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1 Introduction to Markov Processes

1.1 Probability Preliminaries

We will define randomness using Kolmogorov's framework. That is, we define an underlying probability space,
which is a tuple (92, F,P) with the following components.

= ) is an abstract space.
= F a o-algebra.
= PP is a probability measure, namely a measure with unit mass.

Random quantities will take values in a state space X which we assume to be a complete and separable metric
space. We will use B(X') to denote its Borel o-algebra, which is the o-algebra generated by the open sets of
X. Recall that random quantities are represented as AX’-valued random variables, which are measurable functions
X:(Q,F) — (X,B(X)). For X a X-valued random variable Law(X) or X.IP is the push forward of P of X,
where for each A C B(X') we have

X.P(A)=PXe€eA)=PHweQ: X(w) e A}).
A family of X-valued random variables is denoted using an index set I as (X;);cr-
» P(X;€A,X;€B)=P({wef: X;(w) € Aand X;(w) € B}).
» For I' C I the family (X;);cr is independent if for all A; € B(X) we have

P(X; € A;forallieI') = [] P(X; € A).
iel’

= For dependent random variables, when P(X; € B) > 0 we have

P(Xi S A,Xj S B)

P(X1€A|XJ EB) = ]P(X GB)
J

For I totally ordered, X = (X;);cs defines a stochastic process. For I discrete we have a discrete-time process.

1.2 Markov Processes

Definition 1.2.1 (Intuitive). A Markov process is a process that could be characterised by either of the following
statements.

1. For any prediction of the future, knowledge of the present is just as good as knowledge of both the past
and present.

2. Conditioned on the present, the past and present are independent.

Definition 1.2.2 (Formal). A process (X;)$2, is Markov if it satisfies either one of the following characterisa-
tions.

1. ForeveryjeNand A, By, ...,B; € B(X) such that P(X; € By,...,X; € B;) > 0 we have

P(XjJr]_ S A|X1 € By, ... 7Xj S Bj) = P(XjJrl S AlXJ S Bj).



2. Foranyi < j<kandAy,.. A;,B,Cji1,...,Cr € B(X) with P(X; € B) > 0 we have

P(Xo € Ag,...,X; € Ai,Xj_H € Oj+1,...,Xk € Ok‘Xj € B)
:HD(XO S AQ,...,X,‘ S Ai|Xj S B)
'P(Xj+]_ S Cj+1,...,Xk S Ck|Xj S B)

Exercise 1.2.3. Suppose that X is a finite set. Show that the characterisations of Definition[1.2.2 are equiv-
alent.

Exercise 1.2.4. Let (X;)32, be given by

J
X;=Xo+ ) Y,

i=1
where
= X, is a Z-valued random variable, and

» (Y;)22, is an independent and identically distributed family of {£1}-valued random variables, independent
of XO o

Show that (X;)32 is a Markov process.

Exercise 1.2.5. Let (X;)$2, be as in Exercise and consider

Mj = Imax Xl

0<i<)

Taking Xo = 0, show that (M;)32, is not a Markov process.

1.3 Filtrations

Definition 1.3.1. The o-algebra generated by a family of random variables (Y;);cs, denoted o ((Y;);cs), is
the smallest o-algebra such that
{Y;1(4):jeJ AcB(X)}

is contained within the o-algebra. In other words, o ((Y;)je) is the smallest o-algebra such that the family
(Y;)jes is measurable.

Remark 1.3.2. A og-algebra can be thought of as encoding information. If Z is a random variable with respect
to o ((Yj)jcs), then knowing the values of (Y;);jcs is sufficient for determining the value of Z. That is,
Z =g ((Y;) es) for a measurable function g.

Exercise 1.3.3. LetY; be a{—1,0,1}-valued random variable and let Y be a {—3, 3}-valued random variable.
What is the maximum value of |o(Y1,Y2)|?

Definition 1.3.4. A filtration is a sequence of o-algebras (F,),, with F,, C F for all n € N such that for
m < n we have F,, C F,.



Definition 1.3.5. A stochastic process X with state space X is a collection of X-valued random variables
(X0n)S2 on a probability space (2, F,P).

Definition 1.3.6. A stochastic process X = (X,)52, is adapted to (F,),-, if for every n € N the random
variable X,, is measurable with respect to F,,.

Definition 1.3.7. For a stochastic process X, the filtration generated by X, denoted F° = (.7-"2);:0:0 is

for every n € N.

Remark 1.3.8.
» The filtration F° is the smallest filtration for which X is adapted.

= Intuitively, FO is the information generated by the process up until time n € N.
1.4 Conditional Expectation
Throughout, (£2, F,P) will be the underlying probability space.
Definition 1.4.1. A random variable X is integrable if E (| X|) < co.

Definition 1.4.2. Let X be an integrable random variable, and consider a sub-c-algebra F' C F. The

conditional expectation of X with respect to F' is an F'-measurable random variable X' such that for every
A e F we have

[ x@)apw) = [ X' b,

Proposition 1.4.3. In the setting of Definition there exists, up to P-null sets, a unique conditional
expectation of X with respect to F'.

Proof. Let u be the restriction of P to F’. Let v be the measure on F’ be given by

V(A):/AX(UJ) dP(w)

for all A € F'. Then if u(A) = 0 it follows that ¥(A) = 0 which implies that v < u. Therefore, by the
Random-Nikodyn theorem there exists a unique F'-measurable function, X', up to sets of zero measure such that

V(A) = /A X' (w) dP(w)
forall A c F'. O

Remark 1.4.4.

= /f we have a candidate for the conditional expectation, by uniqueness, it suffices to check the conditions
of Definition|1.4.2 are satisfied to conclude that it is the conditional expectation.



» Note that X (w) is not necessarily F' measurable. So we cannot say that X' equals X pointwise.

We denote the conditional expectation of X with respect to F’ by E (X|F").
= We also write P (A|F") = E (14|F").
= Given a random variable Y, we write E(:|Y) = E (:|]o(Y)).

Remark 1.4.5. Intuitively, we think of E(X|Y') as being an approximation of X when we only have the
information of o(Y). As E(X|Y) is measurable with respect to o(Y') we can think of it as a measurable
function ¢(Y').

Example 1.4.6. Let 7' = {0, A, A°,Q} where A € F and P(A) € (0,1). Let X be an integrable random
variable. Then
ﬁfAX(w)dP(w) weA

E(X|f)(w){mfAcX(w)dP(w) S A

To see this one just has to note that X' is F'-measurable and

0 B=10

, )[4, X(w)dP(w) B=A
/BX(w)dpi fch(w)dP(w) B=A°
1 B=Q

where all set equalities hold almost everywhere.

Example 1.4.7. Let Y be an N-valued random variable. Let X be an integrable random variable. Then

EX[Y)= Y EX|Y=i)PY =i).
i:P(Y=i)>0

Exercise 1.4.8. Let (0, F,P) = (R,B(R),N(0,1)). Let Y be an integrable random variable given by Y (w) =
w?. Let X be an integrable random variable. Give a formula for E(X|Y).

1.4.1 Properties

Proposition 1.4.9. Let X be an integrable random variable on the probability space (Q, F,P). Suppose
B C F is a o-algebra such that o(X) and B are independent. Then,

E(X|B) = E(X).

Proof. Let B € B, then



where in (1) we have used the independence assumption. As E(X) is a constant, it is B-measurable. Therefore,
we conclude that E(X|B) = E(X). O
Proposition 1.4.10. Let X,Y € L?(Q, F,P). Let B C F be a o-algebra such that Y is B-measurable. Then
E(XY|B) = YE(X|B).

Proof. Step 1: Let Y =14 for A € B.
For any B € B it follows that
/ Y(w) X (w
B

9= [ KO

@ /B  E(X|B)) dB(w)
[ 1A@BXB) @) Pl

\

/Y E(X|B)(w) dP(w),

where in (1) we use that BN A € B. As A € B we note that 1 4JE(X|B) is the product of B-measurable functions
and is therefore also B-measurable. Hence, E(XY|B) = YE(X|B).

Step 2: Let Y be a simple function.

Due to the linearity of the integral, we can use step 1 to extend the result to Y.

Step 3: Let Y be a non-negative 3-measurable function.

There exists a sequence of positive simple functions (Y,,)nen such that ¥,, Y. Note that Y, X — Y X almost
surely and |V, X| < [V X|. As X and Y are in L? we can use the Cauchy-Schwartz inequality to note that

E(|XY])* < E(|X])*E(]Y])?
Therefore, we can use step 2 and apply the dominated convergence theorem to deduce that
E(YX|B) = lim E(Y,X|B) 2 lim Y,E(X|B) = YE(X|B).
n—oo n—oo

Step 4: Let Y be an arbitrary B-measurable function.
We can use the decomposition Y = YT — Y~ to conclude the result from step 3. O

Proposition 1.4.11 (The Tower Property). Let X be an integrable random variable and let A C B be
sub-o-algebras of F. Then
E (E (X|A) |B) = E(E(X|B)|A) = E(X|A).

Proof. As E(X|.A) is A-measurable, it is B-measurable. Therefore, by Proposition we get that
E(E(X|A)|B) = E(X]A).

On the other hand, for C' € A C B we have that

/C(X|A /X ) dP(w
/C(X\B /X ) dP(w

/ E(X|A)(w) dP(w) = / E(X|B)(w) dP(w).
C C

and

Therefore,



Thus, as E(X|.A) is A-measurable, we observe that E(X|.A) satisfies the required conditions to be the conditional
expectation of E(X|B) with respect to A. Therefore, by Proposition we conclude that

E(E(X|B)|A) = E(X|A).
O

Remark 1.4.12. Intuitively, Proposition holds as A has less information than B, and so the conditioning
on B retains sufficient information for the conditioning on A to take full effect.

Proposition 1.4.13. Suppose that X and Y are bounded R-valued random variables, and let f,g € By(R).
Then

E(E (Y]f(9(X)) l9(X)) = E(E (Y|g(X)) [f(9(X)) = E(Y[f(g(X))-

Proof. Note that f(g(X)) and g(X) are random variables as f and g are measurable functions. Specifically, we
have that

o(f(9(X))) == Agg ={A: f(9(X(A))) € B(R)}
and
o(9(X)) == Ay ={A:9(X(A)) € BR)}.

Consider A € Ay, then f(g(X(A))) = B for some B € B(R). As f is measurable it follows that g(X(A4)) =
f7Y(B) € B(R) which implies that A € A,. Therefore, Ay, C A,. Hence, from Proposition [1.4.11| we deduce
that

E(E (Y]g(X))[f(9(X))) = E(Y[f(9(X)),
and
E (EY]f(9(X))]g(X))) = E(Y]f(9(X))).
O

Proposition 1.4.14. Suppose that X andY are bounded R-valued random variables. Then for any f € By(R)
we have
2
E((v - E(Y|X))’) <E((¥ - f(X)?).

Proof. On the one hand,
E((Y - E(Y|X))’|X) =E (Y?|X) - 2E (YE(Y]X)|X) + E (E(Y]X)?|X)
E(Y2|X) - 2E(Y|X)? + E(Y]X)?
=E (Y?X) -E(Y|X)?

On the other hand,
E((Y - f(X))*|X) =E (Y?|X) — 2E (Y f(X)|X) + E (f(X)*|X)
=E(Y?|X) - 2f(X)E (Y|X) + f(X)>.

Therefore,
E((Y - f(X))?|X) —=E((Y = E(Y|X))’|X) = (E(Y]X) — f(X))* >0

and hence
E((Y - f(X)*|X) > E((Y - E(X|Y))*|X) .

Taking the expectations of both sides we conclude that

E((Y - f(X))?) 2E(Y - E(X|Y))?).



Proposition 1.4.15. Suppose that A C B are o-algebras contained in F. For a bounded random variable X
we have that
Var(E(X|B)) > Var(E(X|.A)).

Proof. Observe that,
Var(X) = E(Var(X|A)) + Var(E(X|.A))
= E(Var(X|B)) + Var(E(X|B)).

Therefore,

Var(E(X|B)) — Var(E(X|A)) = E (Var(X|A)) — E (Var(X|B)) .
Moreover,
Var(X|4) = E (X — E(X|4))2.4)
~ E (X — E(E(X|B)LA))*|4)
VR (X - E(X|B)?4)
2E (B ((X — E(X|B))?8) |4)
= E(Var(X|B)|.A). (1.4.1)

Where in (1) we use Proposition [1.4.14] as E(E(X|B)|.A) is A-measurable and so B-measurable. In (2) the
tower property for conditional expectations is used. As Var(X|.A) is an A-measurable function, we have that
E(Var(X|A)|A) = Var(X|.A). Using this and (1.4.1]) we deduce that Var(X|.A) > Var(X|B), which means that

Var(E(X|B)) — Var(E(X|A)) = E (Var(X|A)) — E (Var(X|B)) > 0

and hence Var(E(X|B)) > Var(E(X|.A)). O

1.5 Solution to Exercises

Exercise 1.2.3]

Solution. (1) = (2). Let
» A={Xy € Ao,...,X; € A},
= B ={X, € B}, (we abuse notation slightly with the B’s) and
s C={X41 €Cjq1,..., X € Cy}.

We assume that P(B),[P(A, B) > 0. Then

P(A,C, B)

P(B)

P(C|A, B)P(A, B)
N P(B)
= P(C|A, B)P(A|B).

P(A,C|B) =

Applying statement 1 we get that P(C|A4, B) = P(C|B) and so

P(A,C|B) = P(A|B)E(C|B).



(2) = (1). Then

P(X;41 € Aj11, X1 € By,....X; € B))
P(X; € By,...,X; € B))
CP(Xj1 €A, X0 €By,. .., X1 € Bj_1|X; € By)P(X; € By)
P(X, € By,...,X; € By)
® P(X;41 € Aj11|X; € Bj)P(Xy € By,...,X,-1 € Bj_1]|X; € B;)P(X; € B))
P(X, € By,...,X; € Byj)
=P(Xjn1 € 4jnalX; € Bj).

]P)(Xj+1 € Aj+1|X1 € Bl, Ce ,Xj € BJ) =

Exercise [1.2.4]

Solution. Note that X; = X; 1 +Y;. As X =7 it suffices to consider the events {k} for k € Z. Observe that,

]P(Xj+1 = $j+1|X() = ZQy.-- ,X]' = l'j) = P(Xj+1 =T -|—Y}‘XO =20, - - .,Xj = {,Cj)
= P(Xjp1 = z; + Yj|X; = ),

where the last equality follows from the fact that the Y; are independent and independent from X;. Therefore,

(X;)$2, satisfies statement 1 of Definition and hence is a Markov process. O
Exercise

Solution. For the sequence (Mg, M1, Ms, M3) consider the following possibilities.
1. (0,0,0,1) which arises from the sequence (Xg, X1, X2, X3) = (0,—1,0,1).

2. (0,1,1,1) which may arise from the sequence (Xy, X1, X2, X3) = (0,1,0,—1) or (Xp, X1, X2, X3) =
(0,1,0,1).

Note that these are the only possibilities for which M3 = 1. We can then compute the possibilities of M, in each
case.

1. P(My = 2|My = 0, M, :O,MQ:O,Mgzl):%
2. IP(M4:2|M0:0,M1 :1>M2:17M3:1):%

= The first % comes from the fact that we must observe the sequence (Xg, X1, X5, X3) = (0,1,0,1)
in order to be able to reach M4 = 2. The second % is the probability of reaching M, = 2 from that
sequence.

Therefore, we see that the future j + 1 = 4 is dependent on more than just the present j = 3. Hence, (Mj)‘j‘;o

is not a Markov process. O
Exercise 1.3.3]
Solution. There are 3 x 2 = 6 possibilities for the tuple (Y7,Y2). Taking the power set of these gives a o-algebra
of size 26, which is the largest o-algebra as o-algebra is simply a collection of subsets. O
Exercise 1.4.8l

Solution. For a set A, let

Step 1: 0(Y) ={B € B(R) : —B = B}.
Suppose —B = B, then for A = B? € B(R) we have

Y Y(A)=+B =B,

10



which implies that B € o(Y'). On the other hand, if B € o(Y), then B =Y ~1(A) for some A € B(R) so that

—B={-w:weY '(4)}
={-w:—weY (4}
={w:weY (A4}
= B,
where we have used that w € Y~1(A) if and only if —w € Y1 (A).
Step 2: E(Y]X)(w) = (X (w) + X(—w)).
For A € B(R) observe that

{w : %(X(w) +X(—w) € A} _ {—w : %(X(w) +X(—w) € A} ,
which implies that
{w : %(X(w) +X(—w) € A} € oY)

by step 1. Hence, (X (w) + X (—w)) is o(Y)-measurable. Moreover, as N'(0,1) is a symmetric distribution, for

B € o(Y) we have

/B%(X(w)jLX( w))dP(w) “=* = /X ) dP(w /X ) dP(—

/X ) dP(w /X ) dP(u
:/deIP’w
B

Therefore, E(Y|X) = (X (w) + X (—w)). O

11



2 The Markov Property

2.1 The Discrete Time Markov Property

We can now reformulate the Markov property with conditional expectations. The process (X,,)22 , has the Markov
property if one of the following equivalent conditions holds.

1. For every j € N and A € B(X) we have
]P(XjJrl S 14|_Xv07 Ce ,Xj) = P(Xj+1 € A‘Xj)
2. Forany j <k, A€ B(X’) and B € B(X*77), we have

P((X(),. .. ,Xjfl) c A, (Xj+1,. .. 7Xk) < B‘XJ) :P((Xo, .. .,Xjfl) € A|Xj)
! ]P)((Xj—O—la v 7Xk) € B|XJ)

Theorem 2.1.1. Let X and ) be state spaces with X being discrete. Let F,, : X x Y — X be a measurable
map for each n € N. Furthermore, let X, be an X-valued random variable and ((,)>2, be a family of
independent Y-valued random variables that are also independent of Xy. Then the process X = (X,,)%2,
given by

Xn—i—l = Fn(Xn; Cn—i—l)

for n € N is a Markov process.
Proof. As X discrete, it suffices to show the Markov property holds for singletons set. On the one hand,

]P)(Xn+1 - in-&-l‘Xn = Z"I'H e 7X0 = lO) = ]P)(Fn(X'ru Cn-l—l)‘Xn - i7L7 cee 7X0 = ZO)
= ]P)(Fn(lnv <n+1))7

where in the second equality we use the fact that (,, 1 is independent of the Xg, ..., X,,. On the other hand,
]P)(Xn+1 = in-&-l‘Xn = Zn) = ]P)(Fn(im <n+1))-
Therefore, X has the Markov property. L]

We can generalise Theorem to arbitrary state spaces. To do so, we require Proposition [2.1.2

Proposition 2.1.2. Let X and Y be state spaces and let ¢ : X x Y — R be a measurable function. Suppose
X is an X-valued random variable and Y is a J-valued random variable such that ¢(X,Y) is integrable. Then
for any o-algebra G C F such that X is G-measurable and Y is independent of G, it follows that

E(¢(X,Y)|G)(w) = E(¢(X(w), Y)).
Proof. Let ¢(X,Y) = 1{xca}1liyep) where A € B(X) and B € B(Y). Then,
5]

E (1ixeaylivenyl9) (w) = Lixea}(W)E (1iyenyl9) (w)

2
@ 1ixeca}(W)E (1gyeny)

=E(lxea(w)lyen),
where (1) follows as X is G measurable and (2) follows as Y is independent of G. Using the linearity of expectation
we can extend this result to X and Y being simple random variables. Applying the monotone convergence theorem

gives the result for X and Y non-negative random variables. To generalise to arbitrary random variables we utilize
the decompositions X = XT — X~ and Y =Y+t -V, O

12



Theorem 2.1.3. Let X and ) be state spaces. For eachn € N, let F,, : X x Y — X be a measurable
map. Let X be an X-valued random variable and let ((,)5, be a family of independent Y-valued random
variables that are also independent of X. Then the process X = (X)), given by

X1 = Fp(Xn, Cnt1)
for each n € N is a Markov process.
Proof. Let A € F, then
P(X,11 € Al Xy, ..., Xo) = P(F.(Xn, Cut1) € Al X, ..., Xo),

where

» X, is measurable with respect to o(Xy,...,X,), and

» (,41 is independent of o(Xy, ..., X,).
Therefore, by Proposition it follows that

P(Xpi1 € AlXns- ., Xo) = E (La (Fn(Xn Cot1)) | Xns- - -+ Xo)
=E (14 (Fa(Xn, Grt1))) -

A similar computation shows that P(X,,11 € A|X,,) = E (14 (Fi.(Xn, (rt1))) and so the process is Markov. [

2.2 Continuous Time Processes

A continuous time process (X)sey, is indexed by a continuous well-ordered set I, such as I = [0, 0).

Definition 2.2.1. A continuous time filtration is an uncountable family of o-algebras (Fs : s € I) with Fs C F
and F, C F; for each s < t.

Definition 2.2.2. Given a continuous time process (Xs)scy, the natural filtration (F{ :t € I) is

Fl=0c({X,:s<t, scl}).

Definition 2.2.3. A stochastic process (X)scr has the Markov property with respect to the filtration (Fs : s € I)
if (Xs)ser is adapted to (Fs : s € I) and for all s,t € I with s <t we have

P(Xt € A‘]:S) = P(Xt € A‘XS)

for every A € B(X).

Remark 2.2.4.

1. Definition says that our prediction of the future using information from the past and the present is
as good as our prediction of the future using only information from the present.

2. We can reformulate the condition of Definition[2.2.3 as for all s,t € I with s < t, A € B(X) and C € F,
we have
E(14(X))1c) = E (P(X, € A[X,)10).
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Exercise 2.2.5. Verify that the reformulation of Definition[2.2.3 with statement 2 of Remark[2.2.4is justified.
Definition 2.2.6. A non-empty collection of subsets D, is a w-system if for any A, B € D we have ANB € D.

Definition 2.2.7. A non-empty collection of subsets G, is a A\-system if the following properties hold.
1. 0eg.
2. For any G € G we have G° € G.
3. ForGi CGyC---€G wehavelJ;2, G; €G.

I Theorem 2.2.8 (Dynkin 7-\). If D is a w-system and G is a A-system with D C G. Then (D) C G.

Proposition 2.2.9. Suppose a m-system D generates B(X) and for each s € I we are given a m-system D;
that generates F5. Moreover, suppose that for every s <t, A € D and C € Dy we have

E(14(Xy)1c) =E(P(X; € Al X,)10).
Then (Xs)ser has the Markov property.

Proof. For fixed s,t € I such that s <t consider the set
C:={CeF,:E(1a(X})1lc) =EP(X, € A|X,)1¢) for all A € D}.
ThenfeCand X €C. If C €C then 1cc =1 — 1, so,
E(14(X¢t)1ce) = E(14(X3)(1 - 1¢))
E(1a(X:)) —E(1a(X¢)10)
— E(P(X; € A|X,)1) — E(B(X; € A[X,)10)
=E(P(X; € Al X)1ce).

Hence, C¢ € C. Next, if (Cp)nen C C is such that C; C Cy C, then by the monotone convergence theorem it
follows that | J;=, C; € C. Therefore, C defines a A-system. As D, C C we can apply the Theorem Mto infer
that F5 = o(Ds) C C C Fs which implies that F; = C. Similarly, we can consider

A={AeB(X):E(14(Xy)1lc) =E (P(X; € A|X;)1¢) for all C € Fi},

and show that A defines a A-system with D C A. Therefore, by Theorem system we infer that B(X)
o(D) C A C B(X). Therefore, A = B(X) and so (X;)secs has the Markov property.

ol

Proposition 2.2.10. /f (X, : s € I) is a Markov process with respect to a filtration (Fs : s € I), then it is a
Markov process with respect to its natural filtration (F? : s € I).

Proof. Note that for any s < t we have o(X;) C F° C Fs. Therefore, for t € I such that ¢ > s it follows that

P (X, € AF%) LB (P(X, € AIF.)|FO)

@ g (P(X, € AIX,)|FO)

D p(x, € AX,),

where (1) is an application of the tower property, (2) is applying the Markov property of (X)scr with respect to
(Fs)ser and (3) follows by the tower property. O
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Theorem 2.2.11. The stochastic process (X, : s € I) is a Markov process with filtration (Fs : s € I) if and
only if for any bounded measurable function f : X — R and s <t we have that

Proof. (=). Step 1: Let f =14 for A € B(X).
Then

E(f(Xt)Lrs) ]P)(Xt € A|fs)
(X: € AlXs)

P
E(f(X1)[Xs).

Step 2: Let f be a simple function.

By the linearity of expectation and step 1 the result extends to f.

Step 3: Let f be a non-negative bounded measurable function.

There is a sequence of simple functions (f,,)nen such that f,, * f. Therefore, applying the monotone convergence
theorem at the points (x) we deduce that

E(f(X0)|F) =E (lim_fa(X0)IF,)

W Jim (E(fn(X2)|Fs)

P2 fim (E(f(X0)] X)

n—oo

CE (lm fa(X)]X,)

= E(f(X1)]X5).

For f an arbitrary measurable and bounded function, we can write f = f* — f~ where f*, f~ are bounded
non-negative measurable functions. Hence, we can extend the equality to f using the linearity of expectation.
(«). For any A € B(X) let f = 14, so that for s < ¢ we have

P(X; € AJFs) = E(f(X0)|Fs)

E(f(X0)|Xs)
P(X, € A|X,).

Therefore, (X)ser is a Markov process. O

2.3 Discrete Time Processes

Throughout, let I be a discrete well-ordered set. Furthermore, let B,(X) be the set of bounded measurable
functions on X.

Theorem 2.3.1. Suppose we have a process (X,,)$2, and I < m < n. Then the following are equivalent.

1. For every f € By(X) we have
E (f(Xn)leaXm) =E (f(Xn)|Xm) .
2. For every g € By(X) we have

E (g(Xl)|XmaXn) =E (g(Xl)‘Xm) :
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3. For every f,g € By(X) we have
E (f(Xn)9(X0)|Xm) = E (f(Xn)[Xm) E(g(X1)| Xm).

Proof. Reversing the time of the process, we see that statement 3 remains the same whereas statements 1 and
2 switch. Therefore, it is sufficient to show the equivalence of statement 1 and statement 3.
(1 = 3). Note that,

E(f(X0)g(X0)| Xm) = E (E (f(X0)g(X0)| Xom, X1) | Xom)
= E (9(X0)E (f (X)X, X1) [ Xim)
= E (9(X)E (f(X0)| Xin) | Xim)
=E (9(X0)[Xm) E (f (Xn)[Xm) -
(3= 1). Consider g, h € By(X). Then
& E (h(Xn)E (f(X0)| Xon) E (9(X0) [ X,0)
=E (E (g(Xl)h(Xm)E (f(Xn)|Xm) |Xm)
=E (g(Xl)h(Xm)E’ (f(Xn)|Xm))

Therefore,
FOX) AP = [ B(F(X)|X0) dP
A A

for every A = A; N Az where A € 0(X;) and As € 0(X,,). Hence,

Remark 2.3.2.

