
Mathematical Logic
Thomas Walker

Autumn 2024

Contents
1 Propositional Logic 2

1.1 Propositional Formulas . 2
1.2 Valuation Maps . 3
1.3 Substitution . 3
1.4 The Deductive Approach . 4
1.5 Soundness and Completeness Theorems . 5
1.6 Consistent and Maximally Consistent Sets of Formulae . 5

2 Predicate Logic 7
2.1 First Order Structures, Languages and Formulas . 7
2.2 Interpretations of Languages and Assignments . 8
2.3 Variable Binding and Sub-formals . 9
2.4 Substitution . 10
2.5 Variable Scoping . 11
2.6 Natural Deduction . 12
2.7 Completeness and the Model Existence Lemma . 12
2.8 Soundness of Equality Deduction Rules . 13
2.9 Conclusions from the Completeness Theorem . 13
2.10 Decidability and the Entscheidungsproblem . 13
2.11 Dense Linear Orders . 14

3 Set Theory 15
3.1 Basic Set Theory . 15
3.2 Cardinality . 15
3.3 Axioms of Set Theory . 16
3.4 Linear Orderings . 17
3.5 Ordinals . 17
3.6 Transfinite Induction . 19
3.7 Transfinite Recursion . 19
3.8 The Axiom of Regularity . 20

4 The Axiom of Choice 21
4.1 The Well-Ordering Principle . 21
4.2 Cardinals and Cardinality . 21
4.3 Zorn’s Lemma . 22

5 Applications 23
5.1 An Introduction to Computational Semantics . 23

1

1 Propositional Logic
1.1 Propositional Formulas
A proposition is a true or false statement. Propositional logic is a language to deal with propositions.

Definition 1.1.1. Propositional logic is a language that consists of

1. a non-empty set P of propositions called atomic propositions,

2. connectives ∧,∨,→,↔,¬,⊥ and

3. auxiliary symbols.

The connectives operate on one or two propositions, say p and q, and so their function can be defined entirely by
enumerating the possibilities in truth tables.

p q p ∧ q p ∨ q p → q p ↔ q ¬p
True True True True True True False
True False False True False False
False True False True True False
False False False False True True True

Table 1: Propositional Formulas

The connective ⊥ represents a logical contradiction.

Definition 1.1.2. For a set of atomic propositions, let W(P) to be the smallest set with the following properties.

1. P ⊆ W(P).

2. If p, q ∈ W(P), then p □ q ∈ W(P) for □ ∈ {∧,∨,→,↔}.

3. p ∈ W(P) → (¬p) ∈ W(P).

4. ⊥∈ W(P).

Therefore, W(P) represents the set of propositional formulas that can be constructed using the propositional
logic defined by P . To construct proofs using propositional logic we use the method of induction. Suppose A is
a property of elements in W(P). Then we can prove that A(ϕ) holds for all ϕ ∈ W(P) by showing the following.

1. If A(p) holds for all p ∈ P .

2. If (A(ϕ) ∧A(ψ)) → A(ϕ □ ψ) for all □ ∈ {∧,∨,→,↔}.

3. If A(ϕ) → A(¬ϕ).

4. A(⊥).

Definition 1.1.3. A sequence ϕ1, . . . , ϕn ∈ W(P) is a formation sequence of ϕ if the following statements are
satisfied.

1. ϕn = ϕ.

2. For all i, either

(a) ϕi is atomic,
(b) ϕi = ϕj □ ϕk for j, k < i, or

2

(c) ϕi = ¬ϕj for j < i.

Theorem 1.1.4. Given a set of atoms P , then W(P) is the set of expressions that have a formation sequence.

1.2 Valuation Maps
From now on the truth value of p ∈ P will be either 1 (True) or 0 (False).

Definition 1.2.1. A map v : W(P) → {0, 1} is a valuation map if for all ϕ, ψ ∈ W(P) the following statements
hold.

1. v(ϕ ∧ ψ) = min(v(ϕ), v(ψ)).

2. v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

3. v(ϕ → ψ) = 0 if and only if v(ϕ) = 1 and v(ψ)) = 0.

