if for all ϵ > 0 there exists a δ > 0 such that
for y ∈ Ω̄ with |x− y| < δ we have |fn(x) − fn(y)| < ϵ for all n ∈ N.

• A sequence (fn)n∈N ⊆ C0 (Ω̄) is uniformly equicontinuous if for all ϵ > 0 there exists a δ > 0 such that
for y ∈ Ω̄ with |x− y| < δ we have |fn(x) − fn(y)| < ϵ for all n ∈ N.

Example 7.1.6. Let fn : BRd(0, 1) → R be given by fn(x) = e−n∥x∥. As x 7→ e−x and x 7→ ∥x∥ are
continuous their composition fn(x) is continuous. Moreover, the sequence of functions (fn)n∈N is bounded.
However, let x = 0 and ϵ = 1

2 . Then for any δ > 0 let y ∈ BRd(0, 1) be such that ∥y∥ = δ
2 . Then

|fn(0) − fn(y)| =
∣∣∣1 − e− nδ

2

∣∣∣ n→∞−→ 1.

Therefore, there exists an n ∈ N such that

|fn(0) − fn(y)| ≥ 1
2

and so the sequence (fn)n∈N is not equicontinuous.

52



Figure 10: Intuitively the functions referenced in Example 7.1.6 are not equicontinuous as the gradients of the
function near the origin diverge as n gets large.

Theorem 7.1.7 (Arzela-Ascoli). Let (fn)n∈N ⊆ C0 (Ω̄) be a sequence that is bounded, with constant C, and
equicontinuous. Then the sequence (fn)n∈N admits a convergent subsequence.

Proof. To simplify the proof we suppose (fn)n∈N is uniformly equicontinuous.
Step 1: Finding a dense set of points.
Arrange the rational numbers in Ω̄ into a sequence (rn)n∈N.
Step 2: Apply the Cantor diagonal argument.
Let φ1 : N → N be such that

(
fφ1(n)(r1)

)
n∈N converges. This is possible since the sequence (fn(r1))n∈N is

bounded and so has a convergent subsequence. Now let (fφ2(n))n∈N be a subsequence of
(
fφ1(n)

)
n∈N such

that
(
fφ2(n)(r2)

)
n∈N converges. Again we can do this as the sequences are bounded and so admit convergent

subsequences. Note that
(
fφ2(n)(r1)

)
n∈N converges as (fφ2(n))n∈N ⊆ (fφ1(n))n∈N. Continue in this way to

determine φk : N → N such that
(
fφk(n)

)
n∈N ⊆

(
fφk−1(n)

)
n∈N and

(
fφk(n)(rk)

)
n∈N converges. Again note that(

fφk(n)(rj)
)
n∈N converges for all j = 1, . . . , k − 1. Now set φ(n) = φn(n). Then

(
fφ(n)(rj)

)
n∈N converges for

any j ∈ N as
(
fφ(n)

)
n∈N ⊆

(
fφj(n)

)
n∈N for all j ∈ N.

Step 3: The candidate limit.
Let f(r) = limn→∞ fφ(n)(r) for all r ∈ Q ∩ Ω̄.
Step 4: Extend f using uniform equicontinuity.
For any ϵ > 0, by uniform equicontinuity, there exists a δ > 0 such that |x−y| < δ implies |fφ(n)(x)−fφ(n)(y)| < ϵ

for all n ∈ N. Thus, we can extend f to Ω̄ by letting f(x) = limr→x f(r).
Step 5: fφ(m) converges to f in ∥ · ∥∞.
Fix ϵ > 0.

• Choose δ > 0 such that |x− y| < δ implies |fn(x) − fn(y)| < ϵ
3 for all n ∈ N.

• Choose N ∈ N such that for all x ∈ Ω̄ there exists a j ∈ {1, . . . , N} such that |x− rj | < δ.

• Choose M ∈ N such that for all j ∈ {1, . . . , N} if m > M , then
∣∣fφ(m)(rj) − f(rj)

∣∣ < ϵ
3 .

For x ∈ Ω̄, choose j0 such that |rj0 − x| < δ. If n > M then∣∣f(x) − fφ(n)(x)
∣∣ ≤ |f(x) − f(rj)| +

∣∣f(rj) − fφ(n)(rj)
∣∣+
∣∣fφ(n)(rj) − fφ(n)(x)

∣∣
≤ ϵ

3 + ϵ

3 + ϵ

3
≤ ϵ.

Example 7.1.8. Consider the sequence (fn)n∈N ⊆ C0
(
BRd(0, 1)

)
from Example 7.1.6. Suppose that fφ(n) →
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f in C0(0, 1). Then fφ(n)(x) → f(x) for each x ∈ (0, 1). However,

fφ(n)(x) = e−φ(n)∥x∥ −→

{
1 x = 0
0 otherwise,

which is not a continuous function. Therefore, there cannot exist a convergent subsequence
(
fφ(n)

)
n∈N ⊆

C0(0, 1). Recall, that the sequence (fn)n∈N was shown not to be equicontinuous. Hence, the requirement of
equicontinuity in Theorem 7.1.7 is necessary.

7.2 Compact Operators
Let E and F be Banach spaces. Recall that L(E,F ) is the set of bounded linear operators E → F . Moreover,

∥T∥E→F = sup
x∈E\{0}

∥Tx∥F
∥x∥E

.

Thus,
∥Tx∥F ≤ ∥T∥E→F ∥x∥E .

Definition 7.2.1. A set S ⊆ X is pre-compact if S̄ is compact.

Definition 7.2.2. The operator T ∈ L(E,F ) is compact if T
(
B̄E
)

is pre-compact, where

B̄E := {x ∈ E : ∥x∥ ≤ 1}.

Example 7.2.3.

1. Using Theorem 7.1.3 it follows that for a Banach space E, the operator Id : E → E is compact if and
only if dim(E) < ∞. Therefore, in some sense, compact operators must shrink sets on which they are
applied.

2. Consider Id : C1 (Ω̄) → C0 (Ω̄). The unit ball consists of functions f ∈ C1 (Ω̄) such that ∥f∥∞ +∑d
i=1 ∥∂if∥∞ ≤ 1. In particular,

|f(x) − f(y)| ≤ C∥x− y∥

for any x, y ∈ Ω̄ by the mean value theorem. Therefore, using Theorem 7.1.7 we deduce that the image
of the unit ball is compact.

3. For T : E → F where dim(F ) < ∞, the image of the unit ball is bounded and so by Theorem 1.2.37 its
closure is compact and hence the set is pre-compact. Therefore, T is compact.

4. Let T : Lp(0, 1) → C0(0, 1) where f 7→
∫
K(x, y)f(y) dy for K ∈ C1 ([0, 1]2

)
. This is well-defined by

Hölder’s inequality. Moreover,

|Tf(x) − Tf (x′)| =
∣∣∣∣∫ 1

0
(K(x, y) −K (x′, y)) f(y) dy

∣∣∣∣
(1)
≤
∫ 1

0
|K(x, y) −K (x′, y)| |f(y)| dy

(2)
≤ C |x− x′| ∥f∥Lp ,

where (1) is the generalised triangle inequality, and (2) follows from Hölder’s inequality and the mean
value theorem applied to K. Therefore, by Theorem 7.1.7 the operator is compact.

54



5. Let T : ℓp → ℓp be given by

T (ei) =
{

0 i even
ei+1 i odd.

As
∥T (x)∥ℓp ≤ ∥x∥ℓp ,

we have that T ∈ L (ℓp). However, T is not compact since for the sequence (e2i+1)i∈N ⊆ B̄ℓ
p the

sequence (T (e2i+1))i∈N = (e2i)i∈N has no convergent subsequence as

∥e2i − e2j∥ℓp = 2
1
p δij

which implies that any subsequence is not Cauchy.

Theorem 7.2.4. The set of compact operators denoted K(E,F ), is closed in L(E,F ).

Proof. Let (Ti)i∈N ⊆ K(E,F ) be a sequence converging to T ∈ L(E,F ). Let (xj)j∈N ⊆ B̄E . We can use a
diagonal argument to find an extraction φ : N → N such that

(
Ti
(
xφ(j)

))
j∈N converges for each i ∈ N. We can

write ∥∥Txφ(n) − Txφ(m)
∥∥ ≤

∥∥Txφ(n) − Tkxφ(n)
∥∥+

∥∥Tkxφ(n) − Tkxφ(m)
∥∥+

∥∥Tkxφ(m) − Txφ(m)
∥∥

where the first term can be made small for large k as ∥Txφ(n)−Tkxφ(n)∥ ≤ ∥T−Tk∥
∥∥xφ(n)

∥∥ where ∥T−Tk∥ → 0
and

∥∥xφ(n)
∥∥ ≤ 1, similarly for the third term. The second term can be made small by the fact that

(
Tkxφ(n)

)
n∈N

is convergent. Hence, we deduce that
(
Txφ(n)

)
n∈N is Cauchy, and thus it converges as F is a Banach space.

Therefore, T
(
B̄E
)

is pre-compact and thus T ∈ K(E,F ).

Definition 7.2.5. Let T ∈ L(H). The range of T is Ran(T ) := T (H). If dim(Ran(T )) < ∞, then T is said
to be a finite range or a finite rank operator.

Exercise 7.2.6. Let E be a Banach space and consider T ∈ L(E) a finite range operator. Show that T ∈ K(E).

Corollary 7.2.7. Let Tn : E → F be a sequence of finite range operators. If Tn → T , then T is compact.

Proof. Using Exercise 7.2.6 we know that Tn is compact. Therefore, if Tn → T exists, Theorem 7.2.4 says that
T is compact.

Example 7.2.8. Let T : ℓ2 → ℓ2 be given by (xn)n∈N 7→ (cnxn)n∈N. One can think of this operator as the
matrix 

c1 0
c2

c3

0
. . .

 .

• T is bounded if and only if |cn| ≤ C for all n ∈ N.

• T is compact if and only if cn → 0. To see the suppose that cn → 0. Then consider the operator Tk
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given by the matrix

Tk =

c1 0
. . .

0 ck

 .

Observe that

∥T − Tk∥ℓ2→ℓ2 = sup
x∈ℓ2\{0}

∥(T − Tk)(x)∥ℓ2

∥x∥ℓ2

= sup
x∈ℓ2\{0}

√∑∞
m=k+1 |cmxm|2

∥x∥ℓ2

≤ sup
x∈ℓ2\{0}

supm≥k+1 |cm|∥x∥ℓ2

∥x∥ℓ2

= sup
m≥k+1

|cm|.

Hence, Tk → T and so by Corollary 7.2.7, the operator T is compact. For the converse assume T is
compact and suppose that cn ̸→ 0 as n → ∞. Then for some ϵ > 0 there exists an extraction φ(n)
such that

∣∣cφ(n)
∣∣ ≥ ϵ for all n ∈ N. Let

(
x(n))

n∈N be the sequence where x(n)
i = δiφ(n). It follows that∥∥x(n)

∥∥
ℓ2 = 1 for all n ∈ N and ∥∥∥Tx(n) − Tx(m)

∥∥∥
ℓ2

≥
√

2ϵ

for all n ̸= m. Hence, the sequence
(
Tx(n))

n∈N ⊆ T
(
B̄E
)

has no convergent subsequence and so
T
(
B̄E
)

is not pre-compact. This contradicts T being compact, therefore, we must have that cn → 0 as
n → ∞.

7.3 Solution to Exercises
Exercise 7.2.6

Solution. As T
(
B̄E
)

⊆ Ran(T ) it follows that dim
(
T
(
B̄E
))
< ∞. Moreover, T

(
B̄E
)

is bounded as T ∈ L(E).
In particular, T

(
B̄E
)

is a closed and bounded finite-dimensional set, which implies that it is compact. Therefore,
T
(
B̄E
)

is pre-compact, meaning that T is compact.
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8 Hilbert Spaces
Throughout let H be a real vector space.

8.1 Inner Product

Definition 8.1.1. An inner product on H is an application (·, ·) : H ×H → R that satisfies the following.

1. It is bilinear. That is,
(ax+ by, z) = a(x, z) + b(y, z)

and
(z, ax+ by) = a(z, x) + b(z, y)

for all x, y, z ∈ H and a, b ∈ R.

2. It is symmetric. That is, (x, y) = (y, x) for all x, y ∈ H.

3. It is positive definite. That is (x, x) ≥ 0 for all x ∈ H and (x, x) = 0 if and only if x = 0.

Remark 8.1.2. Elements x, y ∈ H are orthogonal if (x, y) = 0.

Lemma 8.1.3 (Cauchy-Schwartz). For x, y ∈ H we have that

|(x, y)| ≤
√

(x, x)
√

(y, y). (8.1.1)

Proof. The map t 7→ (x+ ty, x+ ty) is a non-negative polynomial in t ∈ R. Hence, its discriminant is negative.
Thus,

(2(x, y))2 − 4(y, y)(x, x) ≤ 0,

which is equivalent to
|(x, y)| ≤

√
(x, x)

√
(y, y).

Remark 8.1.4. Note that equality in (8.1.1) holds if and only if x = λy for some λ ∈ R.

Proposition 8.1.5. If (·, ·) is an inner product on H, then

∥x∥ =
√

(x, x) (8.1.2)

is a norm on H.

Proof. By the positive definiteness of the inner product, ∥x∥ = 0 if and only if x = 0. By the bilinearity of the
inner product, homogeneity of the norm follows. Moreover, using the Cauchy-Schwartz inequality

∥x+ y∥2 = (x+ y, x+ y)
= (x, x) + 2(x, y) + (y, y)
= ∥x∥2 + 2(x, y) + ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2

= (∥x∥ + ∥y∥)2
,

which implies that ∥x+ y∥ ≤ ∥x∥ + ∥y∥. Hence, ∥ · ∥ is a norm on H.

57



For a norm ∥ · ∥ given by for some inner product (·, ·) through (8.1.2), the following identities hold.
• Parallelogram law, ∥∥∥∥u+ v

2

∥∥∥∥2
+
∥∥∥∥u− v

2

∥∥∥∥2
= ∥u∥2 + ∥v∥2

2 .

• Polarization identity,
(u, v) = 1

2
(
∥u+ v∥2 − ∥u∥2 − ∥v∥2) .

Figure 11: Parallelogram law

Definition 8.1.6. A Hilbert space is a complete normed vector space whose norm is given by an inner product
as in (8.1.2).

Remark 8.1.7. We only consider real Hilbert spaces, however, the theory can be extended to complex vector
spaces by replacing symmetry in Definition 8.1.1 with conjugate symmetry. That is,

• x 7→ (x, y) for all y is linear, and

• y 7→ (x, y) for all x is anti-linear.

In other words, (x, y) = (y, x).

Example 8.1.8.

1. The space Rd with the Euclidean inner product

(x, y) =
d∑
i=1

xiyi

is a real Hilbert space. Similarly, Cd with inner product

(x, y) =
d∑
i=1

xiyi

is a complex Hilbert space.

2. The space ℓ2 with the inner product

((xn)n∈N, (yn)n∈N) =
∞∑
n=1

xnyn
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is a real Hilbert space.

3. The space L2(Ω) with the inner product

(f, g) =
∫

Ω
f(x)g(x) dx

is a real Hilbert space.

• Lp(Ω) for p ̸= 2 is not a Hilbert space.

8.2 Projection

Theorem 8.2.1. Let H be a Hilbert space. Let K ⊆ H be a closed and convex set. Then for every f ∈ H
there exists a unique u ∈ K such that

∥f − u∥ = min
v∈K

∥f − v∥ = dist(f,K). (8.2.1)

Moreover, u is characterised by the property that u ∈ K and

(f − u, v − u) ≤ 0 (8.2.2)

for all v ∈ K.

Proof. Step 1: Existence of minv ∥f − v∥.
Consider a sequence (vn)n∈N ⊆ K such that

dn := ∥f − vn∥ → d := min
v∈K

∥f − v∥.

Applying the parallelogram identity to ∥f − vn∥ and ∥f − vm∥ we deduce that∥∥∥∥f − vn + vm
2

∥∥∥∥2
+
∥∥∥∥vn − vm

2

∥∥∥∥2
= 1

2
(
d2
n + d2

m

)
which implies that ∥∥∥∥vn − vm

2

∥∥∥∥2
≤ 1

2
(
d2
n + d2

m

)
− d2 n,m→∞−→ 0.