» Statement 3 of Theorem[2.3.]] says that the future of the process is independent of its past, provided we
know the present.

= Theorem [2.31] holds for generic stochastic processes. The statements are weaker than the Markov
property as they only consider three points in time.

Lemma 2.3.3. Let (X,,)32, be a Markov process, and suppose t1 < -+ < t,, = k. Let f,h € By(X). Then

E (f (Xk+2)M( X4 1)|[ X5 - -+, Xe) = B (f (X)W Xp41)| X, ) -

Proof. Let G = 0(X4,,...,X¢, ). Then

E(f(Xgt2)M( Xky1) |g
(2)

Y E (E (B (f(Xir2)h(Xis1)| ) 172) 16)

]E( (E (f(Xnr2)h(Xis1)|Fsr) [ X) 1G)
DB (E (f(Xer2)h(Xii1)|[X2) 10)
Y E (f(Xus2)h(Xig1)|X)
where the equalities are justified in the following ways.

= (1) comes from the tower property for conditional expectations applied to ]—"ISH DF)DG.
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= (2) comes from the Markov property, as E (f(Xi+2)h(Xk11)|FL, ) is a bounded measurable function of
Xi+1, say g(Xy41) such that E (g(Xy41)[F7) = E(9(Xp41)| X).

= (3) comes from the tower property for conditional expectations applied to ~7:18+1 Do(Xg).

= (4) comes from the tower property for conditional expectations applied to G 2 o (X}).

Corollary 2.3.4. Let (X,,)22, be a Markov process, and suppose t; < --- < t,, = k. Then for A € B(X) we
have that

P(Xk+2 S Alth, 800 7Xtm) = ]P)(XkJrz S A|Xt )

m

Proof. This follows by taking h =1 and f =14 in Lemma|2.3.3 O

Through induction, Corollary extends to larger difference time steps.

Exercise 2.3.5. Let (X,,)22, be a Markov process, and suppose s1 < -+ < Sy, < t1 < -+ < t, and
fi € Bp(X) for1 <i<mn. Then

(Hfz (X )Xoy X ) =E <Hfi(Xti)|Xsm>.
i=1

Proposition 2.3.6. A process (X,,)22, is a Markov process with respect to its natural filtration if and only
if one of the following conditions holds.

1. For any A; € B(X) we have

P(Xo € Ao, ..., Xn € Ay) = /QIP’(Xn € An|Xn_1)(w)1 ({(Xi);;ol e 1:[ AZ}> (w) dP(w).
=0

2. Foreveryn € N and f € B,(X) we have

3. Foranyn € N and f; € By(X) we have
E (H L-(X») (H Fi () E(f (X)) | X 1>>
i=1

1. (=). ForC ={Xy € Ao,..., Xpn_1 € Ap_1} € F_1 observe that

Proof.

- (IP(X eA |Xn 1)1c)

D\:o\

P(X, € Ay|Xn—1)(w)le(w) dP(w)

n—1

P(X, € Au|Xno1)(@)1 ({(x»?:& S H&}) () dB(w).

=0
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(<). Let C ={Xo € Ao,..., X1 € Ay_1}. Then
E(1a, (X,)1c) =EP(X, € A, X, 110).

As sets of the form C' form a m-system that generates F,,_1, it follows by Proposition that Markov
property holds for every C' € F,,_1.

2. Follows the same arguments as those made in Theorem 2.2.11]

3. (=). Using Proposition |1.4.11} it follows that

EOIM%O=E<E0]MX)f
i=1 i=1

(«<). For any A; € B(X) let fi = 14,. Then
P(Xo € Ag,..., X € Ay) (Hf >
E(Hﬁz (falX N&AO
~ [ U)X Hﬁ () dB(w)

- /Qp(xn € An|Xn_1)(w)1 ({(Xi)?_‘ol c H Ai}> (w) dP(w).
=0

Therefore, we deduce using statement 1 that (X,,)52, has the Markov property.

Exercise 2.3.7.

1. Suppose (X)), is a bounded R-valued process which is Markov with respect to its natural filtration.
Let g € By(R) be a injective function. Show that (Y,,)5%, given by Y, = g(X,,) is Markov with respect
to its natural filtration.

2. Show that the above statement is not true if we remove the assumption that g is injective.

2.4 Solution to Exercises
Exercise [2.2.5]
Solution. Suppose the formulation of Definition holds. Let s,t € I, A€ B(X) and C € Fs. Then

E(1a(X¢)1lc) = E(E(1a(Xe)|Fs)1c)
= E(P(X, € A|F,)1c)
= E(P(X; € A|X,)1¢).
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On the other hand, suppose the formulation of statement 2 of Remark holds. Note that since P(X, € A|F;)
and P(X; € A|X,) are Fs-measurable we have

C:={w:P(X; € A|Fs)(w) > P(X; € Al X )(w)} € Fs

Therefore,
E(P(X; € A|F,) —P(X, € AlX,)|) =E(|P(X; € A|Fs) — P(X, € AlX,)| (1 + 1¢e))
=E(P(X; € A|F,) —P(X; € Al X)) 1¢)
+E ((P(X; € A[X,) — P(X; € A|F)) 1)
=K (1A(Xt)1C — P(Xt S Ale)lc)
+E(14(Xp)1loe —P(X; € Al X)1oe)
=0.
Therefore, P(X; € A|F;) = P(X; € A|X5). O
Exercise [2.3.5]
Solution. Suppose that t; = s, + 1. Let G = 0 (X,,,...,Xs,,). Then following the same arguments as those

made in the proof of Lemma we deduce that

E (ﬁ fi(Xt,-)|g> =E (E (E (ﬁ fz‘(Xti)U'—tOl) ‘]:Sm) ’g>
_E (IE <E <ﬁ Fi(X2) ffl) ‘X) ‘9>

=E (H fi( X)) Xsm) :
i=1
When t1 # s, + 1, one just takes f; =1 fori € {s,, +1,...,t1 — 1}. O

Exercise [2.3.7]

Solution.

1. Let A € B(R). As g is injective we know that
(Y, e A} ={X,eg ' (A)}.
Therefore,
P(Yot1 € Al Xo, ..., Xy) =P (Xns1 € g 1(A)[Xo, ..., X,)

D P (Xpi1 € g7 (4)|X,)

=P(Y,41 € A|X,),

where (1) is an application of the Markov property of (X,,)52, with respect to its natural filtration. Conse-
quently, (Y;,)22, is Markov with respect to the natural filtration of (X,,)$2 , so by a discrete-time analogue
of Proposition [2.2.10] (Y,,)5%, is Markov with respect to its own natural filtration.

2. Consider the symmetric random walk, (X;,)5%, on Z, which is a Markov process. Let

o=t = | 2.

Note P(Y,, = 0]Y;,—1 = 1) > 0 as we could have X,,_; = 3 and then X,, = 2. However, P(Y,, = 0|Y,,_1 =
1,Y,—2 =2) =0 as Y,,_o = 2 implies that X,,_o € {6,7,8} but Y, = 0 implies that X,, € {0,1,2}.
We cannot transition between these sets with two steps and hence the probability is zero. Note that the
conditioning is well-defined as {Y,,_; = 1,Y,,_2 = 2} is an event with non-zero probability. Therefore, the
process (Y,,)5 is not Markovian.

O
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3 The Kolmogorov Extension Theorem

3.1 Stochastic Processes as Random Variables

We can view a stochastic process (X;)°, as a XN-valued random variable, instead of as a sequence of X-valued
random variables. Using this interpretation we have a map Q — X given by

w (X (w))isg -
For an index set A, each m € A has a projection map 7, : [[;cp Xi — X, given by

HXiBa:(ai:aeA)me(a):amGXm.
i€A

Definition 3.1.1. Given an index set A and measurable spaces (Xi, .F(i)) for eachi € A, the product o-algebra,
denoted Q). 5 F), s the smallest o-algebra on [L;ca Xi such that the projection maps ., for m € A are

measurable. That is,
RFO =0 ({w;l(Am) A € F™ m e A}) :
ieA

Remark 3.1.2.

1. Sets that are finite intersections of sets of the form 7, (A,,) with m € A and A,, € F"™) are called
cylinder sets.

(a) Cylinder sets generate @), x F@,

(b) Cylinder sets A C [, Xi are of the form A = []
many A; # &;.

ien Ai where each A; € F9) and all but finitely

2. When A is countable, we know that Hie A B for measurable sets E; € F () js measurable.

3. When A is uncountable, we cannot assume that [[,. E; for E; € F (1) js measurable.

€A

3.2 Constructing Stochastic Processes

Throughout, we will be working with a discrete-time stochastic process, and usually have [],., &i = XN with X
a complete metric space.

Proposition 3.2.1. Suppose that we have a countable product of measurable spaces [];-, X; where each X;
is equipped with the o-algebra FV). Also suppose for each i € N we have F() = o(D;), then

é)f‘“ =0 (ﬁE FE; e Di> .
=0 1=0

If the X; are separable metric spaces, then the Borel o-algebra of the product topological space H;’io X; is
the product of Borel o-algebras of the X;, that is

B (ﬁ Xi> = ézs(xi).
=0 =0
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Corollary 3.2.2. If (X,,)5% is a X-valued stochastic process, the sequence (X,,)52 is a (XN, B (XN)) ran-
dom variable. Moreover, the process (X, )3, induces a probability measure Law ((X,,)52) on B (XN, B (XV)).

Supposing we have a stochastic process (X,,)52,, we construct a canonical probability space for the process as
(AN, B (X)), Law ((X,,)5%)). Therefore, if we are only interested in the process (X,,)32, we can forget about
(©,F,P) and focus on this canonical space instead. Note that (X,,)5%, corresponds to the identity map on
this space. Supposing we do not have a stochastic process, we can only guess what its law should look like.
With the equivalence observation we made above, we can construct this process by constructing its canonical
probability space. More specifically, if we know the values that (X,,)3°, takes in XN, then we just need to be
build Law ((X,,)52,) on B (XY).

Definition 3.2.3. A finite dimensional distribution on the first n + 1 time steps, {0,...,n}, is a measure pi,
on (X"t B (x"t1)).

Finite-dimensional distributions constitute our guess on what the law of our process should look like.

Definition 3.2.4. A family of probability measures (pi,,),_,, where each ju,, a measure on (X", B (x"*1)),

n=0"

is consistent if for any n € N and Ay, ..., A, € B(X) we have
tn(Ag X oo X Ap) = piny1(Ag X - X Ay X X).

That is to say the measures are marginals of each other.

Example 3.2.5. Let (X,,)22, be a X-valued stochastic process on a probability space (0, F,P). If we set
fr = Law (X j);‘L:O)' then (un )22 is a consistent family of finite-dimensional distributions.

Remark 3.2.6. Example [3.2.5 shows that for our guess of finite-dimensional distributions to yield a valid
stochastic process, we ought to ensure our guess is consistent.

Theorem 3.2.7 (Kolmogorov's Extension). Let ()52, be a consistent family of finite-dimensional distri-
butions. Then there exists a unique probability measure ;1 on (XN,B (XN)) such that for any n € N and

A€ B (X" we have
u(Ax ( H X)) = pn(A).
i=n-+1

oo
n=0+

Corollary 3.2.8. Given a stochastic process (X,,) the family of laws

(Law (X, - - -, X))

n=0
uniquely characterises Law ((X,,)22,).

From Theorem we can construct a stochastic process from a consistent family of finite-dimensional distri-
butions.

Corollary 3.2.9. Given any consistent family of finite dimensional distributions (1,), there exists a process

(Xn)5%y with
Law(Xo, ..., Xn) = tn

for every n € N.
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3.3 Stationarity

Working with sequences of random variables gives us a way to define stationarity.

Definition 3.3.1. For each n € N, the shift map is the B (XN)-measurable function 6,, : X — XN given by

(ag,a1,...) = (an, Gpit,---).

Definition 3.3.2. A stochastic process X = (X)), is stationary if for all n € N the processes 6, X and X
have the same law.
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4 Transition Probabilities

Our method for constructing stochastic processes in Section [3|does not guarantee the Markov property is satisfied
by the resulting sequence. Indeed, the self-avoiding random walk is a process with consistent finite-dimensional
distributions that is not a Markov process.

4.1 The Chapman-Kolmogorov Equation

Definition 4.1.1. A Markov process (X )52, is time-homogeneous if for every A € B(X) there is a choice of
P(e, A) € By(X) such that
P(X,41 € A|X,, =e) ~ P(e, A),

for every n € N, modulo Law(X,,)-null sets.

Remark 4.1.2.

1. The main property of time-homogeneity is the independence of n. Many results we will discuss tend to
hold without this assumption, however, the assumption simplifies notation.

2. The function P(e, A) describes the conditional probabilities and hence captures some information about
the process. Eventually, we want to work back from this data and understand what properties P(e, A)
needs to have to construct a Markov process.

Definition 4.1.3. A family P = (P(z,A) : x € X, A € B(X)) is a family of transition probabilities if the
following hold.

1. For each x € X, the function P(x,e) is a probability measure on (X, B(X)).

2. For each A € B(X), the function x — P(x, A) is Borel measurable.

Remark 4.1.4. Equivalently, we can say that there exists a measurable map P : X — P(X) such that for all
A e B(X) and x € X we have
(P(x)) (A) = P(z, A).

Exercise 4.1.5. Consider the random dynamical system as given in Theorem but with F,, = F for all
n € N. That is, Xp41 = F(Xn, Cut1) where the (¢,)52, are independent and identically distributed random
variables also independent of X,. Let Law(Xo) = v and Law((,) = p. Show that X = (X,)5%, is a
time-homogeneous Markov process and compute its transition probabilities.

Exercise 4.1.6. Let P be the set of transition probability built from a time-homogeneous Markov process

X = (Xn)2%. Show that (X2,)2%, and (Xs,)02,, are time-homogeneous Markov processes and compute

their transition probabilities P? and P3. Show that for all z € X and A € B(X) we have
P2, 4) = [ Ply, A)P(a.dy) (4.1.1)
x

and
P@.A) = [ Pl Pa,dy) = | o 4)P(.ay). (4.12)

Equations (4.1.1)) and (4.1.2)) are instances of the Chapman-Kolmogorov equation.
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Recall, that we think about P(xz, A) as encoding conditional probabilities. That is,
P(z,A) =P(X, 41 € A|X,, = 2).
As we are operating in the time-homogeneous setting, we can consider P(x, A) as a one-step conditional proba-
bility.
Definition 4.1.7. A sequence of transition probabilities (P™)S2, is a transition function if the following
statements hold.
1. P%(z,e) =4,. Here d, is the Dirac measure at x. That is,

A
5(4) = {(1) i ZA.

2. The family satisfies the Chapman-Kolmogorov equations, that is, for every n,m € N, x € X and
A € B(X) we have

P™t (g, A) = / P (y, A)P™ (z,dy).
x

Remark 4.1.8.
1. We can intuitively think of P™ as encoding an n-step conditional probability.

2. The Chapman-Kolmogorov equation says that a step into a set is consistent with taking smaller interme-
diary steps to get to the set.

A sequence of transition functions can be built from a one-step conditional probability, P. More specifically, given
any transition probability P, we can construct a transition function (P™) ", by

1. setting P°(z, ) = 6,
2. PY(z,e) = P(z,e), and

3. for n > 1 setting
Pt (z,A) = / P(y, A)P" ! (z,dy).
X

4.2 Constructing Markov Processes

Theorem 4.2.1. Let (X,,)22, be a time-homogeneous Markov process with transition probability P. Let
(P™)>°_, be the transition function built from P. Then the following statements hold.

1. Foranyn,m >0 and f € By(X) we have

E(f(Xn+m)|Xm) = /X f(y)Pn(Xmady)
2. If Xo ~ p, then for anyn > 0 and f € By(X) we have

BUK) = [ [ 1P (@ dyu(aa).

Proof.

1. Proceed by induction on n.
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= For n =0 we have
E (f(Xm)|Xm) = f(Xm)
~ [ 1Pt
X
= Suppose the result holds for n < k. Then,

Tow Prop.
E(f(Xptrem)|Xm) * =" E (B (f(Xnt14m) [ Fram) [Xm)
Markov
E (E (f (Xk+14m) | Xktm) [ Xm)

Time Hom. ( / fy m+k,dy)‘Xm>
Ind Hyp//f P(z,dy)P*(X,,,dz)

Fubini.
S [ )P (),
X
2. Using statement 1 it follows that

E(f(Xn))

E (E(f(Xn)[X0))

E (/ X07dy)>
| | wp . dnuaa),

where the last equality follows as Law(X() = p.

><

Remark 4.2.2.

1. For clarity we can take f =14 with A € B(X) so that the statements of Theorem reduce to

= P( X € A|X,,) = P*(X,,, A), and
= P(X, € A) = [, P"(z,A)p(dz).
2. X being a Markov process is a sufficient condition for the conclusions Theorem but it is not a

necessary condition.

Proposition 4.2.3. Let X = (X,,)>2, be a process with . = Law(Xy) and transition probability P. Then
X is Markov if and only if for alln € N and f; € B,(X) we have

E(Z];[)fz(Xz)> /X.../ngi(yi)gp(yi,dy¢+1)u(dy0).

n+1
Proof. (=). We proceed by induction on n.

= Forn =0, as Law(Xy) = p it follows that

E (fo(Xo)) /fo o) 1(dyo).
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= Now suppose the result holds for k <n — 1. Then

(i) = o)

-5 aovmtcnn o)
Markov. 1 (H fi<Xi)E(fn(X”)|an)>
=0

1 n—1 - 4

n—1 n_2
Ind:Hyp. /X/X (g fz(yl)/an(yn)P(ynladyn)> ;I;[OP(y“d%Jrl)M(dyO)
_ /X /X T15:00 TT Pl ()

where (1) follows as the conditional one-step probabilities is given by P.
(«<). Refer to Proposition [2.3.6] O

By taking each f; to be an indicator function we arrive at Corollary

Corollary 4.2.4. Let X = (X,,)0%, be a process with y = Law(X) and transition probability P. Then X is
Markov if and only if for all n € N and A; € By,(X) we have

]P(XO € AO; ooa aXn € An) = / / H P ylady1+l (dyO)
Ap

7L740

Remark 4.2.5. As the transition probability determines one-step conditional probabilities, the Markov process
of Corollary|4.2.4) is time-homogeneous.

Given P and p for a Markov process X we can compute the finite-dimensional distributions of the process.

Proposition 4.2.6. Given a transition probability P and measure y on X, there exists a unique (up to law)
Markov process X = (X,,)22, with transition probabilities P and Law(Xy) = p.

Proof. Consider the sequence of measures (i )neny on X™ given by

,un(AO X X An—l) :/ / H P yv 17dy7 (dyO)
Ao

"11,1

Observe that,

3

,LI’7L+1(AO X X An—l X X HP yz—ladyi)u(dyO)

n-1JX ;1

1=

\
;>\

Ao

n—1
P(yn-1,dyn) [ Pwi-1,dys)u(dyo)
i=1

I
\
>\
><\

Ao

n—1

n—1
A prz 1ady1 (dyO)a

n—1 j=1

Il
\

Ao
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where the last equality follows from the fact the P(y,—1,dy,) is a probability measure. Therefore, (fi,)nen form
a consistent sequence of measures, and so we can apply Theorem to deduce that there exists a unique
measure [P, on X'* such that its restriction to X" is u,,. Choosing € = X°° and our probability measure to be
IP,,, the canonical process (7, )nen With m, ((wo, w1, ...)) = wy, is such that

P(mo € Ag,...,mn € Ap) =Pu(Ag x -+ x Ay X X)
= pun(Ag X -+ X Ay).

Therefore, (m,)nen has finite-dimensional distributions (i, )nen. Therefore, by Corollary the process
(Tn)nen is a Markov process with transition probability P and Law(Xy) = p. O

Remark 4.2.7.

1. When p = 6, with x € X we write P, instead of P,. Similarly, we write E, or E, to denote the
expectation over (XN, B (XN)) with respect to P, and P,, respectively.

2. Note that by construction, the Markov process of Proposition is time-homogeneous.

We can see P as propagating the law u through time. Hence, we can view the transition probability as an operator
on P(X).

Definition 4.2.8. Given a transition probability P, we let T* : P(X) — P(X) be the operator where

s (T*) = /X P(z, o)u(dz)

where

(T 1) (4) = /X P(z, A)u(da).

Exercise 4.2.9. Formalise the intuition that P propagates the law of X through time. That is, in the context
of the Proposition show that

Law(X,) =T (... (T(Law(Xp)))...) = T"Law(Xp).
Definition 4.2.10. A measure p is invariant for the transition probability P if Ty = p.

Example 4.2.11. Let X have a Gaussian measure with mean zero and variance a®. Let (&,)nen be a sequence
of independent and identically distributed Gaussian random variables, independent of X, with mean zero and
variance b2, where a > b. Then the Gaussian measure with mean zero and variance a2 is invariant for the
Markov process (X,,)02, where

a® — b?

Xn = a2 anl + gn

forn > 1.
» By construction Law(Xy) is Gaussian with mean zero and variance a®.

= Suppose Law(X},) is Gaussian with mean zero and variance a® for k < n — 1. Then Law(X,,) has mean

zero and variance
a? — b2
< ) a® +b% = a?.

a2
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Remark 4.2.12. Let 7 be an invariant measure of P, then P, constructed by applying Proposition to
7 is the law of a stationary process. Indeed, by the invariant nature of w, for n € N, the process 0, X has
transition probability P and initial distribution 7. Therefore, by Proposition the shifted process has law
P.. Hence, the process is a stationary process.

Above we have considered P as an operator on measures. We can also view P as an operator on By(X).

Definition 4.2.13. Let P be a transition probability, we let T} : By(X) — By(X) be the operator where

s (@) = /X f(y)P(e,dy)

where

(T f)(@) = /X F () Pz, dy).

Exercise 4.2.14. For a fixed transition probability P, show that the operators T* and T, are dual. That is,
for any f € By(X) and n € P(X) we have

/X (T, ) (@)p(dz) = /X £() (T* ) (dz).

Remark 4.2.15. Henceforth, we will write T* = T.

4.3 Solution to Exercises
Exercise

Solution. From Theorem m]we know that the process is Markov. Moreover, we observe that
P(X,11 € A|X,) = E(1a(F(Xn,Cnt1)))
= /y La(F(Xn,y))u(dy)
=p({y ey : F(X,,y) € A}),

meaning the process is a time-homogeneous Markov process. In particular, P(z, A) = p({y € ¥ : F(x,y) € A})
because by the measurability assumptions on F', one can show that P(z,e) satisfies the required measurability
properties. O

Exercise [4.1.6]
Solution. Observe that
Cor.
P(Xonio € Al Xon, Xon_o, ., Xo) “ZEP(Xo 10 € A|Xay).

Similarly, for (Xs,,)22 . Therefore, (X2,)22, and (X3,)52, are Markov processes. Moreover,

P(Xont2 € Al X2p) =

pac)

X2n+2 S A|X2n+1» X2n)|X2n)

gac}

Xont2 € Al Xon11)|Xon)
Xont1,A)|X2p)

I
=
3

= [ Py, A)P(Xap,dy)
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where (1) is an application of the tower rule and (2) is applying the Markov property of (X,,)5°,. Therefore,
P(Xansa € AlXan =) = [ Py, A)P(a,dy)
X

In (3) we have used the fact that for f a measurable function we have

E(f (Xps1)| X, = 2) = /X F(0) Pz, dy).

Similarly,
P(X3n43 € A|X3n) = E (P(Xan+3 € Al X3n+1, X3n)|X3n)
Cor. 234
TELTE (P (Xsnas € Al X3nt1) | Xan)
=E (P*(X3n+1, A)| X3n)
— [ P A)P(Xan.dy),
X
therefore,
PA(x, A) = / P2(y, A)P(z, dy).
X
Exercise [4.2.9

Solution. For ease of notation let Law(X,,) = u, for n € N. Proceed by induction on n.

= Forn =1 we have

i (4) = / P, A)puo(dz)
X
— Tuo(A),
hence, 1 = Tpuy.

» Suppose i, = T* g for k < n. Then
pona(4) = [ PP (o o)
= [ P AP @ dypnfaa)
= /){P(y,A)Mn(dy)

- /X P(y, AT uo(dly)
= T (T"o) (4)
= T"* o (A).

Therefore, we conclude by induction that Law(X,,) = T"Law(Xy) for n € N.
Exercise [4.2.14]
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Proof. We proceed directly, noting that the equivalence arises from changing the order of integration,
[ to@n@ = [ s@ [ Pudoua)
reX TeEX yeX
-/ F(@)P(y. da)u(dy)
reX JyeX

- / (T £) () u(dly).
yeX
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5 Discrete Time Markov Processes

5.1 Time-Homogeneous Processes
On a discrete space, a probability measure is just a, potentially infinite, vector
p(de) — p=(p;:j € X)

with p; > 0 and Zje){ t; = 1. In such a case, the transition probability P can be represented as a, potentially
infinite, matrix
P(i,{j}) — P=(Pj:i,j € X)

where P;; > 0 and >,y Pij = 1. Note that if X = (X,,)72 is a time-homogeneous Markov process with

transition probability P then
P(Xn—i-l = j|X'n = 7) = sz
Definition 5.1.1. A matrix P = (P;; : i,j € X) is called a stochastic matrix if
1. Pij Z 0, and
2. ZjeX P =1.

For discrete state spaces X, we have a direct correspondence between transition probabilities and stochastic
matrices.

Exercise 5.1.2. Previously it was for shown that from a transition probability P, by setting P°(x,e) = §,, we
can construct a transition function by letting

P"(m,A):/XP(y,A)P"*I(x,dy)‘

In discrete spaces, show that P° = I, where I is the matrix with entries I;; = 45, and

P'"=Px.---xP
—_——

n

where x is matrix multiplication. Moreover, verify that P" is a stochastic matrix.

With Exercise [5.1.2] we can formulate our previous results in the specific context of a discrete state space.

Theorem 5.1.3. Let (X,,)22, be a time-homogeneous discrete Markov process with stochastic matrix P.
Then the following statements hold.