4. v(ϕ ↔ ψ) = 1 if and only if v(ϕ) = v(ψ).

5. v(¬ϕ) = 1 − v(ϕ).

6. v(⊥) = 0.

Lemma 1.2.2. Suppose that v and v′ are two valuation maps such that v(p) = v′(p) for all p ∈ P . Then,
v(ϕ) = v′(ϕ) for all ϕ ∈ W(P).

Corollary 1.2.3. If v′ : P ∪ {⊥} → {0, 1} is such that v′(⊥) = 0, then there is a unique valuation map such
that v(p) = v′(p) for all p ∈ P .

Definition 1.2.4. Let P be a set of atoms, and let ϕ ∈ W(P).

1. ϕ is a tautology, ⊨ ϕ, if v(ϕ) = 1 for all valuations maps of W(P).

2. ϕ is a semantic consequence for Γ ⊆ W(P), Γ ⊨ ϕ, if for every valuation map v such that v(ψ) = 1 for
all ψ ∈ Γ, we have that v(ϕ) = 1.

1.3 Substitution
Consider a finite set of atoms P = {p1, . . . , pn}, and ϕ ∈ W(P). We can define a substitution map as follows.

1. For ϕ ∈ P we let ϕ⌊ψ/pi⌋ =
{
ϕ ϕ ̸= pi

ψ ψ = pi.

2. For ϕ = ϕ1 □ ϕ2 we let ϕ⌊ψ/pi⌋ = ϕ1⌊ψ/pi □ ϕ2⌊ψ/pi⌋.

3. For ϕ = ¬ϕ1 we let ϕ⌊ψ/pi⌋ = ¬ϕ1⌊ψ/pi⌋.

Theorem 1.3.1. If ⊨ (ϕ1 ↔ ϕ2) then ⊨ (ψ⌊ϕ1/p⌋ ↔ ψ⌊ϕ2/p⌋).

The substitution map ϕ⌊ψ/pi⌋ replaces all instances of pi in ϕ with ψ. Theorem 1.3.1 says that substituting
atoms of the same truth value into the same proposition should change the truth value of the proposition in the
same way.

3

Corollary 1.3.2. For every ϕ ∈ W(P) there is a ψ ∈ W(P) such that ψ only has connectives {∧,∨,¬} such
that ⊨ (ϕ ↔ ψ).

Let ϕ(p1, . . . , pn) ∈ W(P), where n ≤ |P |. Then the truth function obtained from ϕ, Fϕ : {0, 1}n → {0, 1} is
such that for x̄ = (x1, . . . , xn) the value of Fϕ(x̄) is the truth value of ϕ when pi = xi for i = 1, . . . , n. More
generally, a truth function will refer to any F : {0, 1}n → {0, 1}.

Definition 1.3.3. Formulas φ and ψ in n-variables are logically equivalent if Fφ = Fψ. Equivalent, we say
that φ and ψ are logically equivalent if ⊨ (φ ↔ ψ).

Definition 1.3.4. A set A of connectives is adequate if for every 1 ≤ n ≤ |P |, and for every truth function,
F , on n-variables there exists ϕ ∈ W(P) that is only constructed using connectives from A and variables
p1, . . . , pn such that F = Fϕ.

Theorem 1.3.5. The set {∧,∨,¬} is adequate.

Corollary 1.3.6. The following sets are adequate.

• {¬,∨}.

• {¬,∧}.

• {¬,→}.

Definition 1.3.7. We say that ϕ ∈ W(P) is in disjunctive normal form if it is a disjunction (∨’s) of conjunctions
(∧’s) of literals (statements of negations of atoms).

Corollary 1.3.8. Suppose ϕ ∈ W(P), then there is a ψ ∈ W(P) in disjunctive normal form such that
⊨ (ϕ ↔ ψ).

