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1 Introduction to Markov Processes
1.1 Probability Preliminaries
We will define randomness using Kolmogorov’s framework. That is, we define an underlying probability space,
which is a tuple (Ω,F ,P) with the following components.

• Ω is an abstract space.

• F a σ-algebra.

• P is a probability measure, namely a measure with unit mass.

Random quantities will take values in a state space X which we assume to be a complete and separable metric
space. We will use B(X ) to denote its Borel σ-algebra, which is the σ-algebra generated by the open sets of
X . Recall that random quantities are represented as X -valued random variables, which are measurable functions
X : (Ω,F) → (X ,B(X )). For X a X -valued random variable Law(X) or X∗P is the push forward of P of X,
where for each A ⊆ B(X ) we have

X∗P(A) = P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}).

A family of X -valued random variables is denoted using an index set I as (Xi)i∈I .

• P(Xi ∈ A,Xj ∈ B) := P ({ω ∈ Ω : Xi(ω) ∈ A and Xj(ω) ∈ B}) .

• For I ′ ⊆ I the family (Xi)i∈I′ is independent if for all Ai ∈ B(X ) we have

P (Xi ∈ Ai for all i ∈ I ′) =
∏
i∈I′

P(Xi ∈ Ai).

• For dependent random variables, when P(Xj ∈ B) > 0 we have

P(Xi ∈ A|Xj ∈ B) := P(Xi ∈ A,Xj ∈ B)
P(Xj ∈ B) .

For I totally ordered, X = (Xi)i∈I defines a stochastic process. For I discrete we have a discrete-time process.

1.2 Markov Processes

Definition 1.2.1 (Intuitive). A Markov process is a process that could be characterised by either of the following
statements.

1. For any prediction of the future, knowledge of the present is just as good as knowledge of both the past
and present.

2. Conditioned on the present, the past and present are independent.

Definition 1.2.2 (Formal). A process (Xi)∞
i=0 is Markov if it satisfies either one of the following characterisa-

tions.

1. For every j ∈ N and A,B1, . . . , Bj ∈ B(X ) such that P(X1 ∈ B1, . . . , Xj ∈ Bj) > 0 we have

P(Xj+1 ∈ A|X1 ∈ B1, . . . , Xj ∈ Bj) = P(Xj+1 ∈ A|Xj ∈ Bj).
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2. For any i < j < k and A0, . . . , Ai, B,Cj+1, . . . , Ck ∈ B(X ) with P(Xj ∈ B) > 0 we have

P(X0 ∈ A0, . . . , Xi ∈ Ai, Xj+1 ∈ Cj+1, . . . , Xk ∈ Ck|Xj ∈ B)
= P(X0 ∈ A0, . . . , Xi ∈ Ai|Xj ∈ B)

· P(Xj+1 ∈ Cj+1, . . . , Xk ∈ Ck|Xj ∈ B).

Exercise 1.2.3. Suppose that X is a finite set. Show that the characterisations of Definition 1.2.2 are equiv-
alent.

Exercise 1.2.4. Let (Xj)∞
j=0 be given by

Xj = X0 +
j∑

i=1
Yi,

where

• X0 is a Z-valued random variable, and

• (Yi)∞
i=1 is an independent and identically distributed family of {±1}-valued random variables, independent

of X0.

Show that (Xj)∞
j=0 is a Markov process.

Exercise 1.2.5. Let (Xj)∞
j=0 be as in Exercise 1.2.4 and consider

Mj := max
0≤i≤j

Xi.

Taking X0 = 0, show that (Mj)∞
j=0 is not a Markov process.

1.3 Filtrations

Definition 1.3.1. The σ-algebra generated by a family of random variables (Yj)j∈J , denoted σ ((Yj)j∈J), is
the smallest σ-algebra such that {

Y −1
j (A) : j ∈ J, A ∈ B(X )

}
is contained within the σ-algebra. In other words, σ ((Yj)j∈J) is the smallest σ-algebra such that the family
(Yj)j∈J is measurable.

Remark 1.3.2. A σ-algebra can be thought of as encoding information. If Z is a random variable with respect
to σ ((Yj)j∈J), then knowing the values of (Yj)j∈J is sufficient for determining the value of Z. That is,
Z = g ((Yj)j∈J) for a measurable function g.

Exercise 1.3.3. Let Y1 be a {−1, 0, 1}-valued random variable and let Y2 be a {−3, 3}-valued random variable.
What is the maximum value of |σ(Y1, Y2)|?

Definition 1.3.4. A filtration is a sequence of σ-algebras (Fn)∞
n=0 with Fn ⊆ F for all n ∈ N such that for

m ≤ n we have Fm ⊆ Fn.
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Definition 1.3.5. A stochastic process X with state space X is a collection of X -valued random variables
(Xn)∞

n=0 on a probability space (Ω,F ,P).

Definition 1.3.6. A stochastic process X = (Xn)∞
n=0 is adapted to (Fn)∞

n=0 if for every n ∈ N the random
variable Xn is measurable with respect to Fn.

Definition 1.3.7. For a stochastic process X, the filtration generated by X, denoted F0 =
(
F0

n

)∞
n=0 is

F0
n := σ ((Xi)n

i=0)

for every n ∈ N.

Remark 1.3.8.

• The filtration F0 is the smallest filtration for which X is adapted.

• Intuitively, F0
n is the information generated by the process up until time n ∈ N.

1.4 Conditional Expectation
Throughout, (Ω,F ,P) will be the underlying probability space.

Definition 1.4.1. A random variable X is integrable if E (|X|) < ∞.

Definition 1.4.2. Let X be an integrable random variable, and consider a sub-σ-algebra F ′ ⊆ F . The
conditional expectation of X with respect to F ′ is an F ′-measurable random variable X ′ such that for every
A ∈ F ′ we have ∫

A

X(ω) dP(ω) =
∫

A

X ′(ω) dP(ω).

Proposition 1.4.3. In the setting of Definition 1.4.2, there exists, up to P-null sets, a unique conditional
expectation of X with respect to F ′.

Proof. Let µ be the restriction of P to F ′. Let ν be the measure on F ′ be given by

ν(A) =
∫

A

X(ω) dP(ω)

for all A ∈ F ′. Then if µ(A) = 0 it follows that ν(A) = 0 which implies that v ≪ µ. Therefore, by the
Random-Nikodyn theorem there exists a unique F ′-measurable function, X ′, up to sets of zero measure such that

ν(A) =
∫

A

X ′(ω) dP(ω)

for all A ∈ F ′.

Remark 1.4.4.

• If we have a candidate for the conditional expectation, by uniqueness, it suffices to check the conditions
of Definition 1.4.2 are satisfied to conclude that it is the conditional expectation.
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• Note that X(ω) is not necessarily F ′ measurable. So we cannot say that X ′ equals X pointwise.

We denote the conditional expectation of X with respect to F ′ by E (X|F ′).

• We also write P (A|F ′) = E (1A|F ′).

• Given a random variable Y , we write E (·|Y ) = E (·|σ(Y )).

Remark 1.4.5. Intuitively, we think of E(X|Y ) as being an approximation of X when we only have the
information of σ(Y ). As E(X|Y ) is measurable with respect to σ(Y ) we can think of it as a measurable
function ϕ(Y ).

Example 1.4.6. Let F ′ = {∅, A,Ac,Ω} where A ∈ F and P(A) ∈ (0, 1). Let X be an integrable random
variable. Then

E (X|F ′) (ω) =
{

1
P(A)

∫
A
X(ω) dP(ω) ω ∈ A

1
P(Ac)

∫
Ac X(ω) dP(ω) ω ∈ Ac.

To see this one just has to note that X ′ is F ′-measurable and

∫
B

X ′(ω) dP =


0 B = ∅∫

A
X(ω) dP(ω) B = A∫

Ac X(ω) dP(ω) B = Ac

1 B = Ω,

where all set equalities hold almost everywhere.

Example 1.4.7. Let Y be an N-valued random variable. Let X be an integrable random variable. Then

E(X|Y ) =
∑

i:P(Y =i)>0

E (X|Y = i)P (Y = i) .

Exercise 1.4.8. Let (Ω,F ,P) = (R,B(R),N (0, 1)). Let Y be an integrable random variable given by Y (ω) =
ω2. Let X be an integrable random variable. Give a formula for E(X|Y ).

1.4.1 Properties

Proposition 1.4.9. Let X be an integrable random variable on the probability space (Ω,F ,P). Suppose
B ⊆ F is a σ-algebra such that σ(X) and B are independent. Then,

E(X|B) = E(X).

Proof. Let B ∈ B, then ∫
B

X(ω) dP(ω) =
∫

Ω
1BX(ω) dP(ω)

= E(X1B)
(1)= E(X)E(1B)
= E(X)P(B)

=
∫

B

E(X) dP(ω),
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where in (1) we have used the independence assumption. As E(X) is a constant, it is B-measurable. Therefore,
we conclude that E(X|B) = E(X).

Proposition 1.4.10. Let X,Y ∈ L2(Ω,F ,P). Let B ⊆ F be a σ-algebra such that Y is B-measurable. Then

E(XY |B) = Y E(X|B).

Proof. Step 1: Let Y = 1A for A ∈ B.
For any B ∈ B it follows that ∫

B

Y (ω)X(ω) dP(ω) =
∫

B∩A

X(ω) dP(ω)

(1)=
∫

B∩A

E(X|B)(ω) dP(ω)

=
∫

B

1A(ω)E(X|B)(ω) dP(ω)

=
∫

B

Y (ω)E(X|B)(ω) dP(ω),

where in (1) we use that B∩A ∈ B. As A ∈ B we note that 1AE(X|B) is the product of B-measurable functions
and is therefore also B-measurable. Hence, E(XY |B) = Y E(X|B).
Step 2: Let Y be a simple function.
Due to the linearity of the integral, we can use step 1 to extend the result to Y .
Step 3: Let Y be a non-negative B-measurable function.
There exists a sequence of positive simple functions (Yn)n∈N such that Yn ↗ Y . Note that YnX → Y X almost
surely and |YnX| ≤ |Y X|. As X and Y are in L2 we can use the Cauchy-Schwartz inequality to note that

E(|XY |)2 ≤ E(|X|)2E(|Y |)2 < ∞.

Therefore, we can use step 2 and apply the dominated convergence theorem to deduce that

E(Y X|B) = lim
n→∞

E (YnX|B) (1)= lim
n→∞

YnE(X|B) = Y E(X|B).

Step 4: Let Y be an arbitrary B-measurable function.
We can use the decomposition Y = Y + − Y − to conclude the result from step 3.

Proposition 1.4.11 (The Tower Property). Let X be an integrable random variable and let A ⊆ B be
sub-σ-algebras of F . Then

E (E (X|A) |B) = E(E(X|B)|A) = E(X|A).

Proof. As E(X|A) is A-measurable, it is B-measurable. Therefore, by Proposition 1.4.10 we get that

E(E(X|A)|B) = E(X|A).

On the other hand, for C ∈ A ⊆ B we have that∫
C

E(X|A)(ω) dP(ω) =
∫

C

X(ω) dP(ω)

and ∫
C

E(X|B)(ω) dP(ω) =
∫

C

X(ω) dP(ω).

Therefore, ∫
C

E(X|A)(ω) dP(ω) =
∫

C

E(X|B)(ω) dP(ω).
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Thus, as E(X|A) is A-measurable, we observe that E(X|A) satisfies the required conditions to be the conditional
expectation of E(X|B) with respect to A. Therefore, by Proposition 1.4.3 we conclude that

E(E(X|B)|A) = E(X|A).

Remark 1.4.12. Intuitively, Proposition 1.4.11 holds as A has less information than B, and so the conditioning
on B retains sufficient information for the conditioning on A to take full effect.

Proposition 1.4.13. Suppose that X and Y are bounded R-valued random variables, and let f, g ∈ Bb(R).
Then

E (E (Y |f(g(X)) |g(X)) = E (E (Y |g(X)) |f(g(X)) = E(Y |f(g(X)).

Proof. Note that f(g(X)) and g(X) are random variables as f and g are measurable functions. Specifically, we
have that

σ(f(g(X))) := Afg = {A : f(g(X(A))) ∈ B(R)}
and

σ(g(X)) := Ag = {A : g(X(A)) ∈ B(R)}.
Consider A ∈ Afg, then f(g(X(A))) = B for some B ∈ B(R). As f is measurable it follows that g(X(A)) =
f−1(B) ∈ B(R) which implies that A ∈ Ag. Therefore, Afg ⊆ Ag. Hence, from Proposition 1.4.11 we deduce
that

E (E (Y |g(X)) |f(g(X))) = E(Y |f(g(X)),
and

E (E(Y |f(g(X))|g(X))) = E(Y |f(g(X))).

Proposition 1.4.14. Suppose that X and Y are bounded R-valued random variables. Then for any f ∈ Bb(R)
we have

E
(

(Y − E(Y |X))2
)

≤ E
(
(Y − f(X)2) .

Proof. On the one hand,

E
(
(Y − E(Y |X))2|X

)
= E

(
Y 2|X

)
− 2E (Y E(Y |X)|X) + E

(
E(Y |X)2|X

)
= E

(
Y 2|X

)
− 2E (Y |X)2 + E(Y |X)2

= E
(
Y 2|X

)
− E (Y |X)2

On the other hand,

E
(
(Y − f(X))2|X

)
= E

(
Y 2|X

)
− 2E (Y f(X)|X) + E

(
f(X)2|X

)
= E

(
Y 2|X

)
− 2f(X)E (Y |X) + f(X)2.

Therefore,
E
(
(Y − f(X))2|X

)
− E

(
(Y − E(Y |X))2|X

)
= (E(Y |X) − f(X))2 ≥ 0

and hence
E
(
(Y − f(X))2|X

)
≥ E

(
(Y − E(X|Y ))2|X

)
.

Taking the expectations of both sides we conclude that

E
(
(Y − f(X))2) ≥ E

(
(Y − E(X|Y ))2) .
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Proposition 1.4.15. Suppose that A ⊆ B are σ-algebras contained in F . For a bounded random variable X
we have that

Var(E(X|B)) ≥ Var(E(X|A)).

Proof. Observe that,

Var(X) = E(Var(X|A)) + Var(E(X|A))
= E(Var(X|B)) + Var(E(X|B)).

Therefore,
Var(E(X|B)) − Var(E(X|A)) = E (Var(X|A)) − E (Var(X|B)) .

Moreover,

Var(X|A) = E
(
(X − E(X|A))2|A

)
= E

(
(X − E(E(X|B)|A))2|A

)
(1)
≥ E

(
(X − E(X|B))2|A

)
(2)= E

(
E
(
(X − E(X|B))2|B

)
|A
)

= E(Var(X|B)|A). (1.4.1)

Where in (1) we use Proposition 1.4.14 as E(E(X|B)|A) is A-measurable and so B-measurable. In (2) the
tower property for conditional expectations is used. As Var(X|A) is an A-measurable function, we have that
E(Var(X|A)|A) = Var(X|A). Using this and (1.4.1) we deduce that Var(X|A) ≥ Var(X|B), which means that

Var(E(X|B)) − Var(E(X|A)) = E (Var(X|A)) − E (Var(X|B)) ≥ 0

and hence Var(E(X|B)) ≥ Var(E(X|A)).

1.5 Solution to Exercises
Exercise 1.2.3

Solution. (1) ⇒ (2). Let

• A = {X0 ∈ A0, . . . , Xi ∈ Ai},

• B = {Xj ∈ B}, (we abuse notation slightly with the B’s) and

• C = {Xj+1 ∈ Cj+1, . . . , Xk ∈ Ck}.

We assume that P(B),P(A,B) > 0. Then

P(A,C|B) = P(A,C,B)
P(B)

= P(C|A,B)P(A,B)
P(B)

= P(C|A,B)P(A|B).

Applying statement 1 we get that P(C|A,B) = P(C|B) and so

P(A,C|B) = P(A|B)P(C|B).
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(2) ⇒ (1). Then

P(Xj+1 ∈ Aj+1|X1 ∈ B1, . . . , Xj ∈ Bj) = P(Xj+1 ∈ Aj+1, X1 ∈ B1, . . . , Xj ∈ Bj)
P(X1 ∈ B1, . . . , Xj ∈ Bj)

= P(Xj+1 ∈ Aj+1, X1 ∈ B1, . . . , Xj−1 ∈ Bj−1|Xj ∈ Bj)P(Xj ∈ Bj)
P(X1 ∈ B1, . . . , Xj ∈ Bj)

(2)= P(Xj+1 ∈ Aj+1|Xj ∈ Bj)P(X1 ∈ B1, . . . , Xj−1 ∈ Bj−1|Xj ∈ Bj)P(Xj ∈ Bj)
P(X1 ∈ B1, . . . , Xj ∈ Bj)

= P(Xj+1 ∈ Aj+1|Xj ∈ Bj).

Exercise 1.2.4

Solution. Note that Xj = Xj−1 + Yj . As X = Z it suffices to consider the events {k} for k ∈ Z. Observe that,

P(Xj+1 = xj+1|X0 = x0, . . . , Xj = xj) = P(Xj+1 = xj + Yj |X0 = x0, . . . , Xj = xj)
= P(Xj+1 = xj + Yj |Xj = xj),

where the last equality follows from the fact that the Yj are independent and independent from X0. Therefore,
(Xj)∞

j=1 satisfies statement 1 of Definition 1.2.2 and hence is a Markov process.

Exercise 1.2.5

Solution. For the sequence (M0,M1,M2,M3) consider the following possibilities.

1. (0, 0, 0, 1) which arises from the sequence (X0, X1, X2, X3) = (0,−1, 0, 1).

2. (0, 1, 1, 1) which may arise from the sequence (X0, X1, X2, X3) = (0, 1, 0,−1) or (X0, X1, X2, X3) =
(0, 1, 0, 1).

Note that these are the only possibilities for which M3 = 1. We can then compute the possibilities of M4 in each
case.

1. P(M4 = 2|M0 = 0,M1 = 0,M2 = 0,M3 = 1) = 1
2 .

2. P(M4 = 2|M0 = 0,M1 = 1,M2 = 1,M3 = 1) = 1
2

1
2 = 1

4 ,

• The first 1
2 comes from the fact that we must observe the sequence (X0, X1, X2, X3) = (0, 1, 0, 1)

in order to be able to reach M4 = 2. The second 1
2 is the probability of reaching M4 = 2 from that

sequence.

Therefore, we see that the future j + 1 = 4 is dependent on more than just the present j = 3. Hence, (Mj)∞
j=0

is not a Markov process.

Exercise 1.3.3

Solution. There are 3 × 2 = 6 possibilities for the tuple (Y1, Y2). Taking the power set of these gives a σ-algebra
of size 26, which is the largest σ-algebra as σ-algebra is simply a collection of subsets.

Exercise 1.4.8

Solution. For a set A, let
f(A) := {f(ω) : ω ∈ A} .

Step 1: σ(Y ) = {B ∈ B(R) : −B = B}.
Suppose −B = B, then for A = B2 ∈ B(R) we have

Y −1(A) = ±B = B,
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which implies that B ∈ σ(Y ). On the other hand, if B ∈ σ(Y ), then B = Y −1(A) for some A ∈ B(R) so that

−B =
{

−ω : ω ∈ Y −1(A)
}

=
{

−ω : −ω ∈ Y −1(A)
}

=
{
ω : ω ∈ Y −1(A)

}
= B,

where we have used that ω ∈ Y −1(A) if and only if −ω ∈ Y −1(A).
Step 2: E(Y |X)(ω) = 1

2 (X(ω) +X(−ω)).
For A ∈ B(R) observe that{

ω : 1
2(X(ω) +X(−ω)) ∈ A

}
=
{

−ω : 1
2(X(ω) +X(−ω)) ∈ A

}
,

which implies that {
ω : 1

2(X(ω) +X(−ω)) ∈ A

}
∈ σ(Y )

by step 1. Hence, 1
2 (X(ω) +X(−ω)) is σ(Y )-measurable. Moreover, as N (0, 1) is a symmetric distribution, for

B ∈ σ(Y ) we have∫
B

1
2(X(ω) +X(−ω)) dP(ω) u=−ω= 1

2

∫
B

X(ω) dP(ω) + 1
2

∫
−B

X(u) dP(−u)

= 1
2

∫
B

X(ω) dP(ω) + 1
2

∫
B

X(u) dP(u)

=
∫

B

X(ω) dP(ω).

Therefore, E(Y |X) = 1
2 (X(ω) +X(−ω)).

11



2 The Markov Property
2.1 The Discrete Time Markov Property
We can now reformulate the Markov property with conditional expectations. The process (Xn)∞

n=0 has the Markov
property if one of the following equivalent conditions holds.

1. For every j ∈ N and A ∈ B(X ) we have

P(Xj+1 ∈ A|X0, . . . , Xj) = P(Xj+1 ∈ A|Xj).

2. For any j < k, A ∈ B
(
X j
)

and B ∈ B
(
X k−j

)
, we have

P((X0, . . . , Xj−1) ∈ A, (Xj+1, . . . , Xk) ∈ B|Xj) =P((X0, . . . , Xj−1) ∈ A|Xj)
· P((Xj+1, . . . , Xk) ∈ B|Xj).

Theorem 2.1.1. Let X and Y be state spaces with X being discrete. Let Fn : X × Y → X be a measurable
map for each n ∈ N. Furthermore, let X0 be an X -valued random variable and (ζn)∞

n=1 be a family of
independent Y-valued random variables that are also independent of X0. Then the process X = (Xn)∞

n=0
given by

Xn+1 = Fn(Xn, ζn+1)

for n ∈ N is a Markov process.

Proof. As X discrete, it suffices to show the Markov property holds for singletons set. On the one hand,

P(Xn+1 = in+1|Xn = in, . . . , X0 = i0) = P(Fn(Xn, ζn+1)|Xn = in, . . . , X0 = i0)
= P(Fn(in, ζn+1)),

where in the second equality we use the fact that ζn+1 is independent of the X0, . . . , Xn. On the other hand,

P(Xn+1 = in+1|Xn = in) = P(Fn(in, ζn+1)).

Therefore, X has the Markov property.

We can generalise Theorem 2.1.1 to arbitrary state spaces. To do so, we require Proposition 2.1.2.

Proposition 2.1.2. Let X and Y be state spaces and let ϕ : X × Y → R be a measurable function. Suppose
X is an X -valued random variable and Y is a Y-valued random variable such that ϕ(X,Y ) is integrable. Then
for any σ-algebra G ⊆ F such that X is G-measurable and Y is independent of G, it follows that

E(ϕ(X,Y )|G)(ω) = E(ϕ(X(ω), Y )).

Proof. Let ϕ(X,Y ) = 1{X∈A}1{Y ∈B} where A ∈ B(X ) and B ∈ B(Y). Then,

E
(
1{X∈A}1{Y ∈B}|G

)
(ω) (1)= 1{X∈A}(ω)E

(
1{Y ∈B}|G

)
(ω)

(2)= 1{X∈A}(ω)E
(
1{Y ∈B}

)
= E(1X∈A(ω)1Y ∈B),

where (1) follows as X is G measurable and (2) follows as Y is independent of G. Using the linearity of expectation
we can extend this result to X and Y being simple random variables. Applying the monotone convergence theorem
gives the result for X and Y non-negative random variables. To generalise to arbitrary random variables we utilize
the decompositions X = X+ −X− and Y = Y + − Y −.
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Theorem 2.1.3. Let X and Y be state spaces. For each n ∈ N, let Fn : X × Y → X be a measurable
map. Let X0 be an X -valued random variable and let (ζn)∞

n=0 be a family of independent Y-valued random
variables that are also independent of X0. Then the process X = (Xn)∞

n=0 given by

Xn+1 = Fn(Xn, ζn+1)

for each n ∈ N is a Markov process.

Proof. Let A ∈ F , then

P(Xn+1 ∈ A|Xn, . . . , X0) = P(Fn(Xn, ζn+1) ∈ A|Xn, . . . , X0),

where

• Xn is measurable with respect to σ(X0, . . . , Xn), and

• ζn+1 is independent of σ(X0, . . . , Xn).

Therefore, by Proposition 2.1.2 it follows that

P(Xn+1 ∈ A|Xn, . . . , X0) = E (1A (Fn(Xn, ζn+1)) |Xn, . . . , X0)
= E (1A (Fn(Xn, ζn+1))) .

A similar computation shows that P(Xn+1 ∈ A|Xn) = E (1A (Fn(Xn, ζn+1))) and so the process is Markov.

2.2 Continuous Time Processes
A continuous time process (Xs)s∈I , is indexed by a continuous well-ordered set I, such as I = [0,∞).

Definition 2.2.1. A continuous time filtration is an uncountable family of σ-algebras (Fs : s ∈ I) with Fs ⊆ F
and Fs ⊆ Ft for each s ≤ t.

Definition 2.2.2. Given a continuous time process (Xs)s∈I , the natural filtration
(
F0

t : t ∈ I
)

is

F0
t = σ ({Xs : s ≤ t, s ∈ I}) .

Definition 2.2.3. A stochastic process (Xs)s∈I has the Markov property with respect to the filtration (Fs : s ∈ I)
if (Xs)s∈I is adapted to (Fs : s ∈ I) and for all s, t ∈ I with s < t we have

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs)

for every A ∈ B(X ).

Remark 2.2.4.

1. Definition 2.2.3 says that our prediction of the future using information from the past and the present is
as good as our prediction of the future using only information from the present.

2. We can reformulate the condition of Definition 2.2.3 as for all s, t ∈ I with s < t, A ∈ B(X ) and C ∈ Fs

we have
E (1A(Xt)1C) = E (P(Xt ∈ A|Xs)1C) .

13



Exercise 2.2.5. Verify that the reformulation of Definition 2.2.3 with statement 2 of Remark 2.2.4 is justified.

Definition 2.2.6. A non-empty collection of subsets D, is a π-system if for any A,B ∈ D we have A∩B ∈ D.

Definition 2.2.7. A non-empty collection of subsets G, is a λ-system if the following properties hold.

1. ∅ ∈ G.

2. For any G ∈ G we have Gc ∈ G.

3. For G1 ⊆ G2 ⊆ · · · ∈ G we have
⋃∞

i=1 Gi ∈ G.

Theorem 2.2.8 (Dynkin π-λ). If D is a π-system and G is a λ-system with D ⊆ G. Then σ(D) ⊆ G.

Proposition 2.2.9. Suppose a π-system D generates B(X ) and for each s ∈ I we are given a π-system Ds

that generates Fs. Moreover, suppose that for every s < t, A ∈ D and C ∈ Ds we have

E(1A(Xt)1C) = E (P(Xt ∈ A|Xs)1C) .

Then (Xs)s∈I has the Markov property.

Proof. For fixed s, t ∈ I such that s < t consider the set
C := {C ∈ Fs : E(1A(Xt)1C) = E (P(Xt ∈ A|Xs)1C) for all A ∈ D}.

Then ∅ ∈ C and X ∈ C. If C ∈ C then 1Cc = 1 − 1C , so,
E(1A(Xt)1Cc) = E(1A(Xt)(1 − 1C))

= E(1A(Xt)) − E(1A(Xt)1C)
= E(P(Xt ∈ A|Xs)1) − E(P(Xt ∈ A|Xs)1C)
= E(P(Xt ∈ A|Xs)1Cc).

Hence, Cc ∈ C. Next, if (Cn)n∈N ⊆ C is such that C1 ⊆ C2 ⊆, then by the monotone convergence theorem it
follows that

⋃∞
i=1 Ci ∈ C. Therefore, C defines a λ-system. As Ds ⊆ C we can apply the Theorem 2.2.8 to infer

that Fs = σ(Ds) ⊆ C ⊆ Fs which implies that Fs = C. Similarly, we can consider
A = {A ∈ B(X ) : E(1A(Xt)1C) = E (P(Xt ∈ A|Xs)1C) for all C ∈ Fs},

and show that A defines a λ-system with D ⊆ A. Therefore, by Theorem 2.2.8 system we infer that B(X ) =
σ(D) ⊆ A ⊆ B(X ). Therefore, A = B(X ) and so (Xs)s∈I has the Markov property.

Proposition 2.2.10. If (Xs : s ∈ I) is a Markov process with respect to a filtration (Fs : s ∈ I), then it is a
Markov process with respect to its natural filtration

(
F0

s : s ∈ I
)
.

Proof. Note that for any s < t we have σ(Xs) ⊆ F0
s ⊆ Fs. Therefore, for t ∈ I such that t > s it follows that

P
(
Xt ∈ A|F0

s

) (1)= E
(
P(Xt ∈ A|Fs)|F0

s

)
(2)= E

(
P(Xt ∈ A|Xs)|F0

s

)
(3)= P(Xt ∈ A|Xs),

where (1) is an application of the tower property, (2) is applying the Markov property of (Xs)s∈I with respect to
(Fs)s∈I and (3) follows by the tower property.
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Theorem 2.2.11. The stochastic process (Xs : s ∈ I) is a Markov process with filtration (Fs : s ∈ I) if and
only if for any bounded measurable function f : X → R and s < t we have that

E(f(Xt)|Fs) = E(f(Xt)|Xs).

Proof. (⇒). Step 1: Let f = 1A for A ∈ B(X ).
Then

E(f(Xt)|Fs) = P(Xt ∈ A|Fs)
= P(Xt ∈ A|Xs)
= E(f(Xt)|Xs).

Step 2: Let f be a simple function.
By the linearity of expectation and step 1 the result extends to f .
Step 3: Let f be a non-negative bounded measurable function.
There is a sequence of simple functions (fn)n∈N such that fn ↗ f . Therefore, applying the monotone convergence
theorem at the points (⋆) we deduce that

E(f(Xt)|Fs) = E
(

lim
n→∞

fn(Xt)|Fs

)
(⋆)= lim

n→∞
(E(fn(Xt)|Fs)

Step 2= lim
n→∞

(E(fn(Xt)|Xs)

(⋆)= E
(

lim
n→∞

fn(Xt)|Xs

)
= E(f(Xt)|Xs).

For f an arbitrary measurable and bounded function, we can write f = f+ − f− where f+, f− are bounded
non-negative measurable functions. Hence, we can extend the equality to f using the linearity of expectation.
(⇐). For any A ∈ B(X ) let f = 1A, so that for s < t we have

P(Xt ∈ A|Fs) = E(f(Xt)|Fs)
= E(f(Xt)|Xs)
= P(Xt ∈ A|Xs).

Therefore, (Xs)s∈I is a Markov process.

2.3 Discrete Time Processes
Throughout, let I be a discrete well-ordered set. Furthermore, let Bb(X ) be the set of bounded measurable
functions on X .

Theorem 2.3.1. Suppose we have a process (Xn)∞
n=0 and l < m < n. Then the following are equivalent.

1. For every f ∈ Bb(X ) we have

E (f(Xn)|Xl, Xm) = E (f(Xn)|Xm) .

2. For every g ∈ Bb(X ) we have

E (g(Xl)|Xm, Xn) = E (g(Xl)|Xm) .
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3. For every f, g ∈ Bb(X ) we have

E (f(Xn)g(Xl)|Xm) = E (f(Xn)|Xm)E(g(Xl)|Xm).

Proof. Reversing the time of the process, we see that statement 3 remains the same whereas statements 1 and
2 switch. Therefore, it is sufficient to show the equivalence of statement 1 and statement 3.
(1 ⇒ 3). Note that,

E(f(Xn)g(Xl)|Xm) = E (E (f(Xn)g(Xl)|Xm, Xl) |Xm)
= E (g(Xl)E (f(Xn)|Xm, Xl) |Xm)
1.= E (g(Xl)E (f(Xn)|Xm) |Xm)
= E (g(Xl)|Xm)E (f(Xn)|Xm) .

(3 ⇒ 1). Consider g, h ∈ Bb(X ). Then

E (f(Xn)g(Xl)h(Xm)) = E (h(Xm)E (f(Xn)g(Xl)|Xm))
3.= E (h(Xm)E (f(Xn)|Xm)E (g(Xl)|Xm))
= E (E (g(Xl)h(Xm)E (f(Xn)|Xm) |Xm))
= E (g(Xl)h(Xm)E (f(Xn)|Xm)) .

Therefore, ∫
A

f(Xn) dP =
∫

A

E (f(Xn)|Xm) dP

for every A = A1 ∩A2 where A1 ∈ σ(Xl) and A2 ∈ σ(Xm). Hence,

E(f(Xn)|Xl, Xm) = E(f(Xn)|Xm).

Remark 2.3.2.

• Statement 3 of Theorem 2.3.1 says that the future of the process is independent of its past, provided we
know the present.

• Theorem 2.3.1 holds for generic stochastic processes. The statements are weaker than the Markov
property as they only consider three points in time.

Lemma 2.3.3. Let (Xn)∞
n=0 be a Markov process, and suppose t1 < · · · < tm = k. Let f, h ∈ Bb(X ). Then

E (f(Xk+2)h(Xk+1)|Xt1 , . . . , Xtm) = E (f(Xk+2)h(Xk+1)|Xtm) .

Proof. Let G = σ(Xt1 , . . . , Xtm). Then

E(f(Xk+2)h(Xk+1)|G) (1)= E
(
E
(
E
(
f(Xk+2)h(Xk+1)|F0

k+1
)

|F0
k

)
|G
)

(2)= E
(
E
(
E
(
f(Xk+2)h(Xk+1)|F0

k+1
)

|Xk

)
|G
)

(3)= E (E (f(Xk+2)h(Xk+1)|Xk) |G)
(4)= E (f(Xk+2)h(Xk+1)|Xk) ,

where the equalities are justified in the following ways.