= Foranyn,m € N and f € By(X), we have

E(f(Xn+m)|Xm = 1) Z

JEX

= If Xo ~ p, then for any n € N and f € By(X) we have
= > wPf()
i,jEX
Again, we can contextualise the statements of Theorem by letting f = 6; for j € X. In this case
» P(Xngm = j|Xm =1) = P}, and

» P(X, =j) = Ziex NiPij-
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Proposition 5.1.4. Let X = (X,,)%2, be a discrete process with p = Law(Xy) and stochastic matrix P.
Then X is Markov if and only if for all n € N we have

E (H fm(Xm)> = > folio) - fulin)HioPigiy -+ Pi_1ins
m=0

80,y--esin EX

where each f,, € By(X).

Corollary 5.1.5. Let X = (X)), be a discrete process with ;i = Law(Xg) and transition probability P.
Then X is Markov if and only if for alln € N and i, ...,i, € X we have

P(XO = io,...,Xn (S Zn) = ,uioPioil ..

12

In—1%n"

In the discrete settings the operator T : P(X) — P(X) manifests as

(Tw)({3}) = > miPij = (uP);.

ieX
Similarly, the operator T : By(X) — By(X) is given by
(T f)(i) = Z Pijfi = (Pf)i-
JjeEX
Therefore, in the discrete setting, the behaviour of our process as n — oo can be reduced to understanding the

behaviour of P™ as n — oo.

5.2 Stopping Times

Definition 5.2.1. Given a filtration (F,),",, @ NU {co}-valued random variable T is an (F,),-_,-stopping

n=0’

time if for every n € N we have {T <n} € F,.

Recalling that a filtration tells us what information we have at time n, Definition [5.2.1] says that by time n there
is enough information to determine whether T has occurred. One can think of 7" as a random alarm clock that
cannot look into the future. By induction, the above is equivalent to {T' = n} € F,, or all n € N. One can
interchange between using {T' = n} and {T < n} when working with stopping times, with each being useful in
different contexts. We include infinity to allow the possibility that the "alarm clock" T' never rings.

Exercise 5.2.2. Let (X,,)02, be a stochastic process, let A € B(X). Show that T4 = inf{n e N: X,, € A}

is a (]-'S):ozo—stopping time. The random variable T4 is the hitting time of A.

Example 5.2.3.
1. A deterministic time T is a stopping time, including T = oc.

2. In general, for A € B(X), the random variable {4, = sup{n > 0 : X,, € A} is not a stopping time.
Intuitively, the value of {4 is dependent on the future.

Definition 5.2.4. Given a stochastic process (X,,)>2, and a NU {oco}-valued random variable T, the stopped
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oo

process (X1') ™ is given by

X (w) n < T(w)

XT == XTL =
n (@) ~r W) {XT(W)(w) otherwise.

Exercise 5.2.5. Let (F,) -, be a filtration, let T be a (F,),-_,-stopping time, and let (X,,)22 be a (F), " -

n=0
adapted process. Show that (Xg:):;o is adapted to (F,) -

n=0"

When filtrations are not mentioned in a statement, just assume there is some fixed filtration operating in the
background.

Proposition 5.2.6. Let S and T' be stopping times, and let (T,,),"_, be a sequence of stopping times. Then
the following hold.

1. SVT and S AT are stopping times.
2. sup,en(Th), infren(Th), liminf, o (T5) and limsup,,_, . (T,) are stopping times.
Proof.

1. Note that
{SvT <n}={S<n}n{T<n}eF,

and
{SAT <n}={S<n}U{T <n}eF,.

2. It suffices to show that sup,,cn(T5) and inf,cn(T},) are stopping times as lim inf,, o (T5,) = sup,, ey infr>n (Tim)
and limsup,,_, . (T,) = inf,.ensup,, >, (Tm). Observe that

{sup(Tj) < n} = m{Tj <n}eF,
jEN =0
and -

{}2£,(Tj) < n} = jL:JO{Tj <n} e Fn.

O

Example 5.2.7. If S and T are stopping times, then it is not necessarily the case that T — S is a stopping time.
Consider the Markov chain of Figure |z| with the initial distribution 61. Let S = T(x,—3} and T' = T(x, —5}.
Then{T — S =1} & Fi, since T > 2.

. e a
>mf
EA N

® — )

Figure 1

~
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Given a (fn)zozo—stopping time T we can consider the o-algebra that represents the information we have at time
T. Let Foo =\, Fn, which is the o-algebra generated by | J o~ Fo.

Exercise 5.2.8. Let T be a (F,), . ,-stopping time, show that {T = oo} € Fi.

Definition 5.2.9. For a (F,,),-,-stopping time T, the stopped o-algebra is
Fr={A€ Fyx:forallneN, An{T =n} e F,}.

One can think of the stopped o-algebra as containing events A, that when conditioned on the event {T' = n}
can be determined by the information available up to time n. The event {T" = n} can be replaced with {T" < n},
as we operate in the discrete setting.

I Lemma 5.2.10. /fT is a (F,), _,-stopping time, then T is Fr-measurable.
Proof. For m,n € N we have

0 m#n

{T—m}ﬂ{T—n}—{{T:n} I

In either case {T' = m} N {T = n} € F,. Therefore, {T' = m} € Fr for every m € N, meaning that T is
JFr-measurable. O

Exercise 5.2.11. Let S and T be (F,,)>2 ,-stopping times.
1. Show that if S < T, then Fg C Fr.
2. Suppose S <T and A € Fg. Show that S14 + T1 sc is a (F,,)52 ,-stopping time.
3. Show that {AN{S <T}: A€ Fs} C Fonr-

4. For X a bounded random variable, show that

E(E(X|Fr) | Fs) = E(E(X|Fs) [Fr) = E(X[Fsar) -

Definition 5.2.12. A stopping time T is finite if P(T < oco) = 1. When we have the stronger condition that
{T = 0o} = () we write this as T < co.

If T < oo, then for a stochastic process X = (X,,)52, the random variable X is well-defined.

Lemma 5.2.13. Let (X,,)52, be adapted (F,)5%, and let T be a (F,)o>-stopping time. Then for any
m € N, the random variable X1, is Fpr-measurable. Moreover, suppose that T < oo, then X is Fp-
measurable.

Proof. Let A € B(X), then for m,n € N we have

{Xr(am() € AYN{T = n} = {Xpam € A} N {T = n}.

Note {X,rm € A} € Fnam C Fn. Moreover, {T = n} € F,. Therefore, the right-hand side is in F,, which
implies that X7 a., is Fpr-measurable. One shows in a similar way that X is Fpr-measurable. O

Recall, that (}"2):;0 denotes the natural filtration of a stochastic process X = (X,,)5 .
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Lemma 5.2.14. Let (X,,)52, be a stochastic process and let T' < oo be a (Fg)zozo—stopping time. Then for
any k € N we have
{T = k}} S 0‘()(:[1/\07 A ,XT/\k)-

Proof. We proceed by induction on k.

= For £ = 0 we have
{T =0} e F)ea(Xo)=0(Xrno).

= Suppose the result holds for n < k — 1. Then

Lir—iy = Lir—iy 1irsi—1)

—~
—
~—

¢(X0a s 7Xk?)1{T>kfl}

—
—

= @ (XoaT, -+ Xkar) Lirsk—13

@ (Xoars -+, Xpar) (1= Lip<k_1y)
Hyp.

Ind ~
@ (Xoat, - - Xiar) @ (Xoar, -, X(—1)ar)

€ o (Xoars - s Xpar) -

o0 .

In (1) we have used the fact that T is a (.Fg)nzo—stopplng time, and so {T' = k} € Fy. The equality of
(2) follows from the fact that i =i AT for i € {0,...,k} on the domain of 17~ _13.

O

Proposition 5.2.15. Let (X,,)22, be a stochastic process and T' < 0o be a (]-'S)Zozo-stopping time. Then
Fr =o0(Xran :n €N).

Proof. As Xrap is Fr-measurable for any n € N by Lemma[5.2.13} it is clear that o (X7 : m € N) C Fr. On
the other hand, let A € Fr. Then for any n € N we know that AN {T = n} € F, which implies that

lAﬂ{T:n} = SD(XOa cee 7Xn)
for some ¢ € B, (X™*1). Note that
QO(X()a e 7X’n) = SO(X07 e 7Xn)1{T:n} =@ (XO/\T7 e 7X'n/\T) 1{T:n}~

Due to Lemma [5.2.14| we know that 17—} € o (Xoar, ..., Xnar), therefore, 14~(p—y; is measurable with
respect to 0 (Xran : 7 € N). Which implies that 7 C 0 (X7an : 7 € N) which completes the proof. O

5.3 The Strong Markov Property

Recall, that we can interpret a stochastic process X = (X,,)%2 , as a random element of the canonical probability
space (XN, B (XN),Law(X)). Furthermore, for each j € N we have a measurable map 6, : X — X given by

(ao,...,aj,aj+1,...) — (aj,aj+1,...).

Suppose we want a function F' € B, (XN) that only depends of times n > j. Then we can formulate it as a
function & € B, (XN) where
() = ®p(0;).

Definition 5.3.1. A process X = (X,,)22, has the strong Markov property if for every finite stopping time T'
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and every bounded measurable function ® € By, (X™) we have
E (®(6rX)|Fr) = E(®(67X)|XT).

Remark 5.3.2. In the setting of Definition we can consider another process Y = (V)% given by
Y, = Xr.yn, that is, Y = 00X with the filtration (G,,)2, where G,, = Frin.

Exercise 5.3.3. ForY and (G, )5 as in Remark[5.3.2 show thatY is a Markov process on (G,)52.
Lemma 5.3.4. Let X be a time-homogeneous Markov process with transition probability P. Then, for any
finite stopping time T, fixed n € N, and A € B(X') we have

P(XT-HL € A|.7:T) = Pn(XT, A)
Proof. It suffices to show the equivalent statement that for all f € B,(X) we have

E(f(Xrn)|Fr) = /X F(y) P (X, dy).

In one direction we set f = 14 and in the other we use an approximation argument to show the equivalence
between the statements. Note that [, f(y)P" (X7, dy) is Fp-measurable. Moreover, for B € Fr we can write

B:(G Bﬂ{sz})UC’

m=0

where P(C) = 0 as T is a finite stopping time. Let B,, = BN {T = m}, then

/B FXran) P = 32 /B () a2

o0

I
N

/B F(ma) P

0

= Z E (]-Bmf(Xern))

3
I

= i E (1B,n, /Xf(y)P”(Xm,dy))
-E ( Fy)P™(Xr,dy) i 1Bm>
(

X m=0

=E /Xf(y)P"(XT,dy)(lB —10))
_ /B /X F(y)P™ (X, dy)dP.

Therefore, [, f(y)P™(Xrp,dy) satisfies both conditions to be the conditional expectation of f(Xr7.,) with
respect to Frp. [
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Theorem 5.3.5. Let X = (X,,)52, be a time-homogeneous Markov process with transition probability P.
If T is a finite stopping time, then the process (67X, )nen is also a time-homogeneous Markov process with
transition probability P. In particular, for all ® € B, (X N) we have

E(®(0rX)|Fr) =E(®(O0rX)|X1). (5.3.1)
Moreover, for any n > 0 and A € B(X') we have
P(X,4+1r € A|Fr) = P*"(X71,A) (5.3.2)

almost surely. It follows that X = (X,,)$2, has the strong Markov property.

Proof. For any k € N and A € B(X) one can consider the stopping time T =T + k and apply Lemma m
with n = 1 to deduce that
P(Xp., € A|Fz) = P (X7, A)
which is exactly
P ((HTX)kJrl € A|]:k) = P((GTXM’A) .

This is saying that 87X is a time homogeneous Markov process with transition probability P. Moreover, Lemma

[5.3.4] shows that
P(Xnr € A|lFr) = P"(Xr, A)

holds almost surely for any n > 0 and A € B(X). To show (55.3.1)) it suffices to show that the equation holds for
all functions of the form ®(a) = H?:o fi(a;), where a = (a1,as,...), fi € By(X) and k € N. The reason why

this is sufficient is because these functions approximate all functions in By (X). Let ®(60rX) = Hf:o fi(X44).
We proceed by induction on k.

= For k = 0 the result holds as fo(X7r) is measurable with respect to Fr and Xrp.

-7:T+k1> ‘]:T>

k—1
E (H fi(Xr 1) E (fe(Xtk) [ Frsr—1)

=0

= Suppose the result holds true for all n < k — 1. Then

k k
E (H fi(X7r44) ]:T> =E (E <H fi(Xr1i)

=0 =0

)
")

k1
[ (H fi(XT+i)/ka<yk)P(XT+k717dyk)

=0

Let
Froo1(Xrih-1) = fom1(Xrip-1) /X Jr(ur) P(Xrgp—1,dyr).

Then fr_1 € By(X) and so we can apply our induction hypothesis to deduce that

k—2
E <fk—1(XT+k—1) H filX744)

i=0

k—2
fT) =E (fk—l(XT+k—1) H Ji(X74s)

=0

XT> |
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Therefore,
k—2

w1 (Xrpn1) [ £i(Xrs)

=0

XT>

fz'(XTH)/Xfk(yk)P(Xﬂk—hdyk)

XT>
XT>

]:T+k1> ‘XT>
XT> |

= ( [i(X140)E (fe(Xrtr) | Frie—1)

Remark 5.3.6.
= There are continuous time Markov processes which are not strong Markov processes.

= The time-homogeneous condition for the discrete-time case is not necessary. We only state it here to
simplify the proofs.

If we do not have T finite, then we can condition on the event {T" < co}.

Theorem 5.3.7. Let X = (X,,)52, be a time-homogeneous Markov process with transition probability P.
Then for all ® € By, (XN) we have

E (2(07X)1{r<c0}|Fr) = Exy (2(X)) 1{r<o0)-
Proof. As before it suffices to show that the equation holds for all functions of the form ®(a) = H?:o filai),

where a = (a1,as9,...), fi € By(X) and k € N. We consider a single fixed coordinate. Let f € B,(X) and
B € Fr, then

/ fCtryar= 3 | f(Xrn) dP
BN{T<oo} m=—0 Y BN{T=m}
Z/ f(Xm+n) dP
m=0 " BN{T=m}

> o B ) a8

m=0

oo

->/ o BT ) X 2

m=0

- / E (XrnLireoe | Xr) dP.
Bn{T<oco}

Therefore,
E (f (X74n) Yir<oo} [ Fr) = E (f(X140)1{r<oo} | X7)
=Ex; (f(X14n)) Lir<ooy-
One can extend this argument to a finite number of coordinates to complete the proof. O
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Remark 5.3.8. Recall, that Ex,.(-) denotes the expectation when X is used to start the Markov process.

5.4 Solution to Exercises
Exercise 5.1.2
Solution. Proceed by induction on n.

= By construction
P =P(X,11 =j|X, =1) >0.
Moreover, by the law of total probability we have
> Pi=) P(Xpp1=jlX,=i)=
jex jex
Therefore, P is a stochastic matrix.

= Suppose the result holds for k < n — 1. Then

z.{j}) =Y PG, {GHP" (= {i})

1E€EX
4 SN———
ieXx n—1

=(Px-XP)jg.
n

Consequently,

D Ph=) ) PP

kex keX jex

=2 > PP

JEX kex

=Y P Pie

JEX kex

Z Pn 1
JjEX

=1

Therefore, by induction, we conclude that P* = P x --- x P and P" is a stochastic matrix.
———

Exercise

Solution. This follows directly from observing that

{ra=n}= (nﬂ {X) ¢ A}) N{X, € A} e FY.

k=0

Exercise [5.2.5)

Note that for any n € N we can write

X (W) = X0 (W) 1{1(w)sn} + XT1{1(w)<n}

where
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= X, (w) is F,-measurable,

* Lip@)snt = 1 = 1{p)<n} is Fn-measurable as T'is a (F, )52 o-stopping time,
* X7p(w) is Fp-measurable as it is Fr(,)-measurable, and

* 1i7(w)<n} is Fp-measurable as 7' is a ()5 -stopping time.

Therefore, X' (w) € F,, which implies the stopped process is adapted to (F,,)5%,.
Exercise [5.2.8]

Solution. Note

(T =00} = ({T'>n} = ({T <n}"

n=1 n=1
As {T < n} € F,, it follows that {T' = o0} € F. O
Exercise ©.2.117]
Solution.

1. Let A€ Fs. Then
AN{T <n}=(ANn{S <n})Nn{T <n}.

In particular, A € Fg implies that AN {S < n} € F, and T being a (F,)5> ,-stopping time implies
{T <n} € F,. Therefore, AN{T < n} € F,, which implies that A € Fr.

2. Note that
{8144+ T1ge <n}=({S<n}nAU{T <n}nA°.

(1) (2)
As A € Fg, we have that (1) € F,,. By statement 1 we know A € Fr and so (2) € F,, as A € Fg. Hence,

{SlA-i-TlAcSn}G]:n

which implies that S14 + T'1 4 is a (F,,)52-stopping time.

3. For A € Fg it follows that AN {S < n} € F,. Recall, that S AT is itself a (F,,)22,-stopping time, so
that {SAT <n} € F,. Moreover, {S <T}N{SAT <n} C{S <n}. Therefore,

(AnN{S<THN{SAT <n}=An{S<n}n{SAT <n} € F,.

4. Step 1: Show that Fgar = Fs N Fr.
If A e Fg N Fr, then

AN{SAT <n}=(AN{S<n})U(AN{T <n}) € Fp,
which implies that A € Fsar. Suppose instead that A € Fgar. Then

An{S=n}=An{S=n}n{S<T}IU{S>T})
=AN{SAT=n}UAN{SAT <n-—-1} € F,.

Therefore, Fs N Fr = Fsar.

Step 2: Show that E (E (X|Fs) |Fr) = E (X|Fsar).

Consider E (X|Fsar). It is Fgar-measurable and thus Fp-measurable by step 1. Let G € Fr. Then
GNA{T < S} € Fsar C Fr, again using step 1. Hence,

/1{T§5}E(X\]-‘5AT) dIP’:/ E (X|Fspr) dP
G an{T<s}

= / XdP
Gn{T<S}

= / 1(r<5y X dP
G
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and similarly
/ 1(r< s E(X|Fs) dP = / 1(res) X dP.
G G

Therefore,
/1{T§S}]E(X|]:S/\T)dP:/ 1{T§S}]E(X|}—S)d]P)- (5.4.1)
G G

As GN{S < T} € Fs N Fr, by the same reasoning we deduce that
/ 17«5y E(X|Fsar) dP = / 1s<ryE(X|Fs)dP. (5.4.2)
G G

Adding (5.4.1)) and (5.4.2)) together we deduce that

/ E(X|Fsar)dP = / E(X|Fs)dP
G G

for all G € Fr which implies that E (E (X|Fs) |Fr) = E (X|Fsar)-
Step 3: Show that E (E (X |Fr) |Fs) = E (X|Fsar).

This follows by the similar arguments as those made in step 2.

O
Exercise [5.3.3]
Solution. For every f € By(X) and n,m € N it follows that
E(f(Yosm)|Gm) = E (f (Xnsmir) [Frim)
CE(f KXntms1) [X14m)
=E(f(Yotm)|Yim),
where (1) is an application of the strong Markov property of X. O
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6 Discrete State Space Markov Processes

We will identify the setting of discrete state spaces by saying that X' is countable. The notions developed here, do
not necessarily have a direct analogue for continuous state space Markov processes. We will continue to consider

discrete-time Markov processes.

6.1 Markov Chains as Graphs

Given a stochastic matrix P on X, thatis P = (P;; : i,j € X), we can build an oriented graph on X where an
edge is drawn from 4 to j if and only if P;; > 0. As P;; = P(X,,+1 = j| X, = 1), we can think of the graph where
the nodes are states and the edges represent paths between the states that are admissible in the process defined

by P.

Example 6.1.1. The stochastic matrix

0 5 5 0
1 (3 7 00
P‘Eomoo
2 8 00

has the corresponding oriented graph depicted in Figure[ We can use the graph to help compute probabilities
such as P(Xy = 2| Xy = 1). We see that the only paths which contribute to this probability are 1 — 3 — 2

and 1 — 2 — 2. Therefore,

P(Xs = 2|Xo = 1) = %(1) + % (170> .

Figure 2: The oriented graph of Example

Definition 6.1.2. Let X' be countable and P be a stochastic matrix on X.
1. The state j € X is accessible from i € X if Pj; > 0 for some n € N. We denote this i — j.
2. States i,j € X communicate if i — j and j — i. We denote this i <> j.
3. Given a statei € X, we let [i| = {j € X : i <> j} denote the communication class of .

4. The stochastic matrix P is irreducible if [i] = X for some i € X. Otherwise, P is reducible.

Exercise 6.1.3. Show that < is an equivalence relation on X .

Example 6.1.4. Consider Example |6.1.1. The set {1,2,3} is a communicating class, and {4} is another.

Therefore, P is reducible.
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When X is infinite, only finite paths in the incidence graph guarantee accessibility, infinite paths may not.

I Lemma 6.1.5. /fi — j, then for any i’ € [i] and j' € [j] we have i’ — j'.
Proof. By assumption there exists n1,n9,n3 € N such that
= P} >0,

- PZ;Q > 0, and

n3
. ij, > 0.
Therefore,
(1)
n1+n2+n: n n n.
BT > PUIPIP PS>0
where (1) follows from the fact that P™t, P"2 and P™ have non-negative entries. Hence, i’ — j'. O
g J

Figure 3: A graphical representation for the proof of Lemma

Exercise 6.1.6. Show that the relation [i] < [j] if and only if j — i is well-defined and a partial order. That
is, < is reflexive, transitive, and anti-symmetric.

Definition 6.1.7. An equivalence class [i] is minimal, or closed, if there is no j € X such that [j] < [i] and

] # [d]-

Example 6.1.8. Consider the stochastic matrix identified by the graph in Figure[d

CO— 0-s0—0
A

(O D2

Figure 4. The oriented graph of the stochastic matrix referred to in Examplem

In this case, the communication classes are the following.

- 1= {1},
- 2= {2}.
- 3= {3).
- 4= {4,7).
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= [5] = {5,6}.
Note that we have the relations

= [5]

IN

[2] < [1],
« [3] < [4], and
= B <2l <1

However, there is no relation between [4] and [2]. Therefore, < cannot be considered as a total order.

Figure 5: One can think of the equivalence classes as macro states, for which the process can only transition
to a state that is less than or equal to it.

6.2 Recurrence and Transience
Definition 6.2.1. Given a statei € X, let
T, =inf{n >1: X, =i}.
If Xo = i then T is called the first return time to state i.

For a state : € X we adopt the notation
u ]Ez() = E(‘Xo = Z), and
» Pi() =P([Xo =14).

Example 6.2.2. Suppose X = {1,2}, Pio = a € [0,1] and P»; = 8 € [0, 1] so that P is given by

_(l1-« o
p_( ; 1—5)'
Then,
1l—« n=1
]P)l(Tl :Tl) = {a(l _6>n_26 n>2.
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Hence,

PT1<OO ZPTl—n

=(1—a)+aﬁZ(1—ﬁ)

_Ji-a+oepit; B#£0
Cl1-« B8 =0.

Definition 6.2.3. A statei € X is recurrent if P;(T; < co) = 1. If a state i € X is not recurrent it is transient.

Definition 6.2.4. A Markov chain, that is a stochastic matrix P, on X is recurrent if every state i € X is
recurrent and it is transient if every state is transient.

Remark 6.2.5. We will see that if i € X is recurrent, then every i’ € [i] is recurrent. This means recurrence
and transience are properties of communication classes.

Lemma 6.2.6. For states i,j € X we have that i — j if and only if P;(T; < co) > 0. Moreover,

(T < 00) i

Proof. Observe that if P;(T; = n) > 0 then

*)
Pl > Py(T; = n) > 0,

where (x) is justified by the fact that P} is the probability of any path of length n between i and j, with P;(7; = n)
only considering the subset of such paths that do not previously encounter j. Moreover, if P/; = 0 then no path
of length n exists from i to j with a non-zero probability and so P;(T; = n) = 0. Hence, IP’L(T] =n) > 0if and
only if P{JL» > (0. Next, observe that

P;(T; < o0) (U{T = n}> (6.2.1)

n=1

So that P;(Tj < oo) > 0 if and only if there exists an n > 1 such that P;(T; = n) > 0 which happens if and only
if P/; >0, thatis i — j. Applying a union bound to equation (6.2.1)) we conclude that

n=1 n=1

I Lemma 6.2.7. Let j € X be recurrent. Fori € X if P;(T; < 0o) > 0 then P;(T; < o0) = 1.
Proof. Assume that P;(7; = oo) > 0. This means that there is a set of infinite paths with non-zero probability

that start at ¢ and do not reach j. The condition that IP;(T; < co) > 0 says that ¢ is accessible from j, Lemma
In particular, m := min ({n C P> O}) is finite as the set is not empty. Note by construction that paths
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of length m from j to 4, reach i from j without returning to j beforehand. Otherwise, the Markov assumptions
would imply that there exists a k < m such that Pﬁ- > 0. With this, it follows that

Pj(Tj = 00) 2 P;(Tj = 00, T; = m)

=P (m{Xk #ihTi Zm‘Xo =j>
k=1

=P (ﬂ{Xm+k # b T :m\Xo j)
k=1
oo

=P (ﬂ{X"H-k # T =m, Xo = j) P(T; = m|Xo = j)
k=1

—P (ﬂ{Xk ;éj}‘Xo - z) P;(T; = m)
k=1

=P;i(T; = 0o)P;(Ti = m)

>0,

which contradicts j being a recurrent state. O

Exercise 6.2.8. Show in the context of Lemma that P, (T; < oo) = 1 for any yu supported on [j].

Definition 6.2.9. Passage times are constructed inductively from hitting times.
. TO0 _
17 =0.
1_
= 15 =Tj.

o TP =inf (k> T/ : Xj = j} forn>1.
Exercise 6.2.10. Show that T} is a (Fj )72 o-stopping time.

Lemma 6.2.11. Let X have an initial distribution y, and suppose IP,(T; < oo) = 1 for a recurrent state
j € X. Then the random variables {T}" — Tj"’l}zoz | are independent with

k—
P(Tf — T3~ =m) =P;(T; =m)
for any m,k € N.
Proof. By the strong Markov property for k > 0 we have that
P (T]Hl ~TF = m|]:Tj‘"') (W) = Prs ) (T = m)
=P (T = m).
Taking the expectation we deduce that

P;(T; =m) =P (Tf* — TF =m)
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by the tower property and the fact that the left-hand side is a constant. Consequently, for any A € Frr we have
J

B (Lalqrsesrpony) =B (B (Lal gzt rsom)|Frr))

= E (L4 (Lo | 7t))
= P(A)P;(T; =m)
=PAP (T =T =m),

are independent. O

which shows that the random variables {TJ” — Tj"_l}:o

=1

Remark 6.2.12. The assumption on p in Lemmal[6.2.11) can be removed by conditioning. One can show that
P (Tf — T =, T < oo‘fo) = P;(Tj = m)1qicoo
and an analogous statement of independence.
Note the following,

« TP =) TF-TF" and

o {T7 < oo} =My {TF — T/ < o0}

Lemma 6.2.13. For anyi,j € X and k € N jt follows that
P; (T]k_'_l < OO) = ]P)Z(Tj < OO)]P)] (Tjk < OO) o

Consequently, -
]Pj (T]k+1 < OO) = ]P)j (TJ < OO) a o

Proof. Let ® € B, (X") be given by ®(X) = 14(X), where
A={XexV: |{{n>1:X,=j}>k}.