1.4 The Deductive Approach
To start making deductions we need to introduce some meaning to our logical statements. We can do this by
considering a Σ ⊆ W(P) and derive the semantic consequences, Σ ⊨ φ, using a valuation map. That is, we
say that Σ ̸⊨ φ if and only if there is a valuation map v such that v(ψ) = 1 for all ψ ∈ Σ and v(φ) = 0.Σ
can be thought of as a set of assumptions, or axioms from which we can derive logical statements. We proceed
agnostically to the nature of Σ and focus on the process of deduction. The idea is to start from some premises,
φ or φ → ψ, and then use the deduction rules to make conclusions,

φ φ → ψ

ψ
.

The set {→,⊥} is adequate, so the superset {→,∧,⊥} is also adequate. In the following, we will use this superset
as our set of connectives to construct our set of rules.

• Introduction Rules.

– ∧ introduction, is defined for premises φ and ψ as

φ ψ

φ ∧ ψ
(∧ I).

4

– → introduction, is defined for premise φ and finitely many manipulations as

̸ φ
...
ψ

φ → ψ
(→ I).

• Elimination Rules.

– ∧ elimination, is defined for premise φ ∧ ψ as

φ ∧ ψ

φ
(∧ E).

– → elimination, is defined for premises φ and ψ as

φ φ → ψ

ψ
(→ E).

• Other Rules.

– Principle of explosion, is defined for premise ⊥ as

⊥
φ

(⊥).

– Reductio ad absurdum, is defined for premise ¬φ and finitely many manipulations as

̸ ¬ ̸ φ
...

⊥
φ

(RAA).

Definition 1.4.1. Let Σ ⊆ W(P), then Σ ⊢ φ if there is φ1, . . . , φn = φ such that

1. φi ∈ Σ, or

2. φi is obtained from a deduction rule.

1.5 Soundness and Completeness Theorems

Theorem 1.5.1 (Soundness). Let Γ ⊆ W(P) and φ ∈ W(P), then Γ ⊢ φ implies that Γ ⊨ φ.

Soundness means that if a statement can be deduced from a set of assumptions, then it is the semantic consequence
of those assumptions.

Theorem 1.5.2 (Completeness). Let Γ ⊆ W(P) and φ ∈ W(P), then Γ ⊨ φ if and only if Γ ⊢ φ.

Completeness means that in addition to being sound, if a statement is a semantic consequence of a set of
assumptions, then it can be deduced from those assumptions.

1.6 Consistent and Maximally Consistent Sets of Formulae

5

Definition 1.6.1. We say that Γ ⊆ W(P) is consistent if Γ ̸⊢⊥ and inconsistent if Γ ⊢⊥.

Lemma 1.6.2. The following are equivalent.

1. Γ is consistent.

2. For no ϕ ∈ W(P) does both Γ ⊢ ϕ and Γ ⊢ ¬ϕ hold.

3. Γ ̸⊢ ϕ for at least one ϕ ∈ W(P).

Lemma 1.6.3. Suppose v is a valuation function and Γ ⊆ W(P) such that v(ψ) = 1 for all ψ ∈ Γ. Then Γ
is consistent.

Lemma 1.6.4. Suppose that Γ is a consistent set of formulae.

1. If Γ ∪ {¬φ} ⊢⊥ then Γ ⊢ φ.

2. If Γ ∪ {φ} ⊢⊥ then Γ ⊢ ¬φ.

Definition 1.6.5. Γ is called maximally consistent when

• Γ is consistent and

• if Γ′ ⊇ Γ such that Γ′ is consistent, then Γ′ = Γ.

Lemma 1.6.6. Let Γ be maximally consistent.

1. For all formulae ϕ either ϕ ∈ Γ or ¬ϕ ∈ Γ.

2. For all formulae ϕ, ψ we have that (ϕ → ψ) ∈ Γ if and only if ϕ ∈ Γ implies ψ ∈ Γ.

Corollary 1.6.7. If Γ is maximally consistent, then

1. ϕ ∈ Γ if and only if ¬ϕ ̸∈ Γ, and

2. ¬ϕ ∈ Γ if and only if ϕ ̸∈ Γ.

Lemma 1.6.8 (Lindenbaum). For each Γ ⊆ W(P) that is consistent, there is a maximally consistent Γ∗ :
Γ ⊆ Γ∗ ⊂ W(P).