• (1) comes from the tower property for conditional expectations applied to F0
k+1 ⊇ F0

k ⊇ G.
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• (2) comes from the Markov property, as E
(
f(Xk+2)h(Xk+1)|F0

k+1
)

is a bounded measurable function of
Xk+1, say g(Xk+1) such that E

(
g(Xk+1)|F0

k

)
= E(g(Xk+1)|Xk).

• (3) comes from the tower property for conditional expectations applied to F0
k+1 ⊇ σ(Xk).

• (4) comes from the tower property for conditional expectations applied to G ⊇ σ(Xk).

Corollary 2.3.4. Let (Xn)∞
n=0 be a Markov process, and suppose t1 < · · · < tm = k. Then for A ∈ B(X ) we

have that
P(Xk+2 ∈ A|Xt1 , . . . , Xtm

) = P(Xk+2 ∈ A|Xtm
).

Proof. This follows by taking h = 1 and f = 1A in Lemma 2.3.3.

Through induction, Corollary 2.3.4 extends to larger difference time steps.

Exercise 2.3.5. Let (Xn)∞
n=0 be a Markov process, and suppose s1 < · · · < sm < t1 < · · · < tn and

fi ∈ Bb(X ) for 1 ≤ i ≤ n. Then

E

(
n∏

i=1
fi(Xti)|Xs1 , . . . , Xsm

)
= E

(
n∏

i=1
fi(Xti)|Xsm

)
.

Proposition 2.3.6. A process (Xn)∞
n=0 is a Markov process with respect to its natural filtration if and only

if one of the following conditions holds.

1. For any Ai ∈ B(X ) we have

P(X0 ∈ A0, . . . , Xn ∈ An) =
∫

Ω
P(Xn ∈ An|Xn−1)(ω)1

({
(Xi)n−1

i=0 ∈
n−1∏
i=0

Ai

})
(ω) dP(ω).

2. For every n ∈ N and f ∈ Bb(X ) we have

E
(
f(Xn)|F0

n−1
)

= E (f(Xn)|Xn−1) .

3. For any n ∈ N and fi ∈ Bb(X ) we have

E

(
n∏

i=1
fi(Xi)

)
= E

(
n−1∏
i=1

fi(Xi)E(fn(Xn)|Xn−1)
)
.

Proof.

1. (⇒). For C = {X0 ∈ A0, . . . , Xn−1 ∈ An−1} ∈ Fn−1 observe that

P(X0 ∈ A0, . . . , Xn ∈ An) = E(1An
(Xn)1C)

= E(P(Xn ∈ An|Xn−1)1C)

=
∫

Ω
P(Xn ∈ An|Xn−1)(ω)1C(ω) dP(ω)

=
∫

Ω
P(Xn ∈ An|Xn−1)(ω)1

({
(Xi)n−1

i=0 ∈
n−1∏
i=0

Ai

})
(ω) dP(ω).
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(⇐). Let C = {X0 ∈ A0, . . . , Xn−1 ∈ An−1}. Then

E(1An
(Xn)1C) = E(P(Xn ∈ An|Xn−11C).

As sets of the form C form a π-system that generates Fn−1, it follows by Proposition 2.2.9 that Markov
property holds for every C ∈ Fn−1.

2. Follows the same arguments as those made in Theorem 2.2.11.

3. (⇒). Using Proposition 1.4.11 it follows that

E

(
n∏

i=1
fi(xi)

)
= E

(
E

(
n∏

i=1
fi(Xi)

∣∣∣∣Fn−1

))

= E

(
n−1∏
i=1

fi(Xi)E (f(Xn)|Fn−1)
)

= E

(
n−1∏
i=1

fi(Xi)E (f(Xn)|Xn−1)
)
.

(⇐). For any Ai ∈ B(X ) let fi = 1Ai
. Then

P(X0 ∈ A0, . . . , Xn ∈ An) = E

(
n∏

i=1
fi(Xi)

)

= E

(
n−1∏
i=1

fi(Xi)E(fn(Xn)|Xn−1)
)

=
∫

Ω
P(f(Xn)|Xn−1)(ω)

n−1∏
i=1

fi(Xi)(ω) dP(ω)

=
∫

Ω
P(Xn ∈ An|Xn−1)(ω)1

({
(Xi)n−1

i=0 ∈
n−1∏
i=0

Ai

})
(ω) dP(ω).

Therefore, we deduce using statement 1 that (Xn)∞
n=0 has the Markov property.

Exercise 2.3.7.

1. Suppose (Xn)∞
n=0 is a bounded R-valued process which is Markov with respect to its natural filtration.

Let g ∈ Bb(R) be a injective function. Show that (Yn)∞
n=0 given by Yn = g(Xn) is Markov with respect

to its natural filtration.

2. Show that the above statement is not true if we remove the assumption that g is injective.

2.4 Solution to Exercises
Exercise 2.2.5

Solution. Suppose the formulation of Definition 2.2.3 holds. Let s, t ∈ I, A ∈ B(X ) and C ∈ Fs. Then

E (1A(Xt)1C) = E (E(1A(Xt)|Fs)1C)
= E (P(Xt ∈ A|Fs)1C)
= E (P(Xt ∈ A|Xs)1C) .
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On the other hand, suppose the formulation of statement 2 of Remark 2.2.4 holds. Note that since P(Xt ∈ A|Fs)
and P(Xt ∈ A|Xs) are Fs-measurable we have

C := {ω : P(Xt ∈ A|Fs)(ω) ≥ P(Xt ∈ A|Xs)(ω)} ∈ Fs

Therefore,
E (|P(Xt ∈ A|Fs) − P(Xt ∈ A|Xs)|) = E (|P(Xt ∈ A|Fs) − P(Xt ∈ A|Xs)| (1C + 1Cc))

= E ((P(Xt ∈ A|Fs) − P(Xt ∈ A|Xs)) 1C)
+ E ((P(Xt ∈ A|Xs) − P(Xt ∈ A|Fs)) 1Cc)

= E (1A(Xt)1C − P(Xt ∈ A|Xs)1C)
+ E (1A(Xt)1Cc − P(Xt ∈ A|Xs)1Cc)

= 0.
Therefore, P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs).

Exercise 2.3.5

Solution. Suppose that t1 = sm + 1. Let G = σ (Xs1 , . . . , Xsm
). Then following the same arguments as those

made in the proof of Lemma 2.3.3 we deduce that

E

(
n∏

i=1
fi(Xti)|G

)
= E

(
E

(
E

(
n∏

i=1
fi(Xti)|F0

t1

)∣∣∣F0
sm

)∣∣∣G)

= E

(
E

(
E

(
n∏

i=1
fi(Xti

)|F0
t1

)∣∣∣Xsm

)∣∣∣G)

= E

(
n∏

i=1
fi(Xti

)|Xsm

)
.

When t1 ̸= sm + 1, one just takes fi = 1 for i ∈ {sm + 1, . . . , t1 − 1}.

Exercise 2.3.7

Solution.

1. Let A ∈ B(R). As g is injective we know that
{Yn ∈ A} =

{
Xn ∈ g−1(A)

}
.

Therefore,
P(Yn+1 ∈ A|X0, . . . , Xn) = P

(
Xn+1 ∈ g−1(A)|X0, . . . , Xn

)
(1)= P

(
Xn+1 ∈ g−1(A)|Xn

)
= P(Yn+1 ∈ A|Xn),

where (1) is an application of the Markov property of (Xn)∞
n=0 with respect to its natural filtration. Conse-

quently, (Yn)∞
n=0 is Markov with respect to the natural filtration of (Xn)∞

n=0 so by a discrete-time analogue
of Proposition 2.2.10 (Yn)∞

n=0 is Markov with respect to its own natural filtration.
2. Consider the symmetric random walk, (Xn)∞

n=0, on Z, which is a Markov process. Let

Yn = g(Xn) =
⌊
Xn

3

⌋
.

Note P(Yn = 0|Yn−1 = 1) > 0 as we could have Xn−1 = 3 and then Xn = 2. However, P(Yn = 0|Yn−1 =
1, Yn−2 = 2) = 0 as Yn−2 = 2 implies that Xn−2 ∈ {6, 7, 8} but Yn = 0 implies that Xn ∈ {0, 1, 2}.
We cannot transition between these sets with two steps and hence the probability is zero. Note that the
conditioning is well-defined as {Yn−1 = 1, Yn−2 = 2} is an event with non-zero probability. Therefore, the
process (Yn)∞

n=0 is not Markovian.
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3 The Kolmogorov Extension Theorem
3.1 Stochastic Processes as Random Variables
We can view a stochastic process (Xi)∞

i=0 as a XN-valued random variable, instead of as a sequence of X -valued
random variables. Using this interpretation we have a map Ω → XN given by

ω 7→ (Xi(ω))∞
i=0 .

For an index set Λ, each m ∈ Λ has a projection map πm :
∏

i∈Λ Xi → Xm given by∏
i∈Λ

Xi ∋ a = (ai : a ∈ Λ) 7→ πm(a) = am ∈ Xm.

Definition 3.1.1. Given an index set Λ and measurable spaces
(
Xi,F (i)) for each i ∈ Λ, the product σ-algebra,

denoted
⊗

i∈Λ F (i), is the smallest σ-algebra on
∏

i∈Λ Xi such that the projection maps πm for m ∈ Λ are
measurable. That is, ⊗

i∈Λ

F (i) = σ
({
π−1

m (Am) : Am ∈ F (m), m ∈ Λ
})

.

Remark 3.1.2.

1. Sets that are finite intersections of sets of the form π−1
m (Am) with m ∈ Λ and Am ∈ F (m) are called

cylinder sets.

(a) Cylinder sets generate
⊗

i∈Λ F (i).

(b) Cylinder sets A ⊆
∏

i∈Λ Xi are of the form A =
∏

i∈Λ Ai where each Ai ∈ F (i) and all but finitely
many Ai ̸= Xi.

2. When Λ is countable, we know that
∏

i∈Λ Ei for measurable sets Ei ∈ F (i) is measurable.

3. When Λ is uncountable, we cannot assume that
∏

i∈Λ Ei for Ei ∈ F (i) is measurable.

3.2 Constructing Stochastic Processes
Throughout, we will be working with a discrete-time stochastic process, and usually have

∏
i∈Λ Xi = XN with X

a complete metric space.

Proposition 3.2.1. Suppose that we have a countable product of measurable spaces
∏∞

i=0 Xi where each Xi

is equipped with the σ-algebra F (i). Also suppose for each i ∈ N we have F (i) = σ(Di), then

∞⊗
i=0

F (i) = σ

( ∞∏
i=0

Ei : Ei ∈ Di

)
.

If the Xi are separable metric spaces, then the Borel σ-algebra of the product topological space
∏∞

i=0 Xi is
the product of Borel σ-algebras of the Xi, that is

B

( ∞∏
i=0

Xi

)
=

∞⊗
i=0

B(Xi).
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Corollary 3.2.2. If (Xn)∞
n=0 is a X -valued stochastic process, the sequence (Xn)∞

n=0 is a
(
XN,B

(
XN)) ran-

dom variable. Moreover, the process (Xn)∞
n=0 induces a probability measure Law ((Xn)∞

n=0) on B
(
XN,B

(
XN)).

Supposing we have a stochastic process (Xn)∞
n=0, we construct a canonical probability space for the process as(

XN,B
(
XN) ,Law ((Xn)∞

n=0)
)
. Therefore, if we are only interested in the process (Xn)∞

n=0 we can forget about
(Ω,F ,P) and focus on this canonical space instead. Note that (Xn)∞

n=0 corresponds to the identity map on
this space. Supposing we do not have a stochastic process, we can only guess what its law should look like.
With the equivalence observation we made above, we can construct this process by constructing its canonical
probability space. More specifically, if we know the values that (Xn)∞

n=0 takes in XN, then we just need to be
build Law ((Xn)∞

n=0) on B
(
XN).

Definition 3.2.3. A finite dimensional distribution on the first n + 1 time steps, {0, . . . , n}, is a measure µn

on
(
X n+1,B

(
X n+1)).

Finite-dimensional distributions constitute our guess on what the law of our process should look like.

Definition 3.2.4. A family of probability measures (µn)∞
n=0, where each µn a measure on

(
X n+1,B

(
X n+1)),

is consistent if for any n ∈ N and A0, . . . , An ∈ B(X ) we have

µn(A0 × · · · ×An) = µn+1(A0 × · · · ×An × X ).

That is to say the measures are marginals of each other.

Example 3.2.5. Let (Xn)∞
n=0 be a X -valued stochastic process on a probability space (Ω,F ,P). If we set

µn = Law
(
(Xj)n

j=0
)
, then (µn)∞

n=0 is a consistent family of finite-dimensional distributions.

Remark 3.2.6. Example 3.2.5 shows that for our guess of finite-dimensional distributions to yield a valid
stochastic process, we ought to ensure our guess is consistent.

Theorem 3.2.7 (Kolmogorov’s Extension). Let (µn)∞
n=0 be a consistent family of finite-dimensional distri-

butions. Then there exists a unique probability measure µ on
(
XN,B

(
XN)) such that for any n ∈ N and

A ∈ B
(
X n+1) we have

µ

(
A×

( ∞∏
i=n+1

X

))
= µn(A).

Corollary 3.2.8. Given a stochastic process (Xn)∞
n=0, the family of laws

(Law (X0, . . . , Xn))∞
n=0

uniquely characterises Law ((Xn)∞
n=0).

From Theorem 3.2.7, we can construct a stochastic process from a consistent family of finite-dimensional distri-
butions.

Corollary 3.2.9. Given any consistent family of finite dimensional distributions (µn)∞
n=0 there exists a process

(Xn)∞
n=0 with

Law(X0, . . . , Xn) = µn

for every n ∈ N.
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3.3 Stationarity
Working with sequences of random variables gives us a way to define stationarity.

Definition 3.3.1. For each n ∈ N, the shift map is the B
(
XN)-measurable function θn : XN → XN given by

(a0, a1, . . . ) 7→ (an, an+1, . . . ).

Definition 3.3.2. A stochastic process X = (Xn)∞
n=0 is stationary if for all n ∈ N the processes θnX and X

have the same law.
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4 Transition Probabilities
Our method for constructing stochastic processes in Section 3 does not guarantee the Markov property is satisfied
by the resulting sequence. Indeed, the self-avoiding random walk is a process with consistent finite-dimensional
distributions that is not a Markov process.

4.1 The Chapman-Kolmogorov Equation

Definition 4.1.1. A Markov process (Xn)∞
n=0 is time-homogeneous if for every A ∈ B(X ) there is a choice of

P (•, A) ∈ Bb(X ) such that
P(Xn+1 ∈ A|Xn = •) ∼ P (•, A),

for every n ∈ N, modulo Law(Xn)-null sets.

Remark 4.1.2.

1. The main property of time-homogeneity is the independence of n. Many results we will discuss tend to
hold without this assumption, however, the assumption simplifies notation.

2. The function P (•, A) describes the conditional probabilities and hence captures some information about
the process. Eventually, we want to work back from this data and understand what properties P (•, A)
needs to have to construct a Markov process.

Definition 4.1.3. A family P = (P (x,A) : x ∈ X , A ∈ B(X )) is a family of transition probabilities if the
following hold.

1. For each x ∈ X , the function P (x, •) is a probability measure on (X ,B(X )).

2. For each A ∈ B(X ), the function x 7→ P (x,A) is Borel measurable.

Remark 4.1.4. Equivalently, we can say that there exists a measurable map P : X → P(X ) such that for all
A ∈ B(X ) and x ∈ X we have

(P (x)) (A) = P (x,A).

Exercise 4.1.5. Consider the random dynamical system as given in Theorem 2.1.3 but with Fn = F for all
n ∈ N. That is, Xn+1 = F (Xn, ζn+1) where the (ζn)∞

n=0 are independent and identically distributed random
variables also independent of X0. Let Law(X0) = ν and Law(ζn) = µ. Show that X = (Xn)∞

n=0 is a
time-homogeneous Markov process and compute its transition probabilities.

Exercise 4.1.6. Let P be the set of transition probability built from a time-homogeneous Markov process
X = (Xn)∞

n=0. Show that (X2n)∞
n=0 and (X3n)∞

n=0 are time-homogeneous Markov processes and compute
their transition probabilities P 2 and P 3. Show that for all x ∈ X and A ∈ B(X ) we have

P 2(x,A) =
∫

X
P (y,A)P (x, dy) (4.1.1)

and
P 3(x,A) =

∫
X
P (y,A)P 2(x, dy) =

∫
X
P 2(y,A)P (x, dy). (4.1.2)

Equations (4.1.1) and (4.1.2) are instances of the Chapman-Kolmogorov equation.
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Recall, that we think about P (x,A) as encoding conditional probabilities. That is,

P (x,A) = P(Xn+1 ∈ A|Xn = x).

As we are operating in the time-homogeneous setting, we can consider P (x,A) as a one-step conditional proba-
bility.

Definition 4.1.7. A sequence of transition probabilities (Pn)∞
n=0 is a transition function if the following

statements hold.

1. P 0(x, •) = δx. Here δx is the Dirac measure at x. That is,

δx(A) =
{

1 x ∈ A

0 x ̸∈ A.

2. The family satisfies the Chapman-Kolmogorov equations, that is, for every n,m ∈ N, x ∈ X and
A ∈ B(X ) we have

Pm+n(x,A) =
∫

X
Pn(y,A)Pm(x, dy).

Remark 4.1.8.

1. We can intuitively think of Pn as encoding an n-step conditional probability.

2. The Chapman-Kolmogorov equation says that a step into a set is consistent with taking smaller interme-
diary steps to get to the set.

A sequence of transition functions can be built from a one-step conditional probability, P . More specifically, given
any transition probability P , we can construct a transition function (Pn)∞

n=0 by

1. setting P 0(x, •) = δx,

2. P 1(x, •) = P (x, •), and

3. for n > 1 setting
Pn(x,A) =

∫
X
P (y,A)Pn−1(x, dy).

4.2 Constructing Markov Processes

Theorem 4.2.1. Let (Xn)∞
n=0 be a time-homogeneous Markov process with transition probability P . Let

(Pn)∞
n=0 be the transition function built from P . Then the following statements hold.

1. For any n,m ≥ 0 and f ∈ Bb(X ) we have

E (f(Xn+m)|Xm) =
∫

X
f(y)Pn(Xm,dy).

2. If X0 ∼ µ, then for any n ≥ 0 and f ∈ Bb(X ) we have

E(f(Xn)) =
∫

X

∫
X
f(y)Pn(x,dy)µ(dx).

Proof.

1. Proceed by induction on n.
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• For n = 0 we have

E (f(Xm)|Xm) = f(Xm)

=
∫

X
f(y)P 0(Xm,dy).

• Suppose the result holds for n ≤ k. Then,

E (f(Xk+1+m)|Xm) Tow Prop.= E
(
E
(
f(Xk+1+m)|F0

k+m

)
|Xm

)
Markov.= E (E (f(Xk+1+m)|Xk+m) |Xm)
Time Hom.= E

(∫
X
f(y)P (Xm+k,dy)

∣∣Xm

)
Ind Hyp.=

∫
X

∫
X
f(y)P (z,dy)P k(Xm,dz)

Fubini.=
∫

X
f(y)P k+1(Xm,dy).

2. Using statement 1 it follows that

E(f(Xn)) = E (E(f(Xn)|X0))

= E
(∫

X
f(y)Pn(X0,dy)

)
=
∫

X

∫
X
f(y)Pn(x, dy)µ(dx),

where the last equality follows as Law(X0) = µ.

Remark 4.2.2.

1. For clarity we can take f = 1A with A ∈ B(X ) so that the statements of Theorem 4.2.1 reduce to

• P(Xn+m ∈ A|Xm) = Pn(Xm, A), and
• P(Xn ∈ A) =

∫
X Pn(x,A)µ(dx).

2. X being a Markov process is a sufficient condition for the conclusions Theorem 4.2.1, but it is not a
necessary condition.

Proposition 4.2.3. Let X = (Xn)∞
n=0 be a process with µ = Law(X0) and transition probability P . Then

X is Markov if and only if for all n ∈ N and fi ∈ Bb(X ) we have

E

(
n∏

i=0
fi(Xi)

)
=
∫

X
· · ·
∫

X︸ ︷︷ ︸
n+1

n∏
i=0

fi(yi)
n−1∏
i=0

P (yi,dyi+1)µ(dy0).

Proof. (⇒). We proceed by induction on n.

• For n = 0, as Law(X0) = µ it follows that

E (f0(X0)) =
∫

X
f0(y0)µ(dy0).

25



• Now suppose the result holds for k ≤ n− 1. Then

E

(
n∏

i=0
fi(Xi)

)
Tower.= E

(
E

(
n∏

i=0
fi(Xi)|Fn−1

))

= E

(
n−1∏
i=0

fi(Xi)E (fn(Xn)|Fn−1)
)

Markov.= E

(
n−1∏
i=0

fi(Xi)E (fn(Xn)|Xn−1)
)

(1)= E

(
n−1∏
i=0

fi(Xi)
∫

X
fn(yn)P (Xn−1,dyn)

)
Ind Hyp.=

∫
X

· · ·
∫

X

(
n−1∏
i=0

fi(yi)
∫

X
fn(yn)P (yn−1,dyn)

)
n−2∏
i=0

P (yi,dyi+1)µ(dy0)

=
∫

X
· · ·
∫

X

n∏
i=0

fi(yi)
n−1∏
i=0

P (yi,dyi+1)µ(dy0),

where (1) follows as the conditional one-step probabilities is given by P .
(⇐). Refer to Proposition 2.3.6.

By taking each fi to be an indicator function we arrive at Corollary 4.2.4.

Corollary 4.2.4. Let X = (Xn)∞
n=0 be a process with µ = Law(X0) and transition probability P . Then X is

Markov if and only if for all n ∈ N and Ai ∈ Bb(X ) we have

P(X0 ∈ A0, . . . , Xn ∈ An) =
∫

A0

· · ·
∫

An

n−1∏
i=0

P (yi,dyi+1)µ(dy0).

Remark 4.2.5. As the transition probability determines one-step conditional probabilities, the Markov process
of Corollary 4.2.4 is time-homogeneous.

Given P and µ for a Markov process X we can compute the finite-dimensional distributions of the process.

Proposition 4.2.6. Given a transition probability P and measure µ on X , there exists a unique (up to law)
Markov process X = (Xn)∞

n=0 with transition probabilities P and Law(X0) = µ.

Proof. Consider the sequence of measures (µn)n∈N on X n given by

µn(A0 × · · · ×An−1) =
∫

A0

· · ·
∫

An−1

n−1∏
i=1

P (yi−1,dyi)µ(dy0).

Observe that,

µn+1(A0 × · · · ×An−1 × X ) =
∫

A0

· · ·
∫

An−1

∫
X

n∏
i=1

P (yi−1,dyi)µ(dy0)

=
∫

A0

· · ·
∫

An−1

∫
X
P (yn−1,dyn)

n−1∏
i=1

P (yi−1,dyi)µ(dy0)

=
∫

A0

· · ·
∫

An−1

n−1∏
i=1

P (yi−1,dyi)µ(dy0),
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where the last equality follows from the fact the P (yn−1,dyn) is a probability measure. Therefore, (µn)n∈N form
a consistent sequence of measures, and so we can apply Theorem 3.2.7 to deduce that there exists a unique
measure Pµ on X ∞ such that its restriction to X n is µn. Choosing Ω = X ∞ and our probability measure to be
Pµ, the canonical process (πn)n∈N with πn((ω0, ω1, . . . )) = ωn is such that

P(π0 ∈ A0, . . . , πn ∈ An) = Pµ(A0 × · · · ×An × X ∞)
= µn(A0 × · · · ×An).

Therefore, (πn)n∈N has finite-dimensional distributions (µn)n∈N. Therefore, by Corollary 4.2.4 the process
(πn)n∈N is a Markov process with transition probability P and Law(X0) = µ.

Remark 4.2.7.

1. When µ = δx with x ∈ X we write Px instead of Pµ. Similarly, we write Ex or Eµ to denote the
expectation over

(
XN,B

(
XN)) with respect to Px and Pµ respectively.

2. Note that by construction, the Markov process of Proposition 4.2.6 is time-homogeneous.

We can see P as propagating the law µ through time. Hence, we can view the transition probability as an operator
on P(X ).

Definition 4.2.8. Given a transition probability P , we let T ∗ : P(X ) → P(X ) be the operator where

µ 7→ (T ∗µ) =
∫

X
P (x, •)µ(dx)

where
(T ∗µ) (A) =

∫
X
P (x,A)µ(dx).

Exercise 4.2.9. Formalise the intuition that P propagates the law of X0 through time. That is, in the context
of the Proposition 4.2.6 show that

Law(Xn) = T (. . . (T (Law(X0))) . . . ) = TnLaw(X0).

Definition 4.2.10. A measure µ is invariant for the transition probability P if Tµ = µ.

Example 4.2.11. Let X0 have a Gaussian measure with mean zero and variance a2. Let (ξn)n∈N be a sequence
of independent and identically distributed Gaussian random variables, independent of X0, with mean zero and
variance b2, where a > b. Then the Gaussian measure with mean zero and variance a2 is invariant for the
Markov process (Xn)∞

n=0 where

Xn = a2 − b2

a2 Xn−1 + ξn

for n ≥ 1.

• By construction Law(X0) is Gaussian with mean zero and variance a2.

• Suppose Law(Xk) is Gaussian with mean zero and variance a2 for k ≤ n− 1. Then Law(Xn) has mean
zero and variance (

a2 − b2

a2

)
a2 + b2 = a2.
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Remark 4.2.12. Let π be an invariant measure of P , then Pπ constructed by applying Proposition 4.2.6 to
π is the law of a stationary process. Indeed, by the invariant nature of π, for n ∈ N, the process θnX has
transition probability P and initial distribution π. Therefore, by Proposition 4.2.6, the shifted process has law
Pπ. Hence, the process is a stationary process.

Above we have considered P as an operator on measures. We can also view P as an operator on Bb(X ).

Definition 4.2.13. Let P be a transition probability, we let T∗ : Bb(X ) → Bb(X ) be the operator where

f 7→ (T∗f) =
∫

X
f(y)P (•,dy)

where
(T∗f)(x) =

∫
X
f(y)P (x,dy).

Exercise 4.2.14. For a fixed transition probability P , show that the operators T ∗ and T∗ are dual. That is,
for any f ∈ Bb(X ) and µ ∈ P(X ) we have∫

X
(T∗f)(x)µ(dx) =

∫
X
f(x) (T ∗µ) (dx).

Remark 4.2.15. Henceforth, we will write T ∗ = T .

4.3 Solution to Exercises
Exercise 4.1.5

Solution. From Theorem 2.1.3 we know that the process is Markov. Moreover, we observe that

P(Xn+1 ∈ A|Xn) = E (1A(F (Xn, ζn+1)))

=
∫

Y
1A(F (Xn, y))µ(dy)

= µ ({y ∈ Y : F (Xn, y) ∈ A}) ,

meaning the process is a time-homogeneous Markov process. In particular, P (x,A) = µ ({y ∈ Y : F (x, y) ∈ A})
because by the measurability assumptions on F , one can show that P (x, •) satisfies the required measurability
properties.

Exercise 4.1.6

Solution. Observe that

P(X2n+2 ∈ A|X2n, X2n−2, . . . , X0) Cor. 2.3.4= P(X2n+2 ∈ A|X2n).

Similarly, for (X3n)∞
n=0. Therefore, (X2n)∞

n=0 and (X3n)∞
n=0 are Markov processes. Moreover,

P(X2n+2 ∈ A|X2n) (1)= E(P(X2n+2 ∈ A|X2n+1, X2n)|X2n)
(2)= E(P(X2n+2 ∈ A|X2n+1)|X2n)
= E(P (X2n+1, A)|X2n)
(3)=
∫

X
P (y,A)P (X2n,dy)
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where (1) is an application of the tower rule and (2) is applying the Markov property of (Xn)∞
n=0. Therefore,

P(X2n+2 ∈ A|X2n = x) =
∫

X
P (y,A)P (x, dy).

In (3) we have used the fact that for f a measurable function we have

E(f(Xn+1)|Xn = x) =
∫

X
f(y)P (x, dy).

Similarly,

P(X3n+3 ∈ A|X3n) = E (P(X3n+3 ∈ A|X3n+1, X3n)|X3n)
Cor. 2.3.4= E (P (X3n+3 ∈ A|X3n+1) |X3n)
= E

(
P 2(X3n+1, A)|X3n

)
=
∫

X
P 2(y,A)P (X3n,dy),

therefore,
P 3(x,A) =

∫
X
P 2(y,A)P (x, dy).

Exercise 4.2.9

Solution. For ease of notation let Law(Xn) = µn for n ∈ N. Proceed by induction on n.

• For n = 1 we have

µ1(A) =
∫

X
P (x,A)µ0(dx)

= Tµ0(A),

hence, µ1 = Tµ1.

• Suppose µk = T kµ0 for k ≤ n. Then

µn+1(A) =
∫

X
Pn+1(x,A)µ0(dx)

=
∫

X
P (y,A)Pn(x, dy)µ0(dx)

=
∫

X
P (y,A)µn(dy)

=
∫

X
P (y,A)Tnµ0(dy)

= T (Tnµ0) (A)
= Tn+1µ0(A).

Therefore, we conclude by induction that Law(Xn) = TnLaw(X0) for n ∈ N.

Exercise 4.2.14

29



Proof. We proceed directly, noting that the equivalence arises from changing the order of integration,∫
x∈X

f(x)(T ∗µ)(dx) =
∫

x∈X
f(x)

∫
y∈X

P (y,dx)µ(dy)

=
∫

x∈X

∫
y∈X

f(x)P (y,dx)µ(dy)

=
∫

y∈X
(T∗f)(y)µ(dy).
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5 Discrete Time Markov Processes
5.1 Time-Homogeneous Processes
On a discrete space, a probability measure is just a, potentially infinite, vector

µ(dx) −→ µ = (µj : j ∈ X )

with µj ≥ 0 and
∑

j∈X µj = 1. In such a case, the transition probability P can be represented as a, potentially
infinite, matrix

P (i, {j}) −→ P = (Pij : i, j ∈ X )
where Pij ≥ 0 and

∑
j∈X Pij = 1. Note that if X = (Xn)∞

n=0 is a time-homogeneous Markov process with
transition probability P then

P(Xn+1 = j|Xn = i) = Pij .

Definition 5.1.1. A matrix P = (Pij : i, j ∈ X ) is called a stochastic matrix if

1. Pij ≥ 0, and

2.
∑

j∈X Pij = 1.

For discrete state spaces X , we have a direct correspondence between transition probabilities and stochastic
matrices.

Exercise 5.1.2. Previously it was for shown that from a transition probability P , by setting P 0(x, •) = δx, we
can construct a transition function by letting

Pn(x,A) =
∫

X
P (y,A)Pn−1(x,dy).

In discrete spaces, show that P 0 = I, where I is the matrix with entries Iij = δij , and

Pn = P × · · · × P︸ ︷︷ ︸
n

where × is matrix multiplication. Moreover, verify that Pn is a stochastic matrix.

With Exercise 5.1.2, we can formulate our previous results in the specific context of a discrete state space.

Theorem 5.1.3. Let (Xn)∞
n=0 be a time-homogeneous discrete Markov process with stochastic matrix P .

Then the following statements hold.

• For any n,m ∈ N and f ∈ Bb(X ), we have

E(f(Xn+m)|Xm = i) =
∑
j∈X

Pn
ijf(j).

• If X0 ∼ µ, then for any n ∈ N and f ∈ Bb(X ) we have

E(f(Xn)) =
∑

i,j∈X
µiP

n
ijf(j).

Again, we can contextualise the statements of Theorem 5.1.3 by letting f = δj for j ∈ X . In this case
• P(Xn+m = j|Xm = i) = Pn

ij , and

• P(Xn = j) =
∑

i∈X µiP
n
ij .
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Proposition 5.1.4. Let X = (Xn)∞
n=0 be a discrete process with µ = Law(X0) and stochastic matrix P .

Then X is Markov if and only if for all n ∈ N we have

E

(
n∏

m=0
fm(Xm)

)
=

∑
i0,...,in∈X

f0(i0) . . . fn(in)µi0Pi0i1 . . . Pin−1in
,

where each fm ∈ Bb(X ).

Corollary 5.1.5. Let X = (Xn)∞
n=0 be a discrete process with µ = Law(X0) and transition probability P .

Then X is Markov if and only if for all n ∈ N and i0, . . . , in ∈ X we have

P(X0 = i0, . . . , Xn ∈ in) = µi0Pi0i1 . . . Pin−1in
.

In the discrete settings the operator T : P(X ) → P(X ) manifests as

(Tµ)({j}) =
∑
i∈X

µiPij = (µP )j .

Similarly, the operator T∗ : Bb(X ) → Bb(X ) is given by

(T∗f)(i) =
∑
j∈X

Pijfj = (Pf)i.

Therefore, in the discrete setting, the behaviour of our process as n → ∞ can be reduced to understanding the
behaviour of Pn as n → ∞.