Note that
Ligtsi oo} (@) = @ (07, ) X (@) 17, <00y ().

Taking the conditional expectation of both sides with respect to Fr, we deduce using the strong Markov property
that

E (Lzer ey [F1) = T, <oy By, (2(X)
= 17, <o} (T} < 0).

Applying E;(-) completes the proof. O

6.3 Recurrence Conditions

Definition 6.3.1. The occupation time of a state j € X is the random variable

=D 1x,=j)-
n=1
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Remark 6.3.2. Occupation times are not stopping times.

Theorem 6.3.3. A state j € X is transient if and only if Y Pl < co. Equivalently, j € X is recurrent if
and only if Y 7 | P’ = oo,

Proof. Note that E; (1{x,—;3) = Pj} so that
D> Pfy = Es(m)
n=1

Pj(n; =n)

M

3
Il
-

M

Pj(n; >n)

3
I
A

o

]Pj (Tjn < Oo)

3
I
=

o

]P)j (T] < OO)n

3
Il
N

The geometric series is summable if and only if P;(7; < co) < 1, which is to say that j is transient. O

I Corollary 6.3.4. Suppose j € [i], then i is recurrent (transient) if and only if j is recurrent (transient).

Proof. Since j <> j there exists m1, ms € N such that PjTZ'.“,PZ.’J’.L2 > 0. Therefore,

o0 oo
k
DR TED DY
n=1

k=mi+m2
%)
— mi1 pma2 n
=P P E P,
n=1

so if i is recurrent then j is recurrent. By symmetry, the same holds for transience. O

Example 6.3.5. Consider the process (X,,)52, where Xy = 0 and
Xp=Xp 1+ gn

for n > 1, where &, is a {£1}-valued random variable with mean zero. For the chain to return to the state
zero after n steps, the variables (§i)k=1,..n must take the values £1 equally often. Consequently, the chain
can return to zero only after an even number of steps. More specifically,

§%zgﬁgzaﬁw.

n=1

As (*) ~ \2/% it follows that Y >° | Pi = co. Therefore, by Theorem the state zero is recurrent. In
particular, by Corollary[6.3.4 it follows that every state is recurrent as the chain is irreducible.
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Lemma 6.3.6. Let k € X, then one of the following holds.
1. Y0 | P = oo, for every i, j € [k].
2. Y02 Py < oo foreveryi,j € [k].

In particular, if [k:} has a finite number of elements and is a minimal class then statement 1 must hold so that
every element of [k] is recurrent.

Proof.

1. Suppose that Y°°° | P/} = oo for i,j € [k]. Then for i’,j" € [k] it follows that there exists mi,mg € N

¥,

such that P Pm2 > 0. Therefore,

i’

oo
SRR WL
n=

n=mi+ms
— mi m2 n
'RL ' P § Pij
= Q.

2. Suppose that > | P/* < oo for 4,j € [k]. Then for i, j’ € [k] it follows that there exists m;,my € N
such that P}/, P'2 > 0. Hence, we deduce that

DR RS RN

n=mai+ms

which implies that 37 | P}, < oo.
If [k] is a finite minimal class with 7 € [k] observe that

>Syor ”(”ZZ
jE[k] n=1 n=1jelk

1

—~
=

n=
= 00,

where (1) is just changing the ordering of a finite and infinite sum and (2) follows from the fact that [k] is minimal

and so P/} > 0 if and only ifj € [k]. Therefore, we know that for at least one j € [k] the sum 3~ | P/ is infinite

which |mpI|es that >0 = oo for all j € [k] by statement 1. Hence, every element of [k] is recurrent. [

Theorem 6.3.7.
= A state j € X is recurrent if and only if P;(X,, = j i.o.) = 1.
= A state j € X is transient if and only if P;(X,, = j i.0.) = 0.

Proof. Note that {X,, = ji.0.} = {n; = co}. Moreover,

{nj = oo} = ({n; = n}.
n=1
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The sets {n; > n} are decreasing in n € N, so

n—oo
. (qm
= nlgr;OIP’J (T] < oo)
Lem E213]

)1 jrecurrent
0 7 transient.

O

Lemma 6.3.8. Suppose X is finite, then a state is recurrent if and only if it is in a minimal class. In particular,
there always exists a recurrent state.

Proof. (=). As X is finite, the partial order < is defined on a finite number of communication classes, and so
there must exist a minimal class. In particular, this minimal class must be finite and so using Lemma [6.3.6] the
class must be recurrent. Thus a recurrent state exists.
(«). Let i € X be a recurrent state and suppose for contradiction that i € [k], where [k] is not a minimal class.
Then there exists a j € [k'] such that ¢ — j but j # 4. In particular, there exists an n; such that P;]L-j > 0 and
Pﬁ- = 0 for all n € N. Therefore,

Pi(T; = o0) > PZ]" > 0.

This implies that P;(T; < c0) < 1 and so the state 7 is not recurrent, which is a contradiction. O

Proposition 6.3.9. Suppose that i,j € X are states such that i — j but j /i, then i must be transient. In
particular, if [i] is not minimal, then it consists of transient states.

Proof. Let m = min ({n : P} > 0}). It follows that paths of length m from i to j never return to i before time
m. Moreover, as j /4 i such a path never returns to i after time m either. Consequently,

P,(T; = 00) > P > 0.

Therefore, 4 is transient. In particular, if [i] is not minimal then a j € X such that i — j but j /4 i exists and so
[i] contains transient states. O

Lemma 6.3.10. For states i,j € X we have that

o pn __ Pi(Tj < )
=
- 1-— Pj(Tj < OO)

with the understanding that the right-hand side is infinite if P;(T; < 0o0) # 0 and P;(T; < o0) = 1.
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Proof. Recall that for any j € X, the occupation time is given by n; = > > | 1:x,—j1- Hence, we can write

n=1

k=1
=> P (T} < )
k=1
Lem@zpi(Tj < OO)IP)J (Tfﬁl < OO)
k=1
Lem G213 S Pi(Ty < 00)P; (T < 00)
k=1
C1-— ]P’j (Tj < OO)
O
Theorem 6.3.11. If a state j € X is transient, then
> P <o
n=1
for all i € X. In particular, lim,, .., P =0.
Proof. If j € X is transient then P;(T; < c0) < 1, so by Lemma|6.3.10| we have that
ipn_ Pi(Tj <o0) _
ot K 1-— Pj (TJ < OO)
which implies that lim,, .~ (P[]‘) =0 forall i € X. O]

Remark 6.3.12. Intuitively, Theorem [6.3.11| says that transient states are difficult to reach.

I Theorem 6.3.13. If P has an invariant probability measure 7, then for any transient state j € X we must
have m(j) = 0.

Proof. Without loss of generality, we can assume that X = N. Suppose 7(j) > 0 for a transient state j € X.
Then as ), . 7m(k) =1 < 00, there exists an N € N such that

k=N+1

Moreover, by Theorem [6.3.11} we can find an n € N such that for all 0 < k < N we have P,?j < %j) As 7 is
invariant we can write

w(j) =>_ m(k) P

k=0
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Therefore,

N
= m(k)P + Z (k) Py
k=0 k=N+1
(1) >
< ”;H 3 w(k)Py
k=N+1
7(4)
252 3,
(f) , 7
<7 9
=7(j),

where in (1) we have used the fact that 7 is a probability measure, and so the sum fo:o m(k)Py; can be thought

of averaging the P/;, however, it is not a full average as ZQ;O (k) < 1. In (2) we have used the fact that P is
a stochastic matrix and so Py; < 1. Thus, we get a contradiction. O

I Corollary 6.3.14. A transient Markov chain has no invariant probability measures.

6.4 Constructing Invariant Probability Measures

Given any recurrent state i € X we can conisder the measure ! on X, where for j € X we let

Tifl
=E; (Z 1{Xn—j}>
n=0

0o
= Ei (Z 1{n<Ti}1{X"L_j}>
n=0

= sz(Xn :j,Tz > n)

n=0

Remark 6.4.1. Note that u' need not be a finite measure. Even if P;(T; < 0o) = 1 we have

Zuz(j) — Z ZPl(Xn =4,T; >n)

jeX jex n=0
n=0
=E;(Ty).

Which is not necessarily finite as a random variable can be finite almost everywhere without having a finite
expectation, take the Cauchy distribution.

I Theorem 6.4.2. Ifi € X is recurrent for P, then yi* is invariant for P.

Proof. Fix a recurrent state i € X and let u = p’. We want to show that (uP)(j) = u(j) for all j € X.
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For j # i we have

pG) =Y Pi(X, =4, Ti > n)
n=0

oo
=D ) Pi(Xu=jTi>nXp=kT;>n-1)
keX n=1

=3 3 Pi(Xn=4T; > n|Xp 1 =k T >n— DP(X, 1 =k Ti >n—1)
keX n=1

= Z sz(Xn :j|Xn_1 =k, T, >n— I)Pi(Xn—l =kT,>n— 1)
keX n=1

S Pyu(k)

kex
= (1P)(j);
where (1) is an application of the Markov property.

For j = 7, on the one hand,

T;—1
(i) = E; (Z 1{Xn_i}>
n=0

@

= Ei (1(xo=i})

where (1) follows as by construction of T; it must be that {X} # i} for 1 < k < T; — 1. On the other
hand,

(uP) (i) = D> Pi(X, =k, Ti > n) Py
keX n=0
= > Y Pi(Xn=kT >n)Py
keX\{i} n=0

S PiXn =k, Ty > n)P(Xpp1 =i Xy = k)
kex\{i} n=0

= > Y Pi(Xp=kT>n)P(Xpp =ilX, =k Ti >n)
kex\{i} n=0

oo
— Z Z]P’,»(XnH =i, X, =k T;>n)

kex\{i} n=0
(oo}

= ZPi(XnH =1,T; > n)

where the last equality follows from the fact that 7 is recurrent. Therefore, u(i) = (uP)(7).
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Definition 6.4.3.
= A recurrent state i € X is positive recurrent if B;(T;) < co.

= A recurrent state i € X is null recurrent if E;(T;) = co.

I Corollary 6.4.4. Ifi € X is positive recurrent then ' is an invariant finite measure.

Proof. The invariance of p® follows directly from Theorem The finiteness of p® follows from the positive
recurrence on 7. More specifically,

Do) =)D Bi(Xa=4Ti>n)

jex jEX n=0
n=0
= Ei(T;)
< oQ.
O
Lemma 6.4.5. Let i € X be recurrent, then for any invariant measure v and k € X we have
v(k) > v(i)i (k).
Proof.
» If k=i, then p%(i) = 1 and so the result holds clearly.
= When k # i, note that
P =P;(X, = k)
(1) n—1 ' n—1 .
> Y P (X =k AXm =i}U [ {X; #i}
m=0 l=m+1
n—1 n—1
= ZP(Xnk, M X #i} sz) Py}
m=0 I=m+1
n—1
= P; (Xp—m =k, T; >n—m)Pj,
m=0
where in (1) we are using the fact that
n—1
{Xm =i} U ﬂ {XJ#I}
l=m+1
are disjoint events for m = 0,...,n — 1, whose union is not necessarily the whole sample space. Intuitively,
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these sets are the events that m is last visit to i before n. It follows using the invariance of v that

JEX
n—1
> v(j) (Z Pi(Xp—m =k, Ty >n— m)Pﬁ)
JEX m=0
n—1
>3 P Xnom =kT; >n—m) > v(j)Py
m=0 jeX
n—1
> (i) Y Pi(Xn_m =k, T, >n—m).
m=0
By re-indexing the sum we get
n—1 n
Z Pi(Xp—m =k, T} >n —m) = ZIP%(XZ =k, T; > 1).
m=0 =1

Moreover, for k # i by the construction of i we know that

pt (k)

S Pi(X =k, T >1)

=1
= lim > Pi(X; =k, T; >1)
n—oo
=1

= lim (k).

n—oo

Consequently, we have shown that

and so taking the limit gives

O

Theorem 6.4.6. If a Markov chain is irreducible and recurrent, then its invariant measure is unique up to a
multiplicative constant.

Proof. Let v be invariant and set ;1 = p* for some i € X. By Theorem the measure 1 is invariant as i € X
is recurrent. Moreover, as ((i) = 1 we can write

0=wv(i) — v(i)u(i)
= (vP™) (i) — v(i) (uP™) (i)
= (v(k) — v(i)u(k)) Pg,

keXx

for any n € N. Note that v(k) — v(i)u(k) > 0 which implies that all the individual terms of the sum are zero.
As the chain is irreducible, for any k € X" there is an n € N such that P, > 0. Therefore, for each k € X we
can deduce that v(k) = v(i)u(k). Thus, invariant measures are the same up to some multiplicative constant,
v(i). O
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Theorem 6.4.7. Suppose we have an irreducible Markov chain.

1. If the chain has an invariant probability measure m, then all the states are positive recurrent and

fori e X.

2. If there exists a positive recurrent state, then the chain has a unique invariant probability measure and
every state is positive recurrent.

Proof.

1. As 7 is an invariant probability measure, there exists a state ¢ € X such that 7(i) > 0. Therefore, the
contrapositive of Theorem @] tells us that ¢ € X is a recurrent state. Therefore, as recurrence is a
communication class property, and the chain is irreducible, we deduce that every state is recurrent. For a
fixed state i € X we know by Theorem that 4/ is an invariant measure. By Theorem [6.4.6] we know
that ' is equal to 7 up to a multiplicative constant. That is, 7(j) = ku®(j) for all j € X and some k € R.
Hence, 1! is also a finite measure. Consequently,

0o > S uW(j) = Ei(T)),
jex
and so ¢ is a positive recurrent state. Moreover,
1= "mw(j) =Y kp'(j) = kEi(T))
jex jex

1

implies that k = p7y. As p(i) = 1 we deduce that

1

(i) = m

Repeating this for each i € X' we arrive at the same conclusion for each state of the chain.

2. Suppose i € X is a positive recurrent state of the chain, then we know y' is an invariant finite measure by
Corollary Therefore, we can normalise ' and apply the previous step to deduce that all states are
positive recurrent and that the invariant probability measure is unique.

O

6.5 Long Run Dynamics

In the setting of irreducible, positive recurrent chains we know there exists a unique invariant probability measure
7. Now we want to answer the question as to whether measures will converge under the dynamics of the chain
to this unique invariant probability measure. Formally, given a measure v on X we would like to understand
under what constraints (vP"), _ converges to m. Of course, this requires an understanding of what we mean
by convergence. For a positive result, we require added constraints on the structure of the chain. To see why we
require additional constraints refer to Example [6.5.1

0 1
10
P?" = [ and P?"*1 = P. Hence, lim,,_, Py does not exist for any i,j € X. Therefore, we cannot make
any conclusion about the convergence of (vP"), .. However,

Example 6.5.1. Let X = {1,2} and P = ( ) Then P is irreducible and positive recurrent. Note that

n
k n—oo
> P
k=1

S|~
N[ =



for each i,j € X.

For a state 7 € X, the return times to 7 is the set

R(i):=={n>0: P} > 0}.

Definition 6.5.2. The period of a state i € X denoted d(i), is

s = {24 20

It

Definition 6.5.3. Fori € X, if d(i) = 1 then i is called aperiodic, while if d(i) > 1 then i is called periodic.

Remark 6.5.4.
» If R(i) =0, and so d(i) = oo, it must be the case that i is in its own communication class.

= Note that if d(i) < oo then one can have d(i) & R(i).

Definition 6.5.5. A chain is aperiodic if every state is aperiodic, and it is periodic with period d if every state
has period d.

Example 6.5.6.

1. Consider the chain depicted in Figure @ The chain is irreducible, and positive recurrent. However, it is
not aperiodic as the state 1, for example, has a period of 4.

Figure 6: A chain that is irreducible, positive recurrent but not aperiodic.

2. Consider the chain depicted in Figure[7, Note that
R(1) = {3n+4m :n,m € N}.

In particular, 3,4 € R(1) which implies that d(1) = 1. In this case, d(i) & R(7).
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Figure 7: A chain that is irreducible, positive recurrent and aperiodic.

I Proposition 6.5.7. Fori,j € X in the same communication class, if i # j then d(i) = d(j) < 0.

Proof. The condition that ¢ and j are distinct elements in the same communication class implies that d(7), d(j) <
0. As i and j are in the same communication class, we know there exists an n € N such that PZ’JL > 0 and an
m € N such that P > 0. Consequently, by the Chapman-Kolmogorov equation we know that PZTZ.”JF”, P;}““” >0
which implies that m +n € R(i) N R(j). For k € R(i), using the Chapman-Kolmogorov equation we note that
k+m+mn € R(j). Therefore, as d(j)|n + m and d(j)|k + n + m it follows that d(j)|k. As k € R(i) was
arbitrary we conclude that d(j) is a common divisor of R(7). Hence, d(j) < d(i). By symmetry, we also deduce
that d(¢) < d(j) and so d(i) = d(j). O

I Corollary 6.5.8. An irreducible chain is either periodic or aperiodic.

Theorem 6.5.9. Suppose P is irreducible, aperiodic, and positive recurrent. Let w denote its unique invariant
probability measure. Then

lim Z |Pz7} — 7T(])| =0

n— oo ‘
JEX

forallie X.

Proof. Let (X, )nen and (X},),cy be independent Markov process with transition probabilities P and initial
distributions p and v respectively. Then by Lemma we know that Z, = (X,,, X)) is a time homogeneous
Markov process on X' x X with initial distribution ¢ ® v and transition probabilities

Qi) (5,5 = Fij Py
foralld,j,i',j’ € X. Let T =inf{n >1: X, = X, }. Using Lemma we have

> P(Xn =) = P(X), = j)| < 2P(T > ). (6.5.1)

jex

By Lemma we know that P(T" < oo) = 1, which implies that P(T' > n) — 0 as n — oo. Hence, from
(6.5.1) we deduce that

S IR (X, =) - P(X,, =i)] =3 0.

JjeX
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In particular, we can take any i € X’ and let © = §; and v = 7 to see that

dim (Y|P —a(j)] | =0.
JEX

O

Remark 6.5.10. With the notation used in the introduction to this section, Theorem establishes the
convergence of the measures v = §; for i € X to w, in the sense outlined in the theorem, under the dynamics
of the chain. This will be useful to use when we try to generalise to arbitrary probability measures.

Corollary 6.5.11. Suppose that X is irreducible, positive recurrent and aperiodic on a discrete state space
X. Let w denote its unique invariant probability measure. Then for any f : X — R which is w-integrable, and
probability measure pn on X we have that

E,.(f(X3)) = /X fdn

as k — o0o. Moreover,
1 n
= Eu(f(Xk) —>/ fdm (6.5.2)
w X
k=1
asn — oo.

Proof. Suppose f = 1; for some j € X, then

= ui)Pk
iex
We know by Theorem [6.5.9] that
> |u@)Pf —w(i)] =0

1EX

as k — oo. Therefore,

E,.(f(X5)) /X fdn

Z M(Z)PZIE —7(j)

iex
> u(@i) Pl =" Pym(i)
iex iex

<Z|M -— Zﬂr(z)|

1€EX

< u(@) P = 7 (i)

1EX

k
0.

Now for f : X — R non-negative and 7-integrable, we can write f =", f(i)1;. Let fr, = > | f(i)1;. Then
by the algebra of limits we know that

&mwwéﬂnm

as k — 0o. As f is non-negative we note that

Eu(fn(Xk)) < Eul(fnia(Xe))
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and so by monotone convergence we have that E,,(f,(X%)) = E,(f(X%)) as n — co. Similarly, we have that
Sy fndm — [ fdm. Therefore,

E,(f(X) — [ fdr
x
as k — 0co. We can then extend this to general 7-integrable functions f : X — R by considering f = f+ — f~.

Note that ([6.5.2]) follows as for a converging sequence, the limit of the partial averages converges to the limit of
the sequence. 0

Remark 6.5.12. Fori,j € X, by letting ju = 0; and f = 1; in Corollary[6.5.11] we deduce that
Z Pk — 7(j

6.6 Total Variation

Definition 6.6.1. The total variation distance between probability measures | and v, on some measurable
space X, is
= vllrv = 2 sup |u(A) —v(A4)],
ACx

where the supremum is over measurable subsets A C X.

Remark 6.6.2.

1 || - |lov has the dual formula,

/fd,u /dey.

2. Note that ||p — v||7v € [0,2] with || — v||rv =0 if and only = v and || — v||Tv = 2 if and only if
and v are mutually singular. Where by mutually singular we mean that there exists a A C X such that
w(A) =1 and v(A) = 0.

| —vlrv =
fGBb(X) \|f|\oc<1

Lemma 6.6.3. For X discrete

ln—=vlley = Y 1u@E) = v(@)] = lln—vlh.

1EX

Proof. Let B={i € X : u(i) > v(4)}. Then since 1 and v are probability measures we note that

0=1-1
(T3 )0
i€eB  ieBe¢

= S uli) = v+ 3 ) - v(i)
icB i€ B¢

= (ul) = v(@) = Y wi) — ul@),
i€B i€B¢

which implies that

S wli) = vli) = 3 vl) - uli).
i€B i€B¢



Note that the terms of these sums are non-negative by the construction of B so that

= vl =Y uli) = (@) + Y v(i) - ().

i€B i€ B¢

In particular,

= vl = uli) = v(@) + D v(i) - p(i)

i€EB i€B¢
= u(B) —v(B) + (u(B°) — v (B°))
=2(u(B) — v(B))
< [lw—=vlrv. (6.6.1)

For any A C X observe that

(A) — v(A)] = [H(ANB) — s(ANB) — (4 (AN BY) — v (AN B))|
<2max (|u(ANB) —v(ANB)|,|u(AN B°) —v (AN B°)|)
< 2max (|u(B) = v(B)], | (B°) — v (B)])

— 2/u(B) - v(B)|
= 57 (i) - v(d)].
1EX

Hence, taking the supremum of both sides we deduce that

e = vllrv <lp = vl

Combined with (6.6.1)) we conclude. O

Definition 6.6.4. Let (v,,),cn be a sequence of measures and let v be a measure.
1. The sequence (vy,)nen converges in total variation to v if ||v, — v||Tyv — 0.
2. The sequence (vp,)nen converges strongly to v if v,(A) — v(A) for every measurable A.

3. The sequence (vp,)nen converges weakly if

/dez/nﬁ/xfdl/

for every f € Cp(X).

Remark 6.6.5. Note that convergence in total variation implies strong convergence which in turn implies weak
convergence. However, the reverse implication in each of these cases does not hold.

Example 6.6.6.
1. For A € B([-1,1)), let
vn(A) = / 1+ sin(nz) dz
A

and v be the Lebesgue measure on [—1,1]. Then by the Riemann-Lebesgue measure it follows that
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vn(A) = v(A) for every A € B(X). That is, the sequence (v, )nen converges to v strongly. However,

[vn — vV = sup
FEBL(X), | fllo <1

/[—1,1] f(x)(1+sin(nx))dx—/ f(@)dz

[_171]

= sup
FEBL(X),[| flleo <1

n—oo

7 0,

meaning the sequence (v, )nen does not converge in total variation to v.

/[ @) @z

2. Consider the sequence of measures (Vp, )nen on R where v, = d1. Then for any f € Cy(X) we have that

1 n—oo _
Xfé% f<n> = f(O)f/deo.

Therefore, the sequence (Vy,)nen converges weakly to 6g. However, v, ({0}) = 0 for every n € N and
00({0}) = 1, meaning the sequence (v, )nen does not converge strongly to ég. Moreover, ||V, —do||Tv = 2
for all n € N, and so does not converge in total variation.

Theorem 6.6.7. Suppose P is irreducible, aperiodic, and positive recurrent. Let m denote the unique invariant
probability measure. Then for any probability measure v on X we have that vP™ — 7 in total variation.

Proof. Note that

[uP" = 7|l py = Z > u@) Py — w(j)
= Z > uli)Py — Zu(Z)W(J)

Given an € > 0, we can choose N € N such that
. €
' Z (i) < 1
i=N-+1

as 1 is a probability measure meaning . (i) < oo. Consequently,

D0 i) Y|Py )] < 5
i=N-+1 j=1

where we have just applied the triangle inequality to the inner sum, and the fact that P;; and 7(j) are bounded
by one. On the other hand, by Theorem [6.5.9 we can choose M € N such that for all i < N we have

> €
Z ’P;} _77(])| < )
Jj=1
for n > M. Therefore,
oo N N ¢ ¢
SO u@) [P -7 ()] < Yo uli)§ < 5
j=11i=1 i=1



Hence,

> uli) m(j)|

Mg

1P = 7|l py <

j=11:i=1
co N 0o o0

=> > uli) D +D° D ul@ [P ()|
j=11i=1 j=1li=N+1

< € €

_§+§

=€

O

Remark 6.6.8. The proof of Theorem [6.6.7 utilises the result of Theorem however, we could instead
capitalise on the proof of Theorem[6.5.9, Note that Theorem[6.6.7 is just a stronger version of Theorem
which we have already proved. In fact, at the last step of the proof of Theorem we can choose the initial
distributions of our chains to be v and  to arrive at Theorem[6.6. 2

6.7 Periodic Chains

We now provide an alternative, but equivalent, definition of the period of an irreducible Markov chain.

Lemma 6.7.1. The period of an irreducible stochastic matrix P is equal to the largest d € N<¢ such that
one can partition the state space as
X =AU ---UA; 4

where ifi € A,, then for j € X such that P;; > 0 we have j € Ay41 mod d-

Proof. Suppose P has period d. Fix a state i € X and let
A, = {j cX: Pil;-d+" > (O for some k € N}

forn =0,...,d — 1. By irreducibility we know that (4, ) forms a cover of X'. Suppose j € A,,, N A,,. This
implies that there exists k1, ks € N such that Pkld"’”1 P§2d+"z > 0. However, by irreducibility, there exists a
q € N such that Pq > 0. So k1d+ny + ¢ and k2d+ ng + ¢ are in R(i) and so d divides ny — ny which implies
ny = na. Therefore, Ap, N A, = 0 for ny # ny. Now assume that p is the largest number for which such a
decomposition of p disjoint sets exists. For j € X, if j returns to itself in ¢ steps then we must have that plq.
Therefore, p is a divisor of the set of return times for j. Hence, by the definition of d we know that p < d and
thus p = d if it is the largest number where such a decomposition exists. O

Example 6.7.2. For a d-periodic, irreducible stochastic matrix P, we note that by Lemma the chain with
the stochastic matrix P is restricted to one of the A™ forn = 0,...,d — 1. Consider the chain depicted in
Figure[8 In this case, the chain has a period of 3 and a corresponding decomposition is given by

= Ao = {2},
L} A1 = {4}, and
. Ay ={1,3).