Lemma 1.6.9. Suppose that Γ is consistent. Then there is a valuation function v such that v(θ) = 1 for all
θ ∈ Γ.

Corollary 1.6.10. If Γ ̸⊢ ϕ then there is a valuation function v such that v(θ) = 1 for all θ ∈ Γ but v(ϕ) = 0.

6

2 Predicate Logic
2.1 First Order Structures, Languages and Formulas

Definition 2.1.1. Suppose A is a set and n ∈ Z+.

• A n-ary relation on A is a subset R ⊆ An.

• A n-ary function of A is a well-defined map f : An → A.

Definition 2.1.2. A first-order structure A has the following components.

1. A non-empty set A called the domain of A,

2. A set of relations on A, given by {
Ri ⊆ Ani : i ∈ l, ni ∈ Z+}

.

3. A set of functions on A, given by {
fj : Anj → A : j ∈ J, nj ∈ Z+}

.

4. A set of constants, given by
{ck ∈ A : k ∈ K}.

A first-order structure can be summarised as A = ⟨A, (Ri : i ∈ l), (fj : j ∈ J), (ck : k ∈ K)⟩, with (ni : i ∈
l), (nj : j ∈ J),K being known as the signature of A.

Definition 2.1.3. A first order language L with signature (ni : i ∈ l), (nj : j ∈ J),K has the following
components.

1. A countable set of variables,
V = {v1, v2, . . . }.

2. A set of connectives,
{∧,∨,¬,→,↔,⊥,∀,∃}.

3. Auxiliary symbols.

4. A set of relations,
R = {Ri : i ∈ I}.

5. A set of functions,
F = {fj : j ∈ J}.

6. A set of constants,
C = {ck : k ∈ K}.

7. An equality symbol, .=.

For propositional logic.

• The set of variables was given by the set of atoms, P .

• The set of connectives were given by {∧,∨,→,↔,¬,⊥}.

• The auxiliary symbols constituted {, }.

7

Let E = P ∪ {∧,∨,→,↔,¬,⊥} ∪ {, } and consider the set Sf (E) of all finite sequences of elements of E. Note
that E∗ =

⋃
n∈Z≥0

En = Sf (E) and W(P) ⊊ Sf (E).

Definition 2.1.4. The set of L-terms, Term(L), is the smallest subset of Sf (L) with the following properties.

1. V ⊆ Term(L).

2. C ⊆ Term(L).

3. For a nf -array function f ∈ F and t1, . . . , tnf
∈ Term(L), then f(t1, . . . , tn) ∈ Term(L).

Definition 2.1.5. The set of L-formulas, Form(L), is the smallest subset of Sf (L) with the following properties.

1. ⊥∈ Form(L).

2. t1, . . . , tnR
∈ Term(L) implies that R(t1, . . . , tnR

) ∈ Form(L).

3. t1, t2 ∈ Term(L) implies that t1
.= t2 ∈ Form(L).

4. ϕ, ψ ∈ Form(L) implies that ϕ □ ψ ∈ Form(L) for any connective □.

5. ϕ ∈ Form(L) implies that ¬ϕ ∈ Form(L).

6. ϕ ∈ Form(L) implies that ∀vϕ ∈ Form(L) and ∃vϕ ∈ Form(L).

The connectives ∃ and ∨ from predicate logic can be interpreted in propositional logic.

• (∃x)ϕ means (¬(∀x)(¬ϕ)).

• ϕ ∨ ψ means ((¬ϕ) → ψ).

2.2 Interpretations of Languages and Assignments

Definition 2.2.1. We say that ϕ ∈ Form(L) is atomic if it is of the form Ri(t1, . . . , tni) for Ri ∈ R and
t1, . . . , tni

∈ Term(L).

Definition 2.2.2. Let L be a first-order language with

• R = {Ri : i ∈ l},

• F = {fj : j ∈ J}, and

• C = {ck : k ∈ K}.

Then an L-structure, A, is a first order structure with signature, R,F ,K. To specify a language we write

L = R ∪ F ∪ C ∪ {logical symbols and variables}.