5.2 Stopping Times

Definition 5.2.1. Given a filtration (Fn)∞
n=0, a N ∪ {∞}-valued random variable T is an (Fn)∞

n=0-stopping
time if for every n ∈ N we have {T ≤ n} ∈ Fn.

Recalling that a filtration tells us what information we have at time n, Definition 5.2.1 says that by time n there
is enough information to determine whether T has occurred. One can think of T as a random alarm clock that
cannot look into the future. By induction, the above is equivalent to {T = n} ∈ Fn or all n ∈ N. One can
interchange between using {T = n} and {T ≤ n} when working with stopping times, with each being useful in
different contexts. We include infinity to allow the possibility that the "alarm clock" T never rings.

Exercise 5.2.2. Let (Xn)∞
n=0 be a stochastic process, let A ∈ B(X ). Show that τA = inf{n ∈ N : Xn ∈ A}

is a
(
F0

n

)∞
n=0-stopping time. The random variable τA is the hitting time of A.

Example 5.2.3.

1. A deterministic time T is a stopping time, including T = ∞.

2. In general, for A ∈ B(X ), the random variable ℓA = sup{n ≥ 0 : Xn ∈ A} is not a stopping time.
Intuitively, the value of ℓA is dependent on the future.

Definition 5.2.4. Given a stochastic process (Xn)∞
n=0 and a N∪ {∞}-valued random variable T , the stopped

32



process
(
XT

n

)∞
n=0 is given by

XT
n (ω) = Xn∧T (ω) =

{
Xn(ω) n ≤ T (ω)
XT (ω)(ω) otherwise.

Exercise 5.2.5. Let (Fn)∞
n=0 be a filtration, let T be a (Fn)∞

n=0-stopping time, and let (Xn)∞
n=0 be a (Fn)∞

n=0-
adapted process. Show that

(
XT

n

)∞
n=0 is adapted to (Fn)∞

n=0.

When filtrations are not mentioned in a statement, just assume there is some fixed filtration operating in the
background.

Proposition 5.2.6. Let S and T be stopping times, and let (Tn)∞
n=0 be a sequence of stopping times. Then

the following hold.

1. S ∨ T and S ∧ T are stopping times.

2. supn∈N(Tn), infn∈N(Tn), lim infn→∞(Tn) and lim supn→∞(Tn) are stopping times.

Proof.

1. Note that
{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn

and
{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n} ∈ Fn.

2. It suffices to show that supn∈N(Tn) and infn∈N(Tn) are stopping times as lim infn→∞(Tn) = supn∈N infm≥n(Tm)
and lim supn→∞(Tn) = infn∈N supm≥n(Tm). Observe that{

sup
j∈N

(Tj) ≤ n

}
=

∞⋂
j=0

{Tj ≤ n} ∈ Fn

and {
inf
j∈N

(Tj) ≤ n

}
=

∞⋃
j=0

{Tj ≤ n} ∈ Fn.

Example 5.2.7. If S and T are stopping times, then it is not necessarily the case that T −S is a stopping time.
Consider the Markov chain of Figure 1 with the initial distribution δ1. Let S = τ{Xn=3} and T = τ{Xn=5}.
Then {T − S = 1} ̸∈ F1, since T ≥ 2.

Figure 1
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Given a (Fn)∞
n=0-stopping time T we can consider the σ-algebra that represents the information we have at time

T . Let F∞ =
∨∞

n=0 Fn, which is the σ-algebra generated by
⋃∞

n=0 Fn.

Exercise 5.2.8. Let T be a (Fn)∞
n=0-stopping time, show that {T = ∞} ∈ F∞.

Definition 5.2.9. For a (Fn)∞
n=0-stopping time T , the stopped σ-algebra is

FT = {A ∈ F∞ : for all n ∈ N, A ∩ {T = n} ∈ Fn}.

One can think of the stopped σ-algebra as containing events A, that when conditioned on the event {T = n}
can be determined by the information available up to time n. The event {T = n} can be replaced with {T ≤ n},
as we operate in the discrete setting.

Lemma 5.2.10. If T is a (Fn)∞
n=0-stopping time, then T is FT -measurable.

Proof. For m,n ∈ N we have

{T = m} ∩ {T = n} =
{

∅ m ̸= n

{T = n} m = n.

In either case {T = m} ∩ {T = n} ∈ Fn. Therefore, {T = m} ∈ FT for every m ∈ N, meaning that T is
FT -measurable.

Exercise 5.2.11. Let S and T be (Fn)∞
n=0-stopping times.

1. Show that if S ≤ T , then FS ⊆ FT .

2. Suppose S ≤ T and A ∈ FS . Show that S1A + T1Ac is a (Fn)∞
n=0-stopping time.

3. Show that {A ∩ {S ≤ T} : A ∈ FS} ⊆ FS∧T .

4. For X a bounded random variable, show that

E (E (X|FT ) |FS) = E (E (X|FS) |FT ) = E (X|FS∧T ) .

Definition 5.2.12. A stopping time T is finite if P(T < ∞) = 1. When we have the stronger condition that
{T = ∞} = ∅ we write this as T < ∞.

If T < ∞, then for a stochastic process X = (Xn)∞
n=0 the random variable XT is well-defined.

Lemma 5.2.13. Let (Xn)∞
n=0 be adapted (Fn)∞

n=0 and let T be a (Fn)∞
n=0-stopping time. Then for any

m ∈ N, the random variable XT ∧m is FT -measurable. Moreover, suppose that T < ∞, then XT is FT -
measurable.

Proof. Let A ∈ B(X ), then for m,n ∈ N we have

{
XT (·)∧m(·) ∈ A

}
∩ {T = n} = {Xn∧m ∈ A} ∩ {T = n}.

Note {Xn∧m ∈ A} ∈ Fn∧m ⊆ Fn. Moreover, {T = n} ∈ Fn. Therefore, the right-hand side is in Fn which
implies that XT ∧m is FT -measurable. One shows in a similar way that XT is FT -measurable.

Recall, that
(
F0

n

)∞
n=0 denotes the natural filtration of a stochastic process X = (Xn)∞

n=0.
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Lemma 5.2.14. Let (Xn)∞
n=0 be a stochastic process and let T < ∞ be a

(
F0

n

)∞
n=0-stopping time. Then for

any k ∈ N we have
{T = k} ∈ σ(XT ∧0, . . . , XT ∧k).

Proof. We proceed by induction on k.

• For k = 0 we have
{T = 0} ∈ F0

0 ∈ σ(X0) = σ (XT ∧0) .

• Suppose the result holds for n ≤ k − 1. Then

1{T =k} = 1{T =k}1{T >k−1}

(1)= φ̃(X0, . . . , Xk)1{T >k−1}

(2)= φ̃ (X0∧T , . . . , Xk∧T ) 1{T >k−1}

= φ̃ (X0∧T , . . . , Xk∧T )
(
1 − 1{T ≤k−1}

)
Ind Hyp.= φ̃ (X0∧T , . . . , Xk∧T )φ

(
X0∧T , . . . , X(k−1)∧T

)
∈ σ (X0∧T , . . . , Xk∧T ) .

In (1) we have used the fact that T is a
(
F0

n

)∞
n=0-stopping time, and so {T = k} ∈ F0

k . The equality of
(2) follows from the fact that i = i ∧ T for i ∈ {0, . . . , k} on the domain of 1{T >k−1}.

Proposition 5.2.15. Let (Xn)∞
n=0 be a stochastic process and T < ∞ be a

(
F0

n

)∞
n=0-stopping time. Then

FT = σ(XT ∧n : n ∈ N).

Proof. As XT ∧n is FT -measurable for any n ∈ N by Lemma 5.2.13, it is clear that σ (XT ∧n : n ∈ N) ⊆ FT . On
the other hand, let A ∈ FT . Then for any n ∈ N we know that A ∩ {T = n} ∈ Fn which implies that

1A∩{T =n} = φ(X0, . . . , Xn)

for some φ ∈ Bb

(
X n+1). Note that

φ(X0, . . . , Xn) = φ(X0, . . . , Xn)1{T =n} = φ (X0∧T , . . . , Xn∧T ) 1{T =n}.

Due to Lemma 5.2.14 we know that 1{T =n} ∈ σ (X0∧T , . . . , Xn∧T ), therefore, 1A∩{T =n} is measurable with
respect to σ (XT ∧n : n ∈ N). Which implies that FT ⊆ σ (XT ∧n : n ∈ N) which completes the proof.

5.3 The Strong Markov Property
Recall, that we can interpret a stochastic process X = (Xn)∞

n=0 as a random element of the canonical probability
space

(
XN,B

(
XN) ,Law(X)

)
. Furthermore, for each j ∈ N we have a measurable map θj : XN → XN given by

(a0, . . . , aj , aj+1, . . . ) 7→ (aj , aj+1, . . . ).

Suppose we want a function F ∈ Bb

(
XN) that only depends of times n ≥ j. Then we can formulate it as a

function ΦF ∈ Bb

(
XN) where

F (·) = ΦF (θj ·).

Definition 5.3.1. A process X = (Xn)∞
n=0 has the strong Markov property if for every finite stopping time T
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and every bounded measurable function Φ ∈ Bb

(
XN) we have

E (Φ(θTX)|FT ) = E(Φ(θTX)|XT ).

Remark 5.3.2. In the setting of Definition 5.3.1, we can consider another process Y = (Yn)∞
n=0 given by

Yn = XT +n, that is, Y = θTX with the filtration (Gn)∞
n=0 where Gn = FT +n.

Exercise 5.3.3. For Y and (Gn)∞
n=0 as in Remark 5.3.2, show that Y is a Markov process on (Gn)∞

n=0.

Lemma 5.3.4. Let X be a time-homogeneous Markov process with transition probability P . Then, for any
finite stopping time T , fixed n ∈ N, and A ∈ B(X ) we have

P(XT +n ∈ A|FT ) = Pn(XT , A).

Proof. It suffices to show the equivalent statement that for all f ∈ Bb(X ) we have

E(f(XT +n)|FT ) =
∫

X
f(y)Pn(XT ,dy).

In one direction we set f = 1A and in the other we use an approximation argument to show the equivalence
between the statements. Note that

∫
X f(y)Pn(XT ,dy) is FT -measurable. Moreover, for B ∈ FT we can write

B =
( ∞⋃

m=0
B ∩ {T = m}

)
∪ C

where P(C) = 0 as T is a finite stopping time. Let Bm = B ∩ {T = m}, then∫
B

f(XT +n) dP =
∞∑

m=0

∫
Bm

f(XT +n) dP

=
∞∑

m=0

∫
Bm

f(Xm+n) dP

=
∞∑

m=0
E (1Bm

f(Xm+n))

=
∞∑

m=0
E (E(1Bm

f(Xm+n)|Fm))

=
∞∑

m=0
E(1BmE(f(Xm+n)|Xm))

=
∞∑

m=0
E
(

1Bm

∫
X
f(y)Pn(Xm,dy)

)

= E

(∫
X
f(y)Pn(XT ,dy)

∞∑
m=0

1Bm

)

= E
(∫

X
f(y)Pn(XT ,dy)(1B − 1C)

)
=
∫

B

∫
X
f(y)Pn(XT ,dy)dP.

Therefore,
∫

X f(y)Pn(XT ,dy) satisfies both conditions to be the conditional expectation of f(XT +n) with
respect to FT .
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Theorem 5.3.5. Let X = (Xn)∞
n=0 be a time-homogeneous Markov process with transition probability P .

If T is a finite stopping time, then the process (θTXn)n∈N is also a time-homogeneous Markov process with
transition probability P . In particular, for all Φ ∈ Bb

(
XN) we have

E (Φ(θTX)|FT ) = E(Φ(θTX)|XT ). (5.3.1)

Moreover, for any n > 0 and A ∈ B(X ) we have

P(Xn+T ∈ A|FT ) = Pn(XT , A) (5.3.2)

almost surely. It follows that X = (Xn)∞
n=0 has the strong Markov property.

Proof. For any k ∈ N and A ∈ B(X ) one can consider the stopping time T̃ = T + k and apply Lemma 5.3.4
with n = 1 to deduce that

P
(
XT̃ +1 ∈ A|FT̃

)
= P (XT̃ , A)

which is exactly
P
(
(θTX)k+1 ∈ A|Fk

)
= P ((θTX)k , A) .

This is saying that θTX is a time homogeneous Markov process with transition probability P . Moreover, Lemma
5.3.4 shows that

P(Xn+T ∈ A|FT ) = Pn(XT , A)

holds almost surely for any n > 0 and A ∈ B(X ). To show (5.3.1) it suffices to show that the equation holds for
all functions of the form Φ(a) =

∏k
i=0 fi(ai), where a = (a1, a2, . . . ), fi ∈ Bb(X ) and k ∈ N. The reason why

this is sufficient is because these functions approximate all functions in Bb(X ). Let Φ(θTX) =
∏k

i=0 fi(XT +i).
We proceed by induction on k.

• For k = 0 the result holds as f0(XT ) is measurable with respect to FT and XT .

• Suppose the result holds true for all n ≤ k − 1. Then

E

(
k∏

i=0
fi(XT +i)

∣∣∣∣FT

)
= E

(
E

(
k∏

i=0
fi(XT +i)

∣∣∣∣FT +k−1

)∣∣∣∣FT

)

= E

(
k−1∏
i=0

fi(XT +i)E (fk(XT +k)|FT +k−1)
∣∣∣∣FT

)

= E

(
k−1∏
i=0

fi(XT +i)
∫

X
fk(yk)P (XT +k−1,dyk)

∣∣∣∣FT

)
.

Let
f̃k−1(XT +k−1) = fk−1(XT +k−1)

∫
X
fk(yk)P (XT +k−1,dyk).

Then f̃k−1 ∈ Bb(X ) and so we can apply our induction hypothesis to deduce that

E

(
f̃k−1(XT +k−1)

k−2∏
i=0

fi(XT +i)
∣∣∣∣FT

)
= E

(
f̃k−1(XT +k−1)

k−2∏
i=0

fi(XT +i)
∣∣∣∣XT

)
.
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Therefore,

E

(
k∏

i=0
fi(XT +i)

∣∣∣FT

)
= E

(
f̃k−1(XT +k−1)

k−2∏
i=0

fi(XT +i)
∣∣∣∣XT

)

= E

(
k−1∏
i=0

fi(XT +i)
∫

X
fk(yk)P (XT +k−1,dyk)

∣∣∣∣XT

)

= E

(
k−1∏
i=0

fi(XT +i)E (fk(XT +k)|FT +k−1)
∣∣∣∣XT

)

= E

(
E

(
k∏

i=0
fi(XT +i)

∣∣∣∣FT +k−1

)∣∣∣∣XT

)

= E

(
k∏

i=0
fi(XT +i)

∣∣∣∣XT

)
.

Remark 5.3.6.

• There are continuous time Markov processes which are not strong Markov processes.

• The time-homogeneous condition for the discrete-time case is not necessary. We only state it here to
simplify the proofs.

If we do not have T finite, then we can condition on the event {T < ∞}.

Theorem 5.3.7. Let X = (Xn)∞
n=0 be a time-homogeneous Markov process with transition probability P .

Then for all Φ ∈ Bb

(
XN) we have

E
(
Φ(θTX)1{T <∞}|FT

)
= EXT

(Φ(X)) 1{T <∞}.

Proof. As before it suffices to show that the equation holds for all functions of the form Φ(a) =
∏k

i=0 fi(ai),
where a = (a1, a2, . . . ), fi ∈ Bb(X ) and k ∈ N. We consider a single fixed coordinate. Let f ∈ Bb(X ) and
B ∈ FT , then ∫

B∩{T <∞}
f(XT +n) dP =

∞∑
m=0

∫
B∩{T =m}

f(XT +n) dP

=
∞∑

m=0

∫
B∩{T =m}

f(Xm+n) dP

=
∞∑

m=0

∫
B∩{T =m}

E(f(Xm+n)|Fm) dP

=
∞∑

m=0

∫
B∩{T =m}

E(f(Xm+n)|Xm) dP

=
∫

B∩{T <∞}
E
(
XT +n1{T <∞}|XT

)
dP.

Therefore,
E
(
f (XT +n) 1{T <∞}|FT

)
= E

(
f(XT +n)1{T <∞}|XT

)
= EXT

(f(XT +n)) 1{T <∞}.

One can extend this argument to a finite number of coordinates to complete the proof.
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Remark 5.3.8. Recall, that EXT
(·) denotes the expectation when XT is used to start the Markov process.

5.4 Solution to Exercises
Exercise 5.1.2

Solution. Proceed by induction on n.

• By construction
Pij = P(Xn+1 = j|Xn = i) ≥ 0.

Moreover, by the law of total probability we have∑
j∈X

Pij =
∑
j∈X

P(Xn+1 = j|Xn = i) = 1.

Therefore, P is a stochastic matrix.

• Suppose the result holds for k ≤ n− 1. Then

Pn(x, {j}) =
∑
i∈X

P (i, {j})Pn−1(x, {i})

=
∑
i∈X

Pji(P × · · · × P︸ ︷︷ ︸
n−1

)ix

= (P × · · · × P︸ ︷︷ ︸
n

)jx.

Consequently, ∑
k∈X

Pn
ik =

∑
k∈X

∑
j∈X

Pn−1
ij Pjk

=
∑
j∈X

∑
k∈X

Pn−1
ij Pjk

=
∑
j∈X

Pn−1
ij

∑
k∈X

Pjk

=
∑
j∈X

Pn−1
ij (1)

= 1.

Therefore, by induction, we conclude that Pn = P × · · · × P︸ ︷︷ ︸
n

and Pn is a stochastic matrix.

Exercise 5.2.2

Solution. This follows directly from observing that

{τA = n} =
(

n−1⋂
k=0

{Xk ̸∈ A}

)
∩ {Xn ∈ A} ∈ F0

n.

Exercise 5.2.5
Note that for any n ∈ N we can write

XT
n (ω) = Xn(ω)1{T (ω)>n} +XT 1{T (ω)≤n}

where
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• Xn(ω) is Fn-measurable,

• 1{T (ω)>n} = 1 − 1{T (ω)≤n} is Fn-measurable as T is a (Fn)∞
n=0-stopping time,

• XT (ω) is Fn-measurable as it is FT (ω)-measurable, and

• 1{T (ω)≤n} is Fn-measurable as T is a (Fn)∞
n=0-stopping time.

Therefore, XT
n (ω) ∈ Fn which implies the stopped process is adapted to (Fn)∞

n=0.
Exercise 5.2.8

Solution. Note
{T = ∞} =

∞⋂
n=1

{T > n} =
∞⋂

n=1
{T ≤ n}c.

As {T ≤ n} ∈ Fn, it follows that {T = ∞} ∈ F∞.

Exercise 5.2.11

Solution.

1. Let A ∈ FS . Then
A ∩ {T ≤ n} = (A ∩ {S ≤ n}) ∩ {T ≤ n}.

In particular, A ∈ FS implies that A ∩ {S ≤ n} ∈ Fn and T being a (Fn)∞
n=0-stopping time implies

{T ≤ n} ∈ Fn. Therefore, A ∩ {T ≤ n} ∈ Fn which implies that A ∈ FT .

2. Note that
{S1A + T1Ac ≤ n} = ({S ≤ n} ∩A)︸ ︷︷ ︸

(1)

∪ ({T ≤ n} ∩Ac)︸ ︷︷ ︸
(2)

.

As A ∈ FS , we have that (1) ∈ Fn. By statement 1 we know A ∈ FT and so (2) ∈ Fn as A ∈ FS . Hence,

{S1A + T1Ac ≤ n} ∈ Fn

which implies that S1A + T1Ac is a (Fn)∞
n=0-stopping time.

3. For A ∈ FS it follows that A ∩ {S ≤ n} ∈ Fn. Recall, that S ∧ T is itself a (Fn)∞
n=0-stopping time, so

that {S ∧ T ≤ n} ∈ Fn. Moreover, {S ≤ T} ∩ {S ∧ T ≤ n} ⊆ {S ≤ n}. Therefore,

(A ∩ {S ≤ T}) ∩ {S ∧ T ≤ n} = A ∩ {S ≤ n} ∩ {S ∧ T ≤ n} ∈ Fn.

4. Step 1: Show that FS∧T = FS ∩ FT .
If A ∈ FS ∩ FT , then

A ∩ {S ∧ T ≤ n} = (A ∩ {S ≤ n}) ∪ (A ∩ {T ≤ n}) ∈ Fn,

which implies that A ∈ FS∧T . Suppose instead that A ∈ FS∧T . Then

A ∩ {S = n} = A ∩ {S = n} ∩ ({S ≤ T} ∪ {S > T})
= A ∩ {S ∧ T = n} ∪A ∩ {S ∧ T ≤ n− 1} ∈ Fn.

Therefore, FS ∩ FT = FS∧T .
Step 2: Show that E (E (X|FS) |FT ) = E (X|FS∧T ).
Consider E (X|FS∧T ). It is FS∧T -measurable and thus FT -measurable by step 1. Let G ∈ FT . Then
G ∩ {T ≤ S} ∈ FS∧T ⊆ FT , again using step 1. Hence,∫

G

1{T ≤S}E (X|FS∧T ) dP =
∫

G∩{T ≤S}
E (X|FS∧T ) dP

=
∫

G∩{T ≤S}
X dP

=
∫

G

1{T ≤S}X dP
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and similarly ∫
G

1{T ≤S}E(X|FS) dP =
∫

G

1{T ≤S}X dP.

Therefore, ∫
G

1{T ≤S}E(X|FS∧T ) dP =
∫

G

1{T ≤S}E(X|FS) dP. (5.4.1)

As G ∩ {S < T} ∈ FS ∩ FT , by the same reasoning we deduce that∫
G

1{T <S}E(X|FS∧T ) dP =
∫

G

1{S<T }E(X|FS) dP. (5.4.2)

Adding (5.4.1) and (5.4.2) together we deduce that∫
G

E(X|FS∧T ) dP =
∫

G

E(X|FS) dP

for all G ∈ FT which implies that E (E (X|FS) |FT ) = E (X|FS∧T ).
Step 3: Show that E (E (X|FT ) |FS) = E (X|FS∧T ).
This follows by the similar arguments as those made in step 2.

Exercise 5.3.3

Solution. For every f ∈ Bb(X ) and n,m ∈ N it follows that

E(f(Yn+m)|Gm) = E (f (Xn+m+T ) |FT +m)
(1)= E (f (Xn+m+T ) |XT +m)
= E(f(Yn+m)|Ym),

where (1) is an application of the strong Markov property of X.
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6 Discrete State Space Markov Processes
We will identify the setting of discrete state spaces by saying that X is countable. The notions developed here, do
not necessarily have a direct analogue for continuous state space Markov processes. We will continue to consider
discrete-time Markov processes.

6.1 Markov Chains as Graphs
Given a stochastic matrix P on X , that is P = (Pij : i, j ∈ X ), we can build an oriented graph on X where an
edge is drawn from i to j if and only if Pij > 0. As Pij = P(Xn+1 = j|Xn = i), we can think of the graph where
the nodes are states and the edges represent paths between the states that are admissible in the process defined
by P .

Example 6.1.1. The stochastic matrix

P = 1
10


0 5 5 0
3 7 0 0
0 10 0 0
2 8 0 0


has the corresponding oriented graph depicted in Figure 2. We can use the graph to help compute probabilities
such as P(X2 = 2|X0 = 1). We see that the only paths which contribute to this probability are 1 → 3 → 2
and 1 → 2 → 2. Therefore,

P(X2 = 2|X0 = 1) = 1
2(1) + 1

2

(
7
10

)
.

Figure 2: The oriented graph of Example 6.1.1.

Definition 6.1.2. Let X be countable and P be a stochastic matrix on X .

1. The state j ∈ X is accessible from i ∈ X if Pn
ij > 0 for some n ∈ N. We denote this i → j.

2. States i, j ∈ X communicate if i → j and j → i. We denote this i ↔ j.

3. Given a state i ∈ X , we let [i] = {j ∈ X : i ↔ j} denote the communication class of i.

4. The stochastic matrix P is irreducible if [i] = X for some i ∈ X . Otherwise, P is reducible.

Exercise 6.1.3. Show that ↔ is an equivalence relation on X .

Example 6.1.4. Consider Example 6.1.1. The set {1, 2, 3} is a communicating class, and {4} is another.
Therefore, P is reducible.
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When X is infinite, only finite paths in the incidence graph guarantee accessibility, infinite paths may not.

Lemma 6.1.5. If i → j, then for any i′ ∈ [i] and j′ ∈ [j] we have i′ → j′.

Proof. By assumption there exists n1, n2, n3 ∈ N such that
• Pn1

i′i > 0,

• Pn2
ij > 0, and

• Pn3
jj′ > 0.

Therefore,

Pn1+n2+n3
i′j′

(1)
≥ Pn1

i′i P
n2
ij P

n3
jj′ > 0

where (1) follows from the fact that Pn1 , Pn2 and Pn3 have non-negative entries. Hence, i′ → j′.

Figure 3: A graphical representation for the proof of Lemma 6.1.5.

Exercise 6.1.6. Show that the relation [i] ≤ [j] if and only if j → i is well-defined and a partial order. That
is, ≤ is reflexive, transitive, and anti-symmetric.

Definition 6.1.7. An equivalence class [i] is minimal, or closed, if there is no j ∈ X such that [j] ≤ [i] and
[j] ̸= [i].

Example 6.1.8. Consider the stochastic matrix identified by the graph in Figure 4.

Figure 4: The oriented graph of the stochastic matrix referred to in Example 6.1.8.

In this case, the communication classes are the following.

• [1] = {1}.

• [2] = {2}.

• [3] = {3}.

• [4] = {4, 7}.
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• [5] = {5, 6}.

Note that we have the relations

• [5] ≤ [2] ≤ [1],

• [3] ≤ [4], and

• [3] ≤ [2] ≤ [1].

However, there is no relation between [4] and [2]. Therefore, ≤ cannot be considered as a total order.

Figure 5: One can think of the equivalence classes as macro states, for which the process can only transition
to a state that is less than or equal to it.

6.2 Recurrence and Transience

Definition 6.2.1. Given a state i ∈ X , let

Ti = inf{n ≥ 1 : Xn = i}.

If X0 = i then Ti is called the first return time to state i.

For a state i ∈ X we adopt the notation

• Ei(·) = E(·|X0 = i), and

• Pi(·) = P(·|X0 = i).

Example 6.2.2. Suppose X = {1, 2}, P12 = α ∈ [0, 1] and P21 = β ∈ [0, 1] so that P is given by

P =
(

1 − α α
β 1 − β

)
.

Then,

P1(T1 = n) =
{

1 − α n = 1
α(1 − β)n−2β n ≥ 2.
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Hence,

P1(T1 < ∞) =
∞∑

n=1
P(T1 = n)

= (1 − α) + αβ

∞∑
n=0

(1 − β)n

=
{

1 − α+ αβ 1
1−β β ̸= 0

1 − α β = 0.

Definition 6.2.3. A state i ∈ X is recurrent if Pi(Ti < ∞) = 1. If a state i ∈ X is not recurrent it is transient.

Definition 6.2.4. A Markov chain, that is a stochastic matrix P , on X is recurrent if every state i ∈ X is
recurrent and it is transient if every state is transient.

Remark 6.2.5. We will see that if i ∈ X is recurrent, then every i′ ∈ [i] is recurrent. This means recurrence
and transience are properties of communication classes.

Lemma 6.2.6. For states i, j ∈ X we have that i → j if and only if Pi(Tj < ∞) > 0. Moreover,

Pi(Tj < ∞) ≤
∞∑

n=1
Pn

ij .

Proof. Observe that if Pi(Tj = n) > 0 then

Pn
ij

(⋆)
≥ Pi(Tj = n) > 0,

where (⋆) is justified by the fact that Pn
ij is the probability of any path of length n between i and j, with Pi(Tj = n)

only considering the subset of such paths that do not previously encounter j. Moreover, if Pn
ij = 0 then no path

of length n exists from i to j with a non-zero probability and so Pi(Tj = n) = 0. Hence, Pi(Tj = n) > 0 if and
only if Pn

ij > 0. Next, observe that

Pi(Tj < ∞) = Pi

( ∞⋃
n=1

{Tj = n}

)
. (6.2.1)

So that Pi(Tj < ∞) > 0 if and only if there exists an n ≥ 1 such that Pi(Tj = n) > 0 which happens if and only
if Pn

ij > 0, that is i → j. Applying a union bound to equation (6.2.1) we conclude that

Pi(Tj < ∞) ≤
∞∑

n=1
Pi(Tj = n) ≤

∞∑
n=1

Pn
ij .

Lemma 6.2.7. Let j ∈ X be recurrent. For i ∈ X if Pj(Ti < ∞) > 0 then Pi(Tj < ∞) = 1.

Proof. Assume that Pi(Tj = ∞) > 0. This means that there is a set of infinite paths with non-zero probability
that start at i and do not reach j. The condition that Pj(Ti < ∞) > 0 says that i is accessible from j, Lemma
6.2.6. In particular, m := min

({
n : Pn

ji > 0
})

is finite as the set is not empty. Note by construction that paths
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of length m from j to i, reach i from j without returning to j beforehand. Otherwise, the Markov assumptions
would imply that there exists a k < m such that P k

ji > 0. With this, it follows that

Pj(Tj = ∞) ≥ Pj(Tj = ∞, Ti = m)

= P

( ∞⋂
k=1

{Xk ̸= j}, Ti = m
∣∣∣X0 = j

)

= P

( ∞⋂
k=1

{Xm+k ̸= j}, Ti = m
∣∣∣X0 = j

)

= P

( ∞⋂
k=1

{Xm+k ̸= j}
∣∣∣Ti = m,X0 = j

)
P(Ti = m|X0 = j)

= P

( ∞⋂
k=1

{Xk ̸= j}
∣∣∣X0 = i

)
Pj(Ti = m)

= Pi(Tj = ∞)Pj(Ti = m)
> 0,

which contradicts j being a recurrent state.

Exercise 6.2.8. Show in the context of Lemma 6.2.7 that Pµ(Tj < ∞) = 1 for any µ supported on [j].

Definition 6.2.9. Passage times are constructed inductively from hitting times.

• T 0
j = 0.

• T 1
j = Tj .

• Tn+1
j = inf

{
k > Tn

j : Xk = j
}

for n ≥ 1.

Exercise 6.2.10. Show that Tn
j is a (Fk)∞

k=0-stopping time.

Lemma 6.2.11. Let X have an initial distribution µ, and suppose Pµ(Tj < ∞) = 1 for a recurrent state
j ∈ X . Then the random variables

{
Tn

j − Tn−1
j

}∞
n=1 are independent with

P
(
T k

j − T k−1
j = m

)
= Pj(Tj = m)

for any m, k ∈ N.

Proof. By the strong Markov property for k ≥ 0 we have that

P
(
T k+1

j − T k
j = m

∣∣FT k
j

)
(ω) = PT k

j
(ω)(Tj = m)

= Pj(Tj = m).

Taking the expectation we deduce that

Pj(Tj = m) = P
(
T k+1

j − T k
j = m

)
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by the tower property and the fact that the left-hand side is a constant. Consequently, for any A ∈ FT k
j

we have

E
(

1A1{T k+1
j

−T k
j

=m}
)

= E
(
E
(

1A1{T k+1
j

−T k
j

=m}
∣∣∣FT k

j

))
= E

(
1AE

(
1{T k+1

j
−T k

j
=m}

∣∣∣FT k
j

))
= P(A)Pj(Tj = m)
= P(A)P

(
T k+1

j − T k
j = m

)
,

which shows that the random variables
{
Tn

j − Tn−1
j

}∞
n=1 are independent.

Remark 6.2.12. The assumption on µ in Lemma 6.2.11 can be removed by conditioning. One can show that

P
(
T k

j − T k−1
j = m,T k

j < ∞
∣∣∣FT k

j

)
= Pj(Tj = m)1T k

j
<∞

and an analogous statement of independence.

Note the following,

• Tn
j =

∑n
k=1 T

k
j − T k−1

j , and

•
{
Tn

j < ∞
}

=
⋂n

k=1
{
T k

j − T k−1
j < ∞

}
.

Lemma 6.2.13. For any i, j ∈ X and k ∈ N it follows that

Pi

(
T k+1

j < ∞
)

= Pi(Tj < ∞)Pj

(
T k

j < ∞
)
.

Consequently,
Pj

(
T k+1

j < ∞
)

= Pj (Tj < ∞)k+1
.

Proof. Let Φ ∈ Bb

(
XN) be given by Φ(X) = 1A(X), where

A :=
{
X ∈ XN : |{n ≥ 1 : Xn = j}| ≥ k

}
.

Note that
1{T k+1

j
<∞}(ω) = Φ

(
θTj(ω)X(ω)

)
1{Tj<∞}(ω).

Taking the conditional expectation of both sides with respect to FTj
we deduce using the strong Markov property

that

E
(

1{T k+1
j

<∞}
∣∣∣FTj

)
= 1{Tj<∞}EXTj

(Φ(X))

= 1{Tj<∞}Pj

(
T k

j < ∞
)
.

Applying Ei(·) completes the proof.

6.3 Recurrence Conditions

Definition 6.3.1. The occupation time of a state j ∈ X is the random variable

ηj =
∞∑

n=1
1{Xn=j}.
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Remark 6.3.2. Occupation times are not stopping times.