The stochastic matrix for the chain has the form

QRO OO
O = O =

(== en R en)
O O = O
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for some g € (0,1). We note that

1% =

oK O
O O = O
—
| ©
Q
— O O O

which is no longer irreducible. The dynamics are constrained to the sets {2}, {4} and {1, 3} as expected.

e

Figure 8: An example of a periodic, irreducible chain whose three-step dynamics is reducible.

I Proposition 6.7.3. Suppose T" i = u for some fixed n € N, and let fy = L 37 | T*p. Then T = ju.
Proof. Let A € B(X). Then

Ti(4) = - S TH u(4)
k=1

n—1
1 1
_ ﬁ § Tkﬂ,u(A) + ET’@—HM(A)
k=1

Remark 6.7.4. Suppose we have a period d chain on X with a decomposition
X=AgU---UAg 1

as in Lemma and an invariant measure 11 for P4 on A™. Then

d
> uPt
k=1

ISR

M =
is an invariant measure for P on X.

6.8 Ergodic Theorem

n=1

I Theorem 6.8.1 (Strong Law of Large Numbers). Let (§,)22, be a sequence of independent and identically
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distributed real-valued random variables with E(|&;1]) < co. Then

Jim <i ka) = E(&)
k=1

almost surely.

Exercise 6.8.2. Suppose X is a time-homogeneous Markov process with initial distribution 6; fori € X. Let
T* be the k" return time to state i. Show that the random variables

Tk+1

> f(X):keN

I=T*k+1

are independent and identically distributed.

Theorem 6.8.3 (Ergodic Theorem). Let X be an irreducible, positive recurrent Markov chain on a discrete
state space X. Let 7 denote its unique invariant probability measure. Then for any m-integrable function
f:+ X — Rt follows that

lim (;Zf(xk)> = /fdw (6.8.1)
k=1 jeX

almost surely.

Proof. Consider f > 0. Fixi € X. Let T = T; and T* = TF be the passage times to i. It is sufficient to prove
the statement for X initially distributed according to IP;, as for an arbitrary initial distribution © we have

) =D Pi-)uli)

ieX

Let 11 = u’ be the finite measure on X given by

T
= Ei (Z 1{Xk-—j}> = EZ(T)W(])
k=1

Observe that,

T T
E; (Zf(Xz)> =Ei [ D) 1ix—jf0)

=1 jex
& > FG <Zl{xl y}>
JjEX
)y fG)m

JjeEX
=E;(T dr 6.8.2
(1) /X f (6.8.2)
< 0.

We can exchange the order of summation at (1) as the sum is absolutely convergent. Using Exercise we
can apply the strong law of large numbers to deduce that,
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1 " 1 "
dm\n2 2 S0 )=l <n2f<Xl>>
k=1Tk-141 =1
€, (7 )/dew (6.8.3)

almost surely. Since the differences of consecutive passage times are independent and identically distributed,
Lemma [6.2.11} we can apply the strong law of large numbers to deduce that

" 1
k— 1 _ 1 —gn) .
Jim (Z -7 ) = jin (1) =)
k=1
almost surely. Now let
n) = 1x—i)
k=1
for n € N. Observe that
(1) <n< m(n)+1

It follows that
7n(n) n n(n)+1

Z FX (ln)Zf(X < L) Z F(X0). (6.8.4)
=1

As i is recurrent, by Theorem ‘ we know the event { X}, =i} occurs |nf|n|te|y often with probability one and
so n(n) — oo almost surely. Therefore,

) )+

1 1
s 300 = i S

T)/deﬂ'
1

lim —— > f(X)) :Ei(T)/dew (6.8.5)

n—o0o0 n(n) =

almost surely. Hence, by (6.8.4]) we have that

almost surely. Taking f =1 in (6.8.5)) we note that

almost surely. Therefore,

To extend the result to general 7-integrable function f we consider the decomposition f = f+ — f~. O

Remark 6.8.4.
1. Theorem[6.8.3 can be thought of as translating time averages into space averages.

2. Note that the statement of Theorem [6.8.3 holds for every initial distribution of X.

66



3. Note that Theorem[6.8.3 does not require the chain to be aperiodic, whereas Theorem[6.6.7 and Corollary
16.5.11] do.

4. By taking f = 1; in ([6.8.3]) we get that
T .
(1 _ ()
P (n ; 1 (Xl>> = 70
m(J)

almost surely. In other words, =0 is the average time spent at state j during one excursion starting and
ending at i.

5. By taking f = 1; in Theorem[6.8.3 we deduce that

1 n
lim — lix,—in =x(J).
B T Z {Xr=5} ()
k=1
That is, the average number of times the chain arrives at state j € X converges to w(j). Note the
distinction between this statement and Remark[6.5.12

6.9 Reversible Markov Chains

Exercise 6.9.1. For a, not necessarily discrete, state space X, suppose we have a transition probability P and
a probability measure ;1 on X such that uP = p. Show that one can construct a two-sided Markov process
(Xn :n € Z) with

» Law(X,) = p, and
» P(X,41 € 41X, =2) = P(X,a)
foralln € Z, x € X and A € B(X).

Definition 6.9.2. For a two-sided stochastic process X = (X,,)ncz, the stochastic process X = (Xm> ;
me

with Xm = X _,,, is the reversed stochastic process.

Theorem 6.9.3. Let P be an irreducible and positive recurrent stochastic matrix with an invariant probability
measure 7. Let X = (X,,)nez be the two-sided Markov process constructed in Exercise with transition

probability P and Law(X,,) = n. Let X = (Xm> ; be the reversed stochastic process of X. Then X is a
me
time-homogeneous Markov chain with stochastic matrix

Pji = P”@

m(j

~—

Proof. As P is irreducible and positive recurrent there exists an invariant probability measure 7. In particular, as
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every state j € X is positive recurrent we have 7(j) > 0. Given consecutive times ng < n; < --- < n;, we have

P (Xno = io,. ..,an = ’Ll) = ]P(X—no = ih_._’X_m — 7/0)
(Z‘l)PLj’L‘l71 o Pilio

m(ir) 7 (i1) .
m(i—1) l_1> <TF(’LO) vio | m(io)
Ail—lil s pioi17r(7;0)

W(io)ﬁioil . Pil—lil .

=T

Therefore, using Corollary we deduce that X is Markov with transition probabilities P. O

Definition 6.9.4. A stochastic matrix P and a measure w satisfy detailed balance if
(i) Pij = 7(j) Pji

for alli,j € X.

Figure 9: An example of a chain satisfying detailed balance.

Proposition 6.9.5. Let 7w be a probability measure that satisfies detailed balance with respect to P. Then w
is P-invariant.

Proof. Observe that

O

Example 6.9.6. Consider the chain of Example Then a measure m = (w(1),7(2)) satisfies detailed
balance if
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If m is a probability measure then w(1) + 7(2) = 1 so that

{wu) = £
m(2) = 335

One can then verify Proposition[6.9.5 with

TP

(i L) (1 —« a )
at+p  a+p ﬂ 1= f)’

(ﬁ(lfa)JraB aﬁ+a(lfﬁ))
™

a+p a+pB

Theorem 6.9.7. In the setting of Theorem if m and P satisfy detailed balance, then P = P with
Law (X) = Law(X).

A process satisfying the statement of Theorem [6.9.7| is called reversible. Intuitively, in an irreducible chain that
satisfies detailed balance, one cannot tell whether the chain is being propagated forward or backwards in time.

Figure 10: We know this chain is not a detailed balanced chain, as we can distinguish whether the chain is moving
forward or backwards in time.

6.9.1 Markov Chain Monte Carlo

Suppose we want to simulate a probability measure m on a large but finite state space X'. That is, we want to
calculate ), f(i)m(i) for observables f : X — R. One approach is to construct a Markov chain for which 7
is its invariant distribution and use the ergodic law of large numbers to get that

S fliyn(i) = tim =37 A0,
k=1

ieX
Despite not knowing the specific values of m(i) for i € X, one can often model them up to constants of
proportionality. We note that the ratios

3. = =)

eliminate those constants. Ideally, one would sum these ratios over j € X’ to determine % however, in practice

this sum is expensive. Moreover, 6(i,j) may be intractable to compute for certain (3, j).
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Example 6.9.8. Let X = {—1,1}* with A = [N, N]*NZ9. For a configuration o0 = (0, : x € ), let

(o) o exp g Z 050y

z,yEN,|z—y|=1

for some B > 0. This model is called the Ising model. An application of the Ising model is to approximate
the dynamics of molecular spin within a material. In this setting, calculating the normalisation constant to
determine w(co) is difficult as materials contain a large number of molecules. However, if o and o’ differ at
exactly one x € A then

S(oo)=exp B Y (0w—0L)oy

yEA, |z—y|=1

Using these ideas we can now consider constructing a suitable Markov chain. Start with some irreducible Markov
chain with transition probability () and then set

1. Pij = Qij AN 5(],1)62]1 for i # j, and

2. P” =1 *Zj#iﬂj.

The chain with transition matrix P on X is not necessarily irreducible. However, showing P and 7 satisfy the
detailed balance tells us that 7 is an invariant measure of the chain,

()Qij N7 (4)Qj
(1)Qji A m(i)Qij
=7(5) (Qji N (i, §)Qij)
(J) Pji-

w(i)Py; ==

=T

Il
3

As multiple invariant measures may exist, due to P potentially not being irreducible, the chain may converge to
a different invariant measure. However, supposing that the chain is irreducible, or that it will converge to m, we

know by Theorem that
1 — N
U i = Y fm)

k=1 i€X

for large n.

6.10 Finite State Space Markov Chains
Throughout we will suppose that X = {1,...,N}. Let

0, = min P"
" <N Y

for n € N.

Proposition 6.10.1. Let P be a stochastic matrix on X. Then 6, is increasing in n. Moreover, the following
are equivalent.

1. P is irreducible and aperiodic.
2. P™ s irreducible for every n > 1.

3. There exists an ng € N such that §,,, > 0.
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Proof. The Chapman-Kolmogorov equation tells us that

+
Pyt >y PRPY
keX
> 6, Y P
keXx
p— 6/”/

for all 4,5 € X. Hence, dppqp = mini<; j<n P;j’”" > 0, and so §,, is increasing in n

(2) = (1). If P were not aperiodic, then as the chain is irreducible and finite it follows that it must be periodic. Let
P be d-periodic, then using the reasoning of Examplewe see that P? is reducible, which is a contradiction.
(3) = (1). By assumption, P™ has strictly positive entries, which implies that P is irreducible. As J,, is
increasing we know that §,, > d,, > 0 for all n > ng. Therefore, P™ also has strictly positive entries for n > ny.
Consequently, for any i € X we have that {ng,no + 1,...} C R(¢) which implies that d(¢i) = 1 and so P is
aperiodic.

(3) = (2). For n < ng there exists a k € N such that nk > ng. Hence, d,1 > d,, > 0, which implies that P is
irreducible.

(1) = (3). By Lemma we know that for all 1 < i < N there exists a k; such that kd(i) € R(i) for
k > k;. As P is aperiodic d(i) = 1 for each i € X and so for all n > Nj it follows that n € R(i) for each
1 € X. Thatis, P} > 0 for each i € X and n > Ny. As P is irreducible it follows that for ¢,j € A there exists
a m(i,j) € N such that Pgl(l’j) > 0. Using the Chapman-Kolmogorov equation we P;;er(z’” > P{;ﬂ?(”).
Hence, ng = Ny + max; jcx (m(i,j)) is such that §,, > 0.

Exercise 6.10.2. Let P be a stochastic matrix. Then for a recurrent state i € X and j € [i|, show that
Pj (E < OO) = 1,

Lemma 6.10.3. Let P be an irreducible, aperiodic stochastic matrix on a finite state space. Then for any
i,j € X and o > 0 we have that
E; (T7) < oo.

Proof. Using Exercise [6.10.2| we know that P; (T = co) = 0 and so we can write
E, (T7) = 3 n®B,(T; = n).
n=0

Hence,

E; (T{) <Y n"Py(Ti > n—1).
n=0

By Proposition [6.10.1| we know that there exists a ng € N such that d,,, > 0, consequently,

P (Xng (k1) 7 U1 Xnok # 1) = ZP (Xno(ot1) 7 il Xnork = 1) PEXOIC;AZ;
14 nok
P(X, = 1)
< 1— 5n0 07‘
200 5 7
S 1 - 6TL()
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It follows that

Pj(T; > no(k + 1)) < Pj (Xpo(h+1) # 0 Ti > nok)
= ]P)(Xno(k+1) 75 Z|TL > TL()kJ)Pj (Tl > nok‘)

) . .
=P (Xno(k+1) 7é Z|Xnolc 7& Z) Pj(Tl > ’IIQ]C)

< (1 — 5n0) Pj(Ti > ’nok)

—~
—

< (1 - 6no)k+1

where in (1) we used the fact that {T; > nok} € F,,,x and so we can apply the Markov property to condition with
respect to { X,k # i} € 0 (Xp,k) instead. In (2), we are just iterating the previous computations. Therefore,

oo 0o no(k+1)—1
Y nPTi>n—1)= IR (T > j = 1)
n=2ng k=2 j=nok

oo no(k+1)—1

<> (nolk+ 1) Py(Ti > nok — 1)
k=2

=. ]:’I’Lok
0o no(kJrl)*l
<> (no(k + 1)) (1 = 6,,)" "
k=2 j=nok

<Y ongt k41 (1= ,)"
k=2

< o0.

6.10.1 Perron-Frobenius

Let RY = {n e RV :p(i) >0 forall 1 <i < N}.

Lemma 6.10.4. Let P be irreducible and aperiodic on X = {1,...,N}. Then there exists some n € N and
6 > 0 such that for every n € RY we have

(nP") (@) = dllnllx

for every i € X, where |n|l1 = ;¢ n(i).

Proof. Take n = ng and 6 = d,, as in Proposition [6.10.1] then

(nP™) (i) =Y _n(i) P}

j=1
N

>0 Y _n(j)
j=1

= 6nlInll1-

O

I Lemma 6.10.5. Suppose that P is an irreducible stochastic matrix on X = {1,...,N}. Then there exists
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ann €N and § > 0 such that T" = L 3" | P satisfies

min 17 > 4.
1<ij<N Y
Proof. If P is aperiodic then this result follows from Lemma [6.10.4 So let P not be aperiodic, then as we are
operating on a finite state space, and P is irreducible, it follows that P is periodic. Suppose that P has period

d, then we can write
X =AU ---UAy_

where P? is irreducible and aperiodic on A; for 0 < j < d— 1. In particular, for 0 <1 < d — 1, there exists a
m; € N such that
m
min Pd) t>0.
i,JEA; z]
Now let m = maxg<;<q4—1m > 0 and n = 2dm + d. Suppose ¢ € A; and j € Ap. If [ =1 then Pi‘j. > 0 and
d < 2dm + d. Suppose instead that |l —I'| = r > 0. By irreducibility we know that there exists an i’ € A; and
4" € Ay such that P}, > 0. Therefore,
dmj+dm,, +r d dm,
P ! T > Pl.f”Pf,j,Pj,;"’ >0
where dm; + dmy +1r < 2dm +d. Thus, T" = %Z?Zl P7 has the property that
min T;% > 0,
1<i,j<N

where we maintain the strict inequality as our state space is finite. O

Theorem 6.10.6 (Perron-Frobenius). Let P be an N x N irreducible stochastic matrix on a finite state
space X. Then all the eigenvalues of P satisfy |\| < 1. Moreover, one is a left-eigenvalue with a unique real
left-eigenvector w, up to multiplication by a constant, that is 7P = 7. In particular, m can be chosen so that
7(i) > 0 for every i € X and Zf\; (i) = 1.

Proof. As P is a stochastic matrix it follows that

[Pl < lInll

for every n € C which shows that |\| < 1 for any eigenvalue A of P. Observe that %(1, ..., 1) is a right-
eigenvector of P with eigenvalue one, and so there must be a left-eigenvector m of P with eigenvalue one. Since
P is real we can take 7 to be real, moreover, we can normalize 7 such that ||w||; = 1. Now suppose that 7
and w_ are both non-zero, where 71 (i) = max (£ (¢),0) for 1 <i < N. That is, m contains both positive and
negative entries. Let & = min(||74]||1,||7—]|1) > 0. By the irreducibility of P we can consider a T™ and § > 0
satisfying the statement of Lemma Note that 7 is an eigenvector of 7™ with eigenvalue one. For n € RY,
we can write n =14 —n_. Thus,

Il = T,
= |l T — 7T,
< |y T — o |, + [T — dad],

1)
< llweT™, + =T, — 2 lad1],
= e T, + lm—T"|, — 200N

(2
< melly +llm—lly = 200N

2
D irly - 206N,
which is a contradiction for & > 0. In (1) we have used Lemma [6.10.5|to deduce that

[reT" = bad]ly = [[r Ty — [ldad]; -
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In (2) we have used that ||nT"| < ||n||l1- In (3), we have used ||7||1 = ||74||1 +]||7—|l1. Consequently, we establish
that 7 € Rf. Therefore, by construction of the T it follows that

(i) = (7T") (i) = |||,

that is, all its entries are positive. For uniqueness, we suppose that & € ]Rj\_f is another real left-eigenvector
with eigenvalue one. Moreover, we can assume that 7 has positive entries and ||7||; = 1. Then § =7 — 7 is
another real left-eigenvector with eigenvalues one, and so its entries must all have the same sign by our previous
arguments. However, note that

D06 = (i)=Y w(i) = |llh - 17|, =0.
i€X ieX i€X

Hence, 6(i) = 0 for all i € X, which implies that 7 = 7. O

Remark 6.10.7.

= One of the consequences of Theorem[6.10.6, is that any irreducible Markov chain on a finite state space
has an invariant probability measure.

» The specific w outlined in Theorem [6.10.6] is known as the Perron-Frobenius vector of P.

6.11 Solution to Exercises

Exercise

Solution.
» As P) =1 forall i € X it follows that i <+ .
s If i< jtheni— j and j — i, hence j < 1.

» If i < j and j < k, then there exists an ny € N such that P,g.l > 0 and an ngy € N such that Pﬁf > 0.

Therefore,
ni+n n n
P > Piijjk2 >0

and so i — k. Similarly, & — i so that i <> k.

Exercise [0.1.0l

Solution. Let i, € X be such that [i] < [j]. Consider i’ € [i] and 7/ € [j]. Then by Lemma we have
j" — 4" and thus [i'] < [j']. Therefore, < is well-defined.

= As i — i it follows that [i] < [7].
v If [i] <[4] and [j] < [k] then j — i and k — j. Therefore, k — i which implies that [i] < [k].

v If [i] < [4] and [j] < [4] then i <> j so that [i] = [4].

Exercise [6.2.8]

74



Solution. Note from Lemma [6.2.6] that if i € [j] then j — i so that P;(T; < oo) > 0. Therefore,

Pu(Tj < 00) = Y Pi(T; < oo)u({i})
i€[g]

B (i)
i€lj]
=1

Exercise [6.2.10]

Solution. Proceed by induction on n.

» As TJQ =0, it follows that
{19 <k}=Xx¢eF

for every k € N. Therefore, TJQ is a (Fg)52 ,-stopping time.

= Assume that ™ is a (Fr)52o-stopping time for m < n — 1. Observe that {TJ” < k} =0 € F for
k < n — 1. Therefore, suppose that k > n then

k k
{Tjngk}: U {Tjnilzl}ﬂ U {X, =3}
l=n—1 p=Il+1

We know that {X, = j} € F, C Fi and by the inductive assumption we know that {Tj"_1 = l} e F C Fy.
Therefore, {Tj" < k} € Fj, which means that T} is a (Fi)32y-stopping time.

O

Exercise [60.8.2)

Tk+1

Solution. LetYy = Zj:TkH f(X;), and consider g, h € B(R). Without loss of generality suppose that k' = k+n
for n > 1. Then,

E(g(Yi)h(Yar)) = E (E (9(Yi) (Y )| Frx))

M B (g(Yo)h(Yn))

= B (B; (9(Yo)h(Yn)| Frn))
LB, (g(Yo)E; (h(Yn)|Frn))
UP R, (9(Yo)E: (h(Yp)))
=Ei(9(Y0))Ei(h(Y0))

U B (g(Vi))E(h(Yr)),

where SMP denotes an application of the strong Markov property, and (1) follows as ¢(Yj) is Frn-measurable.
As g, h € B(R) were arbitrary this shows the mutual independence of Y}, and Y. One easily extends the above

argument to show that
E (H%(E‘)) = [[E(a:(v2)
i=1 i=1
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where g; € B(R) and m € N. This then shows the independence of the random variables (Y%)ren. Moreover, for
any k € N we have that

P(Yy € A) = E(14(Yz))
=E(E1a(Ys)|Frr))

M E, (14(Y0))

= Pi(YO S A)

where SMP denotes an application of the strong Markov property. Therefore, each Y}, is identically distributed.
Hence, we have shown that the random variables

Tk:+1
> f(X):keN
I=T*+1
are independent and identically distributed. O
Exercise [6.9.1]
Solution. For any m € Z, as y is stationary with respect to P we note that
P(X,, € Ao, ... Xman € Ap) =P (Xo € Ao, ..., X, € Ay) (6.11.1)

for any n € N. Note that the the family of measures (uy)nen given by p, = Law(Xj,...,X,,) is consistent.

Consequently, we can apply Theorem to construct a stochastic process such that
» Law(X,) =y, and
» P(X, 1| X =2) =P(X,a)

forn e N,z € X and A € B(X). Using (6.11.1)) it is clear that we can extend this stochastic process to Z, with
the properties detailed above now holding for n € Z, x € X and A € B as required. O

Exercise [6.10.2

Solution. Letn; = " 11x,—;. Then asi € X is a recurrent state it follows that P;(7; = o) = 1. Note that
by the Markov property we have

{n; = 0o} ={X,, =i, for some n > m}
for any m € N. Observe that

1="P;(X,, =i, for somen > m)

= Z PRP;(X,, =14, for some n > m|X,, =k)

keXx

=Y PRP(T; < o0)
keXx

<3 P
keXx

=1.

Therefore, for the k € X for which P}j! # 0 it follows that Py (7; < co) = 1. Hence, for j € [i| we can let m € N
be such that P/} > 0 and deduce that P;(7; < o) = 1. O
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7 Continuous State Space Markov Processes

We now generalise to complete separable metric spaces X, such as X = R™ or the infinite dimensional Banach
space X = C([0,1]).

7.1 Weak Convergence

In the time-homogeneous setting, transition probabilities P(-,e) are such that for x € X and A € B(X) we have
P(z,A) =P(X,4+1 € A|X,, = x).
We can use P to act on functions and measures.

= On functions T, : By(X) — By(X) is given by (T.f)(-) = [, f(y)P(-,dy). Equivalently,
(T f) (@) = E(f (Xnt1)[Xn = 7).

= On measures T* : P(X) — P(X) is given by (T*u)(e) = [, P(y,e)u(dy). Equivalently,

(T )(A) = [ P(Xoir € X, = putay)

Remark 7.1.1. In most cases P(e, A) = 0 for A = {y} a singleton. Therefore, notions developed in Section
[@ regarding irreducibility, recurrence and transience do not generalise to this setting.

Henceforth, we will denote the set of bounded and continuous functions on X as Cp(X).

Lemma 7.1.2. Let pu, ' € P(X) be such that

/deu=/xfdu’

As Cy(X) can distinguish probability measures, it is natural to use them to define a notion of convergence.

for every f € Cp(X). Then pu= 1.

Definition 7.1.3. A sequence of probability measures (pi,)nen C P(X) converges weakly to u € P(X) if
[ 1@ n(an) =5 [ fa) ()
X x
for every f € Cp(X).

Remark 7.1.4.

1. On P(X) there exists a metric d(-,-), known as the Levy-Prokhorov metric, that topologizes weak
convergence. That is, i, converges weakly to u if and only if d(p,, ) — 0.

2. Let (Zn)nen be a sequence of random variables, then Z, — Z almost everywhere implies Z,, — Z in
probability which implies that Law(Z,,) — Law(Z) weakly.

7.2 The Feller Property
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Definition 7.2.1. A transition probability P, or T, is Feller if T* maps Cy(X) C By(X) into Cp(X). That is,
T* (Cp(X)) C Cp(X). Moreover, P, or T, is strong Feller if T*(By (X)) C Cp(X).

Remark 7.2.2. A transition probability P being Feller is equivalent to the map X — P(X) given by x —
P(z,e) being continuous, where P(X) is equipped with the topology of weak convergence. Indeed, let f €
Cp(X) and let (x,,)nen be a sequence converging to x € X. Then

tim (Tf)(a) = lim | f(4)P(andy)

@ T
D /X f(y) P, dy)
— (Tf)(x),

where (1) is justified either by the continuity of P with respect to the weak topology or by the Feller property
of T.

Lemma 7.2.3. Let f € B, (R") and g € L* (R"), then f % g € C, (R™), where

(fxg)(z) = L fW)g(z —y)dy.

Proof. Step 1: Show that ||f * g|lpe < ||fllze]lgllL:-
Observe that

T
(f % 9)(@)] s/ F@)llg(z - v)|dy

n

<1l [ lota=wldy

(€]
= [[fllocllglizr,

where the translational invariance of the Lebesgue measure is used in (1). Therefore, f x g is bounded.
Step 2: For g € C° (R™) show that f x g € C, (R™).
Let g € C2°, then for any z, 2’ € R™ we have

(frg)@)—=(frxg) (@)= [ fly)(g(z—y)—g —y)) dy.