If A is a corresponding L structure,

• the interpretation of Ri ∈ R in A is denoted RA
i ,

• the interpretation of fj ∈ F in A is denoted fA
j , and

• the interpretation of ck ∈ C in A is denoted cA
k .

8

Definition 2.2.3. Let L be a first-order language and A a corresponding L-structure. An A-assignment is a
function β : V → A and is extended to Term(L) so that the following hold.

1. tA[β] = β(vi) for t = vi,

2. tA[β] = cA
k if t = ck,

3. tA[β] = fA
j

(
tA1 [β], . . . , tAmi

[β]
)

if t = fj (t1, . . . , tmi).

For β a A-assignment a ∈ A and v ∈ V we can define a substitution map β(a/v) : V → A defined by

β(a/v)(vi) =
{
β(vi) vi ̸= v

a vi = v.

Definition 2.2.4. Let L be a language and A a corresponding L-structure. For an assignment function
β : Term(L) → A we define a valuation map vβ : Form(L) → {0, 1} inductively in the following way.

1. vβ(⊥) = 0.

2. For t1, t2 ∈ Term(L) such that t1
.= t2 ∈ Form(L) we have that

vβ (t1
.= t2) =

{
1 tA1 [β] = tA2 [β]
0 otherwise.

3. For t1, . . . , tni
∈ Term(L) and Ri(t1, . . . , tni

) we have that

vβ (Ri(t1, . . . , tni)) =
{

1
(
tA1 [β], . . . , tAni

[β]
)

∈ RA
i

0 otherwise.

4. For ϕ, ψ ∈ Form(L), then vβ(ϕ □ ψ) is as defined in the case of propositional logic.

5. For ϕ ∈ Form(L), we have that vβ(¬ϕ) = 1 − vβ(ϕ).

6. For ϕ ∈ Form(L) we have that vβ (∀wϕ) = min
{
vβ(a/w)(ϕ) : a ∈ A

}
.

7. For ϕ ∈ Form(L) we have that vβ (∃wϕ) = max
{
vβ(a/w)(ϕ) : a ∈ A

}
.

Definition 2.2.5. Let vβ : Form(L) → {0, 1} be a valuation map as defined above.

• A ⊨ ϕ[β] if vβ(ϕ) = 1.

• A ⊨ ϕ, that is ϕ is satisfied by A, if for all A-assignments β we have that A ⊨ ϕ[β].

• ⊨ ϕ, that is ϕ is logically valid, if for all L-structures A we have that A ⊨ ϕ.

2.3 Variable Binding and Sub-formals

Definition 2.3.1. Suppose ϕ and ψ are L-formulas.

1. If ∀xiϕ is a sub-formula of ψ. Then ϕ is the scope of the quantifier ∀xi in ψ.

2. A variable xi in ψ is bounded if it is in the scope of a quantifier ∀xi in ψ.

3. If a variable is not in the scope of any quantifier, then the variable has free occurrence and is called a

9

free variable.

Definition 2.3.2. A formula ϕ ∈ Form(L) is called a sentence if it has no free variables.

Lemma 2.3.3. Suppose that A is an L-structure and let ϕ, ψ ∈ Form(L) be sentences. Then

1. A ⊨ ϕ ∧ ψ if and only if A ⊨ ϕ and A ⊨ ψ.

2. A ⊨ ϕ ∨ ψ if and only if A ⊨ ϕ or A ⊨ ψ.

3. A ⊨ ¬ϕ if and only if A ⊭ ϕ.

4. A ⊨ (ϕ → ψ) if and only if A ⊨ ϕ implies A ⊨ ψ.

Now suppose ϕ ∈ Form(L) only has the free variable v ∈ V , then

1. A ⊨ (∀vϕ) if and only if for all a ∈ A we have that A ⊨ ϕ[a].

2. A ⊨ (∃vϕ) if and only if there exists a ∈ A such that A ⊨ ϕ[a].

Lemma 2.3.4. Suppose γ, β : V → A are A-assignments which agree on v1, . . . , vn. Then for t(v1, . . . , vn) ∈
Term(L) we have that

tA[γ] = tA[β].