Theorem 6.3.3. A state j ∈ X is transient if and only if
∑∞

n=1 P
n
jj < ∞. Equivalently, j ∈ X is recurrent if

and only if
∑∞

n=1 P
n
jj = ∞.

Proof. Note that Ej

(
1{Xn=j}

)
= Pn

jj so that

∞∑
n=1

Pn
jj = Ej(ηj)

=
∞∑

n=1
nPj(ηj = n)

=
∞∑

n=1
Pj(ηj ≥ n)

=
∞∑

n=1
Pj

(
Tn

j < ∞
)

=
∞∑

n=1
Pj(Tj < ∞)n.

The geometric series is summable if and only if Pj(Tj < ∞) < 1, which is to say that j is transient.

Corollary 6.3.4. Suppose j ∈ [i], then i is recurrent (transient) if and only if j is recurrent (transient).

Proof. Since j ↔ j there exists m1,m2 ∈ N such that Pm1
ji , Pm2

ij > 0. Therefore,

∞∑
k=m1+m2

P k
jj ≥

∞∑
n=1

Pm1
ji Pn

iiP
m2
ij

= Pm1
ji Pm2

ij

∞∑
n=1

Pn
ii ,

so if i is recurrent then j is recurrent. By symmetry, the same holds for transience.

Example 6.3.5. Consider the process (Xn)∞
n=0 where X0 = 0 and

Xn = Xn−1 + ξn

for n ≥ 1, where ξn is a {±1}-valued random variable with mean zero. For the chain to return to the state
zero after n steps, the variables (ξk)k=1,...,n must take the values ±1 equally often. Consequently, the chain
can return to zero only after an even number of steps. More specifically,

∞∑
n=1

Pn
00 =

∞∑
n=1

P 2n
00 =

∞∑
n=1

(
2n
n

)
1

22n
.

As
(2n

n

)
∼ 22n

√
πn

, it follows that
∑∞

n=1 P
n
00 = ∞. Therefore, by Theorem 6.3.3, the state zero is recurrent. In

particular, by Corollary 6.3.4 it follows that every state is recurrent as the chain is irreducible.
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Lemma 6.3.6. Let k ∈ X , then one of the following holds.

1.
∑∞

n=1 P
n
ij = ∞, for every i, j ∈ [k].

2.
∑∞

n=1 P
n
ij < ∞ for every i, j ∈ [k].

In particular, if [k] has a finite number of elements and is a minimal class then statement 1 must hold so that
every element of [k] is recurrent.

Proof.

1. Suppose that
∑∞

n=1 P
n
ij = ∞ for i, j ∈ [k]. Then for i′, j′ ∈ [k] it follows that there exists m1,m2 ∈ N

such that Pm1
i′i , P

m2
jj′ > 0. Therefore,

∞∑
n=m1+m2

Pn
i′j′ ≥

∞∑
n=1

Pn
ijP

m1
i′i P

m2
jj′

= Pm1
i′i P

m2
jj′

∞∑
n=1

Pn
ij

= ∞.

2. Suppose that
∑∞

n=1 P
n
ij < ∞ for i, j ∈ [k]. Then for i′, j′ ∈ [k] it follows that there exists m1,m2 ∈ N

such that Pm1
ii′ , P

m2
j′j > 0. Hence, we deduce that

∞∑
n=m1+m2

Pn
ij ≥ Pm1

ii′ P
m2
j′j

∞∑
n=1

Pn
i′j′ ,

which implies that
∑∞

n=1 P
n
i′j′ < ∞.

If [k] is a finite minimal class with i ∈ [k] observe that

∑
j∈[k]

∞∑
n=1

Pn
ij

(1)=
∞∑

n=1

∑
j∈[k]

Pn
ij

(2)=
∞∑

n=1
1

= ∞,

where (1) is just changing the ordering of a finite and infinite sum and (2) follows from the fact that [k] is minimal
and so Pn

ij > 0 if and only if j ∈ [k]. Therefore, we know that for at least one j ∈ [k] the sum
∑∞

n=1 P
n
ij is infinite

which implies that
∑∞

n=1 P
n
ij = ∞ for all j ∈ [k] by statement 1. Hence, every element of [k] is recurrent.

Theorem 6.3.7.

• A state j ∈ X is recurrent if and only if Pj(Xn = j i.o.) = 1.

• A state j ∈ X is transient if and only if Pj(Xn = j i.o.) = 0.

Proof. Note that {Xn = j i.o.} = {ηj = ∞}. Moreover,

{ηj = ∞} =
∞⋂

n=1
{ηj ≥ n}.
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The sets {ηj ≥ n} are decreasing in n ∈ N, so

Pj(ηj = ∞) = lim
n→∞

Pj(ηj ≥ n)

= lim
n→∞

Pj

(
Tn

j < ∞
)

Lem 6.2.13= lim
n→∞

Pj (Tj < ∞)n

=
{

1 j recurrent
0 j transient.

Lemma 6.3.8. Suppose X is finite, then a state is recurrent if and only if it is in a minimal class. In particular,
there always exists a recurrent state.

Proof. (⇒). As X is finite, the partial order ≤ is defined on a finite number of communication classes, and so
there must exist a minimal class. In particular, this minimal class must be finite and so using Lemma 6.3.6 the
class must be recurrent. Thus a recurrent state exists.
(⇐). Let i ∈ X be a recurrent state and suppose for contradiction that i ∈ [k], where [k] is not a minimal class.
Then there exists a j ∈ [k′] such that i → j but j ̸→ i. In particular, there exists an nj such that Pnj

ij > 0 and
Pn

ji = 0 for all n ∈ N. Therefore,
Pi(Ti = ∞) ≥ P

nj

ij > 0.

This implies that Pi(Ti < ∞) < 1 and so the state i is not recurrent, which is a contradiction.

Proposition 6.3.9. Suppose that i, j ∈ X are states such that i → j but j ̸→ i, then i must be transient. In
particular, if [i] is not minimal, then it consists of transient states.

Proof. Let m = min
({
n : Pn

ij > 0
})

. It follows that paths of length m from i to j never return to i before time
m. Moreover, as j ̸→ i such a path never returns to i after time m either. Consequently,

Pi(Ti = ∞) ≥ Pm
ij > 0.

Therefore, i is transient. In particular, if [i] is not minimal then a j ∈ X such that i → j but j ̸→ i exists and so
[i] contains transient states.

Lemma 6.3.10. For states i, j ∈ X we have that
∞∑

n=1
Pn

ij = Pi(Tj < ∞)
1 − Pj(Tj < ∞)

with the understanding that the right-hand side is infinite if Pi(Tj < ∞) ̸= 0 and Pj(Tj < ∞) = 1.
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Proof. Recall that for any j ∈ X , the occupation time is given by ηj =
∑∞

n=1 1{Xn=j}. Hence, we can write

∞∑
n=1

Pn
ij = Ei(ηj)

=
∞∑

k=1
Pi(ηj ≥ k)

=
∞∑

k=1
Pi

(
T k

j < ∞
)

Lem 6.2.13=
∞∑

k=1
Pi(Tj < ∞)Pj

(
T k−1

j < ∞
)

Lem 6.2.13=
∞∑

k=1
Pi(Tj < ∞)Pj (Tj < ∞)k−1

= Pi(Tj < ∞)
1 − Pj(Tj < ∞) .

Theorem 6.3.11. If a state j ∈ X is transient, then
∞∑

n=1
Pn

ij < ∞

for all i ∈ X . In particular, limn→∞ Pn
ij = 0.

Proof. If j ∈ X is transient then Pj(Tj < ∞) < 1, so by Lemma 6.3.10 we have that
∞∑

n=1
Pn

ij = Pi(Tj < ∞)
1 − Pj(Tj < ∞) < ∞

which implies that limn→∞
(
Pn

ij

)
= 0 for all i ∈ X .

Remark 6.3.12. Intuitively, Theorem 6.3.11 says that transient states are difficult to reach.

Theorem 6.3.13. If P has an invariant probability measure π, then for any transient state j ∈ X we must
have π(j) = 0.

Proof. Without loss of generality, we can assume that X = N. Suppose π(j) > 0 for a transient state j ∈ X .
Then as

∑
k∈N π(k) = 1 < ∞, there exists an N ∈ N such that

∞∑
k=N+1

π(k) < π(j)
2 .

Moreover, by Theorem 6.3.11, we can find an n ∈ N such that for all 0 ≤ k ≤ N we have Pn
kj <

π(j)
2 . As π is

invariant we can write
π(j) =

∞∑
k=0

π(k)Pn
kj .
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Therefore,

π(j) =
N∑

k=0
π(k)Pn

kj +
∞∑

k=N+1
π(k)Pn

kj

(1)
<
π(j)

2 +
∞∑

k=N+1
π(k)Pn

kj

(2)
<
π(j)

2 +
∞∑

k=N+1
π(k)

<
π(j)

2 + π(j)
2

= π(j),

where in (1) we have used the fact that π is a probability measure, and so the sum
∑N

k=0 π(k)Pn
kj can be thought

of averaging the Pn
kj , however, it is not a full average as

∑N
k=0 π(k) ≤ 1. In (2) we have used the fact that P is

a stochastic matrix and so Pkj ≤ 1. Thus, we get a contradiction.

Corollary 6.3.14. A transient Markov chain has no invariant probability measures.

6.4 Constructing Invariant Probability Measures
Given any recurrent state i ∈ X we can conisder the measure µi on X , where for j ∈ X we let

µi(j) = Ei

(
Ti−1∑
n=0

1{Xn=j}

)

= Ei

( ∞∑
n=0

1{n<Ti}1{Xn=j}

)

=
∞∑

n=0
Pi(Xn = j, Ti > n).

Remark 6.4.1. Note that µi need not be a finite measure. Even if Pi(Ti < ∞) = 1 we have

∑
j∈X

µi(j) =
∑
j∈X

∞∑
n=0

Pi(Xn = j, Ti > n)

=
∞∑

n=0
Pi(Ti > n)

= Ei(Ti).

Which is not necessarily finite as a random variable can be finite almost everywhere without having a finite
expectation, take the Cauchy distribution.

Theorem 6.4.2. If i ∈ X is recurrent for P , then µi is invariant for P .

Proof. Fix a recurrent state i ∈ X and let µ = µi. We want to show that (µP )(j) = µ(j) for all j ∈ X .
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• For j ̸= i we have

µ(j) =
∞∑

n=0
Pi(Xn = j, Ti > n)

=
∑
k∈X

∞∑
n=1

Pi(Xn = j, Ti > n,Xn−1 = k, Ti > n− 1)

=
∑
k∈X

∞∑
n=1

Pi(Xn = j, Ti > n|Xn−1 = k, Ti > n− 1)Pi(Xn−1 = k, Ti > n− 1)

=
∑
k∈X

∞∑
n=1

Pi(Xn = j|Xn−1 = k, Ti > n− 1)Pi(Xn−1 = k, Ti > n− 1)

(1)=
∑
k∈X

Pkjµ(k)

= (µP )(j),

where (1) is an application of the Markov property.

• For j = i, on the one hand,

µ(i) = Ei

(
Ti−1∑
n=0

1{Xn=i}

)
(1)= Ei

(
1{X0=i}

)
= 1,

where (1) follows as by construction of Ti it must be that {Xk ̸= i} for 1 ≤ k ≤ Ti − 1. On the other
hand,

(µP )(i) =
∑
k∈X

∞∑
n=0

Pi(Xn = k, Ti > n)Pki

=
∑

k∈X \{i}

∞∑
n=0

Pi(Xn = k, Ti > n)Pki

=
∑

k∈X \{i}

∞∑
n=0

Pi(Xn = k, Tj > n)P(Xn+1 = i|Xn = k)

=
∑

k∈X \{i}

∞∑
n=0

Pi(Xn = k, Ti > n)P(Xn+1 = i|Xn = k, Ti > n)

=
∑

k∈X \{i}

∞∑
n=0

Pi(Xn+1 = i,Xn = k, Ti > n)

=
∞∑

n=0
Pi(Xn+1 = i, Ti > n)

=
∞∑

n=0
Pi(Ti = n+ 1)

= Pi(Ti < ∞)
= 1,

where the last equality follows from the fact that i is recurrent. Therefore, µ(i) = (µP )(i).
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Definition 6.4.3.

• A recurrent state i ∈ X is positive recurrent if Ei(Ti) < ∞.

• A recurrent state i ∈ X is null recurrent if Ei(Ti) = ∞.

Corollary 6.4.4. If i ∈ X is positive recurrent then µi is an invariant finite measure.

Proof. The invariance of µi follows directly from Theorem 6.4.2. The finiteness of µi follows from the positive
recurrence on i. More specifically,

∑
j∈X

µi(j) =
∑
j∈X

∞∑
n=0

Pi(Xn = j, Ti > n)

=
∞∑

n=0
Pi(Ti > n)

= Ei(Ti)
< ∞.

Lemma 6.4.5. Let i ∈ X be recurrent, then for any invariant measure ν and k ∈ X we have

ν(k) ≥ ν(i)µi(k).

Proof.

• If k = i, then µi(i) = 1 and so the result holds clearly.

• When k ̸= i, note that

Pn
jk = Pj(Xn = k)

(1)
≥

n−1∑
m=0

Pj

(
Xn = k, {Xm = i} ∪

n−1⋂
l=m+1

{Xj ̸= i}

)

=
n−1∑
m=0

P

(
Xn = k,

n−1⋂
l=m+1

{Xj ̸= i}
∣∣∣Xm = i

)
Pm

ji

=
n−1∑
m=0

Pi (Xn−m = k, Ti > n−m)Pm
ji ,

where in (1) we are using the fact that

{Xm = i} ∪
n−1⋂

l=m+1
{Xj ̸= i}

are disjoint events for m = 0, . . . , n− 1, whose union is not necessarily the whole sample space. Intuitively,
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these sets are the events that m is last visit to i before n. It follows using the invariance of ν that

ν(k) = (νPn) (k)

=
∑
j∈X

ν(j)Pn
jk

≥
∑
j∈X

ν(j)
(

n−1∑
m=0

Pi(Xn−m = k, Ti > n−m)Pm
ji

)

≥
n−1∑
m=0

Pi(Xn−m = k, Ti > n−m)
∑
j∈X

ν(j)Pm
ji

≥ ν(i)
n−1∑
m=0

Pi(Xn−m = k, Ti > n−m).

By re-indexing the sum we get

n−1∑
m=0

Pi(Xn−m = k, Ti > n−m) =
n∑

l=1
Pi(Xl = k, Ti > l).

Moreover, for k ̸= i by the construction of µi we know that

µi(k) =
∞∑

l=1
Pi(Xl = k, Ti > l)

= lim
n→∞

n∑
l=1

Pi(Xl = k, Ti > l)

=: lim
n→∞

µi
n(k).

Consequently, we have shown that
ν(k) ≥ ν(i)µi

n(k)

and so taking the limit gives
ν(k) ≥ ν(i)µi(k).

Theorem 6.4.6. If a Markov chain is irreducible and recurrent, then its invariant measure is unique up to a
multiplicative constant.

Proof. Let ν be invariant and set µ = µi for some i ∈ X . By Theorem 6.4.2 the measure µ is invariant as i ∈ X
is recurrent. Moreover, as µ(i) = 1 we can write

0 = ν(i) − ν(i)µ(i)
= (νPn) (i) − ν(i) (µPn) (i)

=
∑
k∈X

(ν(k) − ν(i)µ(k))Pn
ki,

for any n ∈ N. Note that ν(k) − ν(i)µ(k) ≥ 0 which implies that all the individual terms of the sum are zero.
As the chain is irreducible, for any k ∈ X there is an n ∈ N such that Pn

ki > 0. Therefore, for each k ∈ X we
can deduce that ν(k) = ν(i)µ(k). Thus, invariant measures are the same up to some multiplicative constant,
ν(i).
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Theorem 6.4.7. Suppose we have an irreducible Markov chain.

1. If the chain has an invariant probability measure π, then all the states are positive recurrent and

π(i) = 1
Ei(Ti)

for i ∈ X .

2. If there exists a positive recurrent state, then the chain has a unique invariant probability measure and
every state is positive recurrent.

Proof.

1. As π is an invariant probability measure, there exists a state i ∈ X such that π(i) > 0. Therefore, the
contrapositive of Theorem 6.3.13 tells us that i ∈ X is a recurrent state. Therefore, as recurrence is a
communication class property, and the chain is irreducible, we deduce that every state is recurrent. For a
fixed state i ∈ X we know by Theorem 6.4.2 that µi is an invariant measure. By Theorem 6.4.6 we know
that µi is equal to π up to a multiplicative constant. That is, π(j) = kµi(j) for all j ∈ X and some k ∈ R.
Hence, µi is also a finite measure. Consequently,

∞ >
∑
j∈X

µi(j) = Ei(Ti),

and so i is a positive recurrent state. Moreover,

1 =
∑
j∈X

π(j) =
∑
j∈X

kµi(j) = kEi(Ti)

implies that k = 1
Ei(Ti) . As µi(i) = 1 we deduce that

π(i) = 1
Ei(Ti)

.

Repeating this for each i ∈ X we arrive at the same conclusion for each state of the chain.

2. Suppose i ∈ X is a positive recurrent state of the chain, then we know µi is an invariant finite measure by
Corollary 6.4.4. Therefore, we can normalise µi and apply the previous step to deduce that all states are
positive recurrent and that the invariant probability measure is unique.

6.5 Long Run Dynamics
In the setting of irreducible, positive recurrent chains we know there exists a unique invariant probability measure
π. Now we want to answer the question as to whether measures will converge under the dynamics of the chain
to this unique invariant probability measure. Formally, given a measure ν on X we would like to understand
under what constraints (νPn)n∈N converges to π. Of course, this requires an understanding of what we mean
by convergence. For a positive result, we require added constraints on the structure of the chain. To see why we
require additional constraints refer to Example 6.5.1.

Example 6.5.1. Let X = {1, 2} and P =
(

0 1
1 0

)
. Then P is irreducible and positive recurrent. Note that

P 2n = I and P 2n+1 = P . Hence, limn→∞ Pn
ij does not exist for any i, j ∈ X . Therefore, we cannot make

any conclusion about the convergence of (νPn)n∈N. However,

1
n

n∑
k=1

P k
ij

n→∞−→ 1
2
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for each i, j ∈ X .

For a state i ∈ X , the return times to i is the set

R(i) := {n > 0 : Pn
ii > 0} .

Definition 6.5.2. The period of a state i ∈ X denoted d(i), is

d(i) :=
{

gcd(R(i)) R(i) ̸= ∅
∞ R(i) = ∅.

Definition 6.5.3. For i ∈ X , if d(i) = 1 then i is called aperiodic, while if d(i) > 1 then i is called periodic.

Remark 6.5.4.

• If R(i) = ∅, and so d(i) = ∞, it must be the case that i is in its own communication class.

• Note that if d(i) < ∞ then one can have d(i) ̸∈ R(i).

Definition 6.5.5. A chain is aperiodic if every state is aperiodic, and it is periodic with period d if every state
has period d.

Example 6.5.6.

1. Consider the chain depicted in Figure 6. The chain is irreducible, and positive recurrent. However, it is
not aperiodic as the state 1, for example, has a period of 4.

Figure 6: A chain that is irreducible, positive recurrent but not aperiodic.

2. Consider the chain depicted in Figure 7. Note that

R(1) = {3n+ 4m : n,m ∈ N}.

In particular, 3, 4 ∈ R(1) which implies that d(1) = 1. In this case, d(i) ̸∈ R(i).
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Figure 7: A chain that is irreducible, positive recurrent and aperiodic.

Proposition 6.5.7. For i, j ∈ X in the same communication class, if i ̸= j then d(i) = d(j) < ∞.

Proof. The condition that i and j are distinct elements in the same communication class implies that d(i), d(j) <
∞. As i and j are in the same communication class, we know there exists an n ∈ N such that Pn

ij > 0 and an
m ∈ N such that Pm

ji > 0. Consequently, by the Chapman-Kolmogorov equation we know that Pm+n
ii , Pm+n

jj > 0
which implies that m + n ∈ R(i) ∩ R(j). For k ∈ R(i), using the Chapman-Kolmogorov equation we note that
k + m + n ∈ R(j). Therefore, as d(j)|n + m and d(j)|k + n + m it follows that d(j)|k. As k ∈ R(i) was
arbitrary we conclude that d(j) is a common divisor of R(i). Hence, d(j) ≤ d(i). By symmetry, we also deduce
that d(i) ≤ d(j) and so d(i) = d(j).

Corollary 6.5.8. An irreducible chain is either periodic or aperiodic.

Theorem 6.5.9. Suppose P is irreducible, aperiodic, and positive recurrent. Let π denote its unique invariant
probability measure. Then

lim
n→∞

∑
j∈X

∣∣Pn
ij − π(j)

∣∣ = 0

for all i ∈ X .

Proof. Let (Xn)n∈N and (X ′
n)n∈N be independent Markov process with transition probabilities P and initial

distributions µ and ν respectively. Then by Lemma 9.2.8 we know that Zn = (Xn, X
′
n) is a time homogeneous

Markov process on X × X with initial distribution µ⊗ ν and transition probabilities

Q(i,i′),(j,j′) = PijPi′j′

for all i, j, i′, j′ ∈ X . Let T = inf {n ≥ 1 : Xn = X ′
n} . Using Lemma 9.2.6 we have∑

j∈X
|P(Xn = j) − P (X ′

n = j)| ≤ 2P(T > n). (6.5.1)

By Lemma 9.2.12 we know that P(T < ∞) = 1, which implies that P(T > n) → 0 as n → ∞. Hence, from
(6.5.1) we deduce that ∑

j∈X
|P (Xn = i) − P (X ′

n = i)| n→∞−→ 0.
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In particular, we can take any i ∈ X and let µ = δi and ν = π to see that

lim
n→∞

∑
j∈X

∣∣Pn
ij − π(j)

∣∣ = 0.

Remark 6.5.10. With the notation used in the introduction to this section, Theorem 6.5.9 establishes the
convergence of the measures ν = δi for i ∈ X to π, in the sense outlined in the theorem, under the dynamics
of the chain. This will be useful to use when we try to generalise to arbitrary probability measures.

Corollary 6.5.11. Suppose that X is irreducible, positive recurrent and aperiodic on a discrete state space
X . Let π denote its unique invariant probability measure. Then for any f : X → R which is π-integrable, and
probability measure µ on X we have that

Eµ(f(Xk)) →
∫

X
f dπ

as k → ∞. Moreover,
1
n

n∑
k=1

Eµ(f(Xk)) →
∫

X
f dπ (6.5.2)

as n → ∞.

Proof. Suppose f = 1j for some j ∈ X , then

Eµ(f(Xk)) =
∑
i∈X

µ(i)P k
ij .

We know by Theorem 6.5.9 that ∑
i∈X

∣∣µ(i)P k
ij − π(i)

∣∣ → 0

as k → ∞. Therefore, ∣∣∣∣Eµ(f(Xk)) −
∫

X
f dπ

∣∣∣∣ =

∣∣∣∣∣∑
i∈X

µ(i)P k
ij − π(j)

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈X

µ(i)P k
ij −

∑
i∈X

Pijπ(i)

∣∣∣∣∣
≤
∑
i∈X

∣∣µ(i)P k
ij − Pijπ(i)

∣∣
≤
∑
i∈X

∣∣µ(i)P k−1
ij − π(i)

∣∣
k→∞−→ 0.

Now for f : X → R non-negative and π-integrable, we can write f =
∑

i∈X f(i)1i. Let fn =
∑n

i=1 f(i)1i. Then
by the algebra of limits we know that

Eµ(fn(Xk)) →
∫

X
fn dπ

as k → ∞. As f is non-negative we note that

Eµ(fn(Xk)) ≤ Eµ(fn+1(Xk))
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and so by monotone convergence we have that Eµ(fn(Xk)) → Eµ(f(Xk)) as n → ∞. Similarly, we have that∫
X fn dπ →

∫
X f dπ. Therefore,

Eµ(f(Xk)) →
∫

X
f dπ

as k → ∞. We can then extend this to general π-integrable functions f : X → R by considering f = f+ − f−.
Note that (6.5.2) follows as for a converging sequence, the limit of the partial averages converges to the limit of
the sequence.

Remark 6.5.12. For i, j ∈ X , by letting µ = δi and f = 1j in Corollary 6.5.11 we deduce that

1
n

n∑
k=1

P k
ij → π(j).

6.6 Total Variation

Definition 6.6.1. The total variation distance between probability measures µ and ν, on some measurable
space X , is

∥µ− ν∥TV = 2 sup
A⊆X

|µ(A) − ν(A)|,

where the supremum is over measurable subsets A ⊆ X .

Remark 6.6.2.

1. ∥ · ∥TV has the dual formula,

∥µ− ν∥TV = sup
f∈Bb(X ),∥f∥∞≤1

∣∣∣∣∫
X
f dµ−

∫
X
f dν

∣∣∣∣ .
2. Note that ∥µ− ν∥TV ∈ [0, 2] with ∥µ− ν∥TV = 0 if and only µ = ν and ∥µ− ν∥TV = 2 if and only if µ

and ν are mutually singular. Where by mutually singular we mean that there exists a A ⊆ X such that
µ(A) = 1 and ν(A) = 0.

Lemma 6.6.3. For X discrete

∥µ− ν∥TV =
∑
i∈X

|µ(i) − ν(i)| = ∥µ− ν∥1.

Proof. Let B = {i ∈ X : µ(i) ≥ ν(i)}. Then since µ and ν are probability measures we note that

0 = 1 − 1

=
(∑

i∈B

+
∑
i∈Bc

)
(µ(i) − ν(i))

=
∑
i∈B

µ(i) − ν(i) +
∑
i∈Bc

µ(i) − ν(i)

=
∑
i∈B

(µ(i) − ν(i)) −
∑
i∈Bc

(ν(i) − µ(i)) ,

which implies that ∑
i∈B

µ(i) − ν(i) =
∑
i∈Bc

ν(i) − µ(i).
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Note that the terms of these sums are non-negative by the construction of B so that

∥µ− ν∥1 =
∑
i∈B

µ(i) − ν(i) +
∑
i∈Bc

ν(i) − µ(i).

In particular,

∥µ− ν∥1 =
∑
i∈B

µ(i) − ν(i) +
∑
i∈Bc

ν(i) − µ(i)

= µ(B) − ν(B) + (µ (Bc) − ν (Bc))
= 2(µ(B) − ν(B))
≤ ∥µ− ν∥TV. (6.6.1)

For any A ⊆ X observe that

|µ(A) − ν(A)| = |µ(A ∩B) − ν(A ∩B) − (µ (A ∩Bc) − ν (A ∩Bc))|
≤ 2 max (|µ(A ∩B) − ν(A ∩B)|, |µ (A ∩Bc) − ν (A ∩Bc)|)
≤ 2 max (|µ(B) − ν(B)|, |µ (Bc) − ν (Bc)|)
= 2|µ(B) − ν(B)|

=
∑
i∈X

|µ(i) − ν(i)|.

Hence, taking the supremum of both sides we deduce that

∥µ− ν∥TV ≤ ∥µ− ν∥1.

Combined with (6.6.1) we conclude.

Definition 6.6.4. Let (νn)n∈N be a sequence of measures and let ν be a measure.

1. The sequence (νn)n∈N converges in total variation to ν if ∥νn − ν∥TV → 0.

2. The sequence (νn)n∈N converges strongly to ν if νn(A) → ν(A) for every measurable A.

3. The sequence (νn)n∈N converges weakly if∫
X
f dνn →

∫
X
f dν

for every f ∈ Cb(X ).

Remark 6.6.5. Note that convergence in total variation implies strong convergence which in turn implies weak
convergence. However, the reverse implication in each of these cases does not hold.

Example 6.6.6.

1. For A ∈ B([−1, 1]), let
νn(A) =

∫
A

1 + sin(nx) dx

and ν be the Lebesgue measure on [−1, 1]. Then by the Riemann-Lebesgue measure it follows that
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νn(A) → ν(A) for every A ∈ B(X ). That is, the sequence (νn)n∈N converges to ν strongly. However,

∥νn − ν∥TV = sup
f∈Bb(X ),∥f∥∞≤1

∣∣∣∣∣
∫

[−1,1]
f(x)(1 + sin(nx)) dx−

∫
[−1,1]

f(x) dx

∣∣∣∣∣
= sup

f∈Bb(X ),∥f∥∞≤1

∣∣∣∣∣
∫

[−1,1]
f(x) sin(nx) dx

∣∣∣∣∣
n→∞
̸→ 0,

meaning the sequence (νn)n∈N does not converge in total variation to ν.

2. Consider the sequence of measures (νn)n∈N on R where νn = δ 1
n

. Then for any f ∈ Cb(X ) we have that∫
X
fδ 1

n
= f

(
1
n

)
n→∞−→ f(0) =

∫
X
fδ0.

Therefore, the sequence (νn)n∈N converges weakly to δ0. However, νn({0}) = 0 for every n ∈ N and
δ0({0}) = 1, meaning the sequence (νn)n∈N does not converge strongly to δ0. Moreover, ∥νn−δ0∥TV = 2
for all n ∈ N, and so does not converge in total variation.

Theorem 6.6.7. Suppose P is irreducible, aperiodic, and positive recurrent. Let π denote the unique invariant
probability measure. Then for any probability measure ν on X we have that νPn → π in total variation.

Proof. Note that

∥µPn − π∥TV =
∞∑

j=1

∣∣∣∣∣
∞∑

i=1
µ(i)Pn

ij − π(j)

∣∣∣∣∣
=

∞∑
j=1

∣∣∣∣∣
∞∑

i=1
µ(i)Pn

ij −
∞∑

i=1
µ(i)π(j)

∣∣∣∣∣
≤

∞∑
j=1

∞∑
i=1

µ(i)
∣∣Pn

ij − π(j)
∣∣ .

Given an ϵ > 0, we can choose N ∈ N such that
∞∑

i=N+1
µ(i) < ϵ

4

as µ is a probability measure meaning
∑

i∈N µ(i) < ∞. Consequently,
∞∑

i=N+1
µ(i)

∞∑
j=1

∣∣Pn
ij − π(j)

∣∣ < ϵ

2 ,

where we have just applied the triangle inequality to the inner sum, and the fact that Pn
ij and π(j) are bounded

by one. On the other hand, by Theorem 6.5.9 we can choose M ∈ N such that for all i ≤ N we have
∞∑

j=1

∣∣Pn
ij − π(j)

∣∣ ≤ ϵ

2

for n ≥ M . Therefore,
∞∑

j=1

N∑
i=1

µ(i)
∣∣Pn

ij − π(j)
∣∣ ≤

N∑
i=1

µ(i) ϵ2 ≤ ϵ

2 .
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Hence,

∥µPn − π∥TV ≤
∞∑

j=1

∞∑
i=1

µ(i)
∣∣Pn

ij − π(j)
∣∣

=
∞∑

j=1

N∑
i=1

µ(i)
∣∣Pn

ij − π(j)
∣∣+

∞∑
j=1

∞∑
i=N+1

µ(i)
∣∣Pn

ij − π(j)
∣∣

≤ ϵ

2 + ϵ

2
= ϵ.

Remark 6.6.8. The proof of Theorem 6.6.7 utilises the result of Theorem 6.5.9, however, we could instead
capitalise on the proof of Theorem 6.5.9. Note that Theorem 6.6.7 is just a stronger version of Theorem 6.5.9,
which we have already proved. In fact, at the last step of the proof of Theorem 6.5.9 we can choose the initial
distributions of our chains to be ν and π to arrive at Theorem 6.6.7.

6.7 Periodic Chains
We now provide an alternative, but equivalent, definition of the period of an irreducible Markov chain.

Lemma 6.7.1. The period of an irreducible stochastic matrix P is equal to the largest d ∈ N>0 such that
one can partition the state space as

X = A0 ⊔ · · · ⊔Ad−1

where if i ∈ An then for j ∈ X such that Pij > 0 we have j ∈ An+1 mod d.

Proof. Suppose P has period d. Fix a state i ∈ X and let
An =

{
j ∈ X : P kd+n

ij > 0 for some k ∈ N
}

for n = 0, . . . , d− 1. By irreducibility we know that (An)d−1
n=0 forms a cover of X . Suppose j ∈ An1 ∩An2 . This

implies that there exists k1, k2 ∈ N such that P k1d+n1
ij , P k2d+n2

ij > 0. However, by irreducibility, there exists a
q ∈ N such that P q

ji > 0. So k1d+ n1 + q and k2d+ n2 + q are in R(i) and so d divides n1 − n2 which implies
n1 = n2. Therefore, An1 ∩ An2 = ∅ for n1 ̸= n2. Now assume that p is the largest number for which such a
decomposition of p disjoint sets exists. For j ∈ X , if j returns to itself in q steps then we must have that p|q.
Therefore, p is a divisor of the set of return times for j. Hence, by the definition of d we know that p ≤ d and
thus p = d if it is the largest number where such a decomposition exists.

Example 6.7.2. For a d-periodic, irreducible stochastic matrix P , we note that by Lemma 6.7.1 the chain with
the stochastic matrix P d is restricted to one of the An for n = 0, . . . , d − 1. Consider the chain depicted in
Figure 8. In this case, the chain has a period of 3 and a corresponding decomposition is given by

• A0 = {2},

• A1 = {4}, and

• A2 = {1, 3}.