Hence (vn)n∈N is Cauchy, which implies that it is convergent to some u ∈ H. Passing to the limit we conclude
that

∥f − u∥ = min
v∈K

∥f − v∥.

Step 2: Equivalence of the characterisations.
Assume that u satisfies (8.2.1) and consider a v ∈ K. By the convexity of K it follows that

(1 − t)u+ tv ∈ K

for all t ∈ [0, 1]. Therefore,
∥f − ((1 − t)u+ tv)∥2 ≥ ∥f − u∥2.

The left-hand side is polynomial in t and can be expanded as

∥f − u∥2 − 2t(f − u, v − u) +O
(
t2
)
.

As t → 0, the assumption of (8.2.1) can only hold if (f − u, v − u) ≤ 0. Conversely, suppose that (8.2.2) holds,
then for all v ∈ K it follows that

∥u− f∥2 − ∥v − f∥2 = 2(f − u, v − u) − ∥u− v∥2 ≤ 0

59



which implies that ∥u− f∥ ≤ ∥v − f∥ for all v ∈ K.
Step 3: Uniqueness.
Suppose u1 and u2 satisfy (8.2.2), then

1. (f − u1, v − u1) ≤ 0 for all v ∈ K, and

2. (f − u2, v − u2) ≤ 0 for all v ∈ K.

Choosing v = u2 and v = u1 in the first and second conditions respectively it follows that

1. (f − u1, u2 − u1) ≤ 0, and

2. (f − u2, u1 − u2) ≤ 0.

Adding these together it follows that ∥u1 − u2∥2 ≤ 0 which implies that u1 = u2.

Figure 12: An illustration of the condition stated in (8.2.2).

Proposition 8.2.2. An alternative characterisation of u in Theorem 8.2.1 when K is additionally a linear
subspace of H, is u ∈ K and

(f − u, v) = 0 (8.2.3)
for all v ∈ K.

Proof. Suppose that u ∈ K satisfies (8.2.3). Then for v ∈ K we have u− v ∈ K so that

∥f − v∥2 = ∥f − u+ u− v∥2

= ∥f − u∥2 + 2(f − u, u− v) + ∥u− v∥2

(8.2.3)= ∥f − u∥2 + ∥u− v∥2.

In particular, this implies that ∥f −v∥2 ≥ ∥f −u∥2. Conversely, suppose that (8.2.1) is satisfied for u ∈ K. Then
for v ∈ K and t ∈ R, as K is a linear subspace of H, we have that u+ tv ∈ K and so ∥f−u∥2 ≤ ∥f−(u+ tv)∥2.
Consider,

0 ≤ ∥f − (u+ tv)∥2 − ∥f − u∥2 = 2t(u− f, v) + t2∥v∥2 =: g(t).

If (u− f, v) ̸= 0, then g(t) is minimised at t = − (u−f,v)
∥v∥2 , giving a minimum value

g

(
− (u− f, v)

∥v∥2

)
= −2(u− f, v)2

∥v∥2 + (f − u, v)2

∥v∥2

= − (u− f, v)2

∥v∥2

which is strictly negative as we are assuming (u − f, v) ̸= 0. This is a contradiction and so it must be the case
that (f − u, v) = 0.
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Remark 8.2.3.

1. Suppose that M is a closed linear subspace. Then P : H → M given by f 7→ u, as in Theorem 8.2.1, is
a linear operator. It is characterised by the property that Pf ∈ M and

∥f − Pf∥ = min
v∈M

∥f − v∥.

Equivalently, it can be characterised by the property that Pf ∈ M and

(f − Pf, v) = 0

for all v ∈ M . In particular, (f − Pf, Pf) = 0, and so we recover a Pythagoras type relation

∥f∥2 = ∥f − Pf∥2 + ∥Pf∥2.

2. Convexity is necessary for the uniqueness statement of Theorem 8.2.1. Consider H = R2, f = (0, 0) and
K the annulus with centre (0, 0). Although the distance from f to K is well-defined, the projection of f
to K is not unique.

Figure 13: A non-convex set that does not satisfy the uniqueness statement of Theorem 8.2.1. Note that the
angle between v and f is obtuse.

For a linear subspace F of a Hilbert space H, the orthogonal complement of F in H is the set

F⊥ = {y ∈ H : (y, x) = 0 for all x ∈ F} .

Proposition 8.2.4. Let F be a closed subspace of a Hilbert space H. Then H = F ⊕ F⊥. In particular, for
v ∈ H we have that v = Pv + P⊥v, where Pv is the projection of v onto F , and P⊥v is the projection of v
onto F⊥.

Proof.

• Suppose that y ∈ F ∩ F⊥ then (y, x) = 0 for all x ∈ F . In particular, (y, y) = 0 which implies that y = 0,
hence, F ∩ F⊥ ⊆ {0}. As F and F⊥ are linear subspaces we have 0 ∈ F ∩ F⊥ and so {0} ⊆ F ∩ F⊥,
meaning F ∩ F⊥ = {0}.

• Let v ∈ H. Then for ṽ ∈ F⊥ we have that

(v − (v − Pv), ṽ − (v − Pv)) = (Pv, ṽ − v + Pv)
= (Pv, Pv − v)
= (v − Pv, 0 − Pv).
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As 0 ∈ F we use the fact that Pv is the projection of v onto F to note that (v−Pv, 0 −Pv) ≤ 0. Hence,
(v − (v − Pv), ṽ − (v − Pv)) ≤ 0 which implies that v − Pv = P⊥v and so v = Pv + P⊥v.

Corollary 8.2.5. Let F be a closed subspace of a Hilbert space H. Then for v ∈ H it follows that

∥v∥2
H = ∥Pv∥2

H +
∥∥P⊥v

∥∥2
H
,

where Pv is the projection of v onto F and P⊥v is the projection of v onto F⊥.

Proof. Note that
(
Pv, P⊥v

)
= 0 as Pv ∈ F and P⊥v ∈ F⊥. Hence,

∥v∥2
H = (v, v)

=
(
Pv + P⊥v, Pv + P⊥v

)
= (Pv, Pv) + 2

(
Pv, P⊥v

)
+
(
P⊥v, P⊥v

)
= ∥Pv∥2

H +
∥∥Pv⊥∥∥2

H
.

Corollary 8.2.6. For every closed and non-empty subspace F of a Hilbert space H, there exists a unique
linear map π : H → F such that

1. ∥π∥H→H = 1,

2. π2 = π, and

3. ker(π) = F⊥.

Proof. For v ∈ H, let π(v) = Pv.
1. Using Corollary 8.2.5 it is clear that ∥v∥H ≥ ∥π(v)∥H . Hence,

∥π∥H→H = sup
v∈H\{0}

∥π(v)∥H
∥v∥H

≤ 1.

However, as for v ∈ F \ {0} we have ∥v∥H = ∥π(v)∥H it follows that ∥π∥H→H = 1.

2. As Pv ∈ F it is clear that P (Pv) = Pv and so π2 = π.

3. If v ∈ F⊥, then π(v) = 0 and so v ∈ ker(π). On the other hand, if π(v) = 0, then v ∈ F⊥ by Proposition
8.2.4.

Exercise 8.2.7. Let F and G be linear subspaces of a Hilbert space H. Prove the following statements.

1. H⊥ = {0} and {0}⊥ = H.

2. F⊥ is a closed linear subspace of H.

3. If F ⊆ G then G⊥ ⊆ F⊥.

4.
(
F⊥)⊥ = F̄ .

5. If F and G are closed, show that the following hold.

(a) F ∩G =
(
F⊥ +G⊥)⊥.
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(b) F⊥ ∩G⊥ = (F +G)⊥.
(c) (F ∩G)⊥ = F⊥ +G⊥.

(d)
(
F⊥ ∩G⊥)⊥ = F +G.

Example 8.2.8. Consider
E =

{
g ∈ L2(0, 1) : g ≥ 0 almost everywhere

}
.

Then for g1, g2 ∈ E and t ∈ [0, 1] we have

tg1(x) + (1 − t)g2(x) ≥ 0

almost everywhere. Moreover, for (gn)n∈N ⊆ E converging to g, there exists a subsequence (gnk
)k∈N which

converges pointwise almost everywhere to g. Therefore, g(x) ≥ 0 almost everywhere as gnk
(x) ≥ 0 almost

everywhere for each k ∈ N. By Theorem 8.2.1, for f ∈ L2(0, 1) there exists a unique projection onto E. More
specifically, considering f̃ ∈ E given by

f̃(x) =
{
f(x) f(x) ≥ 0
0 f(x) < 0,

we note that for g ∈ E we have

(
f̃ − f, f̃ − g

)
=
(∫

{x:f(x)≥0}
+
∫

{x:f(x)<0}

)(
f̃ − f, f̃ − g

)
=
∫

{x:f(x)<0}
fg

≤ 0,

where the inequality follows as f(x) < 0 and g(x) > 0 on the specified domain. Therefore, by the uniqueness
of the projection we deduce that Pf = f̃ . Furthermore, by Proposition 8.2.4 we deduce that

P⊥f(x) =
{

0 f(x) ≥ 0
f(x) f(x) < 0.

8.3 The Dual Space
Observe that for any u ∈ H, the map φu : H → R given by v 7→ (u, v) is in the dual space of H, denoted H∗.
Moreover, using the Cauchy-Schwartz inequality we can show that the map H → H∗ given by u 7→ φu is an
isometry. If dim(H) < ∞, then it follows by arguments involving linear algebra, that any element of H∗ is of the
form φu for some u ∈ H.

Theorem 8.3.1 (Riesz-Frechet Representation Theorem). For any φ ∈ H∗, there exists a u ∈ H such that
φ = φu and ∥φ∥H∗ = ∥u∥H .

Proof. For φ ∈ H∗, let M = φ−1({0}). By the continuity of φ we know that M is a closed subspace. If φ = 0
then M = H, so we assume instead that there exists a g0 ∈ H \ M . Let PM be the projection on M , and let
g1 = PMg0 and g = g0−g1

∥g0−g1∥ . Then g is such that ∥g∥ = 1 and (g, v) = 0 for all v ∈ M . In particular, this means
that g ̸∈ M which implies that φ(g) ̸= 0. For u ∈ H we have φ(u−λg) = 0 for λ = φ(u)

φ(g) . Thus, (g, u−λg) = 0
which implies that

(g, u) = φ(u)
φ(g) ,

so that φ(u) = φ(g)(g, u). Therefore, φ = φφ(g)g.
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Remark 8.3.2. As u 7→ φu is an isometry it is injective. As Theorem 8.3.1 shows that u 7→ φu is surjective,
we have that H = H∗ for H a Hilbert space. As (Lp)′ = Lp

′ by Theorem 6.4.2, it follows that Lp can only be
a Hilbert space if p = p′, which is only true for p = 2.

Theorem 8.3.3 (Lax-Milgram). Let H be a real Hilbert space. Assume a : H × H → R is such that the
following hold.

1. It is bilinear, that is a(x, ·) and a(·, y) are linear for all x, y ∈ H.

2. It is continuous, that is |a(x, y)| ≤ C∥x∥∥y∥ for all x, y ∈ H.

3. It is coercive, that is |a(x, x)| ≥ c∥x∥2 for all x ∈ H.

Then for f ∈ H there exists a unique u such that

a(u, v) = ⟨f, v⟩

for all v ∈ H.

Proof. Step 1: The linear operator associated with a.
For fixed u, we look at v 7→ a(u, v) ∈ H∗. By Theorem 8.3.1 there exists A(u) ∈ H such that

a(u, v) = ⟨A(u), v⟩

for every v ∈ H. Observe that A : H → H is linear. Moreover, A is bounded as

|⟨A(u), v⟩| = |a(u, v)| ≤ C∥u∥∥v∥

and so continuous. Furthermore, A is non-degenerate as

∥u∥∥Au∥ ≥ ⟨Au, u⟩ = a(u, u) ≥ c∥u∥2

and so ∥Au∥ ≥ c∥u∥.
Step 2: Solving Au = f .

1. A is injective as ∥Au∥ ≥ c∥u∥.

2. Suppose (gn)n∈N ⊆ Ran(A) converges to g in H. We know that there exists a un ∈ H such that
A(un) = gn. In particular, A(un − um) = gn − gm. Hence, by coercivity it follows that

∥un − um∥ ≤ 1
c

∥gn − gm∥.

Therefore, as (gn)n∈N converges it is Cauchy and so (un)n∈N ⊆ H is Cauchy. Using completeness it follows
that un → u in H. Passing to the limit we deduce that A(un) = gn → g = A(u) where A(u) ∈ Ran(A).
Thus we conclude that Ran(A) is closed.

3. Suppose that Ran(A) is not dense. Then its orthogonal complement is non-zero. That is, there exists a
v ̸= 0 such that ⟨A(u), v⟩ = 0 for all u ∈ H. In particular, choosing u = v we obtain

0 = ⟨Av, v⟩ ≥ c∥v∥2

which is a contradiction. Therefore, Ran(A) is dense.

Using statements 2 and 3 it follows that Ran(A) = H, meaning A is surjective. Combining this with statement
1 we deduce that A is bijective and so a unique solution u ∈ H to A(u) = f exists.
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Remark 8.3.4.

1. Note that ⟨f, u⟩ = φ(u) for some φ ∈ H∗. So taking a(u, v) = ⟨u, v⟩ the problem solved by Theorem
8.3.3 is equivalent to the problem solved by Theorem 8.3.1. Hence, one can view Theorem 8.3.3 as an
extension of Theorem 8.3.1.

2. Note that a is not symmetric and so in general not an inner product.

Theorem 8.3.3 has applications in partial differential equations. For a domain Ω ⊆ Rd and f ∈ C0
∞, the Dirichlet

problem is to solve {
−∆u = f in Ω
u = 0 on ∂Ω.

Taking the inner product of the first equation with φ ∈ C∞
c (Ω) yields

−
∫

Ω
(∆u) · φdx =

∫
Ω
f · φdx.

Integrating by parts gives ∫
Ω

∇u · ∇φdx =
∫

Ω
f · φdx (8.3.1)

as φ vanishes on ∂Ω. Note that the right-hand of (8.3.1) is the inner product of f and φ on L2(Ω) and the
left-hand side is of the form a(u, φ). The idea now is to use Theorem 8.3.3 to solve the Dirichlet problem. To do
this H needs to be chosen such that a satisfies the conditions of Theorem 8.3.3.

8.4 Hilbert Sums and Orthonormal Bases
If H is a finite-dimensional Hilbert space, there exists a bases (en)dn=1 ⊆ H such that for any x ∈ H we can write

x =
d∑

n=1
xnen

for some xn ∈ R. In particular, if (en)dn=1 is an orthonormal basis it follows that

∥x∥2 =
d∑

n=1
∥xn∥2. (8.4.1)

We would like to generalise the idea of a basis for infinite dimensional Hilbert spaces. Using the relation (8.4.1),
which holds for orthonormal bases, this generalisation amounts to understanding the convergence of sums.

Definition 8.4.1. Let (En)n∈N be a sequence of closed subspaces of a Hilbert space H. Then H is a Hilbert
sum of the (En)n∈N, written H =

⊕∞
n=1 En, if the following hold.

1. The En are mutually orthogonal. Namely, (x, y) = 0 if x ∈ En and y ∈ Em for n ̸= m.

2. The subspace span (
⋃∞
n=1 En) is dense in H.

Remark 8.4.2. The span of a set of vectors refers to all finite linear combinations of the vectors.

Lemma 8.4.3. Let (vn)n∈N ⊆ H be such that (vn, vm) = 0 for n ̸= m and
∑∞
n=1 ∥vn∥2 < ∞. Then
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Sn =
∑n
k=1 vk converges, to S say. Furthermore,

∥S∥2 =
∞∑
k=1

∥vk∥2.

Proof. For n < m, using (8.4.1) we have that

∥Sn − Sm∥2 =
m∑

k=n+1
∥vk∥2. (8.4.2)

Since,
∑∞
k=1 ∥vk∥2 < ∞, it follows from (8.4.2) that (Sn)n∈N ⊆ H is Cauchy. Therefore, by completeness

(Sn)n∈N has a limit, say S. Furthermore, using (8.4.1) we know that ∥Sn∥2 =
∑n
k=1 ∥vk∥2 and so passing to

the limit we deduce that
∥S∥2 =

∞∑
k=1

∥vk∥2.