R

By the continuity of g we know that g(z —y) — g (¢’ — y) — 0 as x — z’. Moreover, we know that

1f() (g(x—y) =g —y)| <2/ fllr<llgllLe < oo,

where the finiteness follows from the fact that f is bounded and ¢ is continuous with compact support and so is
also bounded. Therefore, using the dominated convergence theorem,

[(f*g)(x) = (f x9) ()] = 0
asz — 2.
Step 3: Given g € L' (R"), find a sequence (gn)nen C C° (R™) such that g, — g in L' (R™).
Recall that C2° (R™) is dense in L! (R™). So for g € L (R™) there exists a sequence (g, )nen C C2° (R™) such
that g, — g in L' (R").
Step 4: Argue that f * g, — f*g in L™ (R").
Let 2 € R™ with (2, )neny € R™ such that ,, — x. Note that

[(f*xg)(z) = (f xg) (@) SI(f *g)(x) = (f *gr)(@)] + |(f * gr)(x) = (f * gk)(2n)] (7.21)
+ [(f * g )(@n) — (f * g)(@n)]-

78



Note that,

|(f *g)(x) = (f x g)(@)] < [ flle /Rn lg(x) = gn ()| dz
= [[fllz=<llg = gnllzr-

and,
[(f *gi)(@n) = (f *g) (@) < [[fllz=llg — gnllzr-

Therefore, given an € > 0 there exists an N; € N such that

(7% 9)(&) — () @)+ 1(F % 98) () — (F % 9) )| < o

for all n > Nj. Using step 3, there exists a § > 0 such that for |z — 2’| < § we have

€

(% 91)@) = (F g )| < 5

As z,, — x we can choose an Ny € N such that |z —z,,| < ¢ for all n > Na. Therefore, for all n > max(Ny, Na)
we have

2¢ €
((f*9)(@) = (Fxg) (@a)l = 5+ 5 =¢
which means that f % g is continuous. Recall that f % g is bounded from step 1 and so f x g € C, (R™). O

Consequently, we obtain a criterion for the strong Feller property.

Corollary 7.2.4. Suppose X = R". If there exists g € L' (R™) such that for every f € By(X) we have
Tf = fxg, then T is strong Feller.

Proof. Follows directly from Lemma|[7.2.3] O

Remark 7.2.5. From Corollary[7.2.4 it follows that if a process has a law which is absolutely continuous with
an integrable density, then the operator T' is strong Feller.

Example 7.2.6.

1. For X =R consider the transition probability

(SQ X S 0.
Then
) fQ) 0
(T.1)(x) = { ) ez

Hence, P is not Feller.

2. Let X be a homogeneous Markov process given by X, = X,,_1 + Y, where (Yn)zo=1 are independent
and identically distributed with law p.

(a) If p is the law taking values £1 with mean zero, then P is Feller but not strong Feller. To see this

note that
flz+1)+ flz—1)

(T.f)(z) = : .
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(b) If u=N(0,1), then P is strong Feller. To see this note that

_(=z—y)?

TNE) = 2= [ 1w a,

hence one can conclude by using Corollary[7.2.4

Definition 7.2.7. Let X be a separable metric space. Given p € P(X) the support of 11 denoted supp(pu), is
the intersection of all closed sets C' C X with u(C) = 1.

Lemma 7.2.8. Given a separable metric space X and p € P(X) one has
supp(p) = {z € X : u(B(x,¢€)) > 0, for everye > 0} .

Proof. Let x € E :={x € X : u(B(x,€)) > 0, for everye > 0}. Let C be a closed set with u(C) = 1. Suppose
that « € C, so that there exists an € > 0 such that B(x,¢) € C. It follows that

p(CUB(z,€)) = u(C) + p(B(z,€)) > 1,

which contradicts u being a probability measure. Hence, € C which implies that ' C supp(u). Now consider
x € supp(u) and suppose that there exists an € > 0 for which u(B(x,€)) = 0. For any closed set C' with
1(C) =1 we know that z € C. In particular, C N B(z,€) is also closed and such that

w(C N B(x,€e)°) = u(C) + p(B(x,e)) —p(CUB(z,e)°) >14+1—-1=1.

Hence, CNB(z,€)¢ is a closed set with i (C' N B(z,€)¢) = 1, but x ¢ CNB(x, €)¢ which contradicts z € supp(u).
Therefore, u(B(x,€)) > 0 for all € > 0 and so supp(u) C E. O

Proposition 7.2.9. For a separable metric space X and p € P(X) it follows that p(supp(p)) = 1. In other
words, supp(u) is the smallest closed set of X with full p-measure.

Proof. The set V := X \ supp(u) is separable as X is separable. Let Q C V be countably dense in V. By Lemma
[7.2.8 we know that for all ¢ € Q there exists an & > 0 such that ;(B(q,&)) = 0. In particular, ;(B(g,€)) = 0
for all € < &€;. Hence, as V is open we can choose ¢, > 0 such that u(B(q,€,)) =0 and B(g,e) C V. As Q is
dense we have V C quQ B(q,€,), hence, as @ is countable it follows by countable additivity that

q€Q

Hence, p(supp(p)) = 1. Therefore, by construction, supp(u) is the smallest closed set with full support. O

Exercise 7.2.10. Recall that u,v € P(X) are mutually singular, denoted (1 L v, if there exists A € B(X)
such that (A) =1 and v(A) = 0.

1. Show that supp(p) Nsupp(v) = 0 implies that 1 | v.

2. Show that v and v being mutually singular does not guarantee that supp(u) N supp(v) = 0.

Theorem 7.2.11. Let p,v € P(X) be invariant for a transition operator T. Suppose that T has the strong
Feller property, then p | v implies that supp(u) Nsupp(v) = 0.
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Proof. Due to mutual singularity there exists a measurable set F' € B(X) such that u(F) =1 and v(F) = 0.
Let ¢» = T'1p, so that 0 < ¢ < 1 and 9 € Cp(X) by the strong Feller property of T. By the invariance of v it
follows that

/w@wmw:/ﬁfwwmm:v@v:o (722)
X X
Similarly,

/wwwmzjiﬂwwmzmmzL (723)
X X

Consider the disjoint closed sets A = ¢~ 1({0}) and B = ¢~ 1({1}). As 0 < ¢ < 1, by (7.2.2) we must have
v(A) =1 and similarly by (7.2.3) p(B) = 1. Consequently, supp(v) € A and supp(p) € B. As A and B are
disjoint it follows that supp(v) Nsupp(u) = 0. O

7.3 Existence of Invariant Probability Measures

For continuous state spaces, the Krylov-Bogoliubov theorem, Theorem [7.3.7} is an argument for the existence of
invariant measures.

Definition 7.3.1. Let A be a topological space.

1. A subset K C A is (sequentially) compact if every sequence (a,)neny € K has a convergent subsequence
in K.

2. A subset J C A is relatively compact if its closure is compact.

As we are only interested in the existence of invariant measures, it will be sufficient to consider relative compact-
ness.

Definition 7.3.2. A subset M C P(X) is tight if for every ¢ > 0 there exists a compact set K. C X such that
p(Ke) >1—e¢

for all p € M.

Example 7.3.3. Let M = (§,,)nen for d,, the delta measure at n € N. Then for every compact set K C R
there exists an n € N such that n ¢ K. Therefore, sup,,cn(0n(R \ K)) = 1, meaning M is not tight.

Imem7&¢/nwgwuasmmumnns@m

Proof. As the finite union of compact sets is compact, it suffices to consider M = {u}. Since X is separable it
has a countably dense subset, which we enumerate as (r;)72; C X. Let B(z,d) = {y € X : d(x,y) < 0}, then

b 1

UBGh):X
n

k=1

N 1
li B , — =1.
Ng‘noou<kLJ1 <Tk n))

Let € > 0. For each m > 1 we can find an N,,, € N such that
N 1
B ry, — 1—2"e.
(U ()71
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If X is locally compact, then one can take K = J where

If X is not locally compact, then take
oo N,
m 1
J = — .
N Uz (ns)
m=1k=1
In either case, J is totally bounded and so J is compact. In particular,
w(J) < Z 27Me =e.
m=1
Therefore, we set K = J to deduce that
W(K) = u(J) > 1—e
for all p € M. O

It turns out that we can use tightness to show relative compactness.

Theorem 7.3.5 (Prokhorov). Let X be a complete separable metric space. Then M C P(X) is relatively
compact if and only if M is tight.

In practice, to obtain subsequential limits one often tries to show tightness. Moreover, as P(X) with weak
convergence is metrizable, we can go from convergent subsequences to the convergence of the full sequence if
the limits of subsequential limits are unique.

Exercise 7.3.6. Suppose (pin)neny C P(X) is tight, and every subsequence has the same weak limit p. Show
that i, — [ weakly.

Theorem 7.3.7 (Krylov-Bogoliubov). Let P be a Feller transition probability, and suppose that there exists
an xg € X such that sequence of measures (P"(xq,e)).~_, is tight. Then there exists an invariant probability
measure for P.

Proof. Let uy € P(X) be given by
N
1
pn () = N;Pn(xo,')~

By the tightness of (P"(xq,e))>

1 given an € > 0 there exists a compact set K. C R such that

sup (P" (zo, R\ K.)) < e.

n>1

Consequently,

sup (un (R\ K¢)) = sup

N>1 N>1 (N —
n=1
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Hence, the set of measures (un)nen is tight. Therefore, there exists a subsequence (un;, ) ey and p € P(X)
such that py, — u weakly. Since P is Feller, Ti.¢ € Cp(X) for every ¢ € Cp(X), hence,

/T*gbdu: lim/T*gbd,uNk
X k—o0 X

Ny
1 1 1
= lim [ — P"(zg,dy) + — PNt (g0, dy) — — P(z0,d
Jin (NZ [ sPmandn + 5 [ oY o dy) = 5 [ 6P y>>
= lim ( ddun, + / o(y) (PN"-H(QTO dy) —P(J:o,dy))>
k—o0 X N
= lim odun,
k—oo [
@
= [ ¢du
X
where (1) follows by the weak convergence of the (i, ), - Therefore,
[oamn =B [ 1oq
x X
— [ oan
x
for all ¢ € Cy(X). Hence, u is an invariant measure for P. O

Corollary 7.3.8. Let X be a compact state space. Then a Feller transition function P has an invariant
probability measure.

Proof. Note that P(X) is compact as X is compact. Hence, the tightness of measures follows. Therefore, we
can apply Theorem to conclude. O

Example 7.3.9.

1. When X is discrete we note that By (X) = C,(X'), which means that every transition probability is strong
Feller.

2. When X is finite it follows from statement 1 and Corollary[7.3.8 that every transition function P has an
invariant probability measure.

Exercise 7.3.10. Suppose X is a Markov process on R™ with Feller transition function P. Moreover, suppose
that there exists G : Ry — (0,00) an increasing function with lim,._, ., G(r) = oo with

ilelg(Ez (G(IXn]))) < o0

for some x € X. Then there exists an invariant probability measure for P.

Example 7.3.11. Consider a process (X,,)52,, where E(|Xy|) < oo, X,, = aX,,—1 + &, for n > 1 where
a € (0,1) and (&,)nen is a sequence of independent and identically distributed random variables with E(|¢,,|) =
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b < oco. Then forn > 1 we have

aB(|Xn-1]) +b

(aE(| Xp—2]|) +b) +b

IAIA

n—1

<by d"+E(Xo)
k=0

b
< — + E(| Xo|)-
< 2 +E(|Xo)

Therefore, by Exercise with G(z) = z, it follows that the process (X,,)52, has an invariant probability
measure.

We can systematize the ideas of Exercise [7.3.10| using Lyapunov functions.

Lemma 7.3.12. Let P be a transition function on X and let V : X — [0,00] be a measurable function.
Suppose that there exists a v € (0,1) and C' > 0 such that

(TV)(z) <4V (z)+ C. (7.3.1)

Then

TV (z) <"V (z) + %

Proof. lIterating (7.3.1)) gives
T"V(z) = (ToT™ V) (2)
<AT" W (z)+C
< A2V (z) +4C + C

n—1
<A"V(z)+C Z o
j=0

<A"V(2)+CY A
j=0

O

Definition 7.3.13. Let X be a complete separable metric space and let P be a transition probability on X. A
Borel measurable function V : X — [0, 00] is called a Lyapunov function for P if it satisfies the following.

1. V71([0,00)) # 0.
2. For every a € [0,00) the set K, = {y : V(y) < a} is compact.

3. There exists ay € (0,1) and C > 0 such that

(TV)(z) <V (z) + C.
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I Theorem 7.3.14. If a transition function P is Feller and has a Lyapunov function, then it has an invariant
measure.

Proof. Fix xg € X such that V(z() # co. Then for a > 0 we have

sup (P" (zo,R\ K,)) < sup (/X V((Iy)P”(xmdy))

neN neN

= sup (T"V (zy))
neN
Lem EEID 1 C
< - <V(9L‘o) + )
L—ny

=3 0.
Hence, the family of measures (P"(zo,®)),, oy is tight and so we can conclude by applying Theorem O

Proposition 7.3.15. Let P be a transition probability on X, and let V : X — [0, 00) be a measurable function

which satisfies
(TV)(z) <yV(z)+C

for v € (0,1) and C > 0. Then for every P-invariant probability measure 7, we have

C
/X V(z)r(dz) < T

Proof. Let M > 0 and let Vi;(z) = V(x) A M. Note that r — r A M is concave, so we can apply Jensen's

inequality to get
/VM(y) (z,dy) < (/ V(y)P(x dy)> AM
X

() +C) AN M.

Iterating this bound it follows that

[ vt atn) @ [ vi)raan)
X X
— [ @) (o)
X

< /X <v”V(:c) + 1_07) A M 7(dz)

for n > 1. In (1) we use the fact that 7 is P-invariant. By taking n — oo we get

/ Vs (y) m(da) < % av <2
X

O

Remark 7.3.16. Theorem gives us sufficient conditions a test function with respect to a transition
probability P ought to have to ensure the existence of a P-invariant probability measure. Proposition
considers weaker test functions, and hence, cannot guarantee the existence of P-invariant probability measures.
We note that the test functions in Proposition are not necessarily Lyapunov functions as their image is not
the extended non-negative real line, and there are no conditions on the compactness of sub-level sets. However,
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if we assume that such P-invariant probability measures exist then the weaker test functions considered in
Proposition can still provide information on the behaviour of this P-invariant probability measure.

7.4 Random Dynamical Systems

Recall that a random dynamical system is a Markov process X = (X,,),-, where X = & and X,,+1 = F(X,,,&,)
for (§;)52, a sequence of independent and identically distributed random variables, with v = Law(¢;), on a
measurable space ), and F : X x ) — X a measurable function.

Remark 7.4.1. [t turns out that any discrete-time Markov process can be formulated as a random dynamical
system. However, in practice, the functions and random variables involved may be complicated.

7.4.1 Existence of Invariant Measures

To determine the existence of an invariant measure of a random dynamical system we need to investigate the
Feller property and the tightness of the n-step transition probabilities. For the tightness, we will utilise Lyapunov
functions.

Exercise 7.4.2. Suppose that X = (X,,),— is a random dynamical system. Show that

(Tf)() = /y F(F (2, 9))v(dy)

for any f € By(X).

Theorem 7.4.3. Suppose that X = (X,,),, is a random dynamical system and that there is a measurable
set A C Y withv(A) =1 and x — F(x,y) continuous for every y € A. Then T is Feller.

Proof. Let ¢ € Cy(X) and suppose that (2, )nen C X is convergent to @ € X'. Then the continuity of ¢, and
the almost everywhere continuity of F'(-,y), we have that

O(F(xn,y)) = ¢(F(z,y))
for y € ), v almost everywhere. So by Exercise it follows that

lim (T¢)(zn) = lim [ ¢(F(2n,y)) v(dy)

n— oo n—oo

where (1) follows as ¢ is bounded. This implies that T'¢ € C,(X) and T is Feller. O

Theorem 7.4.4. Suppose that X = (X,),., is a random dynamical system. Suppose that there is a
measurable set A C Y with v(A) = 1 such that x — F(x,y) continuous for every y € A. Furthermore,
suppose that there is some Borel measurable function V : X — [0, co], with compact sub-level sets, V is finite
at some point, and

/y V(F(z,4))v(dy) < V(@) + C

for all z € X, for some v € (0,1) and C' > 0. Then X has at least one invariant probability measure.
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Proof. From Theorem [7.4.3|we have that T is Feller, and we note that V is a Lyapunov function. Therefore, we
can conclude by applying Theorem [7.3.14] O

We have here established conditions for the existence of invariant measures for random dynamical systems. We
will now investigate the uniqueness of these invariant measures. For this, we will use the contraction properties
of the function F'.

7.4.2 Uniqueness of Invariant Probability Measures via Contraction

Definition 7.4.5. For i = 1,2 let p; : X? — X be the projection maps given by (x1,z2) — ;. For
1, T € P(X), a measure pu € P (XQ) is a coupling of w1 and my if

(Pi)spe = T

fori=1,2. Thatis, if Z = (X,Y) ~ p, then X ~ 1 andY ~ 7.

Lemma 7.4.6. Let A = {(z,x) € X x X : x € X}. If there exists a coupling j1 € P (X?) of my,m5 € P(X)
with u(A) =1, then my = my. In particular, if

/X . 1A d(z,y) p(dz,dy) =0 (7.4.1)

where d is the metric on X, then m = mo.
Proof. Let A € B(X), then

m(A4) = p(A x X)
Y u((Ax X)nA)
(e x A)na)
@ u(x x A)
= (A),
where (%) follows from the fact that u(A) = 1, and (xx) follows from how A is constructed. In particular, note

that 1 Ad(z,y) > 0 and
{(z,y) e X x X : 1 Ad(z,y) =0} = A.

Hence, by (7.4.1)) it follows that u(A) = 1. Therefore, by the above arguments, m; = . O

I Lemma 7.4.7. Let (p,)nen be a family of couplings of w1, e € P(X), then (un)nen is tight.
Proof. Given an € > 0, there exists compact sets K1, Ko C X such that

mi(Ki) > 1 — %

for i = 1,2. Hence,

fin (X2 \ Ky x K3) < iy (X \ K1) X X) + i (X % (X \ K3))
= m (K7) + m (K3)
< €,

which shows that (j1,,),,cy is tight. O
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Lemma 7.4.8. Let (v,)nen be a sequence of measures on X which converges weakly to a measure v. Then
for any continuous map ¢ : X — Y, it follows that ¢.v,, converges weakly to ¢.v.

Proof. Let f € Cy(Y). Then

Léf@MMmV—ZJfO@dW
=X [ (fod)dy

~ [ £am

where the convergence follows as f o ¢ € Cp(X) and v,, converges weakly to v. O
Lemma 7.4.9. Let (un)nen be a sequence of couplings of w1, mo € P(X) converging weakly to p. Then y is
a coupling of w1 and 5.

Proof. The projection maps p; : X2 — X for i = 1,2 are continuous functions. So by Lemma it follows
that (p;)«ptn converges weakly to (p;).u. By construction (p;)«pin, = 7, SO

[ sam= [ rai@on
X x
for all f € C,(X). Hence, by Lemma it follows that (p;)«u = 7;, which implies that u is a coupling. O

Remark 7.4.10. Lemmal[7.4.7 along with Theorem|[7.3.5 shows that the set of all couplings is relatively compact.
Lemma shows that the set of couplings is closed, and hence the set of all couplings for 71,79 € P(X) is
compact.

Definition 7.4.11. Let X, and X, be random dynamical systems driven by the independent and identically
distributed random variables (&,)22,. Then the synchronized coupling Z = (X, X") is the Markov process on
X x X where

Z’n+1 = (Xn+17X':L+1) = (F(Xn7€n>7F(X7{L7£n))
and p,, = Law(Z,).

Lemma 7.4.12. In the setting of Definition|7.4.11| suppose that for some vy € (0,1) we have
| 4@, P @) d) < d (o)
where d is the metric on X. Then for the synchronized coupling we have

lim E(1Ad(Xp, X)) = lim [ 1Ad(z,2") py (dz,dz’) = 0.

n— oo n— oo X
Proof. Note that we can write

E(IANd(Xn, X)) =E(E(1ANd(Xn, X)) | Xn-1,X,_1)) -
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Observe that

E(1Ad (X, X0) | X0 1, X, 1) < TAE(d (X, X2) | X1, X00_1)
=1AE (d (F (anlvfnfl) vF (XrlLflvgnfl)) |Xn717X;Lfl)

= 1/\/ d (F (Xn-1,6n-1) , F (X}, 1, &n-1)) v(dy)
y
<1AYd (X1, X, _y).

Hence,
E(1Ad (X0 X})) < E(LAyd (X, X))

Iterating this argument we get

E(1A7d(Xn-1,X5,_1)) =E(E (1A yd (Xn-1,X; 1) [Xa-2, X}, _5))

=E
<E(1A~Y%d (X2, X))

<E(1A~y"d(Xo, X})) -

Therefore,
E (1A yd (Xp1,X;,1)) SE(1AY"d (X0, Xg)) =50,

Theorem 7.4.13. In the setting of Definition|7.4.11| suppose that for some v € (0,1) we have

[ dF@w. F @) vidy) < 2d (@)
X

where d is the metric on X. Then the random dynamical system has at most one invariant probability measure.
Proof. Let m; and my be invariant distributions for a random dynamical system. Let Law (Xo, X()) = m1 ® w2,
such that Law(X,,) = m and Law (X)) = my by their invariant property. Then u,, = Law (X,,, X)) is a coupling
of w1 and ma. Moreover, it is a synchronized coupling as X and X{; are independent. As we know the set of

couplings is compact there exists a subsequence (i, )ren Weakly converging to a coupling i € P (XQ). As each
W, is a synchronized coupling, using Lemma [7.4.12] we know that

lim [ 1Ad(z,2") py (dz,dz’) = 0.

n—roo X

In particular, by the boundedness and continuity of 1 A d(:,-) it follows that

/ 1Ad(x,2") p(dz,dz’) = 0.
x

Hence, we deduce that m; = 75 using Lemma|7.4.6 O]

Example 7.4.14. Recall the random dynamical system from Example[7.3.11] Observe that
E(|F(z,y) - F (z",y)]) =E(alz - 2'|) = a]z — 2],

so that by Theorem this process has at most one invariant probability measure. In Example it
was shown that an invariant measure does exist, hence this random dynamical system has exactly one invariant
probability measure.
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7.5 Uniqueness of Invariant Probability Measures via Minorisation

Uniqueness via minorization is a probabilistic argument for the uniqueness of invariant probability measures. It is
useful to also understand uniqueness arguments from this perspective as the random dynamical system formulation
of a process may involve complicated functions and random variables.

Definition 7.5.1. Let p,v be positive measures on a measurable space (). Suppose that p,v < 1, then

dp dv
w—v ::/ — ——|d
[ v lan T @

Remark 7.5.2.

1. The existence of i) in Definition[7.5.1] is not restrictive as n = j1+ v is such that p,v < 1. Furthermore,
Definition is independent of the choice n. One can see this, as for n such that u,v < n then
(h+v)<Kn, so

/ dp dv _/ dp  dv d(u—i—u)d
oldr ~dn| T Jolduty) T duro)| dg
du dv
= = (s +v).
/Qd(/HrV) d(pu+v) (k)

2. Note how Déefinition contains the definition of the total variation for the discrete case, given in
Lemmal6.6.3, as one can just take n) to be the measure that is 1 at each singleton point of the discrete
space ().

Exercise 7.5.3. Show that if i and v are probability measures then Definition [7.5.]] gives

i — vy = 2sup ({|(A) — v(A)| : A C Q, measurable}) .

I Lemma 7.5.4. Let a,b >0 then |a — bl = a+b— 2a Ab.

With p, v and 7 as in Definition and using Lemma it follows that

dpg  dv| dp d du d
K V“erz(“A”). (7.5.1)

dp dn|  dn ' dp dnp " dy

Definition 7.5.5. For positive measures (1 and v let A\ v be the positive measure given by

du dv
<d(u ) " du+v)

(uno)a) = [

A

) ),

The measure u A v constructed in Definition is the minimum of i and v and so can be thought of as their
intersection.
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Figure 11: An illustration of the measure 7 = j A v as constructed in Definition from measures 1 and v

Lemma 7.5.6. For u,v € P(Q2) we have
o= viey =201 = (A V)(Q)).

Proof. Using (|7.5.1)) it follows that

= vliey = [ |5 - 5| 4
K TV oldn ~ @ n
dpu dv dp dv
=[S o (PN g
(T (meg) o
=1+1-2(uAv)(Q)
—2(1— (uAV)(9).

O
Lemma 7.5.7. Let u,v € P(QQ) be distinct and let
ﬁ:;w%uAW
slle—virv
and
v
slle —virv
Then p,v € P(Q2) with
1 o
p-v=glu=vlrv(E-7). (7.5.2)
Proof. The equality ([7.5.2)) is immediate. Observe that
du du dv
o= (urv)a) = | (G dy ) e ) 2 0
( Wt ) A+ ")
and so i and v are positive measures. Moreover, by Lemma [7.5.6] we have
1
Sl =vlrv=1=(nAv)(Q)
= () = (A V)(Q)
— (@) — (A V)(Q)
and so u(2) = v(2) = 1 which implies that g, v € P(Q). O

I Lemma 7.5.8. Let T be a linear operator on measures defined on Q such that T(P(Q)) € P(Q). Then for
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any p,v € P(Q) we have
1 _ _
1 Tu=Tvlrv = 5lu = vilev 1T = T7llpy < 0= viTv. (7.5.3)
Proof. Note by the linearity of T that T = Tji. Thus, applying T to both sides of (7.5.2) it follows that

1 _ _
1T =Tvlrv = Slu = vy [Th = TV]lpy -

As T(P(£2)) C P(2), we can apply the triangle inequality to get that || T — Tv|rv < 2. Therefore,

1 _ _
1T =Tvllry = Slu = vlrv ITA = Tollpy < e = vy

Remark 7.5.9. The transition operator, T, of a time homogeneous Markov chain, namely

T)(A) = | P 4) u(da)

satisfies the requirements of Lemma[7.5.8

Definition 7.5.10. A transition probability P is minorized by n € P(X) with constant o > 0 if
P(z, A) > an(A)

for all x € X and A € B(X).

Remark 7.5.11. A transition probability being minorized can be thought of as the continuous analogue of a
stochastic matrix being irreducible. Indeed the property of minorization plays an equivalent role in showing the
uniqueness of invariant probability measures for continuous state space Markov chains.

Exercise 7.5.12. Let (pin)nen € P(). Show that n =37 | -p, € P(X).
I Lemma 7.5.13. The metric space (P(2),| - ||lTv) is a complete.