The stochastic matrix for the chain has the form

P =


0 1 0 0
0 0 0 1
0 1 0 0
q 0 1 − q 0
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for some q ∈ (0, 1). We note that

P 3 =


q 0 1 − q 0
0 1 0 0
q 0 1 − q 0
0 0 0 1

 .

which is no longer irreducible. The dynamics are constrained to the sets {2}, {4} and {1, 3} as expected.

Figure 8: An example of a periodic, irreducible chain whose three-step dynamics is reducible.

Proposition 6.7.3. Suppose Tnµ = µ for some fixed n ∈ N, and let µ̂ = 1
n

∑n
k=1 T

kµ. Then T µ̂ = µ̂.

Proof. Let A ∈ B(X ). Then

T µ̂(A) = 1
n

n∑
k=1

T k+1µ(A)

= 1
n

n−1∑
k=1

T k+1µ(A) + 1
n
Tn+1µ(A)

= 1
n

n∑
k=2

T kµ(A) + 1
n
Tµ(A)

= µ̂(A).

Remark 6.7.4. Suppose we have a period d chain on X with a decomposition

X = A0 ⊔ · · · ⊔Ad−1

as in Lemma 6.7.1, and an invariant measure µ for P d on An. Then

µ̂ = 1
d

d∑
k=1

µP k

is an invariant measure for P on X .

6.8 Ergodic Theorem

Theorem 6.8.1 (Strong Law of Large Numbers). Let (ξn)∞
n=1 be a sequence of independent and identically
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distributed real-valued random variables with E(|ξ1|) < ∞. Then

lim
n→∞

(
1
n

n∑
k=1

ξk

)
= E(ξk)

almost surely.

Exercise 6.8.2. Suppose X is a time-homogeneous Markov process with initial distribution δi for i ∈ X . Let
T k be the kth return time to state i. Show that the random variables

T k+1∑
l=T k+1

f(Xl) : k ∈ N


are independent and identically distributed.

Theorem 6.8.3 (Ergodic Theorem). Let X be an irreducible, positive recurrent Markov chain on a discrete
state space X . Let π denote its unique invariant probability measure. Then for any π-integrable function
f : X → R it follows that

lim
n→∞

(
1
n

n∑
k=1

f(Xk)
)

=
∑
j∈X

f(j)π(j) =
∫

X
f dπ (6.8.1)

almost surely.

Proof. Consider f ≥ 0. Fix i ∈ X . Let T = Ti and T k = T k
i be the passage times to i. It is sufficient to prove

the statement for X initially distributed according to Pi, as for an arbitrary initial distribution µ we have

Pµ(·) =
∑
i∈X

Pi(·)µ(i).

Let µ = µi be the finite measure on X given by

µ(j) = Ei

(
T∑

k=1
1{Xk=j}

)
= Ei(T )π(j).

Observe that,

Ei

(
T∑

l=1
f(Xl)

)
= Ei

 T∑
l=1

∑
j∈X

1{Xl=j}f(j)


(1)=
∑
j∈X

f(j)Ei

(
T∑

l=1
1{Xl=j}

)
= Ei(T )

∑
j∈X

f(j)π(j)

= Ei(T )
∫

X
f dπ (6.8.2)

< ∞.

We can exchange the order of summation at (1) as the sum is absolutely convergent. Using Exercise 6.8.2 we
can apply the strong law of large numbers to deduce that,
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lim
n→∞

 1
n

n∑
k=1

T k∑
T k−1+1

f(Xl)

 = lim
n→∞

(
1
n

T n∑
l=1

f(Xl)
)

(6.8.2)= Ei(T )
∫

X
f dπ. (6.8.3)

almost surely. Since the differences of consecutive passage times are independent and identically distributed,
Lemma 6.2.11, we can apply the strong law of large numbers to deduce that

lim
n→∞

(
n∑

k=1

(
T k − T k−1)) = lim

n→∞

(
1
n
Tn

)
= Ei(T )

almost surely. Now let

η(n) =
n∑

k=1
1{Xk=i}

for n ∈ N. Observe that
T η(n) ≤ n < T η(n)+1.

It follows that
1

η(n)

T η(n)∑
l=1

f(Xl) ≤ 1
η(n)

n∑
l=1

f(Xl) ≤ 1
η(n)

T η(n)+1∑
l=1

f(Xl). (6.8.4)

As i is recurrent, by Theorem 6.3.7, we know the event {Xk = i} occurs infinitely often with probability one and
so η(n) → ∞ almost surely. Therefore,

lim
n→∞

1
η(n)

T η(n)∑
l=1

f(Xl) = lim
n→∞

1
η(n)

T η(n)+1∑
l=1

f(Xl)

= Ei(T )
∫

X
f dπ

almost surely. Hence, by (6.8.4) we have that

lim
n→∞

1
η(n)

n∑
l=1

f(Xl) = Ei(T )
∫

X
f dπ (6.8.5)

almost surely. Taking f = 1 in (6.8.5) we note that

lim
n→∞

n

η(n) = Ei(T ) > 0

almost surely. Therefore,

lim
n→∞

1
n

n∑
l=1

f(Xl) = lim
n→∞

η(n)
n

1
η(n)

n∑
l=1

f(Xl)

=
∫

X
f dπ.

To extend the result to general π-integrable function f we consider the decomposition f = f+ − f−.

Remark 6.8.4.

1. Theorem 6.8.3 can be thought of as translating time averages into space averages.

2. Note that the statement of Theorem 6.8.3 holds for every initial distribution of X.
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3. Note that Theorem 6.8.3 does not require the chain to be aperiodic, whereas Theorem 6.6.7 and Corollary
6.5.11 do.

4. By taking f = 1j in (6.8.3) we get that

lim
n→∞

(
1
n

T n∑
l=1

1j(Xl)
)

= π(j)
π(i)

almost surely. In other words, π(j)
π(i) is the average time spent at state j during one excursion starting and

ending at i.

5. By taking f = 1j in Theorem 6.8.3 we deduce that

lim
n→∞

1
n

n∑
k=1

1{Xk=j} = π(j).

That is, the average number of times the chain arrives at state j ∈ X converges to π(j). Note the
distinction between this statement and Remark 6.5.12

6.9 Reversible Markov Chains

Exercise 6.9.1. For a, not necessarily discrete, state space X , suppose we have a transition probability P and
a probability measure µ on X such that µP = µ. Show that one can construct a two-sided Markov process
(Xn : n ∈ Z) with

• Law(Xn) = µ, and

• P(Xn+1 ∈ A|Xn = x) = P (X, a)

for all n ∈ Z, x ∈ X and A ∈ B(X ).

Definition 6.9.2. For a two-sided stochastic process X = (Xn)n∈Z, the stochastic process X̂ =
(
X̂m

)
m∈Z

with X̂m = X−m is the reversed stochastic process.

Theorem 6.9.3. Let P be an irreducible and positive recurrent stochastic matrix with an invariant probability
measure π. Let X = (Xn)n∈Z be the two-sided Markov process constructed in Exercise 6.9.1 with transition
probability P and Law(Xn) = π. Let X̂ =

(
X̂m

)
m∈Z

be the reversed stochastic process of X. Then X̂ is a
time-homogeneous Markov chain with stochastic matrix

P̂ji = Pij
π(i)
π(j) .

Proof. As P is irreducible and positive recurrent there exists an invariant probability measure π. In particular, as
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every state j ∈ X is positive recurrent we have π(j) > 0. Given consecutive times n0 < n1 < · · · < nl, we have

P
(
X̂n0 = i0, . . . , X̂nl

= il

)
= P (X−n0 = il, . . . , X−nl

= i0)

= π(il)Pilil−1 . . . Pi1i0

=
(

π(il)
π(il−1)Pilil−1

)
. . .

(
π(i1)
π(i0)Pi1i0

)
π(i0)

= P̂il−1il
. . . P̂i0i1π(i0)

= π(i0)P̂i0i1 . . . P̂il−1il
.

Therefore, using Corollary 5.1.5 we deduce that X̂ is Markov with transition probabilities P̂ .

Definition 6.9.4. A stochastic matrix P and a measure π satisfy detailed balance if

π(i)Pij = π(j)Pji

for all i, j ∈ X .

Figure 9: An example of a chain satisfying detailed balance.

Proposition 6.9.5. Let π be a probability measure that satisfies detailed balance with respect to P . Then π
is P -invariant.

Proof. Observe that

(πP )(i) =
∑
j∈X

π(j)Pji

=
∑
j∈X

π(i)Pij

= π(i)
∑
j∈X

Pij

= π(i).

Example 6.9.6. Consider the chain of Example 6.2.2. Then a measure π = (π(1), π(2)) satisfies detailed
balance if

π(1)α = π(2)β.
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If π is a probability measure then π(1) + π(2) = 1 so that{
π(1) = β

α+β

π(2) = α
α+β .

One can then verify Proposition 6.9.5 with

πP =
(

β
α+β

α
α+β

)(1 − α α
β 1 − β

)
=
(

β(1−α)+αβ
α+β

αβ+α(1−β)
α+β

)
= π.

Theorem 6.9.7. In the setting of Theorem 6.9.3, if π and P satisfy detailed balance, then P̂ = P with
Law

(
X̂
)

= Law(X).

A process satisfying the statement of Theorem 6.9.7 is called reversible. Intuitively, in an irreducible chain that
satisfies detailed balance, one cannot tell whether the chain is being propagated forward or backwards in time.

Figure 10: We know this chain is not a detailed balanced chain, as we can distinguish whether the chain is moving
forward or backwards in time.

6.9.1 Markov Chain Monte Carlo

Suppose we want to simulate a probability measure π on a large but finite state space X . That is, we want to
calculate

∑
i∈X f(i)π(i) for observables f : X → R. One approach is to construct a Markov chain for which π

is its invariant distribution and use the ergodic law of large numbers to get that

∑
i∈X

f(i)π(i) = lim
n→∞

1
n

n∑
k=1

f(Xk).

Despite not knowing the specific values of π(i) for i ∈ X , one can often model them up to constants of
proportionality. We note that the ratios

δ(j, i) = π(j)
π(i)

eliminate those constants. Ideally, one would sum these ratios over j ∈ X to determine 1
π(i) , however, in practice

this sum is expensive. Moreover, δ(i, j) may be intractable to compute for certain (i, j).
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Example 6.9.8. Let X = {−1, 1}Λ with Λ = [−N,N ]d ∩ Zd. For a configuration σ = (σx : x ∈ Λ), let

π(σ) ∝ exp

β
2

∑
x,y∈Λ,|x−y|=1

σxσy


for some β > 0. This model is called the Ising model. An application of the Ising model is to approximate
the dynamics of molecular spin within a material. In this setting, calculating the normalisation constant to
determine π(σ) is difficult as materials contain a large number of molecules. However, if σ and σ′ differ at
exactly one x̄ ∈ Λ then

δ (σ, σ′) = exp

β ∑
y∈Λ,|x−y|=1

(σx − σ′
x)σy

 .

Using these ideas we can now consider constructing a suitable Markov chain. Start with some irreducible Markov
chain with transition probability Q and then set

1. Pij = Qij ∧ δ(j, i)Qji for i ̸= j, and

2. Pii = 1 −
∑

j ̸=i Pij .

The chain with transition matrix P on X is not necessarily irreducible. However, showing P and π satisfy the
detailed balance tells us that π is an invariant measure of the chain,

π(i)Pij = π(i)Qij ∧ π(j)Qji

= π(j)Qji ∧ π(i)Qij

= π(j) (Qji ∧ δ(i, j)Qij)
= π(j)Pji.

As multiple invariant measures may exist, due to P potentially not being irreducible, the chain may converge to
a different invariant measure. However, supposing that the chain is irreducible, or that it will converge to π, we
know by Theorem 6.8.3 that

1
n

n∑
k=1

f(Xk) ≈
∑
i∈X

f(i)π(i)

for large n.

6.10 Finite State Space Markov Chains
Throughout we will suppose that X = {1, . . . , N}. Let

δn = min
1≤i,j≤N

Pn
ij

for n ∈ N.

Proposition 6.10.1. Let P be a stochastic matrix on X . Then δn is increasing in n. Moreover, the following
are equivalent.

1. P is irreducible and aperiodic.

2. Pn is irreducible for every n ≥ 1.

3. There exists an n0 ∈ N such that δn0 > 0.
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Proof. The Chapman-Kolmogorov equation tells us that

Pm+n
ij ≥

∑
k∈X

Pm
ikP

n
kj

≥ δn

∑
k∈X

Pm
ik

= δn

for all i, j ∈ X . Hence, δm+n = min1≤i,j≤n P
m+n
ij ≥ δn and so δn is increasing in n

(2) ⇒ (1). If P were not aperiodic, then as the chain is irreducible and finite it follows that it must be periodic. Let
P be d-periodic, then using the reasoning of Example 6.7.2 we see that P d is reducible, which is a contradiction.
(3) ⇒ (1). By assumption, Pn0 has strictly positive entries, which implies that P is irreducible. As δn is
increasing we know that δn > δn0 > 0 for all n ≥ n0. Therefore, Pn also has strictly positive entries for n ≥ n0.
Consequently, for any i ∈ X we have that {n0, n0 + 1, . . . } ⊆ R(i) which implies that d(i) = 1 and so P is
aperiodic.
(3) ⇒ (2). For n < n0 there exists a k ∈ N such that nk ≥ n0. Hence, δnk ≥ δn0 > 0, which implies that Pn is
irreducible.
(1) ⇒ (3). By Lemma 9.2.9 we know that for all 1 ≤ i ≤ N there exists a ki such that kd(i) ∈ R(i) for
k ≥ ki. As P is aperiodic d(i) = 1 for each i ∈ X and so for all n ≥ N0 it follows that n ∈ R(i) for each
i ∈ X . That is, Pn

ii > 0 for each i ∈ X and n ≥ N0. As P is irreducible it follows that for i, j ∈ X there exists
a m(i, j) ∈ N such that Pm(i,j)

ij > 0. Using the Chapman-Kolmogorov equation we Pn+m(i,j)
ij ≥ Pn

iiP
m(i,j)
ij .

Hence, n0 = N0 + maxi,j∈X (m(i, j)) is such that δn0 > 0.

Exercise 6.10.2. Let P be a stochastic matrix. Then for a recurrent state i ∈ X and j ∈ [i], show that
Pj(Ti < ∞) = 1.

Lemma 6.10.3. Let P be an irreducible, aperiodic stochastic matrix on a finite state space. Then for any
i, j ∈ X and α > 0 we have that

Ej (Tα
i ) < ∞.

Proof. Using Exercise 6.10.2 we know that Pj (Tα
i = ∞) = 0 and so we can write

Ej (Tα
i ) =

∞∑
n=0

nαPj(Ti = n).

Hence,

Ej (Tα
i ) ≤

∞∑
n=0

nαPj(Ti > n− 1).

By Proposition 6.10.1 we know that there exists a n0 ∈ N such that δn0 > 0, consequently,

P
(
Xn0(k+1) ̸= i|Xn0k ̸= i

)
=
∑
l ̸=i

P
(
Xn0(k+1) ̸= i|Xn0k = l

) P(Xn0k = l)
P(Xn0k ̸= i)

≤
∑
l ̸=i

(1 − δn0) P(Xn0k = l)
P(Xn0k ̸= i)

≤ 1 − δn0
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It follows that

Pj(Ti > n0(k + 1)) ≤ Pj

(
Xn0(k+1) ̸= i, Ti > n0k

)
= P(Xn0(k+1) ̸= i|Ti > n0k)Pj(Ti > n0k)
(1)= P

(
Xn0(k+1) ̸= i|Xn0k ̸= i

)
Pj(Ti > n0k)

≤ (1 − δn0)Pj(Ti > n0k)
(2)
≤ (1 − δn0)k+1

where in (1) we used the fact that {Ti > n0k} ∈ Fn0k and so we can apply the Markov property to condition with
respect to {Xn0k ̸= i} ∈ σ (Xn0k) instead. In (2), we are just iterating the previous computations. Therefore,

∞∑
n=2n0

nαPj(Ti > n− 1) =
∞∑

k=2

n0(k+1)−1∑
j=n0k

jαPj(Ti > j − 1)

≤
∞∑

k=2

n0(k+1)−1∑
j=n0k

(n0(k + 1))α Pj(Ti > n0k − 1)

≤
∞∑

k=2

n0(k+1)−1∑
j=n0k

(n0(k + 1))α (1 − δn0)k+1

≤
∞∑

k=2
nα+1

0 (k + 1)α (1 − δn0)k−1

< ∞.

6.10.1 Perron-Frobenius

Let RN
+ =

{
η ∈ RN : η(i) ≥ 0 for all 1 ≤ i ≤ N

}
.

Lemma 6.10.4. Let P be irreducible and aperiodic on X = {1, . . . , N}. Then there exists some n ∈ N and
δ > 0 such that for every η ∈ RN

+ we have

(ηPn) (i) ≥ δ∥η∥1

for every i ∈ X , where ∥η∥1 =
∑

i∈X η(i).

Proof. Take n = n0 and δ = δn0 as in Proposition 6.10.1, then

(ηPn) (i) =
N∑

j=1
η(j)Pn

ji

≥ δn

N∑
j=1

η(j)

= δn∥η∥1.

Lemma 6.10.5. Suppose that P is an irreducible stochastic matrix on X = {1, . . . , N}. Then there exists
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an n ∈ N and δ > 0 such that Tn = 1
n

∑n
j=1 P

j satisfies

min
1≤i,j≤N

Tn
ij ≥ δ.

Proof. If P is aperiodic then this result follows from Lemma 6.10.4. So let P not be aperiodic, then as we are
operating on a finite state space, and P is irreducible, it follows that P is periodic. Suppose that P has period
d, then we can write

X = A0 ⊔ · · · ⊔Ad−1

where P d is irreducible and aperiodic on Aj for 0 ≤ j ≤ d − 1. In particular, for 0 ≤ l ≤ d − 1, there exists a
ml ∈ N such that

min
i,j∈Al

(
P d
)ml

ij
> 0.

Now let m = max0≤l≤d−1 ml > 0 and n = 2dm + d. Suppose i ∈ Al and j ∈ Al′ . If l = l′ then P d
ij > 0 and

d ≤ 2dm + d. Suppose instead that |l − l′| = r > 0. By irreducibility we know that there exists an i′ ∈ Al and
j′ ∈ Al′ such that P r

i′j′ > 0. Therefore,

P
dml+dml′ +r
ij ≥ P dml

ii′ P r
i′j′P

dml′
j′j > 0

where dml + dml′ + r ≤ 2dm+ d. Thus, Tn = 1
n

∑n
j=1 P

j has the property that

min
1≤i,j≤N

Tn
ij > 0,

where we maintain the strict inequality as our state space is finite.

Theorem 6.10.6 (Perron-Frobenius). Let P be an N × N irreducible stochastic matrix on a finite state
space X . Then all the eigenvalues of P satisfy |λ| ≤ 1. Moreover, one is a left-eigenvalue with a unique real
left-eigenvector π, up to multiplication by a constant, that is πP = π. In particular, π can be chosen so that
π(i) > 0 for every i ∈ X and

∑N
i=1 π(i) = 1.

Proof. As P is a stochastic matrix it follows that

∥ηP∥1 ≤ ∥η∥1

for every η ∈ CN which shows that |λ| ≤ 1 for any eigenvalue λ of P . Observe that 1
N (1, . . . , 1) is a right-

eigenvector of P with eigenvalue one, and so there must be a left-eigenvector π of P with eigenvalue one. Since
P is real we can take π to be real, moreover, we can normalize π such that ∥π∥1 = 1. Now suppose that π+
and π− are both non-zero, where π±(i) = max (±π(i), 0) for 1 ≤ i ≤ N . That is, π contains both positive and
negative entries. Let α = min(∥π+∥1, ∥π−∥1) > 0. By the irreducibility of P we can consider a Tn and δ > 0
satisfying the statement of Lemma 6.10.5. Note that π is an eigenvector of Tn with eigenvalue one. For η ∈ RN ,
we can write η = η+ − η−. Thus,

∥π∥1 = ∥πTn∥1
= ∥π+T

n − π−T
n∥1

≤ ∥π+T
n − δα1∥1 + ∥π−T

n − δα1∥1
(1)
≤ ∥π+T

n∥1 + ∥π−T
n∥1 − 2 ∥αδ1∥1

= ∥π+T
n∥1 + ∥π−T

n∥1 − 2αδN
(2)
≤ ∥π+∥1 + ∥π−∥1 − 2αδN
(3)= ∥π∥1 − 2αδN,

which is a contradiction for α > 0. In (1) we have used Lemma 6.10.5 to deduce that

∥π±T
n − δα1∥1 = ∥π±T

n∥1 − ∥δα1∥1 .
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In (2) we have used that ∥ηTn∥ ≤ ∥η∥1. In (3), we have used ∥π∥1 = ∥π+∥1 +∥π−∥1. Consequently, we establish
that π ∈ RN

+ . Therefore, by construction of the Tn it follows that

π(i) = (πTn) (i) ≥ ∥π∥1,

that is, all its entries are positive. For uniqueness, we suppose that π̃ ∈ RN
+ is another real left-eigenvector

with eigenvalue one. Moreover, we can assume that π̃ has positive entries and ∥π̃∥1 = 1. Then θ = π − π̃ is
another real left-eigenvector with eigenvalues one, and so its entries must all have the same sign by our previous
arguments. However, note that∑

i∈X
θ(i) =

∑
i∈X

π(i) −
∑
i∈X

π̃(i) = ∥π∥1 − ∥π̃∥1 = 0.

Hence, θ(i) = 0 for all i ∈ X , which implies that π = π̃.

Remark 6.10.7.

• One of the consequences of Theorem 6.10.6, is that any irreducible Markov chain on a finite state space
has an invariant probability measure.

• The specific π outlined in Theorem 6.10.6 is known as the Perron-Frobenius vector of P .

6.11 Solution to Exercises
Exercise 6.1.3

Solution.

• As P 0
ii = 1 for all i ∈ X it follows that i ↔ i.

• If i ↔ j then i → j and j → i, hence j ↔ i.

• If i ↔ j and j ↔ k, then there exists an n1 ∈ N such that Pn1
ij > 0 and an n2 ∈ N such that Pn2

jk > 0.
Therefore,

Pn1+n2
ik ≥ Pn1

ij P
n2
jk > 0

and so i → k. Similarly, k → i so that i ↔ k.

Exercise 6.1.6

Solution. Let i, j ∈ X be such that [i] ≤ [j]. Consider i′ ∈ [i] and j′ ∈ [j]. Then by Lemma 6.1.5 we have
j′ → i′ and thus [i′] ≤ [j′]. Therefore, ≤ is well-defined.

• As i → i it follows that [i] ≤ [i].

• If [i] ≤ [j] and [j] ≤ [k] then j → i and k → j. Therefore, k → i which implies that [i] ≤ [k].

• If [i] ≤ [j] and [j] ≤ [i] then i ↔ j so that [i] = [j].

Exercise 6.2.8
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Solution. Note from Lemma 6.2.6 that if i ∈ [j] then j → i so that Pj(Ti < ∞) > 0. Therefore,

Pµ(Tj < ∞) =
∑
i∈[j]

Pi(Tj < ∞)µ({i})

Lem. 6.2.7=
∑
i∈[j]

µ({i})

= 1.

Exercise 6.2.10

Solution. Proceed by induction on n.

• As T 0
j = 0, it follows that {

T 0
j ≤ k

}
= X ∈ Fk

for every k ∈ N. Therefore, T 0
j is a (Fk)∞

k=0-stopping time.

• Assume that Tm
j is a (Fk)∞

k=0-stopping time for m ≤ n − 1. Observe that
{
Tn

j ≤ k
}

= ∅ ∈ Fk for
k ≤ n− 1. Therefore, suppose that k ≥ n then

{
Tn

j ≤ k
}

=
k⋃

l=n−1

{Tn−1
j = l

}
∩

k⋃
p=l+1

{Xp = j}

 .

We know that {Xp = j} ∈ Fp ⊆ Fk and by the inductive assumption we know that
{
Tn−1

j = l
}

∈ Fl ⊆ Fk.
Therefore,

{
Tn

j ≤ k
}

∈ Fk, which means that Tn
j is a (Fk)∞

k=0-stopping time.

Exercise 6.8.2

Solution. Let Yk =
∑T k+1

j=T k+1 f(Xj), and consider g, h ∈ B(R). Without loss of generality suppose that k′ = k+n
for n ≥ 1. Then,

E(g(Yk)h(Yk′)) = E (E (g(Yk)h(Yk′)|FT k ))
SMP= Ei(g(Y0)h(Yn))
= Ei (Ei (g(Y0)h(Yn)|FT n))
(1)= Ei (g(Y0)Ei (h(Yn)|FT n))
SMP= Ei (g(Y0)Ei (h(Y0)))
= Ei(g(Y0))Ei(h(Y0))
SMP= E(g(Yk))E(h(Yk)),

where SMP denotes an application of the strong Markov property, and (1) follows as g(Y0) is FT n -measurable.
As g, h ∈ B(R) were arbitrary this shows the mutual independence of Yk and Yk′ . One easily extends the above
argument to show that

E

(
m∏

i=1
gi(Yi)

)
=

m∏
i=1

E(gi(Yi))
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where gi ∈ B(R) and m ∈ N. This then shows the independence of the random variables (Yk)k∈N. Moreover, for
any k ∈ N we have that

P(Yk ∈ A) = E(1A(Yk))
= E (E (1A(Yk)|FT k ))
SMP= Ei (1A(Y0))
= Pi(Y0 ∈ A)

where SMP denotes an application of the strong Markov property. Therefore, each Yk is identically distributed.
Hence, we have shown that the random variables

T k+1∑
l=T k+1

f(Xl) : k ∈ N


are independent and identically distributed.

Exercise 6.9.1

Solution. For any m ∈ Z, as µ is stationary with respect to P we note that

P(Xm ∈ A0, . . . Xm+n ∈ An) = P (X0 ∈ A0, . . . , Xn ∈ An) (6.11.1)

for any n ∈ N. Note that the the family of measures (µn)n∈N given by µn = Law(X0, . . . , Xn) is consistent.
Consequently, we can apply Theorem 3.2.7 to construct a stochastic process such that

• Law(Xn) = µ, and

• P(Xn+1|Xn = x) = P (X, a)

for n ∈ N, x ∈ X and A ∈ B(X ). Using (6.11.1) it is clear that we can extend this stochastic process to Z, with
the properties detailed above now holding for n ∈ Z, x ∈ X and A ∈ B as required.

Exercise 6.10.2

Solution. Let ηi =
∑∞

n=1 1{Xn=i}. Then as i ∈ X is a recurrent state it follows that Pi(ηi = ∞) = 1. Note that
by the Markov property we have

{ηi = ∞} = {Xn = i, for some n ≥ m}

for any m ∈ N. Observe that

1 = Pi(Xn = i, for some n ≥ m)

=
∑
k∈X

Pm
ik Pi(Xn = i, for some n ≥ m|Xm = k)

=
∑
k∈X

Pm
ik Pk(Ti < ∞)

≤
∑
k∈X

Pm
ik

= 1.

Therefore, for the k ∈ X for which Pm
ik ̸= 0 it follows that Pk(Ti < ∞) = 1. Hence, for j ∈ [i] we can let m ∈ N

be such that Pm
ij > 0 and deduce that Pj(Ti < ∞) = 1.
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7 Continuous State Space Markov Processes
We now generalise to complete separable metric spaces X , such as X = Rn or the infinite dimensional Banach
space X = C([0, 1]).

7.1 Weak Convergence
In the time-homogeneous setting, transition probabilities P (·, •) are such that for x ∈ X and A ∈ B(X ) we have

P (x,A) = P(Xn+1 ∈ A|Xn = x).

We can use P to act on functions and measures.

• On functions T∗ : Bb(X ) → Bb(X ) is given by (T∗f)(·) =
∫

X f(y)P (·,dy). Equivalently,

(T∗f)(x) = E(f(Xn+1)|Xn = x).

• On measures T ∗ : P(X ) → P(X ) is given by (T ∗µ)(•) =
∫

X P (y, •)µ(dy). Equivalently,

(T ∗µ)(A) =
∫

X
P(Xn+1 ∈ A|Xn = y)µ(dy).

Remark 7.1.1. In most cases P (•, A) = 0 for A = {y} a singleton. Therefore, notions developed in Section
6 regarding irreducibility, recurrence and transience do not generalise to this setting.

Henceforth, we will denote the set of bounded and continuous functions on X as Cb(X ).

Lemma 7.1.2. Let µ, µ′ ∈ P(X ) be such that∫
X
f dµ =

∫
X
f dµ′

for every f ∈ Cb(X ). Then µ = µ′.

As Cb(X ) can distinguish probability measures, it is natural to use them to define a notion of convergence.

Definition 7.1.3. A sequence of probability measures (µn)n∈N ⊆ P(X ) converges weakly to µ ∈ P(X ) if∫
X
f(x)µn(dx) n→∞−→

∫
X
f(x)µ(dx)

for every f ∈ Cb(X ).

Remark 7.1.4.

1. On P(X ) there exists a metric d(·, ·), known as the Levy-Prokhorov metric, that topologizes weak
convergence. That is, µn converges weakly to µ if and only if d(µn, µ) → 0.

2. Let (Zn)n∈N be a sequence of random variables, then Zn → Z almost everywhere implies Zn → Z in
probability which implies that Law(Zn) → Law(Z) weakly.

7.2 The Feller Property
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Definition 7.2.1. A transition probability P , or T , is Feller if T ∗ maps Cb(X ) ⊆ Bb(X ) into Cb(X ). That is,
T ∗ (Cb(X )) ⊆ Cb(X ). Moreover, P , or T , is strong Feller if T ∗(Bb(X )) ⊆ Cb(X ).

Remark 7.2.2. A transition probability P being Feller is equivalent to the map X → P(X ) given by x 7→
P (x, •) being continuous, where P(X ) is equipped with the topology of weak convergence. Indeed, let f ∈
Cb(X ) and let (xn)n∈N be a sequence converging to x ∈ X . Then

lim
n→∞

(Tf)(xn) = lim
n→∞

∫
X
f(y)P (xn,dy)

(1)=
∫

X
f(y)P (x, dy)

= (Tf)(x),

where (1) is justified either by the continuity of P with respect to the weak topology or by the Feller property
of T .

Lemma 7.2.3. Let f ∈ Bb (Rn) and g ∈ L1 (Rn), then f ⋆ g ∈ Cb (Rn), where

(f ⋆ g)(x) =
∫
Rn

f(y)g(x− y) dy.

Proof. Step 1: Show that ∥f ⋆ g∥L∞ ≤ ∥f∥L∞∥g∥L1 .
Observe that

|(f ⋆ g)(x)|
T.I
≤
∫
Rn

|f(y)||g(x− y)| dy

≤ ∥f∥L∞

∫
Rn

|g(x− y)| dy

(1)= ∥f∥∞∥g∥L1 ,

where the translational invariance of the Lebesgue measure is used in (1). Therefore, f ⋆ g is bounded.
Step 2: For g ∈ C∞

c (Rn) show that f ⋆ g ∈ Cb (Rn).
Let g ∈ C∞

c , then for any x, x′ ∈ Rn we have

(f ⋆ g)(x) − (f ⋆ g) (x′) =
∫
Rn

f(y) (g (x− y) − g (x′ − y)) dy.

By the continuity of g we know that g(x− y) − g (x′ − y) → 0 as x → x′. Moreover, we know that

|f(y) (g (x− y) − g (x′ − y))| ≤ 2∥f∥L∞∥g∥L∞ < ∞,

where the finiteness follows from the fact that f is bounded and g is continuous with compact support and so is
also bounded. Therefore, using the dominated convergence theorem,

|(f ⋆ g)(x) − (f ⋆ g) (x′)| → 0

as x → x′.
Step 3: Given g ∈ L1 (Rn), find a sequence (gn)n∈N ⊆ C∞

c (Rn) such that gn → g in L1 (Rn).
Recall that C∞

c (Rn) is dense in L1 (Rn). So for g ∈ L1 (Rn) there exists a sequence (gn)n∈N ⊆ C∞
c (Rn) such

that gn → g in L1 (Rn).
Step 4: Argue that f ⋆ gn → f ⋆ g in L∞ (Rn).
Let x ∈ Rn with (xn)n∈N ⊆ Rn such that xn → x. Note that

|(f ⋆ g)(x) − (f ⋆ g) (xn)| ≤|(f ⋆ g)(x) − (f ⋆ gk)(x)| + |(f ⋆ gk)(x) − (f ⋆ gk)(xn)| (7.2.1)
+ |(f ⋆ gk)(xn) − (f ⋆ g)(xn)|.
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Note that,

|(f ⋆ g)(x) − (f ⋆ gk)(x)| ≤ ∥f∥L∞

∫
Rn

|g(x) − gn(x)| dx

= ∥f∥L∞∥g − gn∥L1 .

and,
|(f ⋆ gk)(xn) − (f ⋆ g)(xn)| ≤ ∥f∥L∞∥g − gn∥L1 .

Therefore, given an ϵ > 0 there exists an N1 ∈ N such that

|(f ⋆ g)(x) − (f ⋆ gk)(x)| + |(f ⋆ gk)(xn) − (f ⋆ g)(xn)| < 2ϵ
3

for all n ≥ N1. Using step 3, there exists a δ > 0 such that for |x− x′| < δ we have

|(f ⋆ gk)(x) − (f ⋆ gk)(xn)| < ϵ

3 .