Theorem 8.4.4. Assume that H =
⊕∞

n=1 En is a Hilbert sum of the closed subspaces (En)n∈N. For u ∈ H,
let un = PEn

u and Sn =
∑n
k=1 uk. Then Sn → u as n → ∞ and

∞∑
n=1

∥un∥2 = ∥u∥2. (8.4.3)

Proof. Step 1: Show that the limit exists.
On the one hand,

∥Sn∥2 =
n∑
k=1

∥uk∥2

using (8.4.1). On the other hand, as un = PEn
u we have that

(u, un) = ∥un∥2

which implies that (u, Sn) =
∑n
k=1 ∥uk∥2 using the orthogonality of the E1, . . . , En. Therefore, from the

Cauchy-Schwartz inequality it follows that

∥Sn∥2 = (u, Sn) ≤ ∥u∥∥Sn∥,

which implies that (
n∑
k=1

∥uk∥2

) 1
2

= ∥Sn∥ ≤ ∥u∥.

Passing to the limit it follows that
∞∑
k=1

∥uk∥2 ≤ ∥u∥2 < ∞.

Hence, the conditions of Lemma 8.4.3 are satisfied and thus we deduce that Sn converges to S with

∥S∥2 =
∞∑
k=1

∥uk∥2.

Step 2: Identification of the limit.
Note that (u−Sn, v) = 0 for all v ∈ Em where m ≤ n, by the characterisation of the projection. Letting n → ∞
it follows that (u − S, v) = 0 for all v ∈ Em where m ∈ N. By linearity it follows that (u − S, v) = 0 for all
v ∈ span(

⋃
m∈NEm). Moreover, by the density of span

(⋃
m∈NEm

)
it follows that (u− S, v) = 0 for all v ∈ H.

Therefore, u = S.
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Remark 8.4.5.

1. Equation (8.4.3) is often referred to as the Bessel-Parseval identity.

2. The vector Sn in Theorem 8.4.4 is the projection of u onto span (
⋃n
k=1 En) and so the convergence

Sn → u is expected from statement 2 of Definition 8.4.1. Moreover, (8.4.1) is reasonable due to the
orthogonality assumptions we impose on the (En)n∈N.

3. Henceforth, we write
∑∞
n=1 un = u to mean limn→∞ Sn = u.

Definition 8.4.6. A sequence (en)n∈N ⊆ H is an orthonormal basis if the following hold.

1. (en, em) = δnm.

2. span((en)n∈N) = H.

Remark 8.4.7. An orthonormal basis of a Hilbert is sometimes referred to as a Hilbert basis.

Exercise 8.4.8. Let H be a Hilbert space and let V := span(v) for v ∈ H \ {0}. Show that V is a closed
linear subspace of H. Moreover, for u ∈ H show that PV u = (u,v)

∥v∥2 v.

Corollary 8.4.9. If (en)n∈N ⊆ H is an orthonormal basis, then for all u ∈ H we have

u =
∞∑
n=1

(u, en)en

and

∥u∥2 =
∞∑
n=1

|(u, en)|2 .

Proof. Consider the subspaces (En)n∈N of H given by En = span(en). By Exercise 8.4.8 the subspace En is
closed and un := PEnu = (u, en)en. Moreover, if x ∈ En and y ∈ Em, for n ̸= m, then x = λen and y = µem.
Using the orthogonality of (en)n∈N it follows that that

⟨x, y⟩ = λµ⟨en, em⟩ = 0.

Similarly, as (en)n∈N ⊆
⋃
n∈NEn we have that

H = span ((en)n∈N) ⊆ span
(⋃
n∈N

En

)
⊆ H,

which implies that span
(⋃

n∈NEn
)

= H. Therefore, we can apply Theorem 8.4.4 to conclude that

u =
∞∑
n=1

(u, en)en

and
∥u∥2 =

∞∑
n=1

∥(u, en)en∥2 =
∞∑
n=1

|(u, en)|2.
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Definition 8.4.10. A Hilbert space H is separable if it admits a countably dense subset.

Theorem 8.4.11. A Hilbert space H is separable if and only if H has an orthonormal basis.

Proof. (⇐). Let (en)n∈N be an orthonormal basis of H and consider the subset

F =
{

n∑
k=1

rkek : rk ∈ Q, n ∈ N

}
⊆ H.

Let u ∈ H and ϵ > 0. By Corollary 8.4.9 we know that u =
∑∞
k=1(u, ek)ek and

∞∑
k=1

|(u, ek)|2 = ∥u∥2 < ∞.

Hence, we can find an N ∈ N such that
∞∑

k=N+1
|(u, ek)|2 < ϵ

2 .

Moreover, for k ≤ N we can find rk ∈ Q such that |(u, en) − rk|2 < ϵ
2N . Let

ũ =
N∑
k=1

rkek ∈ F,

then

∥u− ũ∥2 =

∥∥∥∥∥
∞∑
k=1

(u, ek)ek −
N∑
k=1

rkek

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
k=1

((u, ek) − rk) ek +
∞∑

k=N+1
(u, ek)ek

∥∥∥∥∥
2

Cor 8.4.9=
N∑
k=1

|(u, ek) − rk|2 +
∞∑

k=N+1
|(u, ek)|2

<

N∑
k=1

ϵ

2N + ϵ

2

= ϵ.

Therefore, F is a countable dense subset of H.
(⇒). Let (un)n∈N ⊆ H be a countably dense subset. Construct the sequence (en)n∈N in the following way.

1. E1 := span(u1), and let e1 = u1
∥u1∥ .

2. E2 := span(u1, u2) and choose e2 such that {e1, e2} is an orthonormal basis for E2.

• Note that we assume that u1 and u2 are not aligned. We label the subset (un)n∈N in this way as the
subset is countably dense.

3. For general k ∈ N, let Ek := span(u1, . . . , uk) and choose ek such that {e1, . . . , ek} is an orthonormal
basis for Ek.

• Again we can assume that the u1, . . . , uk are not aligned by the fact that (un)n∈N is countably dense.

The sequence (en)n∈N is an orthonormal basis of H.
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Remark 8.4.12. Let H and H ′ be separable real Hilbert spaces. Then orthonormal bases (en)n∈N ⊆ H and
(e′
n)n∈N ⊆ H ′ exist. Hence, we can consider the map J : H → H ′ given by

∞∑
n=1

xnen 7→
∞∑
n=1

xne
′
n.

This is an isometric isomorphism. In particular, fix H = ℓ2 and consider the orthonormal basis (en)n∈N where

en = (0, . . . , 1︸ ︷︷ ︸
n

, 0, . . . ).

Then the above arguments imply that any separable real Hilbert space has the same structure as ℓ2. One
may think then that we can characterise all properties of general Hilbert spaces by investigating ℓ2. After
all the isometric isomorphism captures all the structural information regarding the inner product and norm.
However, certain interesting Hilbert spaces have additional structures that are not captured within this isometric
isomorphism.

Example 8.4.13. Let H = L2(0, 2π) be a complex Hilbert space and consider en(x) = 1√
2π e

inx for n ∈ N.
Then

(en, em) = 1
2π

∫ 2π

0
einxeimx dx = δnm.

With additional computations one can show that span((en)n∈N) = H. With this it follows that (en)n∈N ⊆ H
is an orthonormal basis of H.

8.5 Linear Operators
8.5.1 Adjoint Operators

Consider the finite-dimensional real Hilbert space H = Rd. Let x, y ∈ Rd and M ∈ Rd×d. Then

⟨Mx, y⟩ =
〈
x,M⊤y

〉
.

For H = L2 (Rd) consider
(Lu)(x) =

∫
K(x, y)u(y) dy,

where K(x, y) is sufficiently smooth and decays fast enough such that the map u 7→ Lu is well-defined. Then
under sufficient assumptions, we can write

⟨Lu, v⟩ =
∫ (∫

K(x, y)u(y) dy
)
u(x) dx

=
∫ (∫

K(x, y)u(x) dx
)
u(y) dy

= ⟨u, L∗v⟩ ,

where
(L∗u)(x) =

∫
K(y, x)u(y) dy.

Proposition 8.5.1. Let H be a real Hilbert space and consider T ∈ L(H). Then there exists a unique
T ∗ ∈ L(H) such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩
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for all x, y ∈ H with ∥T∥L(H) = ∥T ∗∥L(H)

Proof. For fixed y ∈ H let φy : H → R be given by x 7→ ⟨Tx, y⟩. Note that φy ∈ H∗, and so by Theorem 8.3.1
there exists a uy ∈ H such that ⟨Tx, y⟩ = ⟨x, uy⟩ for all x ∈ H with ∥φy∥H∗ = ∥uy∥H . Let T ∗ : H → H be
given by y 7→ uy, then

⟨Tx, y⟩ = ⟨x, uy⟩ = ⟨x, T ∗y⟩

for all x, y ∈ H. For y1, y2 ∈ H, λ ∈ R and any x ∈ H we have that

⟨x, T ∗(y1 + λy2)⟩ = ⟨Tx, y1 + λy2⟩
= ⟨Tx, y1⟩ + λ⟨Tx, y2⟩
= ⟨x, λT ∗y1⟩ + ⟨x, λT ∗y2⟩
= ⟨x, T ∗y1 + λT ∗y2⟩.

As this holds for all x ∈ H it follows that T ∗(y1 + y2) = T ∗y1 +λT ∗y2 meaning the operator T ∗ is linear. Recall
∥φy∥H∗ = ∥T ∗y∥H , where

∥φy∥H∗ = sup
x∈H\{0}

|⟨Tx, y⟩|
∥x∥H

≤ sup
x∈H\{0}

∥Tx∥H∥y∥H
∥x∥H

Hence,

∥T ∗∥L(H) = sup
y∈H\{0}

∥T ∗y∥H
∥y∥H

= sup
y∈H\{0}

∥φy∥H∗

∥y∥H

≤ sup
y∈H\{0}

sup
x∈H\{0}

∥Tx∥H
∥x∥H

= sup
x∈H\{0}

∥Tx∥H
∥x∥H

= ∥T∥L(H).

As T ∈ L(H) it is bounded and so as T ∗ is linear it follows that T ∗ ∈ L(H). Through similar computations one
deduces that ∥T∥L(H) ≤ ∥T ∗∥L(H) to conclude that ∥T∥L(H) = ∥T ∗∥L(H).

Remark 8.5.2. The operator T ∗ of Proposition 8.5.1 is known as the adjoint of T .

Definition 8.5.3. An operator T is self-adjoint if T ∗ = T .

From our previous discussions, it follows that operators in finite-dimensional real Hilbert spaces are self-adjoint if
the corresponding matrices are symmetric. Similarly, a kernel operator of the form

(Tf)(x) =
∫
K(x, y)f(y) dy

is self-adjoint if K(x, y) = K(y, x).

Theorem 8.5.4 (Schauder). An operator T ∈ L(H) is compact if and only if its adjoint, T ∗, is compact.
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Proposition 8.5.5. Let T ∈ L(H) be a self-adjoint operator. Then

∥T∥L(H) = sup
∥x∥=1

|⟨Tx, x⟩| .

Proof. Let M = sup∥x∥=1 |⟨Tx, x⟩|. Then by the Cauchy-Schwartz inequality it follows that

M ≤ sup
∥x∥=1

∥Tx∥H∥x∥H = sup
∥x∥=1

∥Tx∥H = ∥T∥L(H).

Now consider x, y ∈ H with ∥x∥ = ∥y∥ = 1. Using the self-adjoint property of T note that

⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩ = (⟨Tx, x⟩ + ⟨Tx, y⟩ + ⟨Ty, x⟩ + ⟨Ty, y⟩)
− (⟨Tx, x⟩ − ⟨Tx, y⟩ − ⟨Ty, x⟩ + ⟨Ty, y⟩)

= 4⟨Tx, y⟩.

Therefore,

|⟨Tx, y⟩| ≤ M∥x+ y∥2 +M∥x− y∥2

4

= M

4
(
∥x+ y∥2 + ∥x− y∥2)

(1)= M

2
(
∥x∥2 + ∥y∥2)

= M,

where (1) in application of the parallelogram law. Setting y = Tx
∥Tx∥ it follows that ∥Tx∥ ≤ M , and so

∥T∥L(H) = sup
∥x∥=1

∥Tx∥ ≤ M.

Therefore, we conclude that
∥T∥L(H) = M = sup

∥x∥=1
|⟨Tx, x⟩|.

8.5.2 Fredholm’s Theory

Fredholm’s theory aims to solve problems of the form

f(x) −
∫
T (x, y)f(y) dy = h(x),

where f is unknown, h is given and T is an operator. The term h is often referred to as the inhomogeneous
component of the problem. To make progress we focus on the case when T is compact and reduce the problem
to one of the form

(Id − T )f = h. (8.5.1)
Finding solutions to (8.5.1) is equivalent to determining Ran(Id − T ).

Theorem 8.5.6 (Fredholm’s Alternative). Let T ∈ K(H). Then the following hold.

1. ker(Id − T ) is finite-dimensional.

2. Ran(Id − T ) is closed, in particular, Ran(Id − T ) = ker (Id − T ∗)⊥.

3. ker(Id − T ) = {0} if and only if Ran(Id − T ) = H.

4. dim (ker(Id − T )) = dim (ker (Id − T ∗)).
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Proof.

1. Let E = ker(Id − T ) = {z : Tz = z}. Note that E is closed by the continuity of T . Furthermore,

T
(
B̄H
) (1)

⊇ T
(
B̄E
) (2)= B̄E ,

where (1) follows as B̄H ⊇ B̄E and (2) follows as T is the identity of E. By assumption T is compact and
so T

(
B̄H
)

is compact. So as B̄E is closed it must also be compact. However, by Theorem 7.1.3 we know
that B̄E is only compact if it is of finite dimension.

2. Let (fn)n∈N ⊆ Ran(Id − T ), with fn = (Id − T )un, be a sequence converging to f in H.
Step 1: Project un onto ker(Id − T )⊥.
Let dn = dist(un, ker(Id − T )). By statement 1 we know that ker(Id − T ) is finite-dimensional and thus
closed, moreover, it is a subspace and hence convex. Therefore, by Theorem 8.2.1 we can write

un = vn + (un − vn)

where vn ∈ ker(Id − T ) and un − vn ∈ ker(Id − T )⊥. Note that ∥un − vn∥ = dn by Corollary 8.2.5.
Step 2: Show that (dn)n∈N is bounded.
For contradiction suppose that, up to subsequences, we have dn → ∞. Let

wn = un − vn
∥un − vn∥

= un − vn
dn

so that ∥wn∥ = 1. As vn ∈ ker(Id − T ) it follows that (Id − T )(un − vn) = fn so we deduce that

(Id − T )wn = fn
dn

n→∞−→ 0 (8.5.2)

By compactness of T we can assume that Twn → z, up to subsequences. Hence, by (8.5.2) it follows that
wn → z with z ∈ ker(Id − T ). However, this is a contradiction as wn ∈ ker(Id − T )⊥ which is a closed
subspace by statement 2 of Exercise 8.2.7.
Step 3: Show that f ∈ Ran(Id − T ), meaning that Ran(Id − T ) closed.
From step 2 we know that (un− vn)n∈N is a bounded sequence, and so using the compactness of T we can
assume that (T (un − vn))n∈N converges to l, up to subsequences. Hence,

un − vn = (Id − T )(un − vn) + T (un − vn) → f + l := g.

Consequently, we can use the continuity of Id − T to deduce that

(Id − T )(un − vn) → (Id − T )g.

On the other hand, we know that

(Id − T )(un − vn) = (Id − T )un → f,

and so we see that (Id − T )g = f .
Step 4: Show that Ran(Id − T ) = ker (Id − T ∗)⊥.
(⊆). Let y = (Id − T )x ∈ Ran(Id − T ). As (Id − T )∗ = Id − T ∗, for z ∈ ker(Id − T ∗) we have

⟨y, z⟩ = ⟨(Id − T )x, z⟩ = ⟨x, (Id − T ∗) z⟩ = 0.