Proof. Let (pn)nen € P() be a Cauchy sequence in || - ||ry. Using Exercise [7.5.12| we know that n =
oo 127y € P(X). As p,, < 1 for all n € N, it follows that

L
Bm — HnllTv = || —— — .
" L dn dry Lt (n)
erefore, | =f2 is n)-Cauchy. Since 1) is complete, we know that | =¢= as an n)-limit
Therefore, ( %4 . 18 Lt (1)-Cauchy. Since L! | know that ( 94 Wb L*(n)-limit f
ne ne
with f >0 and || f||1(;) = 1. Setting u € P(X) to be (di—’; = f it follows that p, — pin || - ||7v. O

Theorem 7.5.14. Let P be a transition probability on X and suppose P is minorized by n € P(X) with
constant o € (0,1), then the following hold.

1. P has a unique invariant probability measure .
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2. For any p,v € P(X) it follows that
1T =T v ||l py < (1= )"l = v[lov.

Proof. Recall that (P(2), || - ||Tv) is a complete metric space, from Lemma|7.5.13] Hence, as statement 2 shows
that T is a strict contraction we can show statement 1 by using Banach's fixed point theorem. To show statement
2 we note that for any measure A € P(X) and A € B(X') we have

(TA)(4) = /X P, A) \(dz)
> /X an(A) A(dz)
= an(4).

Hence, for any A € P(X) it follows that

ﬁ(T)\ —an) € P(X).

Thus, for any p,v € P(X) we have

Tu—an Tv—an

T~ Ty = (1-a)|

1—-« 1—a ||py
<1 -a)(2).
Using ([7.5.3)) it follows that
1 _ _
1T =Tvlrv = Sllp = vy 1Th = To|lpy
1
< Sl = vlhev (21 - @)
=1 —=a)|lp—v|rv.
Iterating this we arrive at statement 2. O

Corollary 7.5.15. Under the assumptions of Theorem let m,u € P(X) with Tm = m. Then

1T = oy < (1= )|l = 7oy

7.6 P-lnvariant Sets

Now we introduce a continuous analogue of closed communication classes.

Definition 7.6.1. Let P be a transition function on X, then A € B(X) is P-invariant if P(x, A) = 1 for every
x € A

Exercise 7.6.2. If A € B(X) is P-invariant, and X is a Markov process with transition function P and initial
distribution ™ € P(X), then
P(Xo€A,...,X, € A) =n(A).

If A C X is closed, and X is a complete separable metric space, then A is a complete separable metric space.
Thus, we can think of A as being a possible state space. Note that we can extend any 7 € P(A) to an element
m € P(X) by letting

m(F)=7(FNA)
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for all F' € B(X). Similarly, given 7 € P(X) we can restrict m to a measure, 7, on A. Namely, 7 := 7|p(4).
However, it may not be the case that 7 is a probability measure. If A is P-invariant then we can restrict a
transition function P on X to a transition function P on A. For any F' € B(X) one can let

P(z,B) = P(x, BN A) = P(z, B)
for any 2 € A. For P we have the corresponding operator 7.
Lemma 7.6.3. Let P be a transition function on X. Let A C X be closed and P-invariant.

1. If @ € P(A) is P-invariant, then the extension T of 7 to X is P-invariant.

2. If € P(X) is P-invariant, then its restriction 7 to A is P-invariant.

Proof.

1. As 7 is P-invariant we have

A(C) = / Pz, C) #(da)

for any C € B(A) = ANB(X). For B € B(X) we have

/ P(z,B)m(dx)
W /A P(z, B) n(da)
:/AP(x,BﬂA)w(dx)

@ / Pz, B A) #(da)

=7(BNA)
m(B),

where in (1) we use that supp(7) C A, and in (2) we use the fact that P and 7 agree on AN B(X).

2. Let B € B(A) = AN B(X), so that in particular we have B C A. Then
n(B) = / P(z,B)m(dz)
X
= / P(z,B) w(dx) —|—/ P(z,B) n(dz).
A X\A

By the invariance of A we have

(A) :/AP(a:,A)w(d:c)—i-/X\A P(x, A) (da)
:7T(A)+/X\A Pz, A) n(dx)

Therefore,
m(dx) =0

| pea

X\A

which implies that

/ P(z,B)w(dz) = 0.
x\A
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Hence,
~(B) = /AP(:C,B) (dz).

As 7 and P coincide with = and P on A respectively, it follows that 7 is P-invariant.
O

Theorem 7.6.4. Let P be Feller on X and A be a compact P-invariant set, then the restriction of P to A
is Feller. In particular, there exists a P-invariant m € P(X).

Proof. Let f € Cy(A). Then by the Tietze Extension theorem, there exists f € Cy(X) such that f|4 = f. Then
for x € A we have
/ Fy)P(x,dy)

/f P(x,dy)
/f P(z,dy)

(z),

where in (1) we have used the fact that A is P-invariant and « € A. As P is Feller it follows that T'f € Cy(X) as
[ € Cy(X). Therefore, as (T'f)[a = Tf we deduce that T'f € Cy(A) which shows that P is Feller on A. Hence,
by Corollary |7 there exists a P-invariant probability measure 7 € P(A). Using Lemma statement 1 of
we can conclude that 7, the extension of 7 to X, is P-invariant. O

We have seen with Theorem [7.6.4] that P-invariance can be used to deduce the existence of invariant measures.
On the other hand, we would like to see how P-invariance can be used to make statements regarding all invariant
measures, thus working toward characterising the uniqueness of invariance measures. Consequently, for a P-
invariant set A we introduce the sequence of sets (A, ),en Where Ag = A and

A, ={x e X:P(z,A,-1) > 0} (7.6.1)

for n > 1. It can be argued inductively that the sequence of sets (A, )nen is nested. More specifically, if we
assume A,,_1 C A, then for x € A,, we have that,

An_1CA, zEA,
P(z,A,) > P(z,An—1) > 0,

which implies that z € A, 41.

Lemma 7.6.5. Let A C X be P-invariant and let (A, )nen be as in (7.6.1). Then foreveryn > 1 andxz € A,
we have P"(xz, A) >0

Proof. We proceed by induction on n.
= The case n = 1 follows by construction of A;.

= Suppose the statement holds for n — 1, then

/P” Yy, A)P(z,dy)
_/An 1P" Hy, A)P(x,dy)

)
> 0,

where (1) is an application of the Chapman-Kolmogorov equation. With (2) following by the inductive
assumption as y € A, implies that P"~!(y, A) > 0, and we know that P(z, A,_1) > 0 as z € A,.

95



O

Remark 7.6.6. Where the original construction of A,, was the set of points which with positive probability
reach A,_1 in one step, Lemma provides an alternative characterisation of the set A,. Namely, A, is
the set of points which with positive probability reach the set A in n steps.

Proposition 7.6.7. Let A C X be P-invariant and consider the sequence (A, )nen as given by (7.6.1)).
Suppose X = |J,,cr An, then for every P-invariant probability measure m € P(X) we have m(A) = 1.

Proof. Suppose that 7 is P-invariant with m(A) < 1. Then since w(A,) /1, there exists an N € N such that
7(An \ A) > 0. Therefore,

W(A):/XPN(:E,A)W(dI)
Nz, A)m(da
z/ANP (2, A) 7(de)

N N
Z/AP (:c,A)w(dxH/AN\AP (z, A) m(dz)

m(A)

)
>0
> m(A),

where (1) follows by construction of Ay and because z € Ay implies that PN (x, A) > 0 by Lemma m
Therefore, we arrive at a contradiction and so 7(A) = 1. O

Corollary 7.6.8. Consider a random dynamical system
Xn+1 = F(Xnyfn)

Suppose A is a P-invariant set, where P is a transition probability on X with the Feller property. Moreover,
suppose that A is compact with |, .y An = X, and there exists a v € (0,1) such that

E (d(F(z,€), F(y,€))) < vd(z,y) (7.6.2)
for all x,yy € A. Then there exists a unique P-invariant measure on X .

Proof. The existence of an invariant measure follows from Theorem By Proposition [7.6.7] any P-invariant
probability measure m € P(X) is an extension of & € P(A) which is P-invariant by statement 2 of Lemma m
Therefore, if two P-invariant measures on X existed, we would have two P-invariant measures on A. However,
using we know by Theorem that P-invariant probability measure on A is unique. Therefore,
P-invariant probability measures on X’ are unique. O

Example 7.6.9. Let (£,)nen be a sequence of independent and identically distribution C([0, 1])-valued random
variables such that sup,cjo 11 |€n(t)| < 1 almost surely. Let oi(x, f) be the solution to the differential equation

{«gzz(lt)—ﬂf(t) t € (0, 00)
z(0) = x.

With F(z, f) = ¢1(x, f) consider the Markov process (X, )nen where Xo € (0,00) and

Xn = F(anlvgnfl)
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for n > 1. One can show that p(z, f) is indeed well-defined, that is, it exists and is unique. Recall that
&n € [—1,1] almost surely, hence, the deterministic maps F_(x) = F(x,—1) and Fy(z) = F(z,1) are such
that

Xn+1 € [F— (Xn), F+ (Xn)] (7-6-3)
almost surely. Observe the following.

1. Note that F.(z) is the solution to % = ﬁ — 1 with 2(0) = x. For which z(t) = 1 is an equilibrium
solution, and
lim z(t) = 1.

tlggo (e, 1) = t—00
In particular, we note that ¢y, (x,1) = (Fy o--- 0 F})(x) =: F'(x) and so lim,, . F}(x) = 1.
—_————
2. Note that F_(x) is the solution to G = 5 — 3 with z(0) = x. For which (t) = 3 is an equilibrium
solution, and

Wl =

lim z(t) =

tlggo ou(z, =) = t—o0

—~

W=

In particular, we note that @, (x,—1) = (F_o---0 F_)(z) =: F"(x) and so lim, ., F"(z) =
—_————

n

Now for a fixed e > 0 let A= [§ —¢,1+¢].

1. On (1,00) we note that %t) — 1< 0 and so it must be the case that (Fy) " (1+¢) > 1+e.

2. On (0, 3) we have that ;5 — 3 > 0 and so it must be the case that (F)'(1—e¢<1—=e

Consequently,

ac | (3-¢) mtasa).

In particular, using (7.6.3)) this means that if Xo € [(F_)_1 (R-¢,(F) A+ e)] then X1 € [ —€,1+¢] =
A. Therefore, A is a P-invariant set. Recalling that

Api1:={z € X : Pz, A,) >0}

we can use similar arguments to show that

_ 1 _
{(F") ! (3 = e) ) (Fﬂ) ! 1+ e)] C A,.
Moreover, using the observation regarding convergence to equilibrium solutions made previously, we note that

U 4n = (0,00).

neN

Therefore, using Proposition we deduce that for any invariant probability measure ™ we have that
7 ([3 —€1+€]) =1. Ase > 0 was arbitrary we conclude that m ([1,1]) = 1. Note that since F(x,&,) is
differentiable in x, it is continuous and so (X,,)ncn is Feller by Theorem (t) = w

.3 In particular, let v -
such that

do(t) 1
dt x2(t)

97



with v(0) = 1. Consequently, we have that

e (- [ ).

t

F/(Xn, &) = v(t) = exp <_/0 x%(s) ds) <exp (11+6> <1

E(|F(z,§) = F(y,9)]) < |z —yl.

Thus we have P-invariance on a compact set A such that | J, .y An = X, allowing us to applying Corollary
7.6.8 to conclude that the Markov chain (X,,)nen on (0,00) has a unique invariant probability measure.

Therefore,

So,

7.7 Solution to Exercises
Exercise [(.2.10
Solution.

1. Let A = supp(p). Then by Proposition we know that u(A) = 1. As supp(r) C X \ A and
v(supp(v)) = 1 it follows that v(X \ A) = 1 which implies v(A4) = 0.

2. Let X = [0,1], 4 = Jp and v the Lebesgue measure. Then 1 L v as one can take A = {0}, however,
supp (1) N supp(v) = {0}.
O
Exercise [£.3.6)

Solution. Suppose that i, / p weakly. Then as P(X') with the weak topology is metrizable, say with the metric
d(-,-), there exists an € > 0 and a subsequence (i, ),cy Such that d(u, p1,,) > € for all k € N. However, as
(Mn)nen is tight it is relatively compact. Therefore, the sequence (pin, ),y € (n)nen contains a convergent
subsequence, which by assumption has limit . This contradicts the fact that d (u, 1, ) > € for all k € N. O

Exercise [7.3.10

Solution. For any M > 0 we have that

sup (P" (z, B(0, M)¢)) = sup (P, (| X,| > M))
neN neN
Chebyshev. 1
<

sup (B (G(|Xal))

o G(M) neN
M2 0.
Hence, we deduce that (P"(z,e)), oy is tight and so we can apply Theorem mto conclude. O

Exercise [.4.2)
Solution. Let f € By(X), then

(Tf)(x) = E(f(X1)|Xo = z)
= E(f(F(Xo,&))|Xo = )

8 /y F(F (. y)) v(dy)

where in (1) we use the independence of the random variables (&, )nen. O

Exercise [7.5.3]
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Solution. On the one hand, for any measurable set A C 2 we have

dp  dv
||u—v\|Tv:/Q——— d

dn  dn
dp  dv / dp dv
= + £y
/A dn dn a\a|dn  dn K
LT
adn dny o4 dnp dn
= [u(A) = v(A) = p(Q\ A) +v (2 4)]
=2[pu(4) —v(A)].
Therefore, ||u — v||Tv > 2sup ({|p(A) — v(A4)| : A C Q measurable}). On the other hand, let A = {3—‘; > S—Z}
Then as d d
| Ean=uay=1-p@ =1 [ Fay,
ova dn

it follows that

dp dv / dv  dp . 1 e — |
= — — —dnp=S|ug—v|7v.
o4 dn  dn 2

Therefore, as

< = — —dnp=u(Ad) —v(Ad) =|u(lA) —v(4
0< [ S = Sodn=p(A) ~ v(4) = |u(4) ~ V()
it follows that ||u — v||rv < 2sup ({|u(A4) — v(4)] : A C Q measurable}). O
Exercise [7.5.12
Solution. Clearly n > 0, and
> 1 =1

Moreover, n(A) < n(B) for AC BC Q. If Al, Ag,---CQa d|$J0|nt sets then
oo oo (oo} 1
1(04) -3 (U 1) =323 )
n=1 i=1 j

We note that the sum is absolutely convergent, as the terms are non-negative and it is bounded above by one, so
we can exchange the order of summation to deduce that

n(Ufh) ZZ% (Ai) = n(4)
i=1 i=1 n=1 i=1
Therefore, 7 is countably additive and hence a probability measure. O
Exercise
Solution. Proceed by induction on n.
= When n =1 we have
m(A) =P(Xo € A, X, € X)

:P(XO €A X, GA)+]P(X0 €A X, EX\A)

Ypxye A X €A)+0
:P(Xo €A X € A),

where (1) follows by the invariance of A.
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= Assuming that
P(Xo€ A,..., X, € A) =7(4)

it follows that

T(A)=P(Xo€A,...,Xp €A Xpt1 €X)
=P(Xo€eA,... . X, €A X,11€A)+P(Xp€eA,... . X, €A X 11 €X\A)
Wp(XgeA,...,Xp €A Xpp1 €A +0
= IP(XQ € A,...,Xn S A7X7z+1 S A),
where (1) follows by the invariance of A.
Therefore, by induction we conclude that

P(XoGAo,...,XnGA):ﬂ'(A)

for every n € N.
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8 Ergodic Theory
8.1 Birkhoff’s Ergodic Theorem for Dynamical Systems

Definition 8.1.1. A dynamical system consists of a probability space (2, F,P) and a measure-preserving map
6:Q— Q. Thatis, P (671 (A)) =P(A) for every A € F.

Definition 8.1.2. Given a measurable transformation 6 on (Q, F,IP) a set A such that 0=1(A) = A is said to
be O-invariant. In particular, the 0-invariant o-algebra T C F is given by

I={AeF:07'(A)=A4A}. (8.1.1)
Exercise 8.1.3. Show that Z, as given by (8.1.1)), is indeed a o-algebra.
Definition 8.1.4. A measurable function f : Q@ — R is O-invariant if f o6 = f.

Exercise 8.1.5. Let f : Q@ — R be a F-measurable function. Then f is invariant if and only if f is measurable
with respect to I, as given by ((8.1.1)).

Similarly, a F-measurable function f : Q@ — R is invariant if and only if f is measurable with respect to Z as
defined above.

Definition 8.1.6. Consider a dynamical system (2, F,P) with 6 a measure-preserving map. Then 0 is ergodic
if for any A € Q a 0-invariant set, we have P(A) € {0,1}. Ergodicity is also a property of P, and so P is said
to be ergodic with respect to 6.

Proposition 8.1.7. Let (2, F,P) with 6 be a dynamical system. Then the following are equivalent.
1. P is ergodic with respect to 6.
2. Every 0-invariant integrable function f : Q2 — R is almost surely constant.
3. Every 0-invariant bounded function f : Q0 — R is almost surely constant.

Proof. (2) = (3). This is clear as every bounded function is integrable with respect to a probability measure.
(3) = (1). Let f = 14, where A is an invariant set. Then f is invariant and bounded and so is almost surely
constant, that is f € {0,1}. Which implies that P(A) = f € {0,1} meaning PP is ergodic.

(1) = (2). Let f be an integrable and invariant function. Then by Exercise[8.1.5]it follows that f is Z-measurable.
Consider the sets

w Ay ={we: f(w)>E(f)},
n A ={weQ: f(w) <E(f)}, and
e dy= {we: fw) =E(H).

These sets form a disjoint partition of €2, and so by the ergodic property of PP it follows that exactly one has full
measure whilst the others have zero-measure. If P(A;) =1 then

0= [ f-BE(ar= [ s-B()aP
Q Ay

which implies that f —E(f) = 0 almost surely on A which is a contradiction. Similarly, we have that P(A_) # 1.
Therefore, P(Ap) = 1 which implies that f is almost surely constant. O
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Theorem 8.1.8 (Maximal Ergodic Theorem). Let (Q,Z,P) with 6 be a dynamical system, where T is as given
by (8.1.1). Let f: Q2 — R be such that E(|f]) < oo. Let

SN(w)

I
(]
~
=
&

and

where Sy = 0. Then

for every N > 1.
Proof. Observe that for 0 < k < N and every w € € we have

(W) + Sk (0w) — Sk41(w)

and
Sk (6w) < My (fw).

This implies that,
fw) + My (0w) > f(w) + Sk(6w) = Sk+1(w).

Therefore,
f(w) > max (51 (w),...,Sn(w)) — My (0w). (8.1.2)

Furthermore, on the set {My > 0} we have
My (w) = max (S1(w), ..., Sy (w)) .

Combined with (8.1.2) it follows that f(w) > My (w) — My (6w) on {My > 0}. Note that as My > 0 we have
E(My) = / My (w) dP(w)
Q

— /{ _— My (w) dP(w) + / My (w) dP(w)

{MN>O}

— 0 (P({My = 0})) + /{ oy M) 4P

= / My (w) dP(w).
{Mn>0}

Therefore,

/ F(w) P(dw) > / My () — My (6w) P(dw)
{Mn>0} {Mn>0}

Z ]E(MN) — MN(LU) ]P’(dw),
AN
where Ay := {6w : My (w) > 0} C 2. Hence,

/ f(w)P(dw) > 0.
{MN>0}
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Theorem 8.1.9 (Birkhoff's Ergodic Theorem). Let (2, F,PP) with 6 be a dynamical system and let T be as
in (8.1.1). For f: Q — R with E(|f]) < oo it follows that

N-1
. 1 - _
Jim (N go F(0 w)) = E(f|T)
almost surely.

Proof. By replacing f with f —E(f|Z), we can assume without loss of generality that E(f|Z) = 0. Let

L Sn

7 = limsup —

n—oo N

and

n = liminf =2,

- n— oo n
Note that 7j(6w) = 7j(w), so that for € > 0 it follows that

A ={n(w) > ¢} €.
Let
[ w) = (f(w) —e)Lac(w)

to make analogous definition of S5 and M5, as those made in Theorem Then using Theorem it

follows that
Jo o r@ra) =0
{Mmg >0}

for N > 1. Next, observe that the sequence of sets {M§, > 0} indexed by N is increasing to

B = {supSfV > 0} = {sup S > O}.
N N N

Noting that

it follows that g
B€={77>e}ﬂ{supN >e} ={7>¢€} = A"
N N
As E (|f¢]) <E(|f€]) + € < oo, using the dominated convergence theorem we deduce that

0< i [ F@IRE) = [ )P,

Therefore,

0< fé(w) P(dw)
A(
= f(w) — eP(dw)
AE
= f(w)P(dw) — eP (A°)
AE

- /A E(IT) () P(dw) — P (4)
=0—€eP(A°).

Therefore, P (A€) = 0 for every € > 0, implying that 77 < 0 almost surely. Repeating a similar argument with — f
we see that n=0. Hence, 7 = n=0 which completes the proof. O
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Corollary 8.1.10. If a dynamical system (2, F,IP) with 6 is ergodic, then

. 1 N—-1 .
Jim (N DA w)) =E(f)

n=0
almost surely.

Proof. As E(f|Z) is Z-measurable, if 6 is ergodic it follows by statement 2. of Proposition that E(f|Z) is
almost surely constant. More specifically, E(f|Z) = E(f). Therefore,

N-—1
lim (}V S f (ew) TmELIE f17) = E(f).
n=0

N—oc0

8.2 Birkhoff’s Ergodic Theorem for Markov Chains

Having seen how ergodic theorems can be derived for dynamical systems, it will be useful to investigate how
to arrive at a dynamical system from a Markov chain. For this we investigate the space of sequences XN, and
more generally X%. More specifically, we consider the shift operator § on these spaces, which is such that for
x = (z0,71,...) € XN we have

0(x) = (x1,22,...)

and similarly for # := (..., z_1,20,71,...). In particular, for z € XN we let
(&,x)(m) = Tn+m;
and similarly for 2 € XZ. Note that on XZ we have # = 6; and = = f_,. Therefore, as before we can consider
I={CeB(x"):67'C=C}. (8.2.1)

Thus to understand how the theory of dynamical systems can be used on Markov chains it will be important
to understand how to construct two-side Markov processes on X%. To do so it will be necessary to work
with a family of transition probabilities P = (P(z,-),x € X’) and a P-invariant probability measure 7, that is
7= [, Pz, )r(dz).

8.2.1 Constructing Two-Sided Markov Processes

One approach to constructing a Markov chain (X,,)nez is referred to as the finite-dimensional approach. In this
case, a probability measure P, measure is constructed using finite-dimensional distributions and Kolmogorov's

extension theorem. More specifically, p, ., denotes the distribution of (X_,,,..., Xo,...,X,,) which is given by
m—1
P(zm—1,d2m) ... P(20,d21) ... P(2—p,dz_py1)7(dz_p) = H Pz, dzgq1)7(dz_p).
k=—n

By the invariance of 7 it follows that (5, m )n.mez is a consistent family of probability measures. Therefore, using
Theorem it follows that P, on X'Z defines a stationary Markov chain with transition probabilities P and
Law(Xy,) = for n € Z.

Another approach to constructing a Markov chain (X,,),ez is referred to as the time shift approach. Here we

start with a Markov chain (Y},),en which has 7 as an invariant initial distribution and let (X,(Lm)> N be such
that (m) yr(m) (m) (m—1) (m—1) (m—1) :
m m m _ m— m— m—
(X0 X0 XD ) = (R X, X )
with

(X‘,?,XS’,XS”,...) = (Yo, Y1, Ya,...).

In the limit the process (X,(Lm)) gives the required Markov process on XZ.
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8.2.2 Birkhoff’s Ergodic Theorem for Stationary Markov Chains as Dynamical Systems

I Lemma 8.2.1. The probability space (XZ, B (XZ) ,]P’W) with the shift operator 0 is a dynamical system.

Proof. Let (X, )nez be a time-homogeneous Markov chain with law P,. By the finite-dimensional construction,
it follows that

P(X 0 €A X € Ay) :/ / P(emt,dn) .. Pt dr_noym(de_y),  (8.2.2)
—n A
similarly,

IP)(AXf(nfl) € A—na---7Xm+1 € Am) = / / P(xmzdxm-i-l)-"P(xf(nfl)adxf(n72)7r(dxf(nfl))'
—(n—1) Amt1

A
(8.2.3)
Clearly, the right-hand sides of (8.2.2)) and ([8.2.3) are identical, and so
P(X €A ... Xm €Ap) =P (X_ (o) EApn, ..., Xp1 € Apa),
which is to say that 0 preserving map and so defined a dynamical system. O

Remark 8.2.2. Under the product topology, it is apparent that 0 is continuous. Thus, the dynamical system
of Lemma|[8.2.]] is referred to as the continuous dynamical system.

Definition 8.2.3.
1. A measure P is ergodic for 0 if for every A € T, where T is as given by (8.2.1)), we have P(A) € {0,1}.

2. An invariant measure  that induces an ergodic probability measure P, for 6 is said to be ergodic with
respect 6.

Applying Theorem to (6,a)nez gives Corollary

Corollary 8.2.4. Let f : X — R be integrable and let f : X~ — R be given by

f( oy _1,00,071,... ) = f(ao).
Then f (6na) = f(an), so that
2 s oo .
= flar) =5 Ex (fIZ)
k=1
almost surely with respect to P,.. Moreover, if 7 is ergodic then

iilf(ak) niio/xfdﬂ

k=
almost surely with respect to P.
Remark 8.2.5. An analogous statement holds over X'N.

8.2.3 Birkhoff’s Ergodic Theorem for Markov Chains

Consider (X,,)nez a stationary time-homogeneous Markov chain on a probability space (2, 7,P) with transition
probability P and a P-invariant initial distribution 7. Currently, our ergodic theory makes statements about
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(Xn)nez as a dynamical system on (X%, B (X%),P;) with 6 being the shift operator. Here we expand our
ergodic theory to make statements about (X,,),cz in terms of P instead of P;. For this, let

Ip={nePX): Tr =n}.

Theorem 8.2.6. Let (X,,),cz be a stationary Markov process with Xy ~ m, where 7 is an invariant probability
measure. Then the following hold.

1. Let f: X” — R be an integrable function. Let f = E,.(f|T), then
1 - n [o Sy
SO (X @) P T(X (W)
k=1

for almost every w with respect to P.

2. Moreover, if  is ergodic then

for almost every w with respect to P.

Proof. For f: X? — R in L'(P,) consider
I .
L AR k n— o0
E= {an : n;:lf(e a) R, (f|I)}.

By Corollary [B.2.4]it follows that P.(E) = 1. In particular, we have that
P({w: X(w) € E}) = P,(E) = 1.

Therefore, for almost every w with respect to P we have that %22:1 f (HkX(w)) converges. O

Theorem 8.2.7. Let P = P(x,-) be a transition probability with an invariant measure 7. Let (X,,)ncz be
a time-homogeneous Markov process with transition probabilities P and initial position Xo = x. Then for
m-almost every x € X the following hold.