As xn → x we can choose an N2 ∈ N such that |x−xn| < δ for all n ≥ N2. Therefore, for all n ≥ max(N1, N2)
we have

|(f ⋆ g)(x) − (f ⋆ g) (xn)| ≤ 2ϵ
3 + ϵ

3 = ϵ,

which means that f ⋆ g is continuous. Recall that f ⋆ g is bounded from step 1 and so f ⋆ g ∈ Cb (Rn).

Consequently, we obtain a criterion for the strong Feller property.

Corollary 7.2.4. Suppose X = Rn. If there exists g ∈ L1 (Rn) such that for every f ∈ Bb(X ) we have
Tf = f ⋆ g, then T is strong Feller.

Proof. Follows directly from Lemma 7.2.3.

Remark 7.2.5. From Corollary 7.2.4 it follows that if a process has a law which is absolutely continuous with
an integrable density, then the operator T is strong Feller.

Example 7.2.6.

1. For X = R consider the transition probability

P (x, ·) =
{
δ1 x > 0
δ0 x ≤ 0.

Then

(T∗f)(x) =
{
f(1) x > 0
f(0) x ≤ 0.

Hence, P is not Feller.

2. Let X be a homogeneous Markov process given by Xn = Xn−1 + Yn where (Yn)∞
n=1 are independent

and identically distributed with law µ.

(a) If µ is the law taking values ±1 with mean zero, then P is Feller but not strong Feller. To see this
note that

(T∗f)(x) = f(x+ 1) + f(x− 1)
2 .
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(b) If µ = N (0, 1), then P is strong Feller. To see this note that

(T∗f)(x) = 1√
2π

∫
f(y)e− (x−y)2

2 dy,

hence one can conclude by using Corollary 7.2.4.

Definition 7.2.7. Let X be a separable metric space. Given µ ∈ P(X ) the support of µ denoted supp(µ), is
the intersection of all closed sets C ⊆ X with µ(C) = 1.

Lemma 7.2.8. Given a separable metric space X and µ ∈ P(X ) one has

supp(µ) = {x ∈ X : µ(B(x, ϵ)) > 0, for every ϵ > 0} .

Proof. Let x ∈ E := {x ∈ X : µ(B(x, ϵ)) > 0, for every ϵ > 0}. Let C be a closed set with µ(C) = 1. Suppose
that x ̸∈ C, so that there exists an ϵ > 0 such that B(x, ϵ) ̸⊆ C. It follows that

µ(C ∪B(x, ϵ)) = µ(C) + µ(B(x, ϵ)) > 1,

which contradicts µ being a probability measure. Hence, x ∈ C which implies that E ⊆ supp(µ). Now consider
x ∈ supp(µ) and suppose that there exists an ϵ > 0 for which µ(B(x, ϵ)) = 0. For any closed set C with
µ(C) = 1 we know that x ∈ C. In particular, C ∩B(x, ϵ)c is also closed and such that

µ(C ∩B(x, ϵ)c) = µ(C) + µ (B(x, ϵ)c) − µ (C ∪B(x, ϵ)c) ≥ 1 + 1 − 1 = 1.

Hence, C∩B(x, ϵ)c is a closed set with µ (C ∩B(x, ϵ)c) = 1, but x ̸∈ C∩B(x, ϵ)c which contradicts x ∈ supp(µ).
Therefore, µ(B(x, ϵ)) > 0 for all ϵ > 0 and so supp(µ) ⊆ E.

Proposition 7.2.9. For a separable metric space X and µ ∈ P(X ) it follows that µ(supp(µ)) = 1. In other
words, supp(µ) is the smallest closed set of X with full µ-measure.

Proof. The set V := X \ supp(µ) is separable as X is separable. Let Q ⊆ V be countably dense in V . By Lemma
7.2.8 we know that for all q ∈ Q there exists an ϵ̃q > 0 such that µ(B(q, ϵ̃q)) = 0. In particular, µ(B(q, ϵ)) = 0
for all ϵ < ϵ̃q. Hence, as V is open we can choose ϵq > 0 such that µ(B(q, ϵq)) = 0 and B(q, ϵq) ⊆ V . As Q is
dense we have V ⊆

⋃
q∈Q B(q, ϵq), hence, as Q is countable it follows by countable additivity that

µ(V ) ≤
∑
q∈Q

B(q, ϵq) = 0.

Hence, µ(supp(µ)) = 1. Therefore, by construction, supp(µ) is the smallest closed set with full support.

Exercise 7.2.10. Recall that µ, ν ∈ P(X ) are mutually singular, denoted µ ⊥ ν, if there exists A ∈ B(X )
such that µ(A) = 1 and ν(A) = 0.

1. Show that supp(µ) ∩ supp(ν) = ∅ implies that µ ⊥ ν.

2. Show that µ and ν being mutually singular does not guarantee that supp(µ) ∩ supp(ν) = ∅.

Theorem 7.2.11. Let µ, ν ∈ P(X ) be invariant for a transition operator T . Suppose that T has the strong
Feller property, then µ ⊥ ν implies that supp(µ) ∩ supp(ν) = ∅.
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Proof. Due to mutual singularity there exists a measurable set F ∈ B(X ) such that µ(F ) = 1 and ν(F ) = 0.
Let ψ = T1F , so that 0 ≤ ψ ≤ 1 and ψ ∈ Cb(X ) by the strong Feller property of T . By the invariance of ν it
follows that ∫

X
ψ(y) ν(dy) =

∫
X

1F (y) ν(dy) = ν(F ) = 0. (7.2.2)

Similarly, ∫
X
ψ(y)µ(dy) =

∫
X

1F (y)µ(dy) = µ(F ) = 1. (7.2.3)

Consider the disjoint closed sets A = ψ−1({0}) and B = ψ−1({1}). As 0 ≤ ψ ≤ 1, by (7.2.2) we must have
ν(A) = 1 and similarly by (7.2.3) µ(B) = 1. Consequently, supp(ν) ⊆ A and supp(µ) ⊆ B. As A and B are
disjoint it follows that supp(ν) ∩ supp(µ) = ∅.

7.3 Existence of Invariant Probability Measures
For continuous state spaces, the Krylov-Bogoliubov theorem, Theorem 7.3.7, is an argument for the existence of
invariant measures.

Definition 7.3.1. Let A be a topological space.

1. A subset K ⊆ A is (sequentially) compact if every sequence (an)n∈N ⊆ K has a convergent subsequence
in K.

2. A subset J ⊆ A is relatively compact if its closure is compact.

As we are only interested in the existence of invariant measures, it will be sufficient to consider relative compact-
ness.

Definition 7.3.2. A subset M ⊆ P(X ) is tight if for every ϵ > 0 there exists a compact set Kϵ ⊆ X such that

µ (Kϵ) > 1 − ϵ

for all µ ∈ M.

Example 7.3.3. Let M = (δn)n∈N for δn the delta measure at n ∈ N. Then for every compact set K ⊆ R
there exists an n ∈ N such that n ̸∈ K. Therefore, supn∈N(δn(R \K)) = 1, meaning M is not tight.

Lemma 7.3.4. If M ⊆ P(X ) is finite then it is tight.

Proof. As the finite union of compact sets is compact, it suffices to consider M = {µ}. Since X is separable it
has a countably dense subset, which we enumerate as (rk)∞

k=1 ⊆ X . Let B(x, δ) = {y ∈ X : d(x, y) < δ}, then
∞⋃

k=1
B

(
rk,

1
n

)
= X

for every n ≥ 1. Which means that

lim
N↗∞

µ

(
N⋃

k=1
B

(
rk,

1
n

))
= 1.

Let ϵ > 0. For each m ≥ 1 we can find an Nm ∈ N such that

µ

(
Nm⋃
k=1

B

(
rk,

1
m

))
> 1 − 2−mϵ.

81



If X is locally compact, then one can take K = J̄ where

J =
N1⋃

k=1
B(rk, 1).

If X is not locally compact, then take

J =
∞⋂

m=1

Nm⋃
k=1

B

(
rk,

1
m

)
.

In either case, J is totally bounded and so J̄ is compact. In particular,

µ (Jc) <
∞∑

m=1
2−mϵ = ϵ.

Therefore, we set K = J̄ to deduce that

µ(K) ≥ µ(J) > 1 − ϵ

for all µ ∈ M.

It turns out that we can use tightness to show relative compactness.

Theorem 7.3.5 (Prokhorov). Let X be a complete separable metric space. Then M ⊆ P(X ) is relatively
compact if and only if M is tight.

In practice, to obtain subsequential limits one often tries to show tightness. Moreover, as P(X ) with weak
convergence is metrizable, we can go from convergent subsequences to the convergence of the full sequence if
the limits of subsequential limits are unique.

Exercise 7.3.6. Suppose (µn)n∈N ⊆ P(X ) is tight, and every subsequence has the same weak limit µ. Show
that µn → µ weakly.

Theorem 7.3.7 (Krylov-Bogoliubov). Let P be a Feller transition probability, and suppose that there exists
an x0 ∈ X such that sequence of measures (Pn(x0, •))∞

n=1 is tight. Then there exists an invariant probability
measure for P .

Proof. Let µN ∈ P(X ) be given by

µN (•) = 1
N

N∑
n=1

Pn(x0, •).

By the tightness of (Pn(x0, •))∞
n=1, given an ϵ > 0 there exists a compact set Kϵ ⊆ R such that

sup
n≥1

(Pn (x0,R \Kϵ)) < ϵ.

Consequently,

sup
N≥1

(µN (R \Kϵ)) = sup
N≥1

(
1
N

N∑
n=1

Pn(x0,R \Kϵ)
)

≤ sup
N≥1

(
1
N

N∑
n=1

ϵ

)
= sup

N≥1
(ϵ)

= ϵ.
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Hence, the set of measures (µN )N∈N is tight. Therefore, there exists a subsequence (µNk
)k∈N and µ ∈ P(X )

such that µNk
→ µ weakly. Since P is Feller, T∗ϕ ∈ Cb(X ) for every ϕ ∈ Cb(X ), hence,∫

X
T∗ϕdµ = lim

k→∞

∫
X
T∗ϕ dµNk

= lim
k→∞

1
Nk

Nk∑
n=1

∫
X
ϕ(y)Pn+1(x0,dy)

= lim
k→∞

(
1
Nk

Nk∑
n=1

∫
X
ϕ(y)Pn(x0,dy) + 1

Nk

∫
X
ϕ(y)PNk+1(x0,dy) − 1

Nk

∫
X
ϕ(y)P (x0,dy)

)

= lim
k→∞

(∫
X
ϕ dµNk

+ 1
Nk

∫
X
ϕ(y)

(
PNk+1(x0,dy) − P (x0,dy)

))
= lim

k→∞

∫
X
ϕdµNk

(1)=
∫

X
ϕ dµ

where (1) follows by the weak convergence of the (µNk
)k∈N. Therefore,∫

X
ϕd (T ∗µ) Ex 4.2.14=

∫
X
T∗ϕ dµ

=
∫

X
ϕdµ

for all ϕ ∈ Cb(X ). Hence, µ is an invariant measure for P .

Corollary 7.3.8. Let X be a compact state space. Then a Feller transition function P has an invariant
probability measure.

Proof. Note that P(X ) is compact as X is compact. Hence, the tightness of measures follows. Therefore, we
can apply Theorem 7.3.7 to conclude.

Example 7.3.9.

1. When X is discrete we note that Bb(X ) = Cb(X ), which means that every transition probability is strong
Feller.

2. When X is finite it follows from statement 1 and Corollary 7.3.8 that every transition function P has an
invariant probability measure.

Exercise 7.3.10. Suppose X is a Markov process on Rn with Feller transition function P . Moreover, suppose
that there exists G : R+ → (0,∞) an increasing function with limr→∞ G(r) = ∞ with

sup
n∈N

(Ex (G(|Xn|))) < ∞

for some x ∈ X . Then there exists an invariant probability measure for P .

Example 7.3.11. Consider a process (Xn)∞
n=0, where E(|X0|) < ∞, Xn = aXn−1 + ξn for n ≥ 1 where

a ∈ (0, 1) and (ξn)n∈N is a sequence of independent and identically distributed random variables with E(|ξn|) =
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b < ∞. Then for n ≥ 1 we have

E(|Xn|) = aE(|Xn−1|) + E(|ξn|)
≤ aE(|Xn−1|) + b

≤ a (aE(|Xn−2|) + b) + b

...

≤ b

n−1∑
k=0

ak + E(|X0|)

≤ b

1 − a
+ E(|X0|).

Therefore, by Exercise 7.3.10 with G(x) = x, it follows that the process (Xn)∞
n=0 has an invariant probability

measure.

We can systematize the ideas of Exercise 7.3.10 using Lyapunov functions.

Lemma 7.3.12. Let P be a transition function on X and let V : X → [0,∞] be a measurable function.
Suppose that there exists a γ ∈ (0, 1) and C > 0 such that

(TV )(x) ≤ γV (x) + C. (7.3.1)

Then
TnV (x) ≤ γnV (x) + C

1 − γ
.

Proof. Iterating (7.3.1) gives

TnV (x) =
(
T ◦ Tn−1V

)
(x)

≤ γTn−1V (x) + C

≤ γ2Tn−2V (x) + γC + C

...

≤ γnV (x) + C

n−1∑
j=0

γj

≤ γnV (x) + C

∞∑
j=0

γj

= γnV (x) + C

1 − γ
.

Definition 7.3.13. Let X be a complete separable metric space and let P be a transition probability on X . A
Borel measurable function V : X → [0,∞] is called a Lyapunov function for P if it satisfies the following.

1. V −1 ([0,∞)) ̸= ∅.

2. For every a ∈ [0,∞) the set Ka = {y : V (y) ≤ a} is compact.

3. There exists a γ ∈ (0, 1) and C > 0 such that

(TV )(x) ≤ γV (x) + C.
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Theorem 7.3.14. If a transition function P is Feller and has a Lyapunov function, then it has an invariant
measure.

Proof. Fix x0 ∈ X such that V (x0) ̸= ∞. Then for a > 0 we have

sup
n∈N

(Pn (x0,R \Ka)) ≤ sup
n∈N

(∫
X

V (y)
a

Pn(x0,dy)
)

= sup
n∈N

(TnV (x0))

Lem 7.3.12.
≤ 1

a

(
V (x0) + C

1 − γ

)
a→∞−→ 0.

Hence, the family of measures (Pn(x0, •))n∈N is tight and so we can conclude by applying Theorem 7.3.7.

Proposition 7.3.15. Let P be a transition probability on X , and let V : X → [0,∞) be a measurable function
which satisfies

(TV )(x) ≤ γV (x) + C

for γ ∈ (0, 1) and C > 0. Then for every P -invariant probability measure π, we have∫
X
V (x)π(dx) ≤ C

1 − γ
.

Proof. Let M ≥ 0 and let VM (x) = V (x) ∧ M . Note that r 7→ r ∧ M is concave, so we can apply Jensen’s
inequality to get ∫

X
VM (y)P (x, dy) ≤

(∫
X
V (y)P (x, dy)

)
∧M

= (γV (x) + C) ∧M.

Iterating this bound it follows that∫
X
VM (y)π(dx) (1)=

∫
X
VM (y)Tnπ(dx)

=
∫

X
(TnVm) (y)π(dx)

≤
∫

X

(
γnV (x) + C

1 − γ

)
∧M π(dx)

for n ≥ 1. In (1) we use the fact that π is P -invariant. By taking n → ∞ we get∫
X
VM (y)π(dx) ≤ C

1 − γ
∧M ≤ C

1 − γ
.

Then taking M → ∞ we can apply the monotone convergence theorem to deduce that∫
X
V (y)π(dx) ≤ C

1 − γ
.

Remark 7.3.16. Theorem 7.3.14 gives us sufficient conditions a test function with respect to a transition
probability P ought to have to ensure the existence of a P -invariant probability measure. Proposition 7.3.15
considers weaker test functions, and hence, cannot guarantee the existence of P -invariant probability measures.
We note that the test functions in Proposition 7.3.15 are not necessarily Lyapunov functions as their image is not
the extended non-negative real line, and there are no conditions on the compactness of sub-level sets. However,
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if we assume that such P -invariant probability measures exist then the weaker test functions considered in
Proposition 7.3.15 can still provide information on the behaviour of this P -invariant probability measure.

7.4 Random Dynamical Systems
Recall that a random dynamical system is a Markov process X = (Xn)∞

n=0 where X0 = ξ0 and Xn+1 = F (Xn, ξn)
for (ξj)∞

j=0 a sequence of independent and identically distributed random variables, with ν = Law(ξi), on a
measurable space Y, and F : X × Y → X a measurable function.

Remark 7.4.1. It turns out that any discrete-time Markov process can be formulated as a random dynamical
system. However, in practice, the functions and random variables involved may be complicated.

7.4.1 Existence of Invariant Measures

To determine the existence of an invariant measure of a random dynamical system we need to investigate the
Feller property and the tightness of the n-step transition probabilities. For the tightness, we will utilise Lyapunov
functions.

Exercise 7.4.2. Suppose that X = (Xn)∞
n=0 is a random dynamical system. Show that

(Tf)(x) =
∫

Y
f(F (x, y))ν(dy)

for any f ∈ Bb(X ).

Theorem 7.4.3. Suppose that X = (Xn)∞
n=0 is a random dynamical system and that there is a measurable

set A ⊆ Y with ν(A) = 1 and x 7→ F (x, y) continuous for every y ∈ A. Then T is Feller.

Proof. Let ϕ ∈ Cb(X ) and suppose that (xn)n∈N ⊆ X is convergent to x ∈ X . Then the continuity of ϕ, and
the almost everywhere continuity of F (·, y), we have that

ϕ(F (xn, y)) → ϕ(F (x, y))

for y ∈ Y, ν almost everywhere. So by Exercise 7.4.2 it follows that

lim
n→∞

(Tϕ)(xn) = lim
n→∞

∫
ϕ(F (xn, y)) ν(dy)

(1)=
∫

lim
n→∞

ϕ(F (xn, y)) ν(dy)

=
∫
ϕ(F (x, y)) ν(dy)

= (Tϕ)(x),

where (1) follows as ϕ is bounded. This implies that Tϕ ∈ Cb(X ) and T is Feller.

Theorem 7.4.4. Suppose that X = (Xn)∞
n=0 is a random dynamical system. Suppose that there is a

measurable set A ⊆ Y with ν(A) = 1 such that x 7→ F (x, y) continuous for every y ∈ A. Furthermore,
suppose that there is some Borel measurable function V : X → [0,∞], with compact sub-level sets, V is finite
at some point, and ∫

Y
V (F (x, y)) ν(dy) ≤ γV (x) + C

for all x ∈ X , for some γ ∈ (0, 1) and C > 0. Then X has at least one invariant probability measure.
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Proof. From Theorem 7.4.3 we have that T is Feller, and we note that V is a Lyapunov function. Therefore, we
can conclude by applying Theorem 7.3.14.

We have here established conditions for the existence of invariant measures for random dynamical systems. We
will now investigate the uniqueness of these invariant measures. For this, we will use the contraction properties
of the function F .

7.4.2 Uniqueness of Invariant Probability Measures via Contraction

Definition 7.4.5. For i = 1, 2 let pi : X 2 → X be the projection maps given by (x1, x2) 7→ xi. For
π1, π2 ∈ P(X ), a measure µ ∈ P

(
X 2) is a coupling of π1 and π2 if

(pi)∗µ = πi

for i = 1, 2. That is, if Z = (X,Y ) ∼ µ, then X ∼ π1 and Y ∼ π2.

Lemma 7.4.6. Let ∆ = {(x, x) ∈ X × X : x ∈ X }. If there exists a coupling µ ∈ P
(
X 2) of π1, π2 ∈ P(X )

with µ(∆) = 1, then π1 = π2. In particular, if∫
X ×X

1 ∧ d(x, y)µ(dx, dy) = 0 (7.4.1)

where d is the metric on X , then π1 = π2.

Proof. Let A ∈ B(X ), then

π1(A) = µ(A× X )
(⋆)= µ((A× X ) ∩ ∆)
(⋆⋆)= µ((X ×A) ∩ ∆)
(⋆)= µ(X ×A)
= π2(A),

where (⋆) follows from the fact that µ(∆) = 1, and (⋆⋆) follows from how ∆ is constructed. In particular, note
that 1 ∧ d(x, y) ≥ 0 and

{(x, y) ∈ X × X : 1 ∧ d(x, y) = 0} = ∆.

Hence, by (7.4.1) it follows that µ(∆) = 1. Therefore, by the above arguments, π1 = π2.

Lemma 7.4.7. Let (µn)n∈N be a family of couplings of π1, π2 ∈ P(X ), then (µn)n∈N is tight.

Proof. Given an ϵ > 0, there exists compact sets K1,K2 ⊆ X such that

πi(Ki) > 1 − ϵ

2
for i = 1, 2. Hence,

µn

(
X 2 \K1 ×K2

)
≤ µn ((X \K1) × X ) + µn (X × (X \K2))
= π1 (Kc

1) + π2 (Kc
2)

< ϵ,

which shows that (µn)n∈N is tight.

87



Lemma 7.4.8. Let (νn)n∈N be a sequence of measures on X which converges weakly to a measure ν. Then
for any continuous map ϕ : X → Y, it follows that ϕ∗νn converges weakly to ϕ∗ν.

Proof. Let f ∈ Cb(Y). Then ∫
Y
f (dϕ∗νn) =

∫
X

(f ◦ ϕ) dνn

n→∞−→
∫

(f ◦ ϕ) dν

=
∫
f d(ϕ∗ν)

where the convergence follows as f ◦ ϕ ∈ Cb(X ) and νn converges weakly to ν.

Lemma 7.4.9. Let (µn)n∈N be a sequence of couplings of π1, π2 ∈ P(X ) converging weakly to µ. Then µ is
a coupling of π1 and π2.

Proof. The projection maps pi : X 2 → X for i = 1, 2 are continuous functions. So by Lemma 7.4.8 it follows
that (pi)∗µn converges weakly to (pi)∗µ. By construction (pi)∗µn = πi, so∫

X
f dπi =

∫
X
f d ((pi)∗µ)

for all f ∈ Cb(X ). Hence, by Lemma 7.1.2 it follows that (pi)∗µ = πi, which implies that µ is a coupling.

Remark 7.4.10. Lemma 7.4.7 along with Theorem 7.3.5 shows that the set of all couplings is relatively compact.
Lemma 7.4.9 shows that the set of couplings is closed, and hence the set of all couplings for π1, π2 ∈ P(X ) is
compact.

Definition 7.4.11. Let X0 and X ′
0 be random dynamical systems driven by the independent and identically

distributed random variables (ξn)∞
n=0. Then the synchronized coupling Z = (X,X ′) is the Markov process on

X × X where
Zn+1 =

(
Xn+1, X

′
n+1
)

= (F (Xn, ξn), F (X ′
n, ξn))

and µn = Law(Zn).

Lemma 7.4.12. In the setting of Definition 7.4.11 suppose that for some γ ∈ (0, 1) we have∫
X
d (F (x, y), F (x′, y)) ν(dy) ≤ γd (x, x′)

where d is the metric on X . Then for the synchronized coupling we have

lim
n→∞

E (1 ∧ d (Xn, X
′
n)) = lim

n→∞

∫
X

1 ∧ d (x, x′) µn (dx, dx′) = 0.

Proof. Note that we can write

E (1 ∧ d (Xn, X
′
n)) = E

(
E
(
1 ∧ d (Xn, X

′
n) |Xn−1, X

′
n−1
))
.

88



Observe that

E
(
1 ∧ d (Xn, X

′
n) |Xn−1, X

′
n−1
)

≤ 1 ∧ E
(
d (Xn, X

′
n) |Xn−1, X

′
n−1
)

= 1 ∧ E
(
d
(
F (Xn−1, ξn−1) , F

(
X ′

n−1, ξn−1
))

|Xn−1, X
′
n−1
)

= 1 ∧
∫

Y
d
(
F (Xn−1, ξn−1) , F

(
X ′

n−1, ξn−1
))
ν(dy)

≤ 1 ∧ γd
(
Xn−1, X

′
n−1
)
.

Hence,
E (1 ∧ d (Xn, X

′
n)) ≤ E (1 ∧ γd (Xn, X

′
n)) .

Iterating this argument we get

E
(
1 ∧ γd

(
Xn−1, X

′
n−1
))

= E
(
E
(
1 ∧ γd

(
Xn−1, X

′
n−1
)

|Xn−2, X
′
n−2
))

≤ E
(
1 ∧ γ2d

(
Xn−2, X

′
n−2
))

...
≤ E (1 ∧ γnd (X0, X

′
0)) .

Therefore,
E
(
1 ∧ γd

(
Xn−1, X

′
n−1
))

≤ E (1 ∧ γnd (X0, X
′
0)) n→∞−→ 0.

Theorem 7.4.13. In the setting of Definition 7.4.11 suppose that for some γ ∈ (0, 1) we have∫
X
d (F (x, y), F (x′, y)) ν(dy) ≤ γd (x, x′)

where d is the metric on X . Then the random dynamical system has at most one invariant probability measure.

Proof. Let π1 and π2 be invariant distributions for a random dynamical system. Let Law (X0, X
′
0) = π1 ⊗ π2,

such that Law(Xn) = π1 and Law (X ′
n) = π2 by their invariant property. Then µn = Law (Xn, X

′
n) is a coupling

of π1 and π2. Moreover, it is a synchronized coupling as X0 and X ′
0 are independent. As we know the set of

couplings is compact there exists a subsequence (µnk
)k∈N weakly converging to a coupling µ ∈ P

(
X 2). As each

µn is a synchronized coupling, using Lemma 7.4.12 we know that

lim
n→∞

∫
X

1 ∧ d (x, x′) µn (dx, dx′) = 0.

In particular, by the boundedness and continuity of 1 ∧ d(·, ·) it follows that∫
X

1 ∧ d (x, x′) µ (dx, dx′) = 0.

Hence, we deduce that π1 = π2 using Lemma 7.4.6.

Example 7.4.14. Recall the random dynamical system from Example 7.3.11. Observe that

E (|F (x, y) − F (x′, y)|) = E (a |x− x′|) = a |x− x′| ,

so that by Theorem 7.4.13 this process has at most one invariant probability measure. In Example 7.3.11 it
was shown that an invariant measure does exist, hence this random dynamical system has exactly one invariant
probability measure.
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7.5 Uniqueness of Invariant Probability Measures via Minorisation
Uniqueness via minorization is a probabilistic argument for the uniqueness of invariant probability measures. It is
useful to also understand uniqueness arguments from this perspective as the random dynamical system formulation
of a process may involve complicated functions and random variables.

Definition 7.5.1. Let µ, ν be positive measures on a measurable space Ω. Suppose that µ, ν ≪ η, then

∥µ− ν∥TV :=
∫

Ω

∣∣∣∣dµdη − dν
dη

∣∣∣∣ dη.

Remark 7.5.2.

1. The existence of η in Definition 7.5.1 is not restrictive as η = µ+ ν is such that µ, ν ≪ η. Furthermore,
Definition 7.5.1 is independent of the choice η. One can see this, as for η such that µ, ν ≪ η then
(µ+ ν) ≪ η, so ∫

Ω

∣∣∣∣dµdη − dν

dη

∣∣∣∣ dη =
∫

Ω

∣∣∣∣ dµ
d(µ+ ν) − dν

d(µ+ ν)

∣∣∣∣ d(µ+ ν)
dη dη

=
∫

Ω

∣∣∣∣ dµ
d(µ+ ν) − dν

d(µ+ ν)

∣∣∣∣ d(µ+ ν).

2. Note how Definition 7.5.1 contains the definition of the total variation for the discrete case, given in
Lemma 6.6.3, as one can just take η to be the measure that is 1 at each singleton point of the discrete
space Ω.

Exercise 7.5.3. Show that if µ and ν are probability measures then Definition 7.5.1 gives

∥µ− ν∥TV = 2 sup ({|µ(A) − ν(A)| : A ⊆ Ω, measurable}) .

Lemma 7.5.4. Let a, b ≥ 0 then |a− b| = a+ b− 2a ∧ b.

With µ, ν and η as in Definition 7.5.1 and using Lemma 7.5.4 it follows that∣∣∣∣dµdη − dν
dη

∣∣∣∣ = dµ
dη + dν

dη − 2
(

dµ
dη ∧ dν

dη

)
. (7.5.1)

Definition 7.5.5. For positive measures µ and ν let µ ∧ ν be the positive measure given by

(µ ∧ ν)(A) =
∫

A

(
dµ

d(µ+ ν) ∧ dν
d(µ+ ν)

)
d(µ+ ν).

The measure µ ∧ ν constructed in Definition 7.5.5 is the minimum of µ and ν and so can be thought of as their
intersection.
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Figure 11: An illustration of the measure η = µ ∧ ν as constructed in Definition 7.5.5 from measures µ and ν

Lemma 7.5.6. For µ, ν ∈ P(Ω) we have

∥µ− ν∥TV = 2 (1 − (µ ∧ ν)(Ω)) .

Proof. Using (7.5.1) it follows that

∥µ− ν∥TV =
∫

Ω

∣∣∣∣dµdη − dν
dη

∣∣∣∣ dη

=
∫

Ω

dµ
dν + dν

dη − 2
(

dµ
dη ∧ dν

dη

)
dη

= 1 + 1 − 2 (µ ∧ ν) (Ω)
= 2 (1 − (µ ∧ ν)(Ω)) .

Lemma 7.5.7. Let µ, ν ∈ P(Ω) be distinct and let

µ̄ = µ− (µ ∧ ν)
1
2 ∥µ− ν∥TV

and
ν̄ = ν − (µ ∧ ν)

1
2 ∥µ− ν∥TV

.

Then µ̄, ν̄ ∈ P(Ω) with
µ− ν = 1

2∥µ− ν∥TV (µ̄− ν̄) . (7.5.2)

Proof. The equality (7.5.2) is immediate. Observe that

(µ− (µ ∧ ν))(A) =
∫

A

dµ
d(µ+ ν) −

(
dµ

d(µ+ ν) ∧ dν
d(µ+ ν)

)
d(µ+ ν) ≥ 0

and so µ̄ and ν̄ are positive measures. Moreover, by Lemma 7.5.6 we have

1
2∥µ− ν∥TV = 1 − (µ ∧ ν)(Ω)

= µ(Ω) − (µ ∧ ν)(Ω)
= ν(Ω) − (µ ∧ ν)(Ω)

and so µ̄(Ω) = ν̄(Ω) = 1 which implies that µ̄, ν̄ ∈ P(Ω).

Lemma 7.5.8. Let T be a linear operator on measures defined on Ω such that T (P(Ω)) ⊆ P(Ω). Then for
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any µ, ν ∈ P(Ω) we have

∥Tµ− Tν∥TV = 1
2∥µ− ν∥TV ∥T µ̄− T ν̄∥TV ≤ ∥µ− ν∥TV. (7.5.3)

Proof. Note by the linearity of T that Tµ = T µ̄. Thus, applying T to both sides of (7.5.2) it follows that

∥Tµ− Tν∥TV = 1
2∥µ− ν∥TV ∥T µ̄− T ν̄∥TV .

As T (P(Ω)) ⊆ P(Ω), we can apply the triangle inequality to get that ∥T µ̄− T ν̄∥TV ≤ 2. Therefore,

∥Tµ− Tν∥TV = 1
2∥µ− ν∥TV ∥T µ̄− T ν̄∥TV ≤ ∥µ− ν∥TV.

Remark 7.5.9. The transition operator, T , of a time homogeneous Markov chain, namely

(Tµ)(A) =
∫

X
P (x,A)µ(dx)

satisfies the requirements of Lemma 7.5.8.

Definition 7.5.10. A transition probability P is minorized by η ∈ P(X ) with constant α > 0 if

P (x,A) ≥ αη(A)

for all x ∈ X and A ∈ B(X ).

Remark 7.5.11. A transition probability being minorized can be thought of as the continuous analogue of a
stochastic matrix being irreducible. Indeed the property of minorization plays an equivalent role in showing the
uniqueness of invariant probability measures for continuous state space Markov chains.

Exercise 7.5.12. Let (µn)n∈N ⊆ P(Ω). Show that η =
∑∞

n=1
1

2nµn ∈ P(X ).

Lemma 7.5.13. The metric space (P(Ω), ∥ · ∥TV) is a complete.

Proof. Let (µn)n∈N ⊆ P(Ω) be a Cauchy sequence in ∥ · ∥TV. Using Exercise 7.5.12 we know that η =∑∞
n=1 2−nµn ∈ P(X ). As µn ≪ η for all n ∈ N, it follows that

∥µm − µn∥TV =
∥∥∥∥dµm

dη − dµn

dη

∥∥∥∥
L1(η)

.

Therefore,
(

dµn

dη

)
n∈N

is L1(η)-Cauchy. Since L1(η) is complete, we know that
(

dµn

dη

)
n∈N

has an L1(η)-limit f
with f ≥ 0 and ∥f∥L1(η) = 1. Setting µ ∈ P(X ) to be dµ

dη = f it follows that µn → µ in ∥ · ∥TV.

Theorem 7.5.14. Let P be a transition probability on X and suppose P is minorized by η ∈ P(X ) with
constant α ∈ (0, 1), then the following hold.

1. P has a unique invariant probability measure π.
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2. For any µ, ν ∈ P(X ) it follows that

∥Tnµ− Tnν∥TV ≤ (1 − α)n∥µ− ν∥TV.