Therefore, Ran(Id − T ) ⊆ ker (Id − T ∗)⊥.
(⊇). Assume that ker (Id − T ∗)⊥ \Ran(Id−T ) ̸= {0}. Let x ∈ ker (Id − T ∗)⊥ \Ran(Id−T ) be non-zero.
Since Ran(Id−T ) is closed, the orthogonal projection on Ran(Id−T ) is well-defined as it is also a subspace
and so convex. Let

x = Px+ (x− Px)
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where x ∈ Ran(Id −T ) and (x−Px) ∈ Ran(Id −T )⊥. By assumption we know that x ∈ Ker(Id −T ∗)⊥,
and as Ran(Id−T ) ⊆ (ker(Id−T ∗)⊥ we know that Px ∈ ker(Id−T ∗)⊥. Therefore, x−Px ∈ ker(Id−T ∗)⊥

as it is a linear subspace. It follows that y := x−Px ∈ Ran(Id−T )⊥ ∩ker(Id−T ∗)⊥. Where we also note
that y ̸= 0 as x ̸∈ Ran(Id − T ) by assumption. Using that y ∈ Ran(Id − T )⊥ it follows that for all c ∈ H
we have ⟨y, (Id − T )c⟩ = 0 which happens if and only if ⟨(Id − T ∗)y, c⟩ = 0 for all c ∈ H. Consequently,
T ∗y = 0 and y ∈ ker(Id − T ∗), but we know y ∈ ker(Id − T ∗)⊥. Thus y = 0, which is a contradiction.

3. Suppose that ker(Id − T ) = {0} but Ran(Id − T ) ̸= H. Let Yn = Ran ((Id − T )n) for n ∈ N. Note that
the set of inclusions

H = Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . (8.5.3)
are proper due to our assumption that Id − T is injective but not surjective. Moreover, note that

(Id − T )n = Id −
n∑
k=1

(
n

k

)
T k =: Id − S

where S is a compact operator as T is compact. Therefore, applying statement 2 to Id−S it follows that Yn
is closed for every n ∈ N. Applying Theorem 6.3.3 to Yn+1 ⊆ Yn, we find an element φfn ∈ L(Yn,R) given
by φfn(x) = ⟨fn, x⟩ such that φfn(x) = 0 for all Yn+1 and ∥φfn∥L(Yn,R) = 1. Consequently, fn ∈ Y ⊥

n and
∥fn∥H = 1. By Theorem 6.2.5 we can extend φfn

to L(H,R). For n > m observe that

∥T ∗fn − T ∗fm∥ = ∥T ∗(fn − fm)∥
= ∥(Id − T ∗)(fn − fm) + (fm − fn)∥
≥ sup
x∈B̄Yn

|⟨(Id − T ∗)(fn − fm) + (fm − fn), x⟩|

= sup
x∈B̄Yn

|⟨fn − fm, (Id − T )x⟩ + ⟨fm − fn, x⟩| .

As fn − fm ∈ Y ⊥
n+1 and (Id − T )x ∈ Yn+1 it follows that ⟨fn − fm, (Id − T )x⟩=0. Similarly, as n > m we

have fm ∈ Y ⊥
n so that ⟨fm, x⟩ = 0 as x ∈ Yn. Hence,

∥T ∗fn − T ∗fm∥ ≥ sup
x∈B̄Yn

|⟨fn, x⟩| = 1.

Therefore, (T ∗fn) contains no convergent subsequences and so cannot be compact. This contradicts
Theorem 8.5.4 as T is compact. So it must be the case that the inclusions (8.5.3) are not proper meaning
Id − T is surjective. Conversely, if we assume that Ran(Id − T ) = H, then using statement 2 it follows
that ker(Id − T ∗) = {0}. So from the arguments we have just made it follows that Ran(Id − T ∗) = H,
and so we can apply statement 2 again to conclude that ker(Id − T ) = {0}.

4. Consider the following quantities.

• α = dim(ker(Id − T )).
• β = dim (H/Ran(Id − T )).
• α∗ = dim(ker(Id − T ∗)).
• β∗ = dim (H/Ran(Id − T ∗))

By statement 1 we know that α, α∗ < ∞. Also note that by statement 2 we have that Ran(Id − T ) is
closed with Ran(Id − T ) = ker(Id − T ∗)⊥. As ker(Id − T ∗) is finite-dimensional and thus closed it follows
that Ran(Id − T )⊥ = ker(Id − T ∗). Therefore, H = Ran(Id − T ) ⊕ ker(Id − T ∗). Consequently, one can
show that H/Ran(Id − T ) ⊆ ker(Id − T ∗) which implies that β ≤ α∗. Similarly, β∗ ≤ α. Now suppose
that α > β. Then we can write

H = ker(Id − T ) ⊕ E = Ran(Id − T ) ⊕ F

for E and F closed subspaces of H with dim(F ) = β. For x ∈ H write x = x1 + x2 for x1 ∈ ker(Id − T )
and x2 ∈ E. Let π : H → ker(Id − T ) be the continuous map given by πx = x1. As we assume α > β,
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it follows that there is a surjective linear map ϕ : ker(Id − T ) → F such that there exists x0 ̸= 0 with
ϕx0 = 0. Note that ϕ is a finite range operator and so compact. Hence, the operator Φ = T +ϕ ◦π is also
compact as it is bounded. Moreover,

(Φ − Id)(E) = Ran(Id − T )

and
(Φ − Id)(ker(Id − T )) = ϕ(ker(Id − T )) = F.

Therefore,
Ran(Φ − Id) ⊇ Ran(Id − T ) + F = H.

However, this contradicts statement 3 as ker(Φ − Id) ̸= {0}. Therefore, α ≤ β which implies that α ≤ α∗.
Similarly, one shows that α∗ ≤ α to deduce that α = α∗.

Remark 8.5.7.

1. We can explore each of the components of Theorem 8.5.6 in the context of finite-dimensional real Hilbert
spaces. Statement 1 is meaningless in finite dimensions. Similarly, statement 2 is meaningless as any
finite-dimensional vector space is closed. The equality of statement 2 follows from standard manipulations
in linear algebra. Let y = (Id − T )x ∈ Ran(Id − T ) and z ∈ ker (Id − T ∗). Then as,

(Id − T )∗ = (Id − T )⊤ = Id − T⊤ = Id − T ∗

we have
⟨y, z⟩ = ⟨(Id − T )x, z⟩ = ⟨x, (Id − T ∗) z⟩ = 0.

Therefore, y ∈ ker (Id − T ∗)⊥ meaning Ran(Id − T ) ⊆ ker (Id − T ∗)⊥. To argue for equality one uses
the rank-nullity theorem. In our setting, statement 3 says that the operator Id − T is injective if and
only if it is surjective. Statement 4 is the fundamental theorem of linear algebra. Consequently, we see
that Theorem 8.5.6 establishes conditions for when standard properties familiar from finite-dimensional
operators also hold for infinite-dimensional operators.

2. As Theorem 8.5.6 gives a correspondence between Ran(Id−T ) = ker (Id − T ∗)⊥, it reduces the problem
of determining Ran(Id −T ) to a finite set of orthogonality conditions as Theorem 8.5.6 also tells us that
ker (Id − T ∗) finite-dimensional.

3. The alternative nature of Theorem 8.5.6 refers to the fact that either ker(Id −T ) ̸= {0} so the homoge-
neous formulation of (8.5.1) has a non-zero solution. Or, ker(Id − T ) = {0} so that Ran(Id − T ) = H
meaning the inhomogeneous variation of (8.5.1) always has a solution.

8.5.3 Spectral Theory

In finite dimensions linear operators are represented by matrices and there exists a concise understanding of the
properties of this matrix when the operator is self-adjoint, that is when the matrix is symmetric. We will now try
and generalise such a result to the infinite-dimensional case. However, we will only be able to consider compact
self-adjoint operators. Removing the compactness assumptions leads to a result attributed to von Neumann that
is beyond our scope.

Theorem 8.5.8 (The Spectral Theorem in Finite Dimensions). Let H be a finite-dimensional real Hilbert
space. Consider M ∈ L(H) a symmetric matrix, then there exists an orthonormal basis (en)dn=1 ⊆ H such
that

Mx =
d∑

n=1
λn⟨x, en⟩en,
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where the λn are the eigenvalues of M and en are the corresponding eigenvectors.

When we transition to infinite dimensions terms become more nuanced. In the finite-dimensional case let M :
H → H be an operator. Then the spectrum of M can be formulated in different ways.

1. The union of the eigenvalues, which are the λ such that ker(M − λId) ̸= {0}.

2. The union of λ such that M − λId is not invertible.

In infinite dimensions, these notions are no longer equivalent and require use to make a distinction.

Definition 8.5.9. Let T ∈ L(H) be a self-adjoint operator.

1. λ is an eigenvalue if there exists an x ∈ H \ {0} such that (T − λId)x = 0.

2. λ is in the spectrum if T − λId : H → H is not invertible.

3. The resolvent set is the complement of the spectrum.

Example 8.5.10. To see why we require Definition 8.5.9 to distinguish these notions in infinite dimensions
consider the following. Let T : L2(0, 1) → L2(0, 1) be given by f 7→ mf . Let m ∈ L∞(0, 1) so that
T ∈ L

(
L2(0, 1)

)
. Moreover, suppose the measure of m−1({y}) is zero for any y.

• T has no eigenvalues. Suppose T has an eigenvalue λ then (m(x) − λ)f(x) = 0 which cannot be the
case for f ∈ L2(0, 1) unless f = 0.

• The spectrum of f is m([0, 1]). To see this observe that

(T − λId)(x) = (m− λ)(x)

is invertible with inverse f 7→ f
m−λ which is in L

(
L2(0, 1)

)
if and only if λ ̸∈ m([0, 1]).

Thus in infinite dimensions, there exists operators whose eigenvalues and spectrum do not coincide.

Proposition 8.5.11. Let H be an infinite-dimensional Hilbert space. Let T ∈ L(H) be a self-adjoint compact
operator. Then either ±∥T∥L(H) is an eigenvalue of T .

Proof. Let λ = ±∥T∥L(H). Then using Proposition 8.5.5, there exists a sequence (xn)n∈N ⊆ H with ∥xn∥H = 1
such that ⟨Txn, xn⟩ → λ. Hence,

0 ≤ ∥Txn − λxn∥2
H

= ∥Txn∥2
H + λ2∥xn∥2 − 2λ⟨Txn, xn⟩

≤ λ2 + λ2 − 2λ⟨Txn, xn⟩
n→∞−→ 0.

Using the compactness of T we also know that there is a subsequence (xnk
)k∈N ⊆ (xn)n∈N such that Txnk

k→∞−→ x
for some x ∈ B̄H . We note x ̸= 0 as ∥xnk

∥H = 1. Therefore, as Txnk
− λxnk

→ 0 it follows that λxnk
→ x,

and so
Tx = lim

k→∞
T (λxnk

) = λ lim
k→∞

Txnk
= λx.

We conclude that λ is an eigenvalue of T .

Theorem 8.5.12. For an infinite-dimensional separable Hilbert space H, let T ∈ L(H) be a compact self-
adjoint operator. Then the following hold.
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1. Zero is in the spectrum of T .

2. If λ is in the spectrum and non-zero then λ is an eigenvalue.

3. The eigenvalues can be ordered as a sequence λn → 0.

4. The eigenspaces ker(T − λnId) = En are finite-dimensional.

5.
⊕

λn ̸=0 En ⊕ ker(T ) = H.

Proof.

1. Suppose that T were invertible with inverse T−1. As T−1 ∈ L(H) it is bounded and so T−1 (B̄H) ⊆ KB̄H

for some K > 0. Therefore,

B̄H = T
(
T−1 (B̄H)) = T

(
KB̄H

)
= KT

(
B̄H
)
,

which implies that
B̄H ⊆ KT

(
B̄H
)

(8.5.4)

As T is compact we know that T
(
B̄H
)

is compact. Thus, as B̄H is closed, (8.5.4) implies that B̄H
is compact. However, this contradicts Theorem 7.1.3 as H is infinite-dimensional. Therefore, T is not
invertible and so zero is in the spectrum of T .

2. For λ ̸= 0 the operator 1
λT is compact. Hence, using Theorem 8.5.6 we have that the operator T − λId =

λ
( 1
λT − Id

)
is invertible if and only if it is injective. Hence, if λ is in the spectrum it follows that

ker(T − λId) ̸= {0}. Which implies that there exists an x ∈ H \ {0} such that (T − λId)x = 0, meaning
λ is an eigenvalue.

3. Suppose that λn ̸→ 0. Then we can extract a subsequence (λnk
)k∈N such that |λnk

| ≥ ϵ for some ϵ > 0.
Moreover, as (Tenk

)k∈N ⊆ T
(
B̄H
)
, and T is compact, it follows that (Tenk

)k∈N admits a convergent
subsequence. In particular, the subsequence is Cauchy. For simplicity, we will also denote this subsequence
(Tenk

)k∈N. However, ∥∥Tenk
− Tenk′

∥∥ =
∥∥λnk

enk
− λnk′ enk′

∥∥
(1)=
√

|λnk
|2 +

∣∣λnk′

∣∣2
≥

√
2ϵ2

=
√

2ϵ,

where (1) is an application of Parseval’s identity. This contradicts the (Tenk
)k∈N being Cauchy, and so it

must be the case that λn → 0.

4. Note that dim(ker(T−λnId)) = dim
(

ker
(

1
λn
T − Id

))
. As 1

λn
T is also compact it follows from statement

1 of Theorem 8.5.6 that dim(ker(T − λnId)) is finite-dimensional.

5. Let xn ∈ En \ {0} and xm ∈ Em \ {0} for n ̸= m, so that λn ̸= λm. Then using the self-adjoint property
of T it follows that

λn⟨xn, xm⟩ = ⟨Txn, xm⟩ = ⟨xn, Txm⟩ = λm⟨xn, xm⟩.

Hence,
(λn − λm)⟨xn, xm⟩ = 0

which implies that ⟨xn, xm⟩ = 0 as λn − λm ̸= 0. Similarly, for x ∈ ker(T ) \ {0} and xn ∈ En \ {0} we
have

0 = ⟨Tx, xn⟩ = ⟨x, Txn⟩ = λn⟨x, xn⟩.

So that ⟨x, xn⟩ = 0 as λn ̸= 0. Now let x ∈ H. As E1 is a closed linear subspace, the projection of x
onto E1 is well-defined. In particular, we write x = x1 + x̃1 for x1 ∈ E1 and x̃1 ∈ E⊥

1 . By Theorem
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8.5.6 we know that E⊥
1 = Ran(T − λ1Id) is a closed linear subspace, which means that it is also a Hilbert

space that is separable as H is separable. Let T2 = T |Ran(T−λ1Id). As ker(T − λnId) ⊆ Ran(T − λ1Id)
for all n ≥ 2 it follows that λn for n ≥ 2 is in the spectrum of T2. Moreover, λ1 is not in the spectrum
of T2 as T2 − λ1Id is invertible by statement 3 of Theorem 8.5.6. From Proposition 8.5.11 we know that
∥T2∥L(H) = |λ2|, as we have assumed the ordering of statement 3. Similarly to before, we can consider
the projection of x̃1 ∈ Ran(T − λ1Id) onto E2 and write x = x1 + x2 + x̃2 where x2 ∈ E2 and x̃2 ∈ E⊥

2 .
Then we can let T3 = T2|Ran(T−λ2Id), noting that ∥T3∥L(H) = |λ3| by Proposition 8.5.11.

• If ∥Tn+1∥L(H) = 0 for some n ∈ N, it follows that x =
∑n
k=1 xk + x̃n where x̃n ∈ ker(T ). Therefore,

x ∈ span
(
ker(T ) ∪

⋃
n∈NEn

)
.

• If ∥Tn+1∥L(H) > 0 for all n ∈ N we have∥∥∥∥∥Tx− T

(
n∑
k=1

xn

)∥∥∥∥∥
H

= ∥T x̃n∥H

= ∥Tn+1x̃n∥H
≤ ∥Tn+1∥L(H)∥x̃n∥
≤ |λn+1|∥x∥H ,

where the right-hand side tends to zero as n → ∞. It follows that span
(
ker(T ) ∪

⋃
n∈NEn

)
is dense

in H.