Lemma 2.3.5. Suppose β and γ are two A-assignments which agree in v1, . . . , vn. For ϕ(v1, . . . , vn) ∈
Form(L) we have that

vβ(ϕ) = vγ(ϕ).

Note that we say A ⊨ ϕ[a1, . . . , an] when A ⊨ ϕ[β] and β(vi) = ai for all 1 ≤ i ≤ n.

Corollary 2.3.6. Suppose ϕ is a sentence, then A ⊨ ϕ or A ⊨ ¬ϕ.

Definition 2.3.7. For an L-structure A we denote the set

Con(A) = {ϕ ∈ Form(L) : ϕ a sentence such that A ⊨ ϕ}.

2.4 Substitution
For a non-empty set P , let θ ∈ W(P) be a tautology be such that p1, . . . , pn appear in θ. Let ϕ1, . . . , ϕn ∈
Form(L), and let ψ be the formula obtained by substituting the pi in θ with ϕi. It can be shown that ψ ∈ Form(L)
is a logically valid formula. For β a A-assignment we consider x̄ :=

(
vβ(ϕ1), . . . , vβ(ϕn)

)
as an element of {0, 1}n

so that vβ(ψ) = Fθ(x̄).

Definition 2.4.1. Suppose t, s ∈ Term(L) and v ∈ V . Then we define the operator, s⌊t/v⌋, on Term(L) as
follows.

• If s = vi, then

s⌊t/v⌋ =
{
t vi = v

vi vi ̸= v.

10

• If s = c, then
s⌊t/v⌋ = c.

• If s = f(t1, . . . , tmj), then
s⌊t/v⌋ = f

(
t1⌊t/v⌋, . . . , tmj ⌊t/v⌋

)
.

Which extends to formulas ϕ ∈ Form(L) as follows.

• ⊥ ⌊t/v⌋ =⊥.

• R (t1, . . . , tni
)(⌊t/v⌋) = R (t1⌊t/v⌋, . . . , tni

⌊t/v⌋).

• (t1
.= t2) ⌊t/v⌋ = (t1⌊t/v⌋ .= t2⌊t/v⌋).

• (ϕ □ ψ)⌊t/v⌋ = ϕ⌊t/v⌋ □ ψ⌊t/v⌋, as in propositional logic.

• (∀viϕ(vi))⌊t/v⌋ =
{

∀vi(ϕ⌊t/v⌋) v ̸= vi

∀viϕ(vi) v = vi.

• (∃viϕ(vi))⌊t/v⌋ =
{

∃vi(ϕ⌊t/v⌋) v ̸= vi

∃viϕ(vi) v = vi.

2.5 Variable Scoping

Definition 2.5.1. Let ϕ ∈ Form(L), t ∈ Term(L) and vi ∈ V a variable in ϕ. Then t is free from vi in ϕ if
for every vj ∈ t, vi is not in the scope ∀vj or ∃vj in ϕ.

Lemma 2.5.2. Suppose ϕ ∈ Form(L) is a free variable in ϕ and let t be an L-term that is free from vi in ϕ.
Then

⊨ (∀vi ϕ(vi)) → ϕ(t).

Definition 2.5.3. Suppose Γ ⊆ Form(L), A is an L-structure and β is an assignment. Then A ⊨ Γ⌊β⌋
if A ⊨ ψ⌊β⌋ for all ψ ∈ Γ. Moreover, Γ ⊨ ϕ if for all L-structures A and A-assignments β, we have that
A ⊨ Γ⌊β⌋ implies A ⊨ ϕ⌊β⌋.

Lemma 2.5.4. Suppose ϕ(v1, . . . , vn) ∈ Form(L). Then A ⊨ ϕ(v1, . . . , vn) if and only if ∀(v1 . . . vn)ϕ(v1, . . . , vn)
where ∀(v1 . . . vn) = ∀v1 . . . ∀vn.

Lemma 2.5.5. Let ϕ ∈ Form(L).

1. ⊨ ¬∀x ϕ ↔ ∃x ¬ϕ.

2. ⊨ ¬∃x ϕ ↔ ∀x ¬ϕ.

3. ⊨ ∀x ϕ ↔ ¬(∃x ¬ϕ).