Proof. Recall that (P(Ω), ∥ · ∥TV) is a complete metric space, from Lemma 7.5.13. Hence, as statement 2 shows
that T is a strict contraction we can show statement 1 by using Banach’s fixed point theorem. To show statement
2 we note that for any measure λ ∈ P(X ) and A ∈ B(X ) we have

(Tλ)(A) =
∫

X
P (x,A)λ(dx)

≥
∫

X
αη(A)λ(dx)

= αη(A).

Hence, for any λ ∈ P(X ) it follows that

1
1 − α

(Tλ− αη) ∈ P(X ).

Thus, for any µ, ν ∈ P(X ) we have

∥Tµ− Tν∥TV = (1 − α)
∥∥∥∥Tµ− αη

1 − α
− Tν − αη

1 − α

∥∥∥∥
TV

≤ (1 − α)(2).

Using (7.5.3) it follows that

∥Tµ− Tν∥TV = 1
2∥µ− ν∥TV ∥T µ̄− T ν̄∥TV

≤ 1
2∥µ− ν∥TV (2(1 − α))

= (1 − α)∥µ− ν∥TV.

Iterating this we arrive at statement 2.

Corollary 7.5.15. Under the assumptions of Theorem 7.5.14, let π, µ ∈ P(X ) with Tπ = π. Then

∥Tnµ− π∥TV ≤ (1 − α)n∥µ− π∥TV.

7.6 P -Invariant Sets
Now we introduce a continuous analogue of closed communication classes.

Definition 7.6.1. Let P be a transition function on X , then A ∈ B(X ) is P -invariant if P (x,A) = 1 for every
x ∈ A.

Exercise 7.6.2. If A ∈ B(X ) is P -invariant, and X is a Markov process with transition function P and initial
distribution π ∈ P(X ), then

P(X0 ∈ A, . . . ,Xn ∈ A) = π(A).

If A ⊆ X is closed, and X is a complete separable metric space, then A is a complete separable metric space.
Thus, we can think of A as being a possible state space. Note that we can extend any π̃ ∈ P(A) to an element
π ∈ P(X ) by letting

π(F ) = π̃(F ∩A)
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for all F ∈ B(X ). Similarly, given π ∈ P(X ) we can restrict π to a measure, π̃, on A. Namely, π̃ := π|B(A).
However, it may not be the case that π̃ is a probability measure. If A is P -invariant then we can restrict a
transition function P on X to a transition function P̃ on A. For any F ∈ B(X ) one can let

P̃ (x,B) = P (x,B ∩A) = P (x,B)

for any x ∈ A. For P̃ we have the corresponding operator T̃ .

Lemma 7.6.3. Let P be a transition function on X . Let A ⊆ X be closed and P -invariant.

1. If π̃ ∈ P(A) is P̃ -invariant, then the extension π of π̃ to X is P -invariant.

2. If π ∈ P(X ) is P -invariant, then its restriction π̃ to A is P̃ -invariant.

Proof.

1. As π̃ is P̃ -invariant we have
π̃(C) =

∫
A

P̃ (x,C) π̃(dx)

for any C ∈ B(A) = A ∩ B(X ). For B ∈ B(X ) we have

(Tπ)(B) =
∫

X
P (x,B)π(dx)

(1)=
∫

A

P (x,B)π(dx)

=
∫

A

P (x,B ∩A)π(dx)

(2)=
∫

A

P̃ (x,B ∩A) π̃(dx)

= π̃(B ∩A)
= π(B),

where in (1) we use that supp(π) ⊆ A, and in (2) we use the fact that P̃ and π̃ agree on A ∩ B(X ).

2. Let B ∈ B(A) = A ∩ B(X ), so that in particular we have B ⊆ A. Then

π(B) =
∫

X
P (x,B)π(dx)

=
∫

A

P (x,B)π(dx) +
∫

X \A

P (x,B)π(dx).

By the invariance of A we have

π(A) =
∫

A

P (x,A)π(dx) +
∫

X \A

P (x,A)π(dx)

= π(A) +
∫

X \A

P (x,A)π(dx)

Therefore, ∫
X \A

P (x,A)π(dx) = 0

which implies that ∫
X \A

P (x,B)π(dx) = 0.
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Hence,
π(B) =

∫
A

P (x,B)π(dx).

As π̃ and P̃ coincide with π and P on A respectively, it follows that π̃ is P̃ -invariant.

Theorem 7.6.4. Let P be Feller on X and A be a compact P -invariant set, then the restriction of P to A
is Feller. In particular, there exists a P -invariant π ∈ P(X ).

Proof. Let f̃ ∈ Cb(A). Then by the Tietze Extension theorem, there exists f ∈ Cb(X ) such that f |A = f̃ . Then
for x ∈ A we have (

T̃ f̃
)

(x) =
∫

A

f̃(y)P̃ (x, dy)

=
∫

A

f(y)P (x, dy)

(1)=
∫

X
f(y)P (x, dy)

= (Tf)(x),

where in (1) we have used the fact that A is P -invariant and x ∈ A. As P is Feller it follows that Tf ∈ Cb(X ) as
f ∈ Cb(X ). Therefore, as (Tf)|A = T̃ f̃ we deduce that T̃ f̃ ∈ Cb(A) which shows that P̃ is Feller on A. Hence,
by Corollary 7.3.8 there exists a P̃ -invariant probability measure π̃ ∈ P(A). Using Lemma statement 1 of 7.6.3
we can conclude that π, the extension of π̃ to X , is P -invariant.

We have seen with Theorem 7.6.4 that P -invariance can be used to deduce the existence of invariant measures.
On the other hand, we would like to see how P -invariance can be used to make statements regarding all invariant
measures, thus working toward characterising the uniqueness of invariance measures. Consequently, for a P -
invariant set A we introduce the sequence of sets (An)n∈N where A0 = A and

An = {x ∈ X : P (x,An−1) > 0} (7.6.1)

for n ≥ 1. It can be argued inductively that the sequence of sets (An)n∈N is nested. More specifically, if we
assume An−1 ⊆ An then for x ∈ An we have that,

P (x,An)
An−1⊆An

≥ P (x,An−1)
x∈An

> 0,

which implies that x ∈ An+1.

Lemma 7.6.5. Let A ⊆ X be P -invariant and let (An)n∈N be as in (7.6.1). Then for every n ≥ 1 and x ∈ An

we have Pn(x,A) > 0.

Proof. We proceed by induction on n.
• The case n = 1 follows by construction of A1.

• Suppose the statement holds for n− 1, then

Pn(x,A) (1)=
∫

X
Pn−1(y,A)P (x,dy)

≥
∫

An−1

Pn−1(y,A)P (x,dy)

(2)
> 0,

where (1) is an application of the Chapman-Kolmogorov equation. With (2) following by the inductive
assumption as y ∈ An−1 implies that Pn−1(y,A) > 0, and we know that P (x,An−1) > 0 as x ∈ An.
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Remark 7.6.6. Where the original construction of An was the set of points which with positive probability
reach An−1 in one step, Lemma 7.6.5 provides an alternative characterisation of the set An. Namely, An is
the set of points which with positive probability reach the set A in n steps.

Proposition 7.6.7. Let A ⊆ X be P -invariant and consider the sequence (An)n∈N as given by (7.6.1).
Suppose X =

⋃
n∈NAn, then for every P -invariant probability measure π ∈ P(X ) we have π(A) = 1.

Proof. Suppose that π is P -invariant with π(A) < 1. Then since π(An) ↗ 1, there exists an N ∈ N such that
π(AN \A) > 0. Therefore,

π(A) =
∫

X
PN (x,A)π(dx)

≥
∫

AN

PN (x,A)π(dx)

≥
∫

A

PN (x,A)π(dx)︸ ︷︷ ︸
π(A)

+
∫

AN \A

PN (x,A)π(dx)︸ ︷︷ ︸
(1)
> 0

> π(A),

where (1) follows by construction of AN and because x ∈ AN implies that PN (x,A) > 0 by Lemma 7.6.5.
Therefore, we arrive at a contradiction and so π(A) = 1.

Corollary 7.6.8. Consider a random dynamical system

Xn+1 = F (Xn, ξn).

Suppose A is a P -invariant set, where P is a transition probability on X with the Feller property. Moreover,
suppose that A is compact with

⋃
n∈NAn = X , and there exists a γ ∈ (0, 1) such that

E (d(F (x, ξ), F (y, ξ))) ≤ γd(x, y) (7.6.2)

for all x, y ∈ A. Then there exists a unique P -invariant measure on X .

Proof. The existence of an invariant measure follows from Theorem 7.6.4. By Proposition 7.6.7 any P -invariant
probability measure π ∈ P(X ) is an extension of π̃ ∈ P(A) which is P̃ -invariant by statement 2 of Lemma 7.6.3.
Therefore, if two P -invariant measures on X existed, we would have two P̃ -invariant measures on A. However,
using (7.6.2) we know by Theorem 7.4.13 that P̃ -invariant probability measure on A is unique. Therefore,
P -invariant probability measures on X are unique.

Example 7.6.9. Let (ξn)n∈N be a sequence of independent and identically distribution C([0, 1])-valued random
variables such that supt∈[0,1] |ξn(t)| ≤ 1 almost surely. Let φt(x, f) be the solution to the differential equation{

dx
dt = 1

x(t) − 2 + f(t) t ∈ (0,∞)
x(0) = x.

With F (x, f) = φ1(x, f) consider the Markov process (Xn)n∈N where X0 ∈ (0,∞) and

Xn = F (Xn−1, ξn−1)
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for n ≥ 1. One can show that φt(x, f) is indeed well-defined, that is, it exists and is unique. Recall that
ξn ∈ [−1, 1] almost surely, hence, the deterministic maps F−(x) = F (x,−1) and F+(x) = F (x, 1) are such
that

Xn+1 ∈ [F−(Xn), F+(Xn)] (7.6.3)
almost surely. Observe the following.

1. Note that F+(x) is the solution to dz
dt = 1

z(t) − 1 with z(0) = x. For which z(t) ≡ 1 is an equilibrium
solution, and

lim
t→∞

φt(x, 1) = lim
t→∞

z(t) = 1.

In particular, we note that φn(x, 1) = (F+ ◦ · · · ◦ F+)︸ ︷︷ ︸
n

(x) =: Fn
+(x) and so limn→∞ Fn

+(x) = 1.

2. Note that F−(x) is the solution to dz
dt = 1

z(t) − 3 with z(0) = x. For which z(t) ≡ 1
3 is an equilibrium

solution, and
lim

t→∞
φt(x,−1) = lim

t→∞
z(t) = 1

3 .

In particular, we note that φn(x,−1) = (F− ◦ · · · ◦ F−)︸ ︷︷ ︸
n

(x) =: Fn
−(x) and so limn→∞ Fn

−(x) = 1
3 .

Now for a fixed ϵ > 0 let A =
[ 1

3 − ϵ, 1 + ϵ
]
.

1. On (1,∞) we note that 1
z(t) − 1 < 0 and so it must be the case that (F+)−1 (1 + ϵ) > 1 + ϵ.

2. On
(
0, 1

3
)

we have that 1
z(t) − 3 > 0 and so it must be the case that (F−)−1 (1 − ϵ) < 1 − ϵ.

Consequently,

A ⊆
[
(F−)−1

(
1
3 − ϵ

)
, (F+)−1 (1 + ϵ)

]
.

In particular, using (7.6.3) this means that ifX0 ∈
[
(F−)−1 ( 1

3 − ϵ
)
, (F+)−1 (1 + ϵ)

]
thenX1 ∈

[ 1
3 − ϵ, 1 + ϵ

]
=

A. Therefore, A is a P -invariant set. Recalling that

An+1 := {x ∈ X : P (x,An) > 0}

we can use similar arguments to show that[(
Fn

−
)−1

(
1
3 − ϵ

)
,
(
Fn

+
)−1 (1 + ϵ)

]
⊆ An.

Moreover, using the observation regarding convergence to equilibrium solutions made previously, we note that⋃
n∈N

An = (0,∞).

Therefore, using Proposition 7.6.7 we deduce that for any invariant probability measure π we have that
π
([ 1

3 − ϵ, 1 + ϵ
])

= 1. As ϵ > 0 was arbitrary we conclude that π
([ 1

3 , 1
])

= 1. Note that since F (x, ξn) is
differentiable in x, it is continuous and so (Xn)n∈N is Feller by Theorem 7.4.3. In particular, let v(t) = dφt(x,f)

dx
such that

dv(t)
dt = − 1

x2(t)v(t)

97



with v(0) = 1. Consequently, we have that

v(t) = exp
(

−
∫ t

0

1
x2(s) ds

)
.

Therefore,

F ′(Xn, ξn) = v(t) = exp
(

−
∫ t

0

1
x2(s) ds

)
≤ exp

(
1

1 + ϵ

)
< 1.

So,
E (|F (x, ξ) − F (y, ξ)|) < |x− y|.

Thus we have P -invariance on a compact set A such that
⋃

n∈NAn = X , allowing us to applying Corollary
7.6.8 to conclude that the Markov chain (Xn)n∈N on (0,∞) has a unique invariant probability measure.

7.7 Solution to Exercises
Exercise 7.2.10

Solution.

1. Let A = supp(µ). Then by Proposition 7.2.9 we know that µ(A) = 1. As supp(ν) ⊆ X \ A and
ν(supp(ν)) = 1 it follows that ν(X \A) = 1 which implies ν(A) = 0.

2. Let X = [0, 1], µ = δ0 and ν the Lebesgue measure. Then µ ⊥ ν as one can take A = {0}, however,
supp(µ) ∩ supp(ν) = {0}.

Exercise 7.3.6

Solution. Suppose that µn ̸→ µ weakly. Then as P(X ) with the weak topology is metrizable, say with the metric
d(·, ·), there exists an ϵ > 0 and a subsequence (µnk

)k∈N such that d (µ, µnk
) ≥ ϵ for all k ∈ N. However, as

(µn)n∈N is tight it is relatively compact. Therefore, the sequence (µnk
)k∈N ⊆ (µn)n∈N contains a convergent

subsequence, which by assumption has limit µ. This contradicts the fact that d (µ, µnk
) ≥ ϵ for all k ∈ N.

Exercise 7.3.10

Solution. For any M > 0 we have that

sup
n∈N

(Pn (x,B(0,M)c)) = sup
n∈N

(Px (|Xn| ≥ M))

Chebyshev.
≤ 1

G(M) sup
n∈N

(Ex (G(|Xn|))

M→∞−→ 0.

Hence, we deduce that (Pn(x, •))n∈N is tight and so we can apply Theorem 7.3.7 to conclude.

Exercise 7.4.2

Solution. Let f ∈ Bb(X ), then

(Tf)(x) = E(f(X1)|X0 = x)
= E(f(F (X0, ξ0))|X0 = x)
(1)=
∫

Y
f(F (x, y)) ν(dy)

where in (1) we use the independence of the random variables (ξn)n∈N.

Exercise 7.5.3
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Solution. On the one hand, for any measurable set A ⊆ Ω we have

∥µ− ν∥TV =
∫

Ω

∣∣∣∣dµdη − dν
dη

∣∣∣∣ dη

=
∫

A

∣∣∣∣dµdη − dν
dη

∣∣∣∣ dη +
∫

Ω\A

∣∣∣∣dµdη − dν
dη

∣∣∣∣ dη

≥

∣∣∣∣∣
∫

A

dµ
dη − dν

dη dη −
∫

Ω\A

dµ
dη − dν

dη dη

∣∣∣∣∣
= |µ(A) − ν(A) − µ (Ω \A) + ν (Ω \A)|
= 2|µ(A) − ν(A)|.

Therefore, ∥µ− ν∥TV ≥ 2 sup ({|µ(A) − ν(A)| : A ⊆ Ω measurable}). On the other hand, let A =
{

dµ
dη ≥ dν

dη

}
.

Then as ∫
A

dµ
dη dη = µ(A) = 1 − µ (Ω \A) = 1 −

∫
Ω\A

dµ
dη dη,

it follows that ∫
A

dµ
dη − dν

dη dη =
∫

Ω\A

dν
dη − dµ

dη dη = 1
2∥µ− ν∥TV.

Therefore, as
0 ≤

∫
A

dµ
dη − dν

dη dη = µ(A) − ν(A) = |µ(A) − ν(A)|

it follows that ∥µ− ν∥TV ≤ 2 sup ({|µ(A) − ν(A)| : A ⊆ Ω measurable}).

Exercise 7.5.12

Solution. Clearly η ≥ 0, and

η(Ω) =
∞∑

n=1

1
2n
µn(Ω) =

∞∑
n=1

1
2n

= 1.

Moreover, η(A) ≤ η(B) for A ⊆ B ⊆ Ω. If A1, A2, · · · ⊆ Ω are disjoint sets then

η

( ∞⋃
i=1

Ai

)
=

∞∑
n=1

1
2n
µn

( ∞⋃
i=1

Ai

)
=

∞∑
n=1

∞∑
i=1

1
2n
µn(Ai).

We note that the sum is absolutely convergent, as the terms are non-negative and it is bounded above by one, so
we can exchange the order of summation to deduce that

η

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

∞∑
n=1

1
2n
µn(Ai) =

∞∑
i=1

η(Ai).

Therefore, η is countably additive and hence a probability measure.

Exercise 7.6.2

Solution. Proceed by induction on n.

• When n = 1 we have

π(A) = P(X0 ∈ A,X1 ∈ X )
= P(X0 ∈ A,X1 ∈ A) + P(X0 ∈ A,X1 ∈ X \A)
(1)= P(X0 ∈ A,X1 ∈ A) + 0
= P(X0 ∈ A,X1 ∈ A),

where (1) follows by the invariance of A.
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• Assuming that
P(X0 ∈ A, . . . ,Xn ∈ A) = π(A)

it follows that

π(A) = P(X0 ∈ A, . . . ,Xn ∈ A,Xn+1 ∈ X )
= P(X0 ∈ A, . . . ,Xn ∈ A,Xn+1 ∈ A) + P(X0 ∈ A, . . . ,Xn ∈ A,Xn+1 ∈ X \A)
(1)= P(X0 ∈ A, . . . ,Xn ∈ A,Xn+1 ∈ A) + 0
= P(X0 ∈ A, . . . ,Xn ∈ A,Xn+1 ∈ A),

where (1) follows by the invariance of A.

Therefore, by induction we conclude that

P(X0 ∈ A0, . . . , Xn ∈ A) = π(A)

for every n ∈ N.
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8 Ergodic Theory
8.1 Birkhoff’s Ergodic Theorem for Dynamical Systems

Definition 8.1.1. A dynamical system consists of a probability space (Ω,F ,P) and a measure-preserving map
θ : Ω → Ω. That is, P

(
θ−1(A)

)
= P(A) for every A ∈ F .

Definition 8.1.2. Given a measurable transformation θ on (Ω,F ,P) a set A such that θ−1(A) = A is said to
be θ-invariant. In particular, the θ-invariant σ-algebra I ⊂ F is given by

I =
{
A ∈ F : θ−1(A) = A

}
. (8.1.1)

Exercise 8.1.3. Show that I, as given by (8.1.1), is indeed a σ-algebra.

Definition 8.1.4. A measurable function f : Ω → R is θ-invariant if f ◦ θ = f .

Exercise 8.1.5. Let f : Ω → R be a F-measurable function. Then f is invariant if and only if f is measurable
with respect to I, as given by (8.1.1).

Similarly, a F-measurable function f : Ω → R is invariant if and only if f is measurable with respect to I as
defined above.

Definition 8.1.6. Consider a dynamical system (Ω,F ,P) with θ a measure-preserving map. Then θ is ergodic
if for any A ∈ Ω a θ-invariant set, we have P(A) ∈ {0, 1}. Ergodicity is also a property of P, and so P is said
to be ergodic with respect to θ.

Proposition 8.1.7. Let (Ω,F ,P) with θ be a dynamical system. Then the following are equivalent.

1. P is ergodic with respect to θ.

2. Every θ-invariant integrable function f : Ω → R is almost surely constant.

3. Every θ-invariant bounded function f : Ω → R is almost surely constant.

Proof. (2) ⇒ (3). This is clear as every bounded function is integrable with respect to a probability measure.
(3) ⇒ (1). Let f = 1A, where A is an invariant set. Then f is invariant and bounded and so is almost surely
constant, that is f ∈ {0, 1}. Which implies that P(A) = f ∈ {0, 1} meaning P is ergodic.
(1) ⇒ (2). Let f be an integrable and invariant function. Then by Exercise 8.1.5 it follows that f is I-measurable.
Consider the sets

• A+ := {ω ∈ Ω : f(ω) > E(f)},

• A− := {ω ∈ Ω : f(ω) < E(f)}, and

• A0 := {ω ∈ Ω : f(ω) = E(f)}.
These sets form a disjoint partition of Ω, and so by the ergodic property of P it follows that exactly one has full
measure whilst the others have zero-measure. If P(A+) = 1 then

0 =
∫

Ω
f − E(f) dP =

∫
A+

f − E(f) dP,

which implies that f−E(f) = 0 almost surely on A+ which is a contradiction. Similarly, we have that P(A−) ̸= 1.
Therefore, P(A0) = 1 which implies that f is almost surely constant.
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Theorem 8.1.8 (Maximal Ergodic Theorem). Let (Ω, I,P) with θ be a dynamical system, where I is as given
by (8.1.1). Let f : Ω → R be such that E(|f |) < ∞. Let

SN (ω) =
N−1∑
n=0

f (θnω)

and
MN (ω) = max {S0(ω), . . . , SN (ω)}

where S0 = 0. Then ∫
{MN >0}

f(ω)P(dω) ≥ 0

for every N ≥ 1.

Proof. Observe that for 0 ≤ k ≤ N and every ω ∈ Ω we have

f(ω) + Sk(θω) − Sk+1(ω)

and
Sk(θω) ≤ MN (θω).

This implies that,
f(ω) +MN (θω) ≥ f(ω) + Sk(θω) = Sk+1(ω).

Therefore,
f(ω) ≥ max (S1(ω), . . . , SN (ω)) −MN (θω). (8.1.2)

Furthermore, on the set {MN > 0} we have

MN (ω) = max (S1(ω), . . . , SN (ω)) .

Combined with (8.1.2) it follows that f(ω) ≥ MN (ω) −MN (θω) on {MN > 0}. Note that as MN ≥ 0 we have

E(MN ) =
∫

Ω
MN (ω) dP(ω)

=
∫

{MN =0}
MN (ω) dP(ω) +

∫
{MN >0}

MN (ω) dP(ω)

= 0 (P({MN = 0})) +
∫

{MN >0}
MN (ω) dP(ω)

=
∫

{MN >0}
MN (ω) dP(ω).

Therefore, ∫
{MN >0}

f(ω)P(dω) ≥
∫

{MN >0}
MN (ω) −MN (θω)P(dω)

≥ E (MN ) −
∫

AN

MN (ω)P(dω),

where AN := {θω : MN (ω) > 0} ⊆ Ω. Hence,∫
{MN >0}

f(ω)P(dω) ≥ 0.
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Theorem 8.1.9 (Birkhoff’s Ergodic Theorem). Let (Ω,F ,P) with θ be a dynamical system and let I be as
in (8.1.1). For f : Ω → R with E(|f |) < ∞ it follows that

lim
N→∞

(
1
N

N−1∑
n=0

f (θnω)
)

= E(f |I)

almost surely.

Proof. By replacing f with f − E(f |I), we can assume without loss of generality that E(f |I) = 0. Let

η = lim sup
n→∞

Sn

n

and
η = lim inf

n→∞

Sn

n
.

Note that η(θω) = η(ω), so that for ϵ > 0 it follows that
Aϵ = {η(ω) > ϵ} ∈ I.

Let
f ϵ(ω) = (f(ω) − ϵ)1Aϵ(ω)

to make analogous definition of Sϵ
N and M ϵ

N as those made in Theorem 8.1.8. Then using Theorem 8.1.8 it
follows that ∫

{Mϵ
N

>0}
f ϵ(ω)P(dω) ≥ 0

for N ≥ 1. Next, observe that the sequence of sets {M ϵ
N > 0} indexed by N is increasing to

Bϵ :=
{

sup
N
Sϵ

N > 0
}

=
{

sup
N

Sϵ
N

N
> 0
}
.

Noting that
Sϵ

N (ω)
N

=
{

0 η(ω) ≤ ϵ
SN (ω)

N − ϵ η(ω) > ϵ,

it follows that
Bϵ = {η > ϵ} ∩

{
sup

N

SN

N
> ϵ

}
= {η > ϵ} = Aϵ.

As E (|f ϵ|) ≤ E (|f ϵ|) + ϵ < ∞, using the dominated convergence theorem we deduce that

0 ≤ lim
N→∞

∫
{Mϵ

N
>0}

f ϵ(ω)P(dω) =
∫

Aϵ

f ϵ(ω)P(dω).

Therefore,

0 ≤
∫

Aϵ

f ϵ(ω)P(dω)

=
∫

Aϵ

f(ω) − ϵP(dω)

=
∫

Aϵ

f(ω)P(dω) − ϵP (Aϵ)

=
∫

Aϵ

E(f |I)(ω)P(dω) − ϵP (Aϵ)

= 0 − ϵP (Aϵ) .

Therefore, P (Aϵ) = 0 for every ϵ > 0, implying that η ≤ 0 almost surely. Repeating a similar argument with −f
we see that η ≥ 0. Hence, η = η = 0 which completes the proof.
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Corollary 8.1.10. If a dynamical system (Ω,F ,P) with θ is ergodic, then

lim
N→∞

(
1
N

N−1∑
n=0

f (θnω)
)

= E(f)

almost surely.

Proof. As E(f |I) is I-measurable, if θ is ergodic it follows by statement 2. of Proposition 8.1.7 that E(f |I) is
almost surely constant. More specifically, E(f |I) = E(f). Therefore,

lim
N→∞

(
1
N

N−1∑
n=0

f (θnω)
)

Thm 8.1.9= E(f |I) = E(f).

8.2 Birkhoff’s Ergodic Theorem for Markov Chains
Having seen how ergodic theorems can be derived for dynamical systems, it will be useful to investigate how
to arrive at a dynamical system from a Markov chain. For this we investigate the space of sequences XN, and
more generally X Z. More specifically, we consider the shift operator θ on these spaces, which is such that for
x := (x0, x1, . . . ) ∈ XN we have

θ(x) = (x1, x2, . . . )
and similarly for x := (. . . , x−1, x0, x1, . . . ). In particular, for x ∈ XN we let

(θnx)(m) = xn+m,

and similarly for x ∈ X Z. Note that on X Z we have θ = θ1 and θ−1 = θ−1. Therefore, as before we can consider

I =
{
C ∈ B

(
X Z) : θ−1C = C

}
. (8.2.1)

Thus to understand how the theory of dynamical systems can be used on Markov chains it will be important
to understand how to construct two-side Markov processes on X Z. To do so it will be necessary to work
with a family of transition probabilities P = (P (x, ·), x ∈ X ) and a P -invariant probability measure π, that is
π =

∫
X P (x, ·)π(dx).

8.2.1 Constructing Two-Sided Markov Processes

One approach to constructing a Markov chain (Xn)n∈Z is referred to as the finite-dimensional approach. In this
case, a probability measure Pπ measure is constructed using finite-dimensional distributions and Kolmogorov’s
extension theorem. More specifically, µn,m denotes the distribution of (X−n, . . . , X0, . . . , Xm) which is given by

P (zm−1,dzm) . . . P (z0,dz1) . . . P (z−n,dz−n+1)π(dz−n) =
m−1∏

k=−n

P (zk,dzk+1)π(dz−n).

By the invariance of π it follows that (µn,m)n,m∈Z is a consistent family of probability measures. Therefore, using
Theorem 3.2.7 it follows that Pπ on X Z defines a stationary Markov chain with transition probabilities P and
Law(Xn) = π for n ∈ Z.
Another approach to constructing a Markov chain (Xn)n∈Z is referred to as the time shift approach. Here we
start with a Markov chain (Yn)n∈N which has π as an invariant initial distribution and let

(
X

(m)
n

)
n≥−m

be such
that (

X
(m)
−m , X

(m)
−(m−1), X

(m)
−(m−2), . . .

)
=
(
X

(m−1)
−(m−1), X

(m−1)
−(m−2), X

(m−1)
−(m−3), . . .

)
with (

X
(1)
−1 , X

(1)
1 , X

(1)
0 , . . .

)
= (Y0, Y1, Y2, . . . ).

In the limit the process
(
X

(m)
n

)
gives the required Markov process on X Z.
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8.2.2 Birkhoff’s Ergodic Theorem for Stationary Markov Chains as Dynamical Systems

Lemma 8.2.1. The probability space
(
X Z,B

(
X Z) ,Pπ

)
with the shift operator θ is a dynamical system.

Proof. Let (Xn)n∈Z be a time-homogeneous Markov chain with law Pπ. By the finite-dimensional construction,
it follows that

P (X−n ∈ A−n, . . . , Xm ∈ Am) =
∫

A−n

· · ·
∫

Am

P (xm−1,dxm) . . . P (x−n,dx−(n−1)π(dx−n), (8.2.2)

similarly,

P
(
X−(n−1) ∈ A−n, . . . , Xm+1 ∈ Am

)
=
∫

A−(n−1)

· · ·
∫

Am+1

P (xm,dxm+1) . . . P (x−(n−1),dx−(n−2)π(dx−(n−1)).

(8.2.3)
Clearly, the right-hand sides of (8.2.2) and (8.2.3) are identical, and so

P (X−n ∈ A−n, . . . , Xm ∈ Am) = P
(
X−(n−1) ∈ A−n, . . . , Xm+1 ∈ Am

)
,

which is to say that θ preserving map and so defined a dynamical system.

Remark 8.2.2. Under the product topology, it is apparent that θ is continuous. Thus, the dynamical system
of Lemma 8.2.1 is referred to as the continuous dynamical system.

Definition 8.2.3.

1. A measure P is ergodic for θ if for every A ∈ I, where I is as given by (8.2.1), we have P(A) ∈ {0, 1}.

2. An invariant measure π that induces an ergodic probability measure Pπ for θ is said to be ergodic with
respect θ.

Applying Theorem 8.1.9 to (θna)n∈Z gives Corollary 8.2.4.

Corollary 8.2.4. Let f : X → R be integrable and let f̃ : X Z → R be given by

f̃(. . . , a−1, a0, a1, . . . ) = f(a0).

Then f̃ (θna) = f(an), so that
1
n

n∑
k=1

f(ak) n→∞−→ Eπ

(
f̃ |I
)

almost surely with respect to Pπ. Moreover, if π is ergodic then

1
n

n∑
k=1

f(ak) n→∞−→
∫

X
f dπ

almost surely with respect to Pπ.

Remark 8.2.5. An analogous statement holds over XN.

8.2.3 Birkhoff’s Ergodic Theorem for Markov Chains

Consider (Xn)n∈Z a stationary time-homogeneous Markov chain on a probability space (Ω,F ,P) with transition
probability P and a P -invariant initial distribution π. Currently, our ergodic theory makes statements about
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(Xn)n∈Z as a dynamical system on
(
X Z,B

(
X Z) ,Pπ

)
with θ being the shift operator. Here we expand our

ergodic theory to make statements about (Xn)n∈Z in terms of P instead of Pπ. For this, let

IP = {π ∈ P(X ) : Tπ = π}.

Theorem 8.2.6. Let (Xn)n∈Z be a stationary Markov process with X0 ∼ π, where π is an invariant probability
measure. Then the following hold.

1. Let f : X Z → R be an integrable function. Let f̄ = Eπ(f |I), then

1
n

n∑
k=1

f
(
θkX(ω)

) n→∞−→ f̄(X(ω))

for almost every ω with respect to P.

2. Moreover, if π is ergodic then

1
n

n∑
k=1

f
(
θkX(ω)

) n→∞−→
∫

X Z
f dPπ

for almost every ω with respect to P.

Proof. For f : X Z → R in L1(Pπ) consider

E :=
{
a ∈ X Z : 1

n

n∑
k=1

f
(
θka
) n→∞−→ Eπ

(
f̃ |I
)}

.

By Corollary 8.2.4 it follows that Pπ(E) = 1. In particular, we have that

P({ω : X(ω) ∈ E}) = Pπ(E) = 1.

Therefore, for almost every ω with respect to P we have that 1
n

∑n
k=1 f

(
θkX(ω)

)
converges.

Theorem 8.2.7. Let P = P (x, ·) be a transition probability with an invariant measure π. Let (Xn)n∈Z be
a time-homogeneous Markov process with transition probabilities P and initial position X0 = x. Then for
π-almost every x ∈ X the following hold.

1. For f : X Z → R an integrable function 1
n

∑n
k=1 f

(
θkX(ω)

)
converges for almost every ω with respect

to P.

2. Moreover, if π is ergodic, then

1
n

n∑
k=1

f
(
θkX(ω)

) n→∞−→
∫

X
f dPπ

for almost every ω with respect to P.