Therefore, the conditions of Definition 8.4.1 are satisfied and so H =
⊕

λn ̸=0 En ⊕ ker(T ).

Remark 8.5.13.

1. The sequence in statement 3 of Theorem 8.5.12 may be set to be eventually zero if there are only finitely
many eigenvalues of T .

2. By Theorem 8.5.12, if T is compact then we can represent

Tx =
∑
λn ̸=0

λn⟨x, en⟩en

for en ∈ En.

8.6 Solution to Exercises
Exercise 8.2.7

Solution.

1. If y ∈ H⊥ then (y, y) = 0 which implies y = 0. On the other hand, for y ∈ H it follows that (y, 0) =
(y, 0 + 0) = 2(y, 0) which implies that (y, 0) = 0 and so y ∈ {0}⊥.

2. By the bilinearity of (·, ·), we have that F⊥ is a linear subspace. Let (yn)n∈N ⊆ F⊥ converge to y in H.
Then for any x ∈ F it follows that

|(y, x) − (yn, x)| = |(y − yn, x)|
C.S
≤ ∥y − yn∥∥x∥

where the right-hand side converges to zero by the assumption that ∥y − yn∥ → 0 and x ∈ F is fixed.
Therefore, y ∈ F⊥ which implies that F⊥ is closed.

3. Let y ∈ G⊥. Then for x ∈ F it follows that x ∈ G which implies (y, x) = 0 and so y ∈ F⊥.
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4. Suppose F is closed. Then for x ∈ F it follows that (x, y) = 0 for all y ∈ F⊥ which implies that x ∈
(
F⊥)⊥.

Hence, we have F ⊆
(
F⊥)⊥. Let x ∈

(
F⊥)⊥, then we can consider x̃ = PFx ∈ F ⊆

(
F⊥)⊥. As F

is closed we know that x = PFx + PF⊥x and so x − x̃ ∈ F⊥. As
(
F⊥)⊥ is a linear space we also have

that x − x̃ ∈
(
F⊥)⊥. Therefore, as F⊥ ∩

(
F⊥)⊥ = {0} we deduce that x − x̃ = 0 which implies that

x = x̃ ∈ F . Hence, F =
(
F⊥)⊥. For general F , we know by the continuity of (·, ·) that F̄⊥ = F⊥.

Therefore,
(
F̄⊥)⊥ =

(
F⊥)⊥. Using the fact that F̄ is closed we deduce that F̄ =

(
F⊥)⊥.

5. Let F and G be closed.

(a) If x ∈ F ∩G then for y1 + y2 ∈ F⊥ +G⊥ we have that (x, y1 + y2) = (x, y1) + (x, y2) = 0 + 0 = 0
and so F ∩G ⊆

(
F⊥ +G⊥)⊥. On the other hand, if x ∈

(
F⊥ +G⊥)⊥, then (x, y1 + y2) = 0 for all

y1 ∈ F⊥ and y2 ∈ G⊥. In particular, for y1 = 0 we get that x ∈
(
G⊥)⊥ = G and for y2 = 0 we get

that x ∈
(
F⊥)⊥ = F . Therefore, x ∈ F ∩G.

(b) Replacing F with F⊥ and G with G⊥ in statement 5(a) gives

F⊥ ∩G⊥ =
((
F⊥)⊥ ∩

(
G⊥)⊥)⊥

= (F +G)⊥

as F and G are closed.
(c) Note that

(F ∩G)⊥ Stat 5(a)=
((
F⊥ +G⊥)⊥)⊥ Stat 4= F⊥ +G⊥.

(d) Follows by similar arguments as statement 5(c) where instead we use statement 5(b) and statement
4.

Exercise 8.4.8

Proof. Let (λkv)k∈N ⊆ V be a sequence converging to u ∈ H. Note that there is a bijection between V and R,
namely λv 7→ λ. As metrics are equivalent in finite dimensions it follows that λk → λ ∈ R, and so λkv → λv ∈ V .
Hence, V is closed. Consequently, we can write H = V ⊕ V ⊥ using Proposition 8.2.4. In particular, for u ∈ H
we have that u = λv+PV ⊥u, where PV u = λv ∈ V and PV ⊥u ∈ V ⊥. Therefore, (u, v) = λ(v, v) which implies
that λ = (u,v)

∥v∥2 .
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9 Integral Operators
The theory of bounded linear operators can be harnessed to solve linear differential equations and integral equa-
tions.

9.1 Kernel Functions

Definition 9.1.1. Let X,Y ⊆ R be interval. Then an operator A is an integral operator if there exists a
function k : X → Y → R such that

(Af)(t) =
(
A[k]f

)
(t) :=

∫
Y

k(t, s)f(s) ds

for all t ∈ X and functions f for which A is defined.

Remark 9.1.2. The function k of Definition 9.1.1 is referred to as the integral kernel or the kernel function of
A.

Example 9.1.3. Consider [a, b] ⊆ R and the initial value problem

u′ = f

with u(a) = 0, where f ∈ L2(a, b). The solution to the problem is given by u = Jf where J is the operator

Jf(t) =
∫ t

a

f(s) ds =
∫ b

a

1[a,t](s)f(s) ds

for t ∈ [a, b]. Letting
k(t, s) := 1[a,t](s)

we have that
Jf(t) =

∫ b

a

k(t, s)f(s) ds

for f ∈ L2(a, b). Therefore, J is an integral operator and k is the kernel function as per Definition 9.1.1.

For f a measurable function defined on an interval X, and g a measurable function defined on an interval Y , let
f ⊗ g : X × Y → R be given by

(f ⊗ g)(x, y) := f(x)g(y).

Theorem 9.1.4. Let p ∈ [1,∞). If f ∈ Lp(X) and g ∈ Lp(Y ) then f ⊗ g ∈ Lp(X × Y ) with

∥f ⊗ g∥Lp(X×Y ) = ∥f∥Lp(X)∥g∥Lp(Y ).

Moreover,
span {f ⊗ g : f ∈ Lp(X), g ∈ Lp(Y )} = Lp(X × Y ).

79



Proof. Note that f ⊗ g is measurable. Moreover,∫
X×Y

|f ⊗ g|p dλ2 =
∫
X

∫
Y

|f(x)g(y)|p dy dx

=
∫
X

|f(x)|p
∫
Y

|g(y)|p dy dx

=
∫
X

|f(x)|p∥g∥pLp(Y ) dx

= ∥f∥Lp(X)∥g∥Lp(Y ).

Therefore,
∥f ⊗ g∥Lp(X×Y ) = ∥f∥Lp(X)∥g∥Lp(Y ).

Lemma 9.1.5. Let f ∈ L1(a, b) and

(Jf)(t) =
∫ b

a

1[a,t](s)f(s) ds.

Then for n ≥ 1 we have

(Jnf) (t) = 1
(n− 1)!

∫ t

a

(t− s)n−1f(s) ds (9.1.1)

for all t ∈ [a, b]. In particular, Jn is an integral operator with kernel function

kn(t, s) = 1
(n− 1)!1[a,t](s)(t− s)n−1

for s, t ∈ [a, b].

Proof. For n = 1 it is clear that (9.1.1) holds. Assume (9.1.1) holds for n ≤ k. Then(
Jk+1f

)
(t) = Jk(Jf)(t)

(9.1.1)= 1
(k − 1)!

∫ t

a

(t− s)k−1Jf(s) ds

= 1
(k − 1)!

∫ t

a

(t− s)k−1
∫ s

a

f(u) duds

Fubini= 1
(k − 1)!

∫ t

a

∫ t

u

(t− s)k−1f(u) dsdu

= 1
(k − 1)!

∫ t

a

f(u)
[
− 1
k

(t− s)k
]t
u

du

= 1
k!

∫ t

a

(t− u)kf(u) du.

Therefore, by induction the proof is complete.

9.2 The Hilbert-Schmidt Kernel Function

Definition 9.2.1. Let X,Y ⊆ R be intervals and let k : X×Y → R be measurable with respect to the product
measure. If k ∈ L2(X × Y ), then k is referred to as a Hilbert-Schmidt kernel function.
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Theorem 9.2.2. Let k ∈ L2(X × Y ) be a Hilbert-Schmidt kernel function. Then the corresponding integral
operator, A[k], satisfies ∥∥A[k]f

∥∥
L2(X) ≤ ∥k∥L2(X×Y )∥f∥L2(Y )

for all f ∈ L2(Y ). Moreover, the kernel function k is uniquely determined, almost everywhere, by A[k].

Proof. Using Cauchy-Schwartz we have∣∣∣∣∫
Y

k(x, y)f(y) dy
∣∣∣∣ ≤

∫
Y

|k(x, y)f(y)| dy ≤
(∫

Y

|k(x, y)|2 dy
) 1

2

∥f∥L2(Y )

for x ∈ [a, b]. Therefore,

∥∥A[k]f
∥∥2
L2(X) =

∫
X

∣∣∣∣∫
Y

k(x, y)f(y) dy
∣∣∣∣2 dx

≤
(∫

X

∫
Y

|k(x, y)|2 dy dx
)

∥f∥2L2(Y )

as required. For the uniqueness statement, suppose that k1 and k2 are kernel functions of A[k]. Then,

⟨k1 − k2, f ⊗ g⟩L2(X×Y ) =
∫
X

∫
Y

(k1(x, y) − k2(x, y)) f(x)g(y) dy dx

=
∫
X

(
A[k]g −A[k]g

)
(x)f(x) dx

= 0

for all f ∈ L2(X) and g ∈ L2(Y ). Using Theorem 9.1.4 we know that

k1 − k2 ∈ span {f ⊗ g : f ∈ Lp(X), g ∈ Lp(Y )}

and so it follows that ⟨k1 − k2, k1 − k2⟩L2(X,Y ) = 0 which implies that k1 = k2 almost everywhere.

Remark 9.2.3. The integral operator A[k] : L2(Y ) → L2(X) associated with a Hilbert-Schmidt kernel k ∈
L2(X × Y ) is referred to as a Hilbert-Schmidt integral operator.

The Hilbert-Schmidt norm for A[k] is

∥∥A[k]
∥∥

HS := ∥k∥L2(X×Y ) =
(∫

X

∫
Y

|k(x, y)|2 dxdy
)
.

The Hilbert-Schmidt norm for A[k] is well-defined as k is almost surely unique by Theorem 9.2.2. Moreover, from
Theorem 9.2.2 we deduce that ∥∥A[k]

∥∥
L ≤ ∥A[k]∥HS.

9.2.1 Application to the Poisson Problem

The Dirichlet Laplacian on (a, b) is the operator ∆D : H2(a, b) ∩H1
0 (a, b) → L2(a, b) given by

∆Du := u′′.

For f ∈ L2(a, b) the Poisson problem is
∆u = −f (9.2.1)

with u(a) = u(b) = 0. Equation (9.2.1) is said to be well-posed if it has a unique solution for each f ∈ L2(X×Y )
which depends continuously on f . Equivalently, there exists a continuous operator that maps an input function
to its unique solution.
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Exercise 9.2.4. Show that H2(a, b) ∩H1
0 (a, b) is a closed subspace of H2(a, b) with respect to ∥ · ∥H2 .

Definition 9.2.5. For normed spaces, a bounded linear operator T : E → F is invertible if T is bijective and
T−1 is bounded.

Proposition 9.2.6. The Dirichlet Laplacian, ∆D, has inverse given by

(∆D)−1f(t) = −
∫ b

a

g(t, s)f(s) ds

where

g(t, s) =
{

1
b−a (b− t)(s− a) s ≤ t

1
b−a (b− s)(t− a) t ≤ s,

is Green’s function for the Poisson problem.

Proof. Integrating (9.2.1) twice yields

u(t) = −
(
J2f

)
(t) + (t− a) + d

for t ∈ [a, b] and some scalars c, d ∈ R. Using u(a) = u(b) = 0 it follows that d = 0 and

c = 1
b− a

(
J2f

)
(b).

Therefore,
u(t) = −

(
J2f

)
(t) +

(
J2f

)
(b)

b− a
(t− a).

Using Lemma 9.1.5 we conclude that

u(t) = −
∫ t

a

(t− s)f(s) ds+ t− a

b− a

∫ b

a

(b− s)f(s) ds

=
∫ b

a

(
−1[a,t](s)(t− s) + (t− a)(b− s)

b− a

)
f(s) ds

=
∫ b

a

g(t, s)f(s) ds.

Note that Green’s function for the Poisson problem satisfies

|g(t, s)| ≤ b− a

for all s, t ∈ [a, b] and so ∫ b

a

∫ b

a

|g(t, s)|2 dsdt < ∞.

Therefore, Green’s function for the Poisson problem is a Hilbert-Schmidt Kernel function. Thus using Theorem
9.2.2 we have that ∆−1

D is a Hilbert-Schmidt integral operator on L2(a, b).

Exercise 9.2.7. Show that ∆−1
D : L2(a, b) → H2(a, b) is bounded.

Using Exercise 9.2.7, it follows that (9.2.1) is well-posed.
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9.3 The Neumann Series
In more general settings than the Poisson problem, there is likely no closed form for the solution operator. Instead,
a series of approximate solutions to simplified problems are constructed in what are known as approximation
methods. This motivates the study of sequences of operators. In particular, recall that if E, F and G are normed
spaces, then

∥ST∥ ≤ ∥S∥∥T∥

for T ∈ L(E,F ) and S ∈ L(F,G). Consequently,

∥Tn∥ ≤ ∥T∥n

for n ∈ N.

Lemma 9.3.1. Let E, F and G be normed space. Let T, Tn ∈ L(E,F ) and S, Sn ∈ L(F,G) for n ∈ N. Then
Tn

n→∞−→ T and Sn
n→∞−→ S implies that SnTn

n→∞−→ ST . Moreover, if f, fn ∈ E for n ∈ N, then Tn
n→∞−→ T

and fn
n→∞−→ f implies that Tnf

n→∞−→ Tf .

Proof. Observe that
SnTn − ST = (Sn − S)(Tn − T ) + S(Tn − T ) + (Sn − S)T.

Taking norms it follows that

∥SnTn − ST∥ ≤ ∥(Sn − S)(Tn − T )∥ + ∥S(Tn − T )∥ + ∥(Sn − S)T∥
≤ ∥Sn − S∥∥Tn − T∥ + ∥S∥∥Tn − T∥ + ∥Sn − S∥∥T∥
n→∞−→ 0.

We similarly conclude that Tnf n→∞−→ Tf under the appropriate conditions.

Remark 9.3.2. A sequence (Tn)n∈N ⊆ L(E,F ) converges strongly to T ∈ L(E,F ) if

Tnf
n→∞−→ Tf

with respect to ∥ · ∥F for every f ∈ E.

With these, we study the Neumann series which is a useful approximation method for solving perturbed problems.
In particular, we look at the Neumann series for solving for u ∈ H2(a, b) satisfying

u′′ − Tu = −f (9.3.1)

with u(a) = u(b) = 0 for given f ∈ L2(a, b). Note that when T = 0 (9.3.1) becomes (9.2.1), and so T can
be seen as a perturbation on the Poisson problem. As (9.2.1) is well-posed, we would desire that for a small
perturbation, that is small T , (9.3.1) would be well-posed. Using the Dirichlet Laplacian operator, (9.3.1) is
equivalent to (

I − T∆−1
D

)
∆Du

for u ∈ H2(a, b) ∩ H1(a, b). Hence, the well-posedness of (9.3.1) is reduced to understanding when I − T∆−1
D :

L2(a, b) → L2(a, b) is invertible. We study this problem more generally by considering A ∈ L(E) for E a Banach
space and the conditions for unique solutions to the equation (I −A)u = f .

Lemma 9.3.3. Let E be a Banach space and let A ∈ L(E). If f ∈ E is such that u :=
∑∞
n=0 A

nf converges
in E, then (I −A)u = f .

Proof. Let u0 := 0 and un := f + Aun for n ≥ 1. Observe that un+1 = Tun where T (·) = f + A(·) is a
continuous. Moreover,

∥Tx− Ty∥ = ∥A(x− y)∥ = ∥A∥∥x− y∥.
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As
∑∞
n=0 A

nf it must be the case that ∥A∥ < 1, and so T is a strict contraction. Thus we can apply Theorem
1.2.25 to conclude that (un)n∈N ⊆ E converges to the unique fixed point of T . So by the uniqueness of limits,
we have that Tu = u which implies that (I −A)u = f .