4. ⊨ ∃x ϕ ↔ ¬(∀x ¬ϕ).

Corollary 2.5.6. Let ϕ ∈ Form(L), then there exists ψ ∈ Form(L) such that ⊨ ϕ ↔ ψ, where ψ only has the
connectives {∧,→,⊥,∀}.

11

Lemma 2.5.7. Suppose ϕ, θ ∈ Form(L) and v ∈ V is not a free variable in θ. Then ⊨ ∀v (θ → ϕ(v)) implies
that ⊨ θ which implies that ∀v ϕ(v).

2.6 Natural Deduction
The deduction rules we defined for propositional logic are similarly defined for predicate logic. To these, we define
additional rules.

• ∀ introduction, under the deduction D
ϕ(x) where x is not free for any uncanceled hypothesis of D, we have

D
ϕ(x).

• ∀ elimination, under the deduction ∀v ϕ(v), for t ∈ Term(L) free from v in ϕ we have

∀ ϕ(v)
ϕ(t) (∀ E).

Lemma 2.6.1. Let Γ ⊆ Form(L), then if v is not a free variable in Γ then Γ ⊢ ϕ(v) implies that Γ ⊢ ∀v ϕ(v).

2.7 Completeness and the Model Existence Lemma

Lemma 2.7.1. If Γ is a set of L-sentences which is consistent, that is Γ ̸⊢⊥, then there is an L-structure,
which we call a model, where A ⊨ L.

Definition 2.7.2. Let L be a language. A theory is a collection of L-sentences, T ⊆ Form(L), such that
T ⊢ ϕ implies that ϕ ∈ T .

• For a theory T , we call Γ ⊆ Form(L) a set of axioms of T if

T = {ϕ ∈ Form(L) : A sentence such that Γ ⊢ ϕ}.

• A theory T is a Henkin theory if for each sentence of the form ∃x ϕ(x) there is a constant c such that
(∃x ϕ(x) → ϕ(c)) ∈ T . Such a c is called a Henkin witness.

• A extension of a theory T for a language L is any theory T ′ for a language L′ such that T ⊆ T ′.

Definition 2.7.3. Let T be an L-theory. For each θ = ∃v ϕ(v) in L, add a distinct constant cθ for each θ.
The resulting language is denoted L∗ and we define T ∗ to be the theory of axioms

T ∪ {∃v ϕ(v) → ϕ(cθ) : θ = ∃v ϕ(v) a sentence}.

We call T ∗ an extensions by constants and denote L∗ = L ∪ C for

C = {cθ : θ = ∃v ϕ(v) is a sentence}.

Lemma 2.7.4. Let T be a theory and T ∗ the extension by constants. Then T = Form(L) ∩ T ∗.

12

Lemma 2.7.5. Let Γ be a set of L-sentences. If Γ ∪ {∃v ϕ(v) → ϕ(c)} ⊢ ψ where c is a constant not in Γ
and ψ, then Γ ⊢ ψ.

Corollary 2.7.6. If T is consistent then T ∗ is also consistent.

For a theory T , define the Henkin extension, Tω, using the following inductive process. Let T0 = T , Tn+1 = (Tn)∗

and Tω =
⋃
n∈Z≥0

.

Lemma 2.7.7. We have Tω is a Henkin theory.

Lemma 2.7.8. For a theory T we have that T = Tω ∩ Form(L).

Corollary 2.7.9. When T is consistent, there is a consistent Henkin extension Tω of T .

Lemma 2.7.10 (Lindenbaum). Every consistent theory is contained in a maximally consistent theory within
the same language.

Lemma 2.7.11. Any extension of a Henkin theory in the same language is a Henkin theory.

2.8 Soundness of Equality Deduction Rules

Lemma 2.8.1. Suppose that β is an A-assignment for an L-structure A. Then

vβ(ϕ⌊t/v⌋) = vβ⌊tA⌊β⌋/v⌋(ϕ(v)).

Lemma 2.8.2. Given β an A-assignment and s, t ∈ Term(L) we have

(t⌊t/v⌋)A⌊β⌋ = tA
⌊
β