1. For f : X2 — R an integrable function + St f (HkX(w)) converges for almost every w with respect

n
to P.

2. Moreover, if  is ergodic, then

n

l k i n—oo
(X (W) 3 /dem

n
k=1
for almost every w with respect to P.

Proof. Suppose that Xy ~ 7. Then by Theorem it follows that
1 — -
S3 S (X @) " AKX (W)
k=1
for almost every w with respect to IP. Therefore, by the dominated convergence theorem it follows that

E (i > F(0°X @) |U(X0)> " E (F(X (@)]o(X0))
k=1
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for almost every w with respect to P. Therefore, for almost every x € X with respect to ™ we have
1< oo =
E <n > F(0FX (W) X0 = x) T E (f(X(w)|Xo = )
k=1
for almost every w with respect to P. O

Corollary 8.2.8. Let P be a transition probability with an ergodic invariant probability measure w. Then for
g:X — R in L'(r) it follows that

i oo
E;g(){k(w)) =3 /ngﬂ

for almost every w with respect to IP.

Proof. Let §: X%” — R be given by §(y) := g(yo). Then using Theorem with g and noting that

/ gd]P’,r:/gdw
XL X

the result follows. O

Proposition 8.2.9. Ergodic invariant probability measures for a time-homogeneous Markov chain are equal
or mutually singular.

Proof. Let m; and m; be distinct invariant probability measures. Let f : X — R be a bounded measurable

function such that
/ fdm =/ fdma, (8.2.4)
X X

which exists as the measures are distinct. Let (X,,)nez be a Markov chain with Xo = z. Then for i = 1,2 let

1 n
E; := {x : Xg ==z, lim — Zf(Xk) = / fdm; P almost everywhere} .
n—oo N 1 X

By Corollary the set E; is well-defined and is such that 7;(E;) = 1. By (8.2.4) we have that E; N E; =0
and so 71 (F3) = 0 which means that m; and 72 are mutually singular if they are not equal. O

8.3 The Structure Theorem

The structure theorem relates to the invariant probability measures of a time-homogeneous Markov chain. More
specifically, we consider a chain on X with transition probability P, and with T" being the corresponding transition
operator. Moreover, let

Ip={rePX): Tn=m} (8.3.1)

consist of the probability measures that are invariant under 7.

Exercise 8.3.1. Let Ip be as given in (8.3.1). Show that the following statements hold.
1. Ifm,m € Ip then tm + (1 = t)’ITQ € Ip fort € [07 1]
2. If T is Feller, then Ip is closed.
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Definition 8.3.2. A probability measure w € Ip is an extremal of Ip if m cannot be decomposed as m =
tm + (1 —t)my fort € (0,1) and 1,7 € Ip distinct.

To work towards the structure theorem we need to understand the measurability of set-theoretic constructions.

Definition 8.3.3. The set-theoretic difference of sets A and B is given by AAB := AU B\ (AN B).

Proposition 8.3.4. Let (0, F,P) be a probability space. Let A, B, (As)aca and (By)aca be elements of
F. Then the following statements hold.

1. AAAB°=AAB.
2 (Unea4a) & (UaeaBa) € Ugea (Aa A By).
3. For a measurable function f : Q — Q we have f =1 (AA B) = f~1(A) A f~1(B).
4. (AAB)A(BAC)=AAC.
5. P(AA B) =0 implies that P(A) = P(B).
Proof.

1. Proceeding directly,

ACABS = (Q\ A\ (Q\B)U((Q\B)\ (2 4)
=(A\B)U(B\4)
= AAB.

2. Let w € (Upea4a) & (Upea Ba) then

(U (Y)Y (U)

Suppose without loss of generality that w € (Upcu 4a) \ (Upes Ba), with w € Ag. It follows that
w € Az \ Bg and so w € Az A Bg. Therefore,

(U AO,) A <U Ba> c | 4a2B.).
acA acA acA
3. This follows from the fact that the pre-image is distributed over unions and intersections.
4. Figure[123]is a visual representation of
(A\NB)U(B\A)\ (B\C)U(C\ B)) (8.3.2)
and Figure[12B] is a visual representation of
(B\NC)U(C\B)\ ((A\B)U(B\A). (8.3.3)
Noting that (A A B) A (B A C) is given by the union of (8.3.2]) and (8.3.3]) we use Figure [12dto conclude

that
(AAB)A(BAC)=AAC.
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5. As A\ B and B\ A are disjoint sets it follows that
P(AAB)=P(A\ B) +P(B\ A).
Therefore, if P(AA B) =0 it must be the case that P(A\ B) =P(B\ A) = 0. Noting that
P(A) =P(ANB) +P(A\ B)

and
P(B)=P(ANB)+P(B\A).
It follows that

P(A) = P(AN B) = P(B).

Figure 12: Visual proof for statement 3. of Proposition

Definition 8.3.5. Let (2, F,P) be a probability space. Then for A,B € F we say A ~ B if and only if
P(AA B) = 0.

Definition 8.3.6. Let (2, F,P) be a probability space.

1. The o-algebra F is complete with respect to P if whenever B € F and P(B) = 0, then for any A C B
it follows that A € F.

2. The completion F of F with respect to P is the smallest o-algebra containing F that is complete with
respect to the measure P.

Recall, that we can view our time-homogeneous Markov process as the canonical stochastic process on the
probability space (X%, B (X%),P), where P is the law of the chain with transition probability P and initial
distribution 7. We can then consider § and §~! measure preserving transformations on X% and



Lemma 8.3.7. Let A € B(X%), then for any € > 0 there exists an N > 0 and A, € F~, such that
P(AAA,) <
Proof. Consider
By :={A € B(X%) :forall e >0, there exists N € N and A, € Fy, such that P(AA A,.) < ¢} .

Clearly, ) € By. By statement 1. of Proposition it follows that if A € By then A¢ € By. Now consider
(Aj)jen C Bo. By construction there exists a sequence (N;) en C N with corresponding events A’ € fing,j such
that P (A; A A)) < €277, Since P is a finite measure, there exists a .J such that with A := |J

P (AN Ujcs 45) < e Therefore,

jen Aj we have

plaa 4| =p(laa U] a|Uaa U4

J<J js<J J<J isJ

<PlAa 4 +P[J44 (4]

J<J JisJ j<J

<e+P| (4,04

Jj<J

< 226.

isd

Hence, as ;. ; A} € Fy where N = max;<;(N;) we have that | J;.y A; € By which makes By a o-algebra.
It follows that By = B (X%) which completes the proof. O

Lemma 8.3.8. Forany A€ T :={C €B(X%):07'C =C} and | € Z, there exists A, € o(X;) such that
A~ A

Proof. Let A € I, then for any € > 0 we can use Lemma mto find a N € N and A. € FY such that
P(AA A.) < e. Since,
1 (ANA) =0_1(A)ANO_1 (A) =AN0_1 (Al),

and P is f-invariant, it follows that
PAAO_LA.) <€ (8.3.4)

for all k > 0. In particular, observe that =~ (V+M A ¢ FINTF < 7o for fixed k > 0 and arbitrary ¢ > 0.
Therefore, with € and N as previously given, fix k and let €, = % Furthermore, let

D=0 WNtRhA e FRe

and

D:=( Dy e R

m>1n>1

Note that using (8.3.4) we have P (A A Df,) < 57and so

P( () (A\Dy) | = lim P(A\D§) < lim % =0. (8.3.5)

n—00 n—oo 2N
n>1

110



On the other hand,

3
Il
—

Therefore, P(D \ A) = 0. Furthermore,

and so A ~ D. Therefore, for any k with D*) := D we have D) ¢ F° and P (AAD(k)) = 0. Similarly using
0_, for any k there is a D) € FUF) such that P (AADGR) =0. Let I € (—k, k) then

(1A‘0' Xl ( |O‘ Xl )
(Iperw1lpmwlo(X))
(Ipemlo(X) E (1pw|o(X1))

= (E(1alo(X1)))*,

which implies that E (14]|0(X;)) (w) € {0,1} almost surely. Let

E
=E

A:={we X% EQ1alo(X))) (w) =1} € o(X)).
Then E (14|0(X;)) =14 and E(14¢|0(X;)) = 14c. Then for any E € 0(X;) we have
P(ANE) =E (E (14]0(X}))) = P (A N E) .
In particular, P (Aﬂflc) =0and P (flﬂAc> = 0. Hence, P (AAA) = 0. Thus letting A; :== A we have

A~ A O

Proposition 8.3.9. Forany A€ 1 :={C € B(X%):07'C = C}, there exists A € B(X) such that

ANHA.

€L
Proof. By Lemma there exists an A € o(X,) with A ~ A. Let A € B(X) be such that

A= {we X Xo(w) € A}.
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Then by the invariance of A with follows that
P (A A a_n/i) —P (9_7,, (A A A)) —0,

which implies that
P (U AAH‘"A) = 0.
nez

As 0_,A={w: X,(w) € A} we have that
ﬂ 0 LA = {w: Xow) €A4,...,X,(w) € A} ~ A
k=0

Thus, - -
{(Xied:iez}=][A~A
S/
O

Corollary 8.3.10. Let w be an invariant probability measure for P. Then 7 is ergodic if and only if every
m-invariant set A is such that 7 (A) € {0,1}.

Proof. (=). If A is m-invariant, then using Exercise it follows that
P, (HA) =7 ([l) .
i€Z

As we assume P is ergodic and [, , A is a 6-invariant set, it follows that m (A4) € {0,1}.
(«<=). For A € 7 we have from Proposition that there exists a A € B(X) such that A ~ [, A... O

Proposition 8.3.11. Let w be an invariant probability measure for P. Then 7 is ergodic if and only if 7 is an
extremal of Ip, where Ip is as given in (8.3.1]).

Proof. (=). Suppose that 7 is not extremal, with m = tmy + (1 — ¢)ms for ¢ € (0,1) and 71, w9 € P(X) distinct.
Moreover, suppose that 7 is ergodic. Then for any f-invariant set A we have

ﬂp‘m (A) + (1 - t)Pﬂz (A) € {07 1}7

thus P, (A) = P, =0 or P, (A) =P, = 1 making 7 and w2 ergodic. Therefore, by Proposition 71 and
T are mutually singular. Let E € B(X) be such that 7 (E) =1, and m3(E) = 0, so that P, ([[;c; E) =1 and
Pr, (ITicz E) = 0. It follows that

P, (HE) = Py, (HE) +(1=t)P,, (HE) =t<1,

i€L 1€Z <Y/

1€Z

which contradicts 7 being ergodic.
(«<=). Suppose 7 is not ergodic. Then by Corollary [8.3.10| there exists a m-invariant set F' with w(F') :=¢ € (0, 1).

Let 1,72 € P(§) be given by

m(B) = %W(B nF),

and 1
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By the m-invariance of F we have P(z, F)) = 1 for almost every = € F with respect to 7. Using similar arguments
to those made in Lemma|7.6.3] we have that 7 restricted to F is invariant. That is, 7y is invariant. On the other
hand,

W(FC):/FP(x,FC) dTrJr/CP(x,FC) dw:/cP(az,FC) dr,

which implies that P (z, F¢) = 1 for almost every x € F'° with respect to 7. Therefore, 7o is invariant, and thus
71,7 € Ip which contradicts 7w being extremal. O

Theorem 8.3.12. Given a time-homogeneous transition probability P, with transition operator T let Ip be

as given by (8.3.1)). Then for
E={meP(X):w ergodic} N Ip

the following statements hold.
1. Ip is convex with being the set £ of its extremal points.
2. Formy,mo € &, either my and o are equal or they are mutually singular.
3. Every 7 € Ip can be written as m = tm + (1 — t)my for some 71, m € € and t € [0, 1].
Proof.

1. Ip being convex follows from statement 1. of Exercise [8.3.1] Proposition [8.3.11] shows that the set of
extremal points of Ip coincides with £.

2. This is shown in Proposition |3.2.9

3. This follows from statement 1.
O

Corollary 8.3.13. If a time-homogeneous Markov process admits more than one invariant measure, it admits
at least two ergodic invariant measures.

Proof. Let w1, m9 € Ip be distinct. We are done if 1,79 € £. In any other case, we must have that either 7 or
7o is not ergodic. Suppose without loss of generality that 7 € Ip \ £. By statement 3. of Theorem we
can write mp = tug + (1 — t)puo where py, uo € E. It is clear that p; is not equal to s, otherwise m = p3 which
contradicts m; not being ergodic. O

I Corollary 8.3.14. If a time-homogeneous Markov process has a unique invariant measure m, then m is ergodic.
Proof. In this case Ip = {7} and so 7 is an extremal point. Therefore, by statement 1. of Theorem We
have that 7 is ergodic. O
Proposition 8.3.15. Let A C X be a P-invariant set. Let Ay = A and inductively let
A, ={xeX:P(x,A,_1) > 0}.
Suppose X = U, A, and A = |J,—, By for (Bi)k=1,....m disjoint closed P-invariant sets. If the time-

homogeneous Markov chain restricted to By, has a unique invariant measure my,, then 7y, is ergodic. Moreover,
the (7 )k=1,...m are the are the only ergodic invariant probability measures of the chain.
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Proof. On By, the ergodicity follows from Corollary If 7 € Ip, then using Proposition it follows
that m(A) = 1. Using arguments made in the proof of Proposition [8.3.11] we have that the restriction on 7 onto
the By, is an invariant probability measure for P. By the uniqueness of invariant probability measures on By we
can uniquely write

T = Z 7 (By) k.

k=1
O

8.4 Solution to Exercises
Exercise [8.1.3]
Solution. As () € F, and 0=(()) = () we have () € Z. Suppose that A € Z, then

071 (A7) = (471 (4))° = 4%,
and so A€ € Z. Now consider (A, )nen C Z, then

0! (U An> =Jo" (40 = 4.,

neN neN neN

and so UnEN A, € L. Therefore, Z forms a o-algebra. O

Exercise [8.1.5]
Solution. Let f = 14. Note that
f =1y = ]—w:wGA
and
f 0f = 1u.00ecA = 1971(14).

Therefore, fof = f if and only if A = §~1(A) which is to say that A € Z. Therefore, f 0§ = f if and only
if f is Z-measurable. Extending the above argument by linearity it follows that f = > | a;14, is 6-invariant if
and only if f is measurable with respect to 6. As measurability is preserved under limits, and any non-negative
function is the limit of a sequence of simple functions it follows that f : Q — [0, c0] is 6-invariant if and only if
f is Z-measurable. Then for general f : Q — [0, cc], using the decomposition f = f* — f~, we conclude that
f:Q — R is f-invariant if and only if f is Z-measurable. O

Exercise [8.3.1]
Solution.
1. This follows directly from the linearity of the transition operator 7.

2. T being Feller means that it is a continuous map from P(X’) to P(X) under the weak topology. Therefore,
for (7, )nen C Ip a sequence converging weakly to a limit = we have that

Trn =T lim 7, = lim Trm, = lim m, = 7.
n—oo

n—oo n—roo

Therefore, m € Ip which means that Ip is closed.
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9 Appendix

9.1 Gaussian Measures

Definition 9.1.1. A measure ;1 on R™ is Gaussian if there exists a non-negative symmetric matrix K and vector
m € R™ such that

. 1
/ M) (dx) = exp (i()\, m) — §<K)\7 A)) .
If K is non-degenerate then the density with respect to the Lebesgue measure is given by

1 1,
—(27r)" o) exp <2(K Yoz —m),z — m>> .

In this case, m is called the mean, and K the covariance operator.

Remark 9.1.2.

1. We are using the notation

(u,v) = u'v.

2. A Gaussian measure is specified entirely by its mean and covariance operator.

Theorem 9.1.3. Let X be a Gaussian random variable on R™ with mean m, covariance operator K and let
A :R? — R? be a linear map. Then AX is a Gaussian random variable with covariance operator AK AT .

Proof. For A € R™ we have
E (exp (i(\, AX))) =E (exp (z <AT)\, X>))
=) (KAT ), ATA>>

= exp (Z (N, Am) — %

1
= exp (m, Am) — 5 (AKAT), )\>>
where (1) follows as X is a Gaussian random variable with covariance operator K and mean m. Therefore, as a

Gaussian is determined by its mean and covariance, we deduce that AX is a Gaussian random variable with mean
Am and covariance AKAT. O

Proposition 9.1.4. If (X)7_, are independent Gaussian random variables on R? then for aj, € R the random
variable Y ;_, a Xy, is also Gaussian.
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Proof. Suppose that X} has mean my and covariance operator Kj. Then for A € R™ observe that

B <exp (k <AZX>>> & <exp (kz <akx,xk>>>

k=1
= H exp <k<ak)\,mk) — (Kk(ak)\),ak)\>)
k=1
= exp (Z k(X axmy) — = ((ap Ky) A, )\>)
k=1
= exp (k: <A,;akmk> - % <; akKk)\7)\>>

Where (1) is justified by the independence of the Xj. Hence, >, _, a; X} is a Gaussian measure with mean
> r_, axmy, and covariance operator Y, _ ai Kj. O

9.2 The Doeblin Coupling

Definition 9.2.1. For random variables X and Y with state space X, a coupling is a random variable Z =
(X'",Y") with state space X x X such that

1. Law(X) = Law (X'), and
2. Law(Y) = Law (Y).

Remark 9.2.2. Note that for a given X and Y there can be lots of different couplings. This is because Law (X)
and Law(Y") do not determine Law(Z), but only determine its marginals.

Definition 9.2.3. Consider independent Markov chains (X, )nen and (X)), cn on a discrete state space X,
with transition probabilities P, and initial distributions p and v respectively. The process (Z,)nen given by
Zn = (Xpn, X)) is known as the Doeblin coupling. Moreover, T := inf {n € N: X,, = X/|} is known as the

coalescing time of the chains (X, )nen and (X)), cy-

Exercise 9.2.4. Let (Gn)nen and (G,,),cy be filtrations of independent o-algebras. Let (X, )nen be a time-
homogeneous Markov process with respect to the filtration (G, )nen. Then, (X,)nen is a time-homogeneous
Markov process with respect to the filtration (G, \V G,,), cn, Where G, V' G, is the o-algebra generated by
Gn UG,
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Lemma 9.2.5. Assume the setup of Definition [9.2.3 and let

Y, = X, n<T
X, n>T.

Then (Y,)nen is a Markov process with initial distribution p and transition probabilities P. In particular,
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| Law(Y) = Law(X).

Proof. Let (.Fo)neN and (gg)neN be the natural filtrations of (X,,),en and (X)), oy respectively. Then let

n
Fn =F2VGY. For f € B,y(X) it follows that
E(f(Yn+1)|]:n) =E (f(Yn+1)1{T§n}|]:n) +E (f(Yn+1)1{T>n}|]:n)

= 1r<nmyE (f (Xri1) 1Fn) + Lirsn) B (Xns1) | Fn)

= 1{T§n}Pf (X;z) + 1{T>n}Pf(Xn)

=Lir<n) Pf(Yn) + Lipsny Pf(Ya)

= Pf(Y,).
Where we have implicitly used the result of Exercise Furthermore, we have used the fact that T is a
(Fn)nen-stopping time, and hence {T" < n} and {T' > n} are F,-measurable. Hence, (Y;,)nen is a Markov
process with transition probability P. Moreover, it is clear that Yy = X, as if T = 0 then Yy = X} = Xy by

the definition of T'. So that Law(Yy) = Law(Xy) = u, which implies that Law(Y) = Law(X) as (Y;,)nen and
(X, )nen have the same transition probability. O

Lemma 9.2.6. Assume the setup of Definition [9.2.3, then

D IP(Xn = ) —P (X}, = 4)| < 2P(T > n).
jex
Proof. Let j € X then
P(Xp = j) =P (X, = j)| = [P(Ys = j) — P (X}, = j)
= |P(Yn :]) _P(lez =73,T >n) _P(Yn =5T< n)|
Dy, =4T>n) P =4T>n).
Where (1) follows by the result of Lemma and (2) is an application of the law of total probability. Therefore,

D IBXa =) P (X, =) <Y P(Ya=4T>n)+P(X, =jT>n)
JEX JjEX
<2P(T > n).
O]
Exercise 9.2.7. Let (X, )nen and (X)), oy be independent Markov chains on a discrete state space X and

transition probabilities P. Let G,, = 0(Xy : k <n), G, =0 (X}, : k <n) and F,, = G, V G,,. Show that

P (Xn+1 =Js X’I{L+1 = .7/|]:n) = P(Xn+1 = ]|Xn) P (Xr/LJrl = j/er/L) c (921)

Lemma 9.2.8. Assume the setup of Definition then the Doeblin coupling Z, is a time-homogeneous
Markov chain on X x X with transition probabilities () and initial distribution y1 ® v, where

Qi1 = PigPry

for all i,i',5,j' € X.
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Proof. By the independence of X and X, it follows immediately that Law (X, X)) = p ® v. With (F,)nen as
defined in the proof of Lemma[9.2.5] for j,j’ € X it follows that

]P(ZnJrl = (]7.7/) ‘]:n) =P (XnJrl :j7X7/L+1 :j/lj:n)

Ex02.7 . .
= ]P(Xn+1 :]|Xn) ]P(Xr/LJrl :¢7|X’:L)

= Px, ;Px; j

=: QZ?L)(ij,).

Therefore, P(Z, 11 (4,5") | Fn) = P(Znt1 (4,5') | Zn) and so (Z,)nen is a time-homogeneous Markov process
with transition probability Q. O

Lemma 9.2.9. Suppose that S C N is a non-empty set with the property that for s,s’ € S it follows that
s+ s’ €8. Then letting d = gcd(S), there must exists a K > 0 such that for any k > K one has kd € S.

Proof. By considering S = {5 : s € S} we can assume without loss of generality that d = 1. Let {d1,...,d,} C
S be such that ged({d;,...,d,}) = 1. By Bezout's identity we know that there exists integers ay,...,a, such
that

n
i=1

Let M =3>"" ,d;. Thenforl=0,...,M — 1 it follows that

n

i=1

As k < M we can choose Ny such that Ny + la; > 0. Therefore, the sum on the right-hand side can be thought
of as summing N + la; copies of d; for each 7. Hence, by the additive property of S it follows that NM +1 € S
foralll=0,...,M —1and N > Ny. Letting [ = 0 we deduce that kd =k € S for every k > NyM. O

I Lemma 9.2.10. Suppose i is aperiodic and recurrent, then there exists an N € N such that P} > 0 for every
n > N.

Proof. As i is recurrent we know that R(i) # (. Moreover, if n; € R(i) and ny € R(i) then P/* > 0 and
P> >0 and so P}*™™2 > (0 by the Chapman-Kolomogorov equation. This implies that n, 4+ ny € R(i) and so
R(7) has the additive property. Consequently, as i is aperiodic we have that gecd(R(:)) = 1 and so by Lemma

that there exists an NV € N such that n € R(i) for all n > N. In other words, P}} > 0 for n > N. O

Lemma 9.2.11. /f P is irreducible, aperiodic, and positive recurrent, then @, as defined in Lemma|9.2.8, is
irreducible and positive recurrent.

Proof. For any i € X we know by Lemma [0.2.10] that there exists an N such that P/} > 0 for any n > N. Thus
by the irreducibility of P we know that for any j € X’ there exists an m such that P> 0. Consequently,

P > PP > 0

Y]

for alln > N. More succinctly, we can say that P > 0 for sufficiently large n. Therefore, for (i, j), (i', j) € X xX
there exists some N € N such that Pj; > 0 and F}7;, > 0 which implies that

Qi = FijPiy >0

for all n > N. Which proves that @ is irreducible. Consequently, with 7 being the invariant measure of P we
know that m ® 7 is an invariant measure of ). Having established that @) is irreducible this implies that @ is
positive recurrent. O
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Lemma 9.2.12. Assume the setup of Definitior9.2.3 and in particular that P is irreducible, aperiodic and
positive recurrent. Then,
P(T < o0) =1.

Proof. Let
T(i,i’) = lnf {n 2 1: Z" (Xn’X:L) = (Z,Z,)} .

As @ is irreducible we know that

for all (i,4') € X x X. In particular, letting i = i’ it is clear that T < T{; ;, hence, P(T' < 00) > P (T{;;) < 00) =
1.

9.3 Solution to Exercises

Exercise [9.2.4

Solution. Consider the set D = {ANB:A€g,,Beg,}. Note D is a n-system. Moreover, G := G, V G,
forms a A-system with D C G. So by Theorem we know that (D) C G. However, as G, C D and
G/ C D, by taking A = X and B = X respectively, we know that G, U G/, C o(D) which implies that
G =0(G,UG) Co(D). Therefore, o(D) = G. Now for f € By(X) and n € N we know that E (f(X,,11)|Gn)
is G measurable. Moreover, for AN B € D it follows that

/ E (f(Xp11)[Gn) dP = / E (f(Xn11)Lanz(Gn) AP
ANB
@ /E(f(XnH)lAnB)d]P’

- / F(Xni1) dP,
ANB

where in (1) we have used the fact that f(X,,+1)1anp is independent of G,,. Therefore, as 0(D) = G we deduce
that

/ E(f(Xns1)|Gn) AP = / F(Xnsr) dP
C C

for all C € G. Hence, E (f(X,41)|Gn V G) = E(f(Xn11)|Gn). Therefore, as (X,,)nen is Markov with respect
to G,, we conclude that

E (f(Xn+1)|gn 4 g’:‘L) =E (f(Xn+1)‘gn)
= E(f(Xn+1)|Xn)

and so (X, )nen is Markov with respect to G, V G.. O
Exercise [9,2.7]

Solution. Let G,, = o(Xy : k <n), G, = 0 (X}, : k <n) so that F,, = G,, V G,,. The right-hand side of
is equal to P(X,, 41 = j|Gn) - P (X}41 = j'|G,). by the Markov property, and so is F,,-measurable. Recall, that
F, is generated by sets of the form G; N G2 where Gy € G,, and G5 € G/,. Using the independence of G,, and
G/, it follows that,

E (P(Xns1 = jlGn) P (X1 = 71G4) Launas) = B (E (1px,=y16,190) E (1(xs,, =51y 16216, ) )
B (10,1 101100)) B (B (100, =0 10ul60))
Lix,i=jtlc,) E (l{X;+1:j'}1G2)

- (1{Xn+1:j}ﬂ{X7’L+1:j'}1G1mG2)

(]P) (XTL+1 = ja X?”L-’rl = .7/) 1G10G2) .
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It follows that

P (Xnt1 =5, Xpi1 =) = P(Xng1 = jIGn) - P (X) 11 = 571G,
= ]P(Xn+1 = ]|Xn) P (X7/1+1 = jl|X’l/’L) .
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