Lemma 9.3.4. Let E be a Banach space and let (fn)n∈N ⊆ E be such that
∑∞
n=1 ∥fn∥ < ∞. Then

∑∞
n=1 fn

converges in E. Moreover, ∥∥∥∥∥
∞∑
n=1

fn

∥∥∥∥∥ ≤
∞∑
n=1

∥fn∥.

Proof. Let (sn)n∈N be given by sn :=
∑n
j=1 fj . Let m > n then

∥sm − sn∥ =

∥∥∥∥∥∥
m∑

j=n+1
fj

∥∥∥∥∥∥
≤

m∑
j=n+1

∥fj∥

≤
∞∑

j=n+1
∥fj∥

n→∞−→ 0.

Moreover, using the continuity of ∥ · ∥ we deduce that∥∥∥∥∥
∞∑
n=1

fn

∥∥∥∥∥ =

∥∥∥∥∥∥ lim
n→∞

n∑
j=1

fj

∥∥∥∥∥∥
= lim
n→∞

∥∥∥∥∥∥
n∑
j=1

fj

∥∥∥∥∥∥
≤ lim
n→∞

n∑
j=1

∥fj∥

=
∞∑
j=1

∥fj∥.

Theorem 9.3.5. Let E be a Banach space and let A ∈ L(E) be such that

∞∑
n=0

∥An∥ < ∞.

Then I −A is invertible, with its inverse given by

(I −A)−1 =
∞∑
n=0

An. (9.3.2)
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Proof. If (I −A)f = 0, then Af = f and so
∞∑
n=0

∥f∥ =
∞∑
n=0

∥Anf∥

≤
∞∑
n=0

∥An∥∥f∥

< ∞.

Therefore, f = 0 which implies that I − A is injective. As E is Banach we have that L(E) is Banach by
Proposition 6.1.2. Hence, by Lemma 9.3.4 the limit B :=

∑∞
n=0 A

n exists in L(E) with respect to the operator
norm. Since convergence with respect to the operator norm implies strong convergence we have that

Bf =
( ∞∑
n=0

An

)
f =

∞∑
n=0

Anf

as a convergent series in E. Therefore, by Lemma 9.3.3 it follows that (I − A)Bf = f , meaning (I − A) is
bijective with B as its inverse.

Remark 9.3.6.

1. The series of (9.3.2) is known as the Neumann series of A.

2. A sufficient, but by no means necessary, condition for the conditions of Theorem 9.3.5 to hold is that A
is a strict contraction. That is, ∥A∥ < 1.

Using Theorem 9.3.5 we see that
∥∥T∆−1

D

∥∥ < 1 is sufficient for (9.3.1) to be well-posed.

9.3.1 Application to the Volterra Integral Equations

For m : [a, b] × [a, b] → R, the Volterra integral equation is given by

u(t) −
∫ t

a

m(t, s)u(s) ds = f(t) (9.3.3)

for t ∈ [a, b], and f ∈ C([a, b]) given. Consequently, the Volterra operator V : C([a, b]) → C([a, b]) is the integral
operator with kernel function

k(t, s) = 1[a,t](s)m(t, s).

Exercise 9.3.7. Verify that the Volterra operator V : C([a, b]) → C([a, b]) is well-defined.

Lemma 9.3.8. Let m : [a, b] × [a, b] → R be continuous, with V its associated Volterra operator. Then

|V nf(t)| ≤ ∥m∥n∞∥f∥∞(t− a)n

n! (9.3.4)

for all f ∈ C([a, b]), t ∈ [a, b] and n ∈ N. Consequently,

∥V n∥L(C([a,b])) ≤ ∥m∥n∞(b− a)n

n!

for every n ∈ N.
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Proof. For n = 1 we have that

|V f(t)| =
∣∣∣∣∫ t

a

m(t, s)f(s) ds
∣∣∣∣

≤
∫ t

a

|m(t, s)f(s)| ds

≤ ∥m∥∞∥f∥∞

∫ t

a

ds

= ∥m∥∞∥f∥∞(t− a).

Assume (9.3.4) holds for n ≤ k, then∣∣V k+1f(t)
∣∣ =

∣∣V (V kf) (t)
∣∣

=
∣∣∣∣∫ t

a

m(t, s)V kf(s) ds
∣∣∣∣

≤
∫ t

a

|m(t, s)|
∣∣V kf(s)

∣∣ ds

(9.3.4)
≤ ∥m∥∞

∫ t

a

∥m∥k∞∥f∥∞(s− a)k

k! ds

= ∥m∥k+1
∞ ∥f∥∞(t− a)k+1

(k + 1)! .

Therefore, (9.3.4) holds for all n ∈ N. Consequently,

∥V n∥L(C([a,b])) = sup
f∈C([a,b])\{0}

∥V nf∥∞

∥f∥∞

= sup
f∈C([a,b])\{0}

supt∈[a,b] |V nf(t)|
∥f∥∞

≤ sup
t∈[a,b]

∥m∥n∞(t− a)n

n!

= ∥m∥n∞(b− a)n

n! .

Corollary 9.3.9. Let m : [a, b] × [a, b] → R be continuous, with V its associated Volterra operator. Then
for every f ∈ C([a, b]) the corresponding Volterra integral equation given by (9.3.3) has a unique solution
u ∈ C([a, b]).

Proof. Using Lemma 9.3.8 it follows that
∞∑
n=0

∥V n∥ ≤
∞∑
n=0

∥m∥n∞(b− a)n

n! = exp (∥m∥∞(b− a)) < ∞.

Therefore, V satisfies the conditions of Theorem 9.3.5, and so I − V is invertible which implies that (9.3.1) has
a unique solution.

9.4 Solution to Exercises
Exercise 9.2.4
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Solution. Let (fn)n∈N ⊆ H2(a, b)∩H1
0(a, b) be convergent to f with respect to ∥·∥H2 . Then as

(
H2(a, b), ∥ · ∥H2

)
is a Hilbert space it follows that f ∈ H2(a, b). Moreover, as

∥f∥H1 ≤ ∥f∥H2

for f ∈ H2(a, b), we have that (fn)n∈N converges to f in ∥ · ∥H1 . Using Theorem 10.5.23 it follows that
f ∈ H1

0(a, b) which implies that f ∈ H2(a, b) ∩ H1
0(a, b). Therefore, H2(a, b) ∩ H1

0(a, b) is closed with respect to
∥ · ∥H2 .

Exercise 9.2.7

Solution. Using Theorem 9.2.2 and Proposition 9.2.6 it follows that∥∥∆−1
D f

∥∥
H2(a,b) ≤ ∥g∥L2([a,b]2)∥f∥L2(a,b)

for all f ∈ L2(Y ). Therefore,

∥∥∆−1
D

∥∥ = sup
f∈L2(a,b)\{0}

∥∥∆−1
D f

∥∥
H2(a,b)

∥f∥L2(a,b)
≤ ∥g∥L2([a,b]2) < ∞.

Exercise 9.3.7

Solution. For t1, t2 ∈ [a, b] it follows that

|(V f)(t1) − (V f)(t2)| =
∣∣∣∣∫ t2

t1

m(t, s)f(s) ds
∣∣∣∣

≤ |t2 − t1|∥m∥∞∥f∥∞.

As m and f are continuous functions on a compact domain we know that ∥m∥∞, ∥f∥∞ < ∞. Therefore, V f is
continuous, and thus V : C([a, b]) → C([a, b]) is well-defined.
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10 Appendix
10.1 Ordered Sets
Let P be a set. Then ≤ is a partial order relation on P if it satisfies the following.

• Reflexivity, a ≤ a for all a ∈ P .

• Anti-symmetry, a ≤ b and b ≤ a implies that a = b for all a, b ∈ P .

• Transitivity, a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ P .

Definition 10.1.1. A subset S ⊆ P is totally ordered if a ≤ b or b ≤ a for any a, b ∈ S.

Definition 10.1.2. If Q ⊆ P , then c ∈ P is an upper bound for Q if a ≤ c for all a ∈ Q.

Definition 10.1.3. An element m ∈ S ⊆ P is maximal if m ≤ x for x ∈ S implies that m = x.

Definition 10.1.4. A set P is inductive if any totally ordered subset Q has an upper bound.

Lemma 10.1.5 (Zorn’s Lemma). Every non-empty ordered set that is inductive has a maximal element.

10.2 Hardy’s Inequality

Theorem 10.2.1 (Hardy’s Inequality). Let 1 < p ≤ ∞ and let f ∈ Lp(0,∞). Then there exists a Cp > 0
such that ∥∥∥∥f(x)

x

∥∥∥∥
Lp

≤ Cp ∥f ′(x)∥Lp .

Equivalently, if F (x) =
∫ x

0 f(t) dt then ∥∥∥∥F (x)
x

∥∥∥∥
Lp

≤ Cp ∥f∥Lp .

Proof. For a function f let F (x) := 1
x

∫ x
0 f(t) dt.

Step 1: Let f ∈ C∞
c (0,∞) be non-negative. Show that F ∈ C1(0,∞) and xF ′ = f − F .

Note that by the fundamental theorem of calculus

F ′(x) = 1
x
f(x) − 1

x2F (x)

and so xF ′ = f − F . It is clear that F and F ′ are continuous. We now show that F and F ′ are bounded to
complete the step. As f is a bounded function the only concerns of unboundedness arise for the 1

x terms as
x → 0. Recall, that f ∈ C∞

c (0,∞). Hence, supp(f) = K is a compact set of (0,∞). Suppose that for every
ϵ > 0 the set [0, ϵ] ∩K ̸= ∅. Then there exists a sequence (xn)n∈N ⊆ K such that xn → 0 as n → ∞. As K is
closed this would imply that 0 ∈ K which contradicts K ⊆ (0,∞). Therefore, there exists an ϵ > 0 such that
[0, ϵ] ∩ K = ∅. Consequently, f(x) = 0 for all x ∈ [0, ϵ]. Therefore,

∫ x
0 f(x) dx = 0 for all x ∈ [0, ϵ]. Hence,

1
x

∫ x
0 f(x) dx = 0 for x ∈ [0, ϵ]. One carries out a similar argument to show that F ′ is bounded near zero. Thus,

F and F ′ are continuous and bounded which implies that F ∈ C1(0,∞).
Step 2: Show that

∫∞
0 F (x)p dx = −p

∫∞
0 xF (x)p−1F ′(x) dx.
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Consider IR =
∫ R

0 F (x)p dx. Performing integration by parts with u = F (x)p and dv
dx = 1 we deduce that∫ R

0
F (x)p dx = [xF (x)p]R0 −

∫ R

0
pxF (x)p−1F ′(x) dx.

Letting K be the compact support of f we know that K is bounded and so for sufficiently large R it follows that∫
K

f(x) dx =
∫ R

0
f(x) dx =

∫ ∞

0
f(x) dx.

As f is bounded on K it follows that ∫ ∞

0
f(x) dx ≤ M

for some M > 0 which implies that xF (x)p ≤ Mp

xp−1 . Hence,

[xF (x)p]R0
R→∞−→ 0.

Therefore, ∫ ∞

0
F (x)p dx = −p

∫ ∞

0
xF (x)p−1F ′(x) dx,

which is well-defined as the functions F and F ′ are bounded.
Step 3: Deduce that ∥F∥pLp ≤ Cp∥f∥Lp .
Combining steps 1 and 2 we deduce that∫ ∞

0
F (x)p dx = −p

∫ ∞

0
xF (x)p−1F ′(x) dx

= −p
∫ ∞

0
F (x)p−1(f(x) − F (x)) dx

= p

∫ ∞

0
F (x)p dx− p

∫ ∞

0
F (x)p−1f(x) dx.

Therefore, ∫ ∞

0
F (x)p dx = p

p− 1

∫ ∞

0
F (x)p−1f(x) dx.

As f(x) ≥ 0 for all x ∈ (0,∞) it follows that F (x) ≥ 0 for all x ∈ (0,∞). Therefore,

∥F∥pLp =
∫ ∞

0
|F (x)|p dx

=
∫ ∞

0
F (x)p dx

= p

p− 1

∫ ∞

0
F (x)p−1f(x) dx.

Let p′ be such that 1 = 1
p + 1

p′ so that p′ = p
p−1 . Then by applying Hölder’s inequality, we deduce that

∥F∥pLp =
∫ ∞

0
F (x)p dx

≤ p

p− 1∥f∥Lp

∥∥F p−1∥∥
Lp′

= p

p− 1∥f∥Lp

(∫ ∞

0

(
F (x)p−1) p

p−1

) p−1
p

= p

p− 1∥f∥Lp

(∫ ∞

0
F (x)p dx

) p−1
p

= p

p− 1∥f∥Lp∥F∥p−1
Lp .
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Therefore,
∥F∥Lp ≤ p

p− 1∥f∥Lp .

Step 4: Extend the result to general g ∈ C∞
c (0,∞).

For g ∈ C∞
c (0,∞), note that |g| is still a continuous function with compact support. As the continuous differen-

tiability of f in the previous steps is not used the claims still hold true for |g| as |g(x)| ≥ 0 for all x ∈ (0,∞).
Therefore, ∥∥∥∥ 1

x

∫ x

0
|g(x)| dx

∥∥∥∥
Lp

≤ p

p− 1∥|g|∥Lp .

As ∥|g|∥Lp = ∥g∥Lp and 1
x

∫ x
0 g(t) dt ≤ 1

x

∫ x
0 |g(t)| dt for all t ∈ (0,∞) we deduce that

∥G∥Lp ≤ p

p− 1∥g∥Lp

where G(x) := 1
x

∫ x
0 g(t) dt.

Step 5: Extend the result to f ∈ Lp(0,∞).
Recall that C∞

c (0,∞) is dense in Lp(0,∞). Therefore, given f ∈ Lp(0,∞) there exists a sequence (fn) ⊆
C∞
c (0,∞) such that fn Lp

−→ f . Letting Fn(x) = 1
x

∫ x
0 fn(t) dt we observe that

∥Fn(x) − F (x)∥Lp
x

=
(∫ ∞

0

∣∣∣∣∫ x

0

1
x
fn(t) − 1

x
f(t) dt

∣∣∣∣p dx
) 1

p

=
(∫ ∞

0

∣∣∣∣∫ 1

0
fn(xt) − f(xt) dt

∣∣∣∣p dx
) 1

p

(1)
≤
∫ 1

0

(∫ ∞

0
|fn(xt) − f(xt)| dx

) 1
p

dt

=
∫ 1

0

1
t

1
p

∥fn − f∥Lp dx

(2)= M∥fn − f∥Lp ,

where (1) follows from Minkowski’s integral inequality1, and (2) follows from the fact that p > 1 and so the
integral is finite. Therefore, Fn Lp

−→ F . As fn ∈ C∞
c (0,∞) we know that the inequality ∥Fn∥Lp ≤ Cp∥fn∥Lp

holds. Sending n → ∞ it follows that ∥F∥Lp ≤ Cp∥f∥Lp .

10.3 Hölder Spaces

Definition 10.3.1. For an open set Ω ⊆ Rd, the α ∈ (0, 1) Hölder space denoted Cα
(
Ω̄
)

is the set of
continuous functions f ∈ C0 (Ω̄) such that

sup
x ̸=y,(x,y)∈Ω2

|f(x) − f(y)|
|x− y|α

< ∞.

The norm on Cα
(
Ω̄
)

is given by

∥f∥Cα(Ω̄) = ∥f∥∞ + sup
x ̸=y,(x,y)∈Ω2

|f(x) − f(y)|
|x− y|α

.

1https://en.wikipedia.org/wiki/Minkowski_inequality
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Figure 14: Smooth functions are the strongest class of continuous functions. Lipschitz continuous functions have
joins where the gradients at the joins are finite. Lipschitz continuous functions can be thought of as Hölder
continuous with α = 1. Hölder continuous functions for α ∈ (0, 1) can have cusps where the gradient at the
cusp is potentially unbounded. Discontinuous functions contain jumps that do not satisfy the conditions of the
previous spaces.

Theorem 10.3.2. The space
(

Cα
(
Ω̄
)
, ∥ · ∥Cα(Ω̄)

)
is a Banach space.