Proof. Suppose that X0 ∼ π. Then by Theorem 8.2.6 it follows that

1
n

n∑
k=1

f
(
θkX(ω)

) n→∞−→ f̄(X(ω)

for almost every ω with respect to P. Therefore, by the dominated convergence theorem it follows that

E

(
1
n

n∑
k=1

f
(
θkX(ω)

)
|σ(X0)

)
n→∞−→ E

(
f̄(X(ω)|σ(X0)

)
106



for almost every ω with respect to P. Therefore, for almost every x ∈ X with respect to π we have

E

(
1
n

n∑
k=1

f
(
θkX(ω)

)
|X0 = x

)
n→∞−→ E

(
f̄(X(ω)|X0 = x

)
for almost every ω with respect to P.

Corollary 8.2.8. Let P be a transition probability with an ergodic invariant probability measure π. Then for
g : X → R in L1(π) it follows that

1
n

n∑
k=1

g(Xk(ω)) n→∞−→
∫

X
g dπ

for almost every ω with respect to P.

Proof. Let g̃ : X Z → R be given by g̃(y) := g(y0). Then using Theorem 8.2.7 with g̃ and noting that∫
X Z
g̃ dPπ =

∫
X
g dπ

the result follows.

Proposition 8.2.9. Ergodic invariant probability measures for a time-homogeneous Markov chain are equal
or mutually singular.

Proof. Let π1 and π1 be distinct invariant probability measures. Let f : X → R be a bounded measurable
function such that ∫

X
f dπ1 =

∫
X
f dπ2, (8.2.4)

which exists as the measures are distinct. Let (Xn)n∈Z be a Markov chain with X0 = x. Then for i = 1, 2 let

Ei :=
{
x : X0 = x, lim

n→∞

1
n

n∑
k=1

f(Xk) =
∫

X
f dπi P almost everywhere

}
.

By Corollary 8.2.8 the set Ei is well-defined and is such that πi(Ei) = 1. By (8.2.4) we have that E1 ∩ E2 = ∅
and so π1(E2) = 0 which means that π1 and π2 are mutually singular if they are not equal.

8.3 The Structure Theorem
The structure theorem relates to the invariant probability measures of a time-homogeneous Markov chain. More
specifically, we consider a chain on X with transition probability P , and with T being the corresponding transition
operator. Moreover, let

IP := {π ∈ P(X ) : Tπ = π} (8.3.1)
consist of the probability measures that are invariant under T .

Exercise 8.3.1. Let IP be as given in (8.3.1). Show that the following statements hold.

1. If π1, π2 ∈ IP then tπ1 + (1 − t)π2 ∈ IP for t ∈ [0, 1].

2. If T is Feller, then IP is closed.
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Definition 8.3.2. A probability measure π ∈ IP is an extremal of IP if π cannot be decomposed as π =
tπ1 + (1 − t)π2 for t ∈ (0, 1) and π1, π2 ∈ IP distinct.

To work towards the structure theorem we need to understand the measurability of set-theoretic constructions.

Definition 8.3.3. The set-theoretic difference of sets A and B is given by A△B := A ∪B \ (A ∩B).

Proposition 8.3.4. Let (Ω,F ,P) be a probability space. Let A,B, (Aα)α∈A and (Bα)α∈A be elements of
F . Then the following statements hold.

1. Ac △Bc = A△B.

2.
(⋃

α∈A Aα

)
△
(⋃

α∈A Bα

)
⊂
⋃

α∈A (Aα △Bα).

3. For a measurable function f : Ω → Ω we have f−1 (A△B) = f−1(A) △ f−1(B).

4. (A△B) △ (B△C) = A△C.

5. P(A△B) = 0 implies that P(A) = P(B).

Proof.

1. Proceeding directly,

Ac △Bc = ((Ω \A) \ (Ω \B) ∪ ((Ω \B) \ (Ω \A)
= (A \B) ∪ (B \A)
= A△B.

2. Let ω ∈
(⋃

α∈A Aα

)
△
(⋃

α∈A Bα

)
then

ω ∈

( ⋃
α∈A

Aα

)
\

( ⋃
α∈A

Bα

)
∪

( ⋃
α∈A

Bα

)
\

( ⋃
α∈A

Aα

)
.

Suppose without loss of generality that ω ∈
(⋃

α∈A Aα

)
\
(⋃

α∈A Bα

)
, with ω ∈ Aα̃. It follows that

ω ∈ Aα̃ \Bα̃ and so ω ∈ Aα̃ △Bα̃. Therefore,( ⋃
α∈A

Aα

)
△

( ⋃
α∈A

Bα

)
⊂
⋃

α∈A
(Aα △Bα) .

3. This follows from the fact that the pre-image is distributed over unions and intersections.

4. Figure 12a is a visual representation of

((A \B) ∪ (B \A)) \ ((B \ C) ∪ (C \B)) (8.3.2)

and Figure 12b is a visual representation of

((B \ C) ∪ (C \B)) \ ((A \B) ∪ (B \A) . (8.3.3)

Noting that (A△B) △ (B△C) is given by the union of (8.3.2) and (8.3.3) we use Figure 12c to conclude
that

(A△B) △ (B△C) = A△C.
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5. As A \B and B \A are disjoint sets it follows that

P(A△B) = P(A \B) + P(B \A).

Therefore, if P(A△B) = 0 it must be the case that P(A \B) = P(B \A) = 0. Noting that

P(A) = P(A ∩B) + P(A \B)

and
P(B) = P(A ∩B) + P(B \A).

It follows that
P(A) = P(A ∩B) = P(B).

(a)

(b)

(c)

Figure 12: Visual proof for statement 3. of Proposition 8.3.4.

Definition 8.3.5. Let (Ω,F ,P) be a probability space. Then for A,B ∈ F we say A ∼ B if and only if
P(A△B) = 0.

Definition 8.3.6. Let (Ω,F ,P) be a probability space.

1. The σ-algebra F is complete with respect to P if whenever B ∈ F and P(B) = 0, then for any A ⊂ B
it follows that A ∈ F .

2. The completion F̄ of F with respect to P is the smallest σ-algebra containing F that is complete with
respect to the measure P.

Recall, that we can view our time-homogeneous Markov process as the canonical stochastic process on the
probability space

(
X Z,B

(
X Z) ,Pπ

)
, where Pπ is the law of the chain with transition probability P and initial

distribution π. We can then consider θ and θ−1 measure preserving transformations on X Z and

Fm
n :=

m∨
k=−n

σ(Xk) ⊂ B
(
X Z) .
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Lemma 8.3.7. Let A ∈ B
(
X Z), then for any ϵ > 0 there exists an N > 0 and Aϵ ∈ FN

−N such that

P (A△Aϵ) < ϵ.

Proof. Consider

B0 :=
{
A ∈ B

(
X Z) : for all ϵ > 0, there exists N ∈ N and Aϵ ∈ FN

−N such that P(A△Aϵ) < ϵ
}
.

Clearly, ∅ ∈ B0. By statement 1. of Proposition 8.3.4 it follows that if A ∈ B0 then Ac ∈ B0. Now consider
(Aj)j∈N ⊂ B0. By construction there exists a sequence (Nj)j∈N ⊂ N with corresponding events A′

j ∈ FNj

−Nj
such

that P
(
Aj △A′

j

)
≤ ϵ2−j . Since P is a finite measure, there exists a J such that with A :=

⋃
j∈NAj we have

P
(
A△

⋃
j≤J Aj

)
≤ ϵ. Therefore,

P

A△
⋃

j≤J

A′
j

 = P

A△
⋃

j≤J

 △

⋃
j≤J

Aj △
⋃

j≤J

A′
j


≤ P

A△
⋃

j≤J

Aj

+ P

⋃
j≤J

Aj △
⋃

j≤J

A′
j


≤ ϵ+ P

⋃
j≤J

(
Aj △A′

j

)
≤
∑
j≤J

2ϵ.

Hence, as
⋃

j≤J A
′
j ∈ FN

−N where N = maxj≤J(Nj) we have that
⋃

j∈NAj ∈ B0 which makes B0 a σ-algebra.
It follows that B0 = B

(
X Z) which completes the proof.

Lemma 8.3.8. For any A ∈ I :=
{
C ∈ B

(
X Z) : θ−1C = C

}
and l ∈ Z, there exists Âl ∈ σ(Xl) such that

A ∼ Âl.

Proof. Let A ∈ I, then for any ϵ > 0 we can use Lemma 8.3.7 to find a N ∈ N and Aϵ ∈ FN
−N such that

P (A△Aϵ) < ϵ. Since,
θ−1 (A△Aϵ) = θ−1(A) △ θ−1 (Aϵ) = A△ θ−1 (Aϵ) ,

and P is θ-invariant, it follows that
P (A△ θ−kAϵ) < ϵ (8.3.4)

for all k ≥ 0. In particular, observe that θ−(N+k)Aϵ ∈ F2N+k
k ⊂ F∞

k for fixed k ≥ 0 and arbitrary ϵ > 0.
Therefore, with ϵ and N as previously given, fix k and let ϵm = 1

m . Furthermore, let

Dϵ
n := θ−(N+k)A ϵ

2n
∈ F∞

k

and
D :=

⋂
m≥1

⋃
n≥1

Dϵm
n ∈ F∞

k .

Note that using (8.3.4) we have P (A△Dϵ
n) < ϵ

2n and so

P

⋂
n≥1

(A \Dϵm
n )

 = lim
n→∞

P (A \Dϵm
n ) ≤ lim

n→∞

ϵm
2n

= 0. (8.3.5)
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On the other hand,

P(D \A) ≤ P

( ∞⋃
n=1

Dϵm
n \A

)

= P

( ∞⋂
n=1

(A \Dϵm
n )
)

≤ ϵ

2n

≤ 1
m

m→∞−→ 0.

Therefore, P(D \A) = 0. Furthermore,

P(A \D) = P

A \
⋂

m≥1

⋃
n≥1

Dϵm
n


= P

 ⋃
m≥1

⋂
n≥1

(A \Dϵm
n )


(8.3.5)= 0

and so A ∼ D. Therefore, for any k with D(k) := D we have D(k) ∈ F∞
k and P

(
A△D(k)) = 0. Similarly using

θ−1 for any k there is a D(−k) ∈ F (−k)
−∞ such that P

(
A△D(−k)) = 0. Let l ∈ (−k, k) then

E (1A|σ(Xl)) = E
(
12

A|σ(Xl)
)

= E (1D(−k)1D(k) |σ(Xl))
= E (1D(−k) |σ(Xl))E (1D(k) |σ(Xl))
= (E (1A|σ(Xl)))2

,

which implies that E (1A|σ(Xl)) (ω) ∈ {0, 1} almost surely. Let

Â :=
{
ω ∈ X Z : E (1A|σ(Xl)) (ω) = 1

}
∈ σ(Xl).

Then E (1A|σ(Xl)) = 1Â and E (1Ac |σ(Xl)) = 1Ac . Then for any E ∈ σ(Xl) we have

P(A ∩ E) = E (E (1A|σ(Xl))) = P
(
Â ∩ E

)
.

In particular, P
(
A ∩ Âc

)
= 0 and P

(
Â ∩Ac

)
= 0. Hence, P

(
A△ Â

)
= 0. Thus letting Âl := Â we have

A ∼ Âl.

Proposition 8.3.9. For any A ∈ I :=
{
C ∈ B

(
X Z) : θ−1C = C

}
, there exists Ā ∈ B(X ) such that

A ∼
∏
i∈Z

Ā.

Proof. By Lemma 8.3.8, there exists an Â ∈ σ(X0) with A ∼ Â. Let Ā ∈ B(X ) be such that

Â :=
{
ω ∈ X Z : X0(ω) ∈ Ā

}
.
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Then by the invariance of A with follows that

P
(
A△ θ−nÂ

)
= P

(
θ−n

(
A△ Â

))
= 0,

which implies that

P

(⋃
n∈Z

A△ θ−nÂ

)
= 0.

As θ−nÂ =
{
ω : Xn(ω) ∈ Ā

}
we have that

n⋂
k=0

θ−kÂ =
{
ω : X0(ω) ∈ Ā, . . . ,Xn(ω) ∈ Ā

}
∼ A.

Thus, {
Xi ∈ Ā : i ∈ Z

}
=
∏
i∈Z

Ā ∼ A.

Corollary 8.3.10. Let π be an invariant probability measure for P . Then π is ergodic if and only if every
π-invariant set Ā is such that π

(
Ā
)

∈ {0, 1}.

Proof. (⇒). If Ā is π-invariant, then using Exercise 7.6.2 it follows that

Pπ

(∏
i∈Z

Ā

)
= π

(
Ā
)
.

As we assume Pπ is ergodic and
∏

i∈Z Ā is a θ-invariant set, it follows that π
(
Ā
)

∈ {0, 1}.
(⇐). For A ∈ I we have from Proposition 8.3.9 that there exists a Ā ∈ B(X ) such that A ∼

∏
i∈Z Ā...

Proposition 8.3.11. Let π be an invariant probability measure for P . Then π is ergodic if and only if π is an
extremal of IP , where IP is as given in (8.3.1).

Proof. (⇒). Suppose that π is not extremal, with π = tπ1 + (1 − t)π2 for t ∈ (0, 1) and π1, π2 ∈ P(X ) distinct.
Moreover, suppose that π is ergodic. Then for any θ-invariant set A we have

tPπ1(A) + (1 − t)Pπ2(A) ∈ {0, 1},

thus Pπ1(A) = Pπ2 = 0 or Pπ1(A) = Pπ2 = 1 making π1 and π2 ergodic. Therefore, by Proposition 8.2.9 π1 and
π2 are mutually singular. Let E ∈ B(X ) be such that π1(E) = 1, and π2(E) = 0, so that Pπ1

(∏
i∈ZE

)
= 1 and

Pπ2

(∏
i∈ZE

)
= 0. It follows that

Pπ

(∏
i∈Z

E

)
= tPπ1

(∏
i∈Z

E

)
+ (1 − t)Pπ2

(∏
i∈Z

E

)
= t < 1,

which contradicts π being ergodic.
(⇐). Suppose π is not ergodic. Then by Corollary 8.3.10 there exists a π-invariant set F with π(F ) := t ∈ (0, 1).
Let π1, π2 ∈ P(§) be given by

π1(B) = 1
t
π(B ∩ F ),

and
π2(B) = 1

1 − t
π (B ∩ F c) .
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By the π-invariance of F we have P (x, F ) = 1 for almost every x ∈ F with respect to π. Using similar arguments
to those made in Lemma 7.6.3, we have that π restricted to F is invariant. That is, π1 is invariant. On the other
hand,

π (F c) =
∫

F

P (x, F c) dπ +
∫

F c

P (x, F c) dπ =
∫

F c

P (x, F c) dπ,

which implies that P (x, F c) = 1 for almost every x ∈ F c with respect to π. Therefore, π2 is invariant, and thus
π1, π2 ∈ IP which contradicts π being extremal.

Theorem 8.3.12. Given a time-homogeneous transition probability P , with transition operator T let IP be
as given by (8.3.1). Then for

E = {π ∈ P(X ) : π ergodic} ∩ IP

the following statements hold.

1. IP is convex with being the set E of its extremal points.

2. For π1, π2 ∈ E , either π1 and π2 are equal or they are mutually singular.

3. Every π ∈ IP can be written as π = tπ1 + (1 − t)π2 for some π1, π2 ∈ E and t ∈ [0, 1].

Proof.

1. IP being convex follows from statement 1. of Exercise 8.3.1. Proposition 8.3.11 shows that the set of
extremal points of IP coincides with E .

2. This is shown in Proposition 8.2.9.

3. This follows from statement 1.

Corollary 8.3.13. If a time-homogeneous Markov process admits more than one invariant measure, it admits
at least two ergodic invariant measures.

Proof. Let π1, π2 ∈ IP be distinct. We are done if π1, π2 ∈ E . In any other case, we must have that either π1 or
π2 is not ergodic. Suppose without loss of generality that π1 ∈ IP \ E . By statement 3. of Theorem 8.3.12 we
can write π1 = tµ1 + (1 − t)µ2 where µ1, µ2 ∈ E . It is clear that µ1 is not equal to µ2, otherwise π1 = µ1 which
contradicts π1 not being ergodic.

Corollary 8.3.14. If a time-homogeneous Markov process has a unique invariant measure π, then π is ergodic.

Proof. In this case IP = {π} and so π is an extremal point. Therefore, by statement 1. of Theorem 8.3.12 we
have that π is ergodic.

Proposition 8.3.15. Let A ⊂ X be a P -invariant set. Let A0 = A and inductively let

An = {x ∈ X : P (x,An−1) > 0} .

Suppose X =
⋃∞

n=1 An and A =
⋃m

k=1 Bk for (Bk)k=1,...,m disjoint closed P -invariant sets. If the time-
homogeneous Markov chain restricted to Bk has a unique invariant measure πk, then πk is ergodic. Moreover,
the (πk)k=1,...,m are the are the only ergodic invariant probability measures of the chain.
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Proof. On Bk, the ergodicity follows from Corollary 8.3.14. If π ∈ IP , then using Proposition 7.6.7 it follows
that π(A) = 1. Using arguments made in the proof of Proposition 8.3.11 we have that the restriction on π onto
the Bk is an invariant probability measure for P . By the uniqueness of invariant probability measures on Bk we
can uniquely write

π =
m∑

k=1
π(Bk)πk.

8.4 Solution to Exercises
Exercise 8.1.3

Solution. As ∅ ∈ F , and θ−1(∅) = ∅ we have ∅ ∈ I. Suppose that A ∈ I, then

θ−1 (Ac) =
(
θ−1(A)

)c = Ac,

and so Ac ∈ I. Now consider (An)n∈N ⊂ I, then

θ−1

(⋃
n∈N

An

)
=
⋃

n∈N
θ−1 (An) =

⋃
n∈N

An,

and so
⋃

n∈NAn ∈ I. Therefore, I forms a σ-algebra.

Exercise 8.1.5

Solution. Let f = 1A. Note that
f = 1A = 1ω:ω∈A

and
f ◦ θ = 1ω:θω∈A = 1θ−1(A).

Therefore, f ◦ θ = f if and only if A = θ−1(A) which is to say that A ∈ I. Therefore, f ◦ θ = f if and only
if f is I-measurable. Extending the above argument by linearity it follows that f =

∑n
i=1 ai1Ai

is θ-invariant if
and only if f is measurable with respect to θ. As measurability is preserved under limits, and any non-negative
function is the limit of a sequence of simple functions it follows that f : Ω → [0,∞] is θ-invariant if and only if
f is I-measurable. Then for general f : Ω → [0,∞], using the decomposition f = f+ − f−, we conclude that
f : Ω → R is θ-invariant if and only if f is I-measurable.

Exercise 8.3.1

Solution.

1. This follows directly from the linearity of the transition operator T .

2. T being Feller means that it is a continuous map from P(X ) to P(X ) under the weak topology. Therefore,
for (πn)n∈N ⊂ IP a sequence converging weakly to a limit π we have that

Tπ = T lim
n→∞

πn = lim
n→∞

Tπn = lim
n→∞

πn = π.

Therefore, π ∈ IP which means that IP is closed.
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9 Appendix
9.1 Gaussian Measures

Definition 9.1.1. A measure µ on Rn is Gaussian if there exists a non-negative symmetric matrix K and vector
m ∈ Rn such that ∫

Rn

ei⟨λ,x⟩µ(dx) = exp
(
i⟨λ,m⟩ − 1

2 ⟨Kλ, λ⟩
)
.

If K is non-degenerate then the density with respect to the Lebesgue measure is given by

1√
(2π)n det(K)

exp
(

−1
2 ⟨K−1(x−m), x−m⟩

)
.

In this case, m is called the mean, and K the covariance operator.

Remark 9.1.2.

1. We are using the notation
⟨u, v⟩ = u⊤v.

2. A Gaussian measure is specified entirely by its mean and covariance operator.

Theorem 9.1.3. Let X be a Gaussian random variable on Rn with mean m, covariance operator K and let
A : Rd → Rd be a linear map. Then AX is a Gaussian random variable with covariance operator AKA⊤.

Proof. For λ ∈ Rn we have

E (exp (i⟨λ,AX⟩)) = E
(
exp

(
i
〈
A⊤λ,X

〉))
(1)= exp

(
i ⟨λ,Am⟩ − 1

2
〈
KA⊤λ,A⊤λ

〉)
= exp

(
i⟨λ,Am⟩ − 1

2
〈
AKA⊤λ, λ

〉)
where (1) follows as X is a Gaussian random variable with covariance operator K and mean m. Therefore, as a
Gaussian is determined by its mean and covariance, we deduce that AX is a Gaussian random variable with mean
Am and covariance AKA⊤.

Proposition 9.1.4. If (Xk)n
k=1 are independent Gaussian random variables on Rd then for ak ∈ R the random

variable
∑n

k=1 akXk is also Gaussian.
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Proof. Suppose that Xk has mean mk and covariance operator Kk. Then for λ ∈ Rn observe that

E

(
exp

(
k

〈
λ,

n∑
k=1

akXk

〉))
= E

(
exp

(
k

n∑
k=1

⟨akλ,Xk⟩

))

= E

(
n∏

k=1
exp (k ⟨akλ,Xk⟩)

)
(1)=

n∏
k=1

E (exp(k⟨akλ,Xk⟩))

=
n∏

k=1
exp

(
k⟨akλ,mk⟩ − 1

2 ⟨Kk(akλ), akλ⟩
)

= exp
(

n∑
k=1

k⟨λ, akmk⟩ − 1
2
〈(
a2

kKk

)
λ, λ

〉)

= exp
(
k

〈
λ,

n∑
k=1

akmk

〉
− 1

2

〈
n∑

k=1
a2

kKkλ, λ

〉)
.

Where (1) is justified by the independence of the Xk. Hence,
∑n

i=k=1 akXk is a Gaussian measure with mean∑n
k=1 akmk and covariance operator

∑n
k=1 a

2
kKk.

9.2 The Doeblin Coupling

Definition 9.2.1. For random variables X and Y with state space X , a coupling is a random variable Z =
(X ′, Y ′) with state space X × X such that

1. Law(X) = Law (X ′), and

2. Law(Y ) = Law (Y ′).

Remark 9.2.2. Note that for a given X and Y there can be lots of different couplings. This is because Law(X)
and Law(Y ) do not determine Law(Z), but only determine its marginals.

Definition 9.2.3. Consider independent Markov chains (Xn)n∈N and (X ′
n)n∈N on a discrete state space X ,

with transition probabilities P , and initial distributions µ and ν respectively. The process (Zn)n∈N given by
Zn = (Xn, X

′
n) is known as the Doeblin coupling. Moreover, T := inf {n ∈ N : Xn = X ′

n} is known as the
coalescing time of the chains (Xn)n∈N and (X ′

n)n∈N.

Exercise 9.2.4. Let (Gn)n∈N and (G′
n)n∈N be filtrations of independent σ-algebras. Let (Xn)n∈N be a time-

homogeneous Markov process with respect to the filtration (Gn)n∈N. Then, (Xn)n∈N is a time-homogeneous
Markov process with respect to the filtration (Gn ∨ G′

n)n∈N, where Gn ∨ G′
n is the σ-algebra generated by

Gn ∪ G′
n.
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Lemma 9.2.5. Assume the setup of Definition 9.2.3 and let

Yn =
{
Xn n < T

X ′
n n ≥ T.

Then (Yn)n∈N is a Markov process with initial distribution µ and transition probabilities P . In particular,
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Law(Y ) = Law(X).

Proof. Let
(
F0

n

)
n∈N and

(
G0

n

)
n∈N be the natural filtrations of (Xn)n∈N and (X ′

n)n∈N respectively. Then let
Fn = F0

n ∨ G0
n. For f ∈ Bb(X ) it follows that

E(f(Yn+1)|Fn) = E
(
f(Yn+1)1{T ≤n}|Fn

)
+ E

(
f(Yn+1)1{T >n}|Fn

)
= 1{T ≤n}E

(
f
(
X ′

n+1
)

|Fn

)
+ 1{T >n}E(f(Xn+1)|Fn)

= 1{T ≤n}Pf (X ′
n) + 1{T >n}Pf(Xn)

= 1{T ≤n}Pf(Yn) + 1{T >n}Pf(Yn)
= Pf(Yn).

Where we have implicitly used the result of Exercise 9.2.4. Furthermore, we have used the fact that T is a
(Fn)n∈N-stopping time, and hence {T ≤ n} and {T > n} are Fn-measurable. Hence, (Yn)n∈N is a Markov
process with transition probability P . Moreover, it is clear that Y0 = X0, as if T = 0 then Y0 = X ′

0 = X0 by
the definition of T . So that Law(Y0) = Law(X0) = µ, which implies that Law(Y ) = Law(X) as (Yn)n∈N and
(Xn)n∈N have the same transition probability.

Lemma 9.2.6. Assume the setup of Definition 9.2.3, then∑
j∈X

|P(Xn = j) − P (X ′
n = j)| ≤ 2P(T > n).

Proof. Let j ∈ X then

|P(Xn = j) − P (X ′
n = j)| (1)= |P(Yn = j) − P (X ′

n = j)|
= |P(Yn = j) − P (X ′

n = j, T > n) − P (Yn = j, T ≤ n)|
(2)= P (Yn = j, T > n) − P (Y ′

n = j, T > n) .

Where (1) follows by the result of Lemma 9.2.5 and (2) is an application of the law of total probability. Therefore,∑
j∈X

|P(Xn = j) − P (X ′
n = j)| ≤

∑
j∈X

P(Yn = j, T > n) + P (X ′
n = j, T > n)

≤ 2P(T > n).

Exercise 9.2.7. Let (Xn)n∈N and (X ′
n)n∈N be independent Markov chains on a discrete state space X and

transition probabilities P . Let Gn = σ(Xk : k ≤ n), G′
n = σ (X ′

k : k ≤ n) and Fn = Gn ∨ G′
n. Show that

P
(
Xn+1 = j,X ′

n+1 = j′|Fn

)
= P(Xn+1 = j|Xn) · P

(
X ′

n+1 = j′|X ′
n

)
. (9.2.1)

Lemma 9.2.8. Assume the setup of Definition 9.2.3, then the Doeblin coupling Zn is a time-homogeneous
Markov chain on X × X with transition probabilities Q and initial distribution µ⊗ ν, where

Q(i,i′),(j,j′) = PijPi′j′

for all i, i′, j, j′ ∈ X .
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Proof. By the independence of X0 and X ′
0 it follows immediately that Law (X0, X

′
0) = µ⊗ ν. With (Fn)n∈N as

defined in the proof of Lemma 9.2.5, for j, j′ ∈ X it follows that

P (Zn+1 = (j, j′) |Fn) = P
(
Xn+1 = j,X ′

n+1 = j′|Fn

)
Ex 9.2.7= P (Xn+1 = j|Xn) · P

(
X ′

n+1 = j|X ′
n

)
= PXn,jPX′

n,j′

=: QZn,(j,j′).

Therefore, P (Zn+1 (j, j′) |Fn) = P (Zn+1 (j, j′) |Zn) and so (Zn)n∈N is a time-homogeneous Markov process
with transition probability Q.

Lemma 9.2.9. Suppose that S ⊆ N is a non-empty set with the property that for s, s′ ∈ S it follows that
s+ s′ ∈ S. Then letting d = gcd(S), there must exists a K > 0 such that for any k ≥ K one has kd ∈ S.

Proof. By considering S′ = { s
d : s ∈ S} we can assume without loss of generality that d = 1. Let {d1, . . . , dn} ⊆

S be such that gcd({d1, . . . , dn}) = 1. By Bezout’s identity we know that there exists integers a1, . . . , an such
that

n∑
i=1

aidi = 1.

Let M =
∑n

i=1 di. Then for l = 0, . . . ,M − 1 it follows that

NM + l =
n∑

i=1
(N + lai)di.

As k ≤ M we can choose N0 such that N0 + lai ≥ 0. Therefore, the sum on the right-hand side can be thought
of as summing N + lai copies of di for each i. Hence, by the additive property of S it follows that NM + l ∈ S
for all l = 0, . . . ,M − 1 and N ≥ N0. Letting l = 0 we deduce that kd = k ∈ S for every k ≥ N0M .

Lemma 9.2.10. Suppose i is aperiodic and recurrent, then there exists an N ∈ N such that Pn
ii > 0 for every

n > N .

Proof. As i is recurrent we know that R(i) ̸= ∅. Moreover, if n1 ∈ R(i) and n2 ∈ R(i) then Pn1
ii > 0 and

Pn2
ii > 0 and so Pn1+n2

ii > 0 by the Chapman-Kolomogorov equation. This implies that n1 + n2 ∈ R(i) and so
R(i) has the additive property. Consequently, as i is aperiodic we have that gcd(R(i)) = 1 and so by Lemma
9.2.9 that there exists an N ∈ N such that n ∈ R(i) for all n ≥ N . In other words, Pn

ii > 0 for n ≥ N .

Lemma 9.2.11. If P is irreducible, aperiodic, and positive recurrent, then Q, as defined in Lemma 9.2.8, is
irreducible and positive recurrent.

Proof. For any i ∈ X we know by Lemma 9.2.10 that there exists an N such that Pn
ii > 0 for any n ≥ N . Thus

by the irreducibility of P we know that for any j ∈ X there exists an m such that Pm
ij > 0. Consequently,

Pn+m
ij ≥ Pn

iiP
m
ij > 0

for all n ≥ N . More succinctly, we can say that Pn
ij > 0 for sufficiently large n. Therefore, for (i, j), (i′, j′) ∈ X ×X

there exists some N ∈ N such that Pn
ij > 0 and Pn

i′j′ > 0 which implies that

Qn
(i,i′),(j,j′) = Pn

ijP
n
i′j′ > 0

for all n ≥ N . Which proves that Q is irreducible. Consequently, with π being the invariant measure of P we
know that π ⊗ π is an invariant measure of Q. Having established that Q is irreducible this implies that Q is
positive recurrent.
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Lemma 9.2.12. Assume the setup of Definition9.2.3 and in particular that P is irreducible, aperiodic and
positive recurrent. Then,

P(T < ∞) = 1.

Proof. Let
T(i,i′) := inf {n ≥ 1 : Zn (Xn, X

′
n) = (i, i′)} .

As Q is irreducible we know that
P
(
T(i,i′) < ∞

)
= 1

for all (i, i′) ∈ X ×X . In particular, letting i = i′ it is clear that T ≤ T(i,i), hence, P(T < ∞) ≥ P
(
T(i,i) < ∞

)
=

1.

9.3 Solution to Exercises
Exercise 9.2.4

Solution. Consider the set D = {A ∩B : A ∈ Gn, B ∈ G′
n}. Note D is a π-system. Moreover, G := Gn ∨ G′

n

forms a λ-system with D ⊆ G. So by Theorem 2.2.8 we know that σ(D) ⊆ G. However, as Gn ⊆ D and
G′

n ⊆ D, by taking A = X and B = X respectively, we know that Gn ∪ G′
n ⊆ σ(D) which implies that

G = σ (Gn ∪ G′
n) ⊆ σ(D). Therefore, σ(D) = G. Now for f ∈ Bb(X ) and n ∈ N we know that E (f(Xn+1)|Gn)

is G measurable. Moreover, for A ∩B ∈ D it follows that∫
A∩B

E (f(Xn+1)|Gn) dP =
∫

E (f(Xn+1)1A∩B |Gn) dP

(1)=
∫

E(f(Xn+1)1A∩B) dP

=
∫

A∩B

f(Xn+1) dP,

where in (1) we have used the fact that f(Xn+1)1A∩B is independent of Gn. Therefore, as σ(D) = G we deduce
that ∫

C

E(f(Xn+1)|Gn) dP =
∫

C

f(Xn+1) dP

for all C ∈ G. Hence, E (f(Xn+1)|Gn ∨ G′
n) = E (f(Xn+1)|Gn). Therefore, as (Xn)n∈N is Markov with respect

to Gn we conclude that

E (f(Xn+1)|Gn ∨ G′
n) = E (f(Xn+1)|Gn)

= E(f(Xn+1)|Xn)

and so (Xn)n∈N is Markov with respect to Gn ∨ G′
n.

Exercise 9.2.7

Solution. Let Gn = σ(Xk : k ≤ n), G′
n = σ (X ′

k : k ≤ n) so that Fn = Gn ∨ G′
n. The right-hand side of (9.2.1)

is equal to P(Xn+1 = j|Gn) · P
(
X ′

n+1 = j′|G′
n

)
, by the Markov property, and so is Fn-measurable. Recall, that

Fn is generated by sets of the form G1 ∩ G2 where G1 ∈ Gn and G2 ∈ G′
n. Using the independence of Gn and

G′
n it follows that,

E
(
P(Xn+1 = j|Gn) · P

(
X ′

n+1 = j′|G′
n

)
1G1∩G2

)
= E

(
E
(
1{Xn+1=j}1G1 |Gn

)
E
(

1{X′
n+1=j′}1G2 |G′

n

))
= E

(
E
(
1{Xn+1=j}1G1 |Gn

))
E
(
E
(

1{X′
n+1=j′}1G2 |G′

n

))
= E

(
1{Xn+1=j}1G1

)
E
(

1{X′
n+1=j′}1G2

)
= E

(
1{Xn+1=j}∩{X′

n+1=j′}1G1∩G2

)
= E

(
P
(
Xn+1 = j,X ′

n+1 = j′)1G1∩G2

)
.
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It follows that

P
(
Xn+1 = j,X ′

n+1 = j′) = P(Xn+1 = j|Gn) · P
(
X ′

n+1 = j′|G′
n

)
= P(Xn+1 = j|Xn) · P

(
X ′

n+1 = j′|X ′
n

)
.
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