Proof. Let (fn)n∈N ⊆ Cα
(
Ω̄
)

be Cauchy sequence. Then (fn)n∈N ⊆ C0 (Ω̄) is a Cauchy sequence with respect
to ∥ · ∥∞. As

(
C0 (Ω̄) , ∥ · ∥∞

)
is a Banach space we know that fn → f ∈ C0 (Ω̄). It remains to show that

f ∈ Cα
(
Ω̄
)

and fn → f in Cα
(
Ω̄
)
. For any (x, y) ∈ Ω2 with x ̸= y, let δ = |x− y|. Then as fn → f in ∥ · ∥∞

it follows that there exists an N ∈ N such that

|fn(x) − f(x)| < δα

2
for all x ∈ Ω. Therefore, for n ≥ N it follows that

|f(x) − f(y)|
|x− y|α

≤ |f(x) − fn(x)| + |fn(x) − fn(y)| + |fn(y) − f(y)|
|x− y|α

= |f(x) − fn(x)| + |fn(y) − f(y)|
δα

+ |fn(x) − fn(y)|
|x− y|α

≤
δα

2 + δα

2
δα

+ |fn(x) − fn(y)|
|x− y|α

= 1 + |fn(x) − fn(y)|
|x− y|α

.

As (fn)n∈N ⊆ Cα
(
Ω̄
)

is Cauchy we know that the sequence (fn)n∈N is bounded and so |fn(x)−fn(y)|
|x−y| ≤ C for all

n ∈ N and (x, y) ∈ Ω2. Therefore,

sup
x̸=y,(x,y)∈Ω2

|f(x) − f(y)|
|x− y|α

≤ 1 + C

and so f ∈ Cα
(
Ω̄
)
. By similar arguments we show that given an ϵ > 0 and (x, y) ∈ Ω2 there exits a N ∈ N such

that for n ≥ N we have that
|f(x) − fn(x) − (f(y) − fn(y))|

|x− y|α
≤ ϵ

2 .

Therefore,
sup

x ̸=y(x,y)∈Ω2

|f(x) − fn(x) − (f(y) − fn(y))|
|x− y|α

≤ ϵ

2 .

Moreover, there exists a M ∈ N such that for n ≥ M we have that ∥f − fn∥∞ ≤ ϵ
2 by the fact that fn → f in

∥ · ∥∞. Therefore,

∥f − fn∥Cα(Ω̄) = ∥f − fn∥∞ + sup
x ̸=y(x,y)∈Ω2

|f(x) − fn(x) − (f(y) − fn(y))|
|x− y|α

≤ ϵ

2 + ϵ

2 = ϵ.
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Hence, fn → f in Cα
(
Ω̄
)
.

Example 10.3.3. Let p ∈ (1,∞] and consider the operator T : Lp(0, 1) → C1− 1
p (0, 1) be given by

Tf(x) =
∫ x

0
f(z) dz

for x ∈ [0, 1]. For x < y we have that,

|Tf(x) − Tf(y)| =
∣∣∣∣∫ x

0
f(z) dz −

∫ y

0
f(z) dz

∣∣∣∣
=
∣∣∣∣∫ x

y

f(z) dz
∣∣∣∣

T.I
≤
∫ 1

0
1[x,y]|f(z)| dz

Hölders
≤

∥∥1[x,y]
∥∥
Lp′ (0,1) ∥f∥Lp(0,1)

= |x− y|1− 1
p ∥f∥Lp(0,1).

Hence, for 1 − 1
p > 0 we have that Tf ∈ C0(0, 1). Moreover, we have that

∥Tf∥C0(0,1) = sup
x∈(0,1)

∣∣∣∣∫ x

0
f(z) dz

∣∣∣∣
≤
∫ 1

0
|f(z)| dz

≤ ∥1∥Lp′ (0,1)∥f∥Lp(0,1)

= ∥f∥Lp(0,1).

Therefore,

∥Tf∥
C1− 1

p (0,1)
= ∥Tf∥C0(0,1) + sup

x̸=y,(x,y)∈(0,1)2

|Tf(x) − Tf(y)|
|x− y|1− 1

p

≤ ∥f∥Lp(0,1) + ∥f∥Lp(0,1)

< ∞.

Thus Tf ∈ C1− 1
p (0, 1) and the operator T is well-defined. Moreover,

∥T∥
Lp(0,1)→C1− 1

p (0,1)
≤ 2,

and so as T is a linear map we deduce that T is continuous. Note that for all f ∈ B̄L
p(0,1) we have that

|Tf(x) − Tf(y)| ≤ |x− y|1− 1
p ,

hence, T
(
B̄L

p(0,1)) ⊆ C0(0, 1). Moreover, it follows that any sequence (Tfn)n∈N ⊆ T
(
B̄L

p(0,1)) ⊆ C0(0, 1)
is bounded and equicontinuous. Therefore, by Theorem 7.1.7 any sequence (Tfn)n∈N ⊆ T

(
B̄L

p(0,1)) admits
a convergent subsequence. Thus, T

(
B̄L

p(0,1)) is pre-compact, implying that T : Lp(0, 1) → Lp(0, 1) is a
compact operator.

10.4 Weak Convergence in Hilbert Spaces
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Definition 10.4.1. Let H be a Hilbert space. A sequence (xn)n∈N ⊆ H weakly converges to x ∈ H if

(xn, y) → (x, y)

for all y ∈ H.

Remark 10.4.2.

1. Symbolically one writes xn ⇁ x to say that the sequence (xn)n∈N ⊆ H converges weakly to x ∈ H.

2. If xn → x in the usual sense, then as

|(xn, y) − (x, y)| ≤ ∥x− xn∥∥y∥

by Cauchy-Schwarz, it follows that xn ⇁ x.

Example 10.4.3. In a finite-dimensional Euclidean space, the notions of strong and weak convergence are
equivalent. In Remark 10.4.2 2. we saw that strong convergence implies weak convergence using the Cauchy-
Schwarz inequality. Conversely, consider the finite-dimensional Euclidean space Rd and suppose that (xn)n∈N ⊆
Rd converges weakly to x ∈ Rd. Then it follows that (xn, ei)

n→∞−→ (x, ei) where ei is the ith ∈ Rd is the ith

coordinate vector. This implies that x(i)
n

n→∞−→ x(i) for each i ∈ {1, . . . , d}. Consequently,

∥xn − x∥ ≤
d∑
i=1

∣∣∣x(i)
n − x(i)

∣∣∣ n→∞−→ 0,

and so xn → x strongly.

Theorem 10.4.4. Let H be a Hilbert space. Then every bounded sequence (xn)n∈N ⊆ H has a weakly
convergent subsequence.

Proof. Let M > 0 be such that ∥xn∥ ≤ M for all n ∈ N. It follows by Cauchy-Schwarz that for fixed m ∈ N
the sequence (xn, xm)n∈N ⊆ R is bounded. Therefore, it has a convergent subsequence. By Cantor’s diagonal
argument we can find a subsequence (xnk

)k∈N ⊆ (xn)n∈N such that (xnk
, xm)k∈N ⊆ (xn)n∈N converges for every

m ∈ N as k → ∞. Consequently, for y′ ∈ span ({xn}n∈N) =: S it follows that (xnk
, y′)k∈N converges as k → ∞.

Now consider y ∈ S̄. For y′ ∈ S it follows that∣∣(xnj
− xnk

, y
)∣∣ ≤

∣∣(xnj
, y − y′)∣∣+

∣∣(xnj
− xnk

, y′)∣∣+ |(xnk
, y′ − y)|

≤ 2M ∥y − y′∥ +
∣∣(xnj

− xnk
, y′)∣∣ .

Hence, given ϵ > 0, let y′ ∈ S be such that ∥y′ − y∥ < ϵ
4M , and let j, k be large enough such that

∣∣(xnj
− xnk

, j
)∥∥ <

ϵ
2 . It follows that ∣∣(xnj

− xnk
, y
)∣∣ < ϵ,

and so
∣∣(xnj

− xnk
, y
)∣∣ → 0 as j, k → ∞. This implies that for y ∈ S̄ the sequence (xnk

, y) is Cauchy, and so
has a limit. Let Ly := limk→∞ (xnk

, y). It is clear that L : S̄ → R is linear. We also note that L is bounded
using Cauchy-Schwarz and the fact that ∥xn∥ ≤ M for all n ∈ N. Therefore, by Theorem 8.3.1 there exists an
x ∈ S̄ such that (x, y) = Ly for all y ∈ S̄. Now as S̄ is closed we can write H = S̄ ⊕ S̄⊥ by Proposition 8.2.4.
Hence, for any y ∈ H we can write y = y1 + y2, where y1 ∈ S̄ and y2 ∈ S̄⊥. It follows that (xn, y) = (xn, y1)
for all n ∈ N. In particular, we have shown that (xnk

, y1)k∈N converges for any y1 ∈ S̄ and so it follows that
(xnk

, y)k∈N converges for any y ∈ H. Thus we have that the subsequence (xnk
)k∈N converges weakly.
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Corollary 10.4.5. Let H be a Hilbert space. If (xn)n∈N ⊆ H converges weakly to x, then

∥x∥ ≤ lim inf
n→∞

∥xn∥.

Moreover, limn→∞ ∥xn∥ = ∥x∥ if and only if xn → x strongly in H.

Proof. As
0 ≤ (xn − x, xn − x) = ∥xn∥2 − 2(xn, x) + ∥x∥2 (10.4.1)

and (xn, x) → (x, x) as n → ∞, it follows that

0 ≤ lim inf ∥xn∥2 − ∥x∥2.

Moreover, it is clear from (10.4.1) that if limn→∞ ∥xn∥ = ∥x∥ then (xn − x, xn − x) → 0 which implies strong
convergence. Conversely, by the triangle inequality, we know that ∥xn − x∥ ≥ |∥xn∥ − ∥x∥|, and so strong
convergence implies limn→∞ ∥xn∥ = ∥x∥.

Definition 10.4.6. Let H be a Hilbert space. A family (en)n∈N ⊆ H is orthonormal if

(en, em) = δnm

for every n,m ∈ N. If additionally,
x =

∑
n∈N

(x, en)en

for every x ∈ H, then the family is complete.

Example 10.4.7. Consider the Hilbert space L2((−π, π)) and the family E = (en)n∈N

1. e1 = 1√
2π ,

2. e2n = 1√
π

sin(nx), and

3. e2n+1
1√
π

cos(nx)

for n ≥ 1. One can show that E is an orthonormal family. Moreover, one can consider E as an orthonormal
sequence in the infinite-dimensional Hilbert space H = L2((−π, π)). Suppose that (en)nN did not converge
weakly to zero. Then we can choose a subsequence and an x ∈ H such that

|(x, en)| ≥ ϵ (10.4.2)

for all n ∈ N and some ϵ > 0. Consider Em = span(em), which is a closed subspace of H as it is finite-
dimensional. Hence, by Proposition 8.2.4 x = λem + y for unique λ ∈ R and y ∈ E⊥

m, where in particular
λem is the projection of x onto Em. Considering (x, em) we see that λ = (x, em), and so (x, em)em is the
projection of x onto Em. Similarly,

N∑
n=1

(x, en)en

is the projection of x onto E1,...,N := span(e1, . . . , eN ). Thus using (10.4.2) it follows that

∥x∥2 =

∥∥∥∥∥x−
N∑
n=1

(x, en)en

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
n=1

(x, en)en

∥∥∥∥∥
2

≥
N∑
n=1

(x, en)2 ≥ Nϵ2
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which is contradicts ∥x∥2 < ∞. Thus we conclude that en ⇁ 0. In particular, we have shown that in the
setting of Corollary 10.4.5 we cannot ask for equality. Moreover, (en)n∈N is an example of a sequence that
converges weakly, but whose norm does not converge to the norm of the limit, and so we do not have strong
convergence.

Corollary 10.4.8 (Banach-Saks). Let H be a Hilbert Space. Let (xn)n∈N be such that ∥xn∥ ≤ K for all
n ∈ N. Then there exists a subsequence

(
xnj

)
j∈N ⊆ (xn)n∈N and x ∈ H such that

1
k

k∑
j=1

xnj

k→∞−→ x

in H.

Proof. Let x be the weak limit of a subsequence (xni)i∈N ⊆ (xn)n∈N as given by Theorem 10.4.4. Now consider
the sequence (yi)i∈N given by yi := xni

− x. It is clear that yi ⇁ 0 and ∥yi∥ ≤ K ′ for some fixed K ′.
Consequently, one can choose a subsequence

(
yij
)

successively such that

∣∣(yil , yij)∣∣ ≤ 1
j

for l < j. This is because for j ∈ N we have that (yil , yi)
i→∞−→ 0 for each l < j − 1. Hence, there exists an I

such that
|(yil , yi)| ≤ 1

j

for all l < j and i ≥ I. Thus, we can let ij = max (I, ij−1). Therefore,∥∥∥∥∥∥1
k

k∑
j=1

yij

∥∥∥∥∥∥
2

= 1
k2

k∑
l,j=1

(
yil , yij

)

= 1
k2

 k∑
j=1

((
yij , yij

)
+ 2

j−1∑
l=1

(
yil , yij

))
≤ 1
k2

k (K ′)2 + 2
k∑
j=1

j
1
j


≤ (K ′)2 + 2

k
k→∞−→ 0.

Lemma 10.4.9. Let H be a Hilbert space. Then every weakly convergent sequence (xn)n∈N ⊆ H is bounded.

Proof. Consider the sequence of linear functions (Ln)n∈N given by Lny := (xn, y). Now suppose that (Ln)n∈N
is not bounded on any closed ball of H. Then there exists a sequence (Ki)i∈N of closed balls such that

1. Ki := {y : |y − yi| ≤ ri},

2. Ki+1 ⊆ Ki, and

3. ri → 0.
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Moreover, there exists a subsequence (xni)i∈N ⊆ (xn)n∈N with |Lniy| > i for all y ∈ Ki. Note that the (yi)i∈N
form a Cauchy sequence and so have a limit y0 ∈ H. As y0 ∈

⋂∞
i=1 Ki it follows that |Lni

y0| > i for all i ∈ N.
This contradicts the weak convergence of (xni

)i∈N, and so there must exist a closed ball on which the linear
functions (Ln)n∈N are bounded. It follows by the linearity of the Ln that the set of linear functions (Ln)n∈N is
bounded on the closed unit ball, that is ∥Lny∥ = ∥(xn, y)∥ ≤ M for some M > 0 and for all n ∈ N. In particular,
letting y = xn

∥xn∥ it follows that

∥xn∥ =
(
xn,

xn
∥xn∥

)
≤ M

for all n ∈ N, hence, the sequence (xn)n∈N is bounded.

Corollary 10.4.10. Let H be a Hilbert space. If K ⊆ H is closed and convex, then K is closed with respect
to weak convergence.

Proof. Let (xn)N ⊆ K be weakly convergent to x ∈ H. Then by Lemma 10.4.9 the sequence (xn)n∈N is bounded,
and by Corollary 10.4.8 there exists a subsequence

(
xnj

)
j∈N such that

1
k

k∑
j=1

xnj → x.

As K is convex we know that 1
k

∑k
j=1 xnj

∈ K for all j, so because K is closed it follows that x ∈ K.

10.5 Sobolev Spaces
10.5.1 Weak Derivatives

Definition 10.5.1. Let [a, b] ⊆ R be finite. Then a function ψ ∈ C1([a, b]) with ψ(a) = ψ(b) = 0 is referred
to as a test function. The space of all such test functions on [a, b] is denoted C1

0([a, b]).

Lemma 10.5.2. For [a, b] ⊆ R finite we have that

C1
0([a, b]) = L2(a, b).

In particular, if g, h ∈ L2(a, b) are such that∫ b

a

g(s)ψ(s) ds =
∫ b

a

h(s)ψ(s) ds

for all ψ ∈ C1
0([a, b]), then g = h almost everywhere.

Definition 10.5.3. Let f ∈ L2(a, b). A function g ∈ L2(a, b) is said to be the weak derivative of f if∫ b

a

g(s)ψ(s) ds = −
∫ b

a

f(s)ψ′(s) ds

for all ψ ∈ C1
0([a, b]).

Remark 10.5.4. From Lemma 10.5.2 it follows that if f has a weak derivative, then it is unique.
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10.5.2 The Fundamental Theorem of Calculus

For f ∈ L2(a, b) let

(Jf)(t) :=
∫ t

a

f(x) dx (10.5.1)

for t ∈ [a, b].

Lemma 10.5.5. The operator J : L2(a, b) → C([a, b]) is linear and bounded. Moreover, (Jf)′ = f in the
weak sense for all f ∈ L2(a, b).

Proof. For t ∈ [a, b] let (tn)n∈N ⊆ [a, b] be such that tn → t. Clearly, 1[a,tn](x)f(x) → 1[a,t](x)f(x) almost
everywhere. Moreover, by Proposition 4.2.2 we have L2(a, b) ⊆ L1(a, b) and so∫ b

a

|f(x)| dx < ∞.

Therefore, as |1[a,tn](x)f(x)| ≤ |f(x)| almost everywhere it follows by the dominated convergence theorem that

(Jf)(tn) =
∫ b

a

1[a,tn](x)f(x) dx n→∞−→
∫ b

a

1[a,t](x)f(x) dx = (Jf)(t).

Therefore, Jf ∈ C([a, b]) and J is well-defined. Moreover,

∥Jf∥∞ = sup
t∈[a,b]

∣∣∣∣∫ t

a

f(x) dx
∣∣∣∣

≤ sup
t∈[a,b]

∫ t

a

|f(x)| dx

≤
∫ b

a

|f(x)| dx.

In particular, using the Cauchy-Schwartz inequality it follows that

∥Jf∥∞ ≤
√
b− a∥f∥L2 . (10.5.2)

Thus, J is bounded. Fix ψ ∈ C1
0([a, b]) and consider T : L2(a, b) → R given by

f 7→ ⟨Jf, ψ′⟩ + ⟨f, ψ⟩.

Then T is bounded and using integration by parts we have Tf = 0 for all f ∈ C1([a, b]). Since C1([a, b]) is
dense in L2(a, b) we have Tf = 0 for all f ∈ L2(a, b). From this, we deduce that ⟨Jf, ψ′⟩ = −⟨f, ψ⟩ which is
equivalent to saying that (Jf)′ = f .

Lemma 10.5.6. For F :=
{
ψ′ : C1

0([a, b])
}

⊆ L2(a, b) and G := 1⊥ ⊆ L2(a, b), show that G = F̄ .

Proof. As ψ ∈ C1
0([a, b]) is such that ψ(a) = ψ(b) = 0, it is clear that 1 ∈ F⊥. Therefore, F ⊆ 1⊥ = G and

moreover F̄ ⊆ Ḡ = G. On the other hand, by Proposition 8.2.4 we have

PGf = (I − PR1) f Ex 8.4.8= f − ⟨f,1⟩
b− a

1

for f ∈ L2(a, b). In particular, for f ∈ C([a, b]), then

JPGf = Jf − ⟨f,1⟩
b− a

J1 ∈ C([a, b]).
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Note that JPGf(a) = 0 by definition of J and similarly,

(JPGf)(b) = (Jf)(b) − ⟨f,1⟩
b− a

(J1)(b)

=
∫ b

a

f(s) ds− ⟨f,1⟩
b− a

∫ b

a

ds

= ⟨f,1⟩ − ⟨f,1⟩
= 0.

Therefore, JPGf ∈ C1
0([a, b]) which implies that PGf ∈ F by Lemma 10.5.5. Hence as C([a, b]) is dense in

L2(a, b), there exists a sequence (fn)n∈N ⊆ C([a, b]) such that fn → f in L2(a, b). As PG is bounded, and thus
continuous, we have PGfn → PGf and so PGf ∈ F̄ . Thus as Ran(PG) = G we deduce that G ⊆ F̄ .

Proposition 10.5.7. The decomposition

L2(a, b) = R1 ⊕ {ψ′ : ψ ∈ C1
0([a, b])},

where closure is with respect to ∥ · ∥L2(a,b).

Proof. Applying Proposition 8.2.4 with F̄ and using Lemma 10.5.6, the result follows.

Corollary 10.5.8. Let f ∈ L2(a, b) be such that f ′ = 0 in the weak sense. Then f is constant almost
everywhere.

Proof. Let f ∈ L2(a, b) with f ′ = 0 in the weak sense. Then∫ b

a

f(s)ψ′(s) ds = 0

for every ψ ∈ C1
0([a, b]). In other words, f ∈ F⊥ where F =

{
ψ′ : ψ ∈ C1

0([a, b])
}

and in particular f ∈ F̄⊥.
Using Lemma 10.5.6 we know that F̄⊥ =

(
(R1)⊥)⊥ = R1. Therefore f ∈ R1 and is thus constant almost

everywhere.

Corollary 10.5.9. The inclusion H1(a, b) ⊆ C0([a, b]) holds. More specifically, f ∈ H1(a, b) if and only if

f = Jg + c1

for g ∈ L2(a, b) and c ∈ R are uniquely given by

g = f ′

and
c = ⟨f − Jf ′,1⟩

b− a
.

Moreover, ∫ d

c

f ′(s) ds = f(d) − f(c) (10.5.3)

for every [c, d] ⊆ [a, b].

Proof. (⇒). Let f = Jg + c1 for g ∈ L2(a, b) and c ∈ R. Then

f ′ = (Jg)′ + 0 = g,
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and so f ∈ H1(a, b).
(⇐). Let f ∈ H1(a, b), and set g := f ′, then

(f − Jg) = f ′ − (Jg)′ Lem 10.5.5= f ′ − g = 0.

Therefore, by Corollary 10.5.8 there exists a c ∈ R such that f − Jg = c1.
For (10.5.3) note that ∫ d

c

f ′(s) ds = (Jg)(d) − (Jg)(c)

= f(d) − c̃1 − f(c) + c̃1
= f(d) − f(c).

10.5.3 Sobolev Spaces

Definition 10.5.10. The first-order Sobolev space on [a, b] ⊆ R is

H1(a, b) :=
{
f ∈ L2(a, b) : f has a weak derivative

}
.

Lemma 10.5.11. The map ⟨·, ·⟩H1 : H1(a, b) → R given by

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨f ′, g′⟩L2 ,

where derivatives are in the weak sense, is an inner product on H1(a, b).

Proof. The map ⟨·, ·⟩H1 is clearly symmetric as ⟨·, ·⟩L2 is symmetric. By the linearity of the integral, if f1, f2 ∈
H1(a, b) have weak derivatives g1 and g2 respectively, then g1 +λg2 is the weak derivative of f1 +λf2 for λ ∈ R.
Therefore, f 7→ f ′ is linear and thus ⟨·, ·⟩H1 is symmetric as ⟨·, ·⟩L2 are symmetric. Similarly,

⟨f, f⟩H1 = ⟨f, f⟩L2 + ⟨f ′, f ′⟩L2 ≥ 0

for all f ∈ H1(a, b). Moreover, ⟨f, f⟩H1 = 0 if and only if ⟨f, f, ⟩L2 = 0 which happens if and only if f = 0.
Therefore, ⟨·, ·⟩H1 is an inner product.

Corollary 10.5.12. The map ∥ · ∥H1 : H1(a, b) → R given by

∥f∥H1 := ⟨f, f⟩H1

Proof. This follows from Lemma 10.5.11 and Proposition 8.1.5.

Lemma 10.5.13. The map H1(a, b) → L2(a, b) given by f 7→ f ′ is linear and bounded.

Proof. Linearity was noted in the proof of 10.5.11. Moreover, as

∥f ′∥2
L2 ≤ ∥f∥2

L2 + ∥f ′∥2
L2 = ∥f∥2

H1 ,

it follows that f 7→ f ′ is bounded.

Theorem 10.5.14. For [a, b] ⊆ R the following statements hold.

1. The space
(
H1(a, b), ∥ · ∥H1

)
is a Hilbert space.
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2. The inclusion
(
H1(a, b), ∥ · ∥H1

)
⊆
(
C0([a, b]), ∥ · ∥∞

)
is continuous.

Proof.

1. Consider (fn)n∈N ⊆ H1(a, b) a Cauchy sequence. That is,

∥fn − fm∥2
L2 + ∥f ′ − f ′

m∥2
L2 = ∥fn − fm∥2

H1
n,m→∞−→ 0.

Therefore, (fn)n∈N, (f ′
n)n∈N ⊆ L2(a, b) are Cauchy sequence and thus convergent. Let f,∈ L2(a, b) be

such that fn → f and f ′
n → g in L2(a, b). Then for ψ ∈ C1

0([a.b]), by using the fact that f ′
n is the weak

derivative of fn it follows that

⟨g, ψ⟩L2 = lim
n→∞

⟨f ′
n, ψ⟩L2 = lim

n→∞
(− ⟨fn, ψ′⟩) = − ⟨f, ψ′⟩ .

In other words, g is the weak derivative of f . Therefore, f ∈ H1(a, b) with fn converging to f in H1(a, b).
Therefore, H1(a, b) is complete and thus a Hilbert space.

2. For f ∈ H1(a, b), using Corollary 10.5.9, we can write

f = Jg + c1

for g ∈ L2(a, b) and c ∈ R, where c = ⟨f−Jf ′⟩,1⟩
b−a and g = f ′. Therefore,

∥f∥∞ = ∥Jg + c1∥∞ ≤ ∥Jg∥∞ + |c|.

Using (10.5.2) we have that

∥Jg∥∞ ≤
√
b− a∥g∥L2 =

√
b− a ∥f ′∥L2 .

Similarly,

|c| = 1
b− a

∣∣∣∣∣
∫ b

a

f − Jf ′ dx

∣∣∣∣∣
≤ 1
b− a

(∥f∥L1 + ∥Jf ′∥L1)

C.S
≤ 1

b− a
∥1∥L2 (∥f∥L2 + ∥Jf ′∥L2)

(10.5.2)
≤ 1√

b− a

(
∥f∥L2 +

√
b− a ∥f ′∥L2

)
.

It follows that
∥f∥∞ ≤ c∥f∥H1

where
c := max

(√
b− a+ 1, 1√

b− a

)
is only dependent on b − a. As this holds for all f ∈ H1(a, b), the inclusion map

(
H1(a, b), ∥ · ∥H1

)
→(

C0([a, b]), ∥ · ∥∞
)

is bounded and thus continuous.

Lemma 10.5.15. The map J : L2(a, b) → H1(a, b), given by (10.5.1), is bounded.
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Proof. Note that

∥J∥L2(a,b)→H1(a,b) = sup
f∈L2(a,b)\{0}

∥Jf∥H1

∥f∥L2

= sup
f∈L2(a,b)\{0}

√
∥Jf∥2

L2 +
∥∥(Jf)′∥∥2

L2

∥f∥L2

Lem 10.5.5= sup
f∈L2(a,b)\{0}

√
∥Jf∥2

L2 + ∥f∥2
L2

∥f∥L2
.

Using (10.5.2) and Proposition 4.1.6 we have

∥Jf∥L2 ≤ ∥Jf∥∞∥1∥L2 ≤ (b− a)∥f∥L2 .

Therefore,

∥J∥L2(a,b)→H1(a,b) ≤ sup
f∈L2(a,b)\{0}

√
(b− a)2 + 1∥f∥L2

∥f∥L2
=
√

(b− a)2 + 1 < ∞.

Corollary 10.5.16. For [a, b] ⊆ R, we have C1([a, b]) = H1(a, b).

Proof. Let f ∈ H1(a, b) with g := f ′. Then by Corollary 10.5.9 we have f = Jg + c1 for some c ∈ R. Since,
C0([a, b]) = L2(a, b) there exists a sequence (gn)n∈N ⊆ C0([a, b]) such that ∥gn−g∥2

n→∞−→ 0. Then using Lemma
10.5.15 we have that Jgn n→∞−→ Jg in H1(a, b). Therefore,

fn := Jgn + c1 n→∞−→ Jg + c1 = f

in H1(a, b). As (fn)n∈N ⊆ C1([a, b]) we conclude that C1([a, b]) is dense in H1(a, b).

Definition 10.5.17. The nth order Sobolev space, for n ≥ 2, on [a, b] ⊆ R is

Hn(a, b) :=
{
f ∈ H1(a, b) : f ′ ∈ Hn−1(a, b)

}
.

Proceeding in the same way as Lemma 10.5.11 we have that

⟨f, g⟩Hn :=
n∑
k=0

〈
f (k), g(k)

〉
L2

is an inner product on Hn(a, b), and thus

∥f∥Hn =
√

∥f∥2
L2 + · · · +

∥∥f (n)
∥∥2
L2

is a norm on Hn(a, b). Moreover, we have that (Hn(a, b), ∥ · ∥Hn) is a Hilbert space.

Definition 10.5.18. For [a, b] ⊆ R, let

H1
0(a, b) := H1(a, b) ∩ C0([a, b]),

where
C0

0([a, b]) := {φ : φ(a) = φ(b)} ∩ C0([a, b]).
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Lemma 10.5.19. The map ⟨·, ·⟩H1
0

: H1
0(a, b) → R given by

⟨u, v⟩H1
0

= ⟨u′, v′⟩L2

is an inner-product on H1
0(a, b). Moreover, ∥ · ∥H1

0
: H1

0(a, b) → R given by

∥u∥H1
0

= ∥u′∥L2

is a norm on H1
0(a, b).

Proof. As J is linear, from Lemma 10.5.13, and ⟨·, ·⟩L2 is an inner product it is clear that ⟨·, ·⟩H1
0

is bilinear and
symmetric. Moreover, ⟨u, u⟩H1

0
= 0 if and only if u′ = 0 which happens if and only if u = c for some constant

c by Corollary 10.5.8. As u ∈ H1
0 we have that u(a) = 0 which implies that c = 0. Hence, ⟨u, u⟩H1

0
≥ 0 with

equality if and only if u = 0. Therefore, ⟨·, ·⟩H1
0

is an inner product and so by Proposition 8.1.5 we have that
∥ · ∥H1

0
is a norm.

Remark 10.5.20. The norm of H1
0 is often referred to as the energy norm.

Lemma 10.5.21. There exists a C ≥ 0, dependent on b− a, such that for all u ∈ H1
0(a, b) we have

∥u∥L2(a,b) ≤ C ∥u′∥L2(a,b) .

Proof. Let u ∈ H1
0(a, b). Then by Lemma 10.5.5 we have that (Ju′)′ = u′ and so by Corollary 10.5.8 it follows

that Ju′ − u = c almost everywhere. As Ju′ − u vanishes at a it follows that c = 0. Therefore, Ju′ = u and so

∥u∥L2 = ∥Ju′∥L2 ≤ C ∥u′∥L2 ,

where C is given by the boundedness of J shown in Lemma 10.5.5.

Remark 10.5.22. From Lemma 10.5.21 it follows that on H1
0(a, b), the norms ∥·∥H1 and ∥·∥H1

0
are equivalent.

Indeed,
∥u∥H1

0
≤ ∥u∥H1

and
∥u∥2

H1
= ∥u∥2

2 + ∥u′∥2
2 ≤

(
C2 + 1

)
∥u′∥2

2 =
(
C2 + 1

)
∥u∥H1

0
.

Theorem 10.5.23. The space H1
0(a, b) is ∥ ·∥H1 -closed in H1(a, b) and a Hilbert space with respect to ∥ ·∥H1

0
.

Proof. Let (fn)n∈N ⊆ H1
0(a, b) be convergent to f with respect to ∥ · ∥H1 . As

(
H1(a, b), ∥ · ∥H1

)
is a Hilbert

space and (fn)n∈N ⊆ H1(a, b) it follows that f ∈ H1(a, b). Similarly, by statement 2. of Theorem 10.5.14 we
have that

∥f∥∞ ≤ c∥f∥H1

for all f ∈ H1(a, b) and some c > 0. Therefore, (fn)n∈N ⊆ H1
0(a, b) ⊆ C0

0([a, b]) converges to f with respect to
∥ · ∥∞. As

(
C0

0([a, b]), ∥ · ∥∞
)

is a Hilbert space we must have f ∈ C0
0([a, b]) and so f ∈ H1

0(a, b). Showing that
H1

0(a, b) is closed. Consequently, as ∥ · ∥H1
0

and ∥ · ∥H1 coincide on H1
0 we can conclude that H1

0(a, b) is a Hilbert
space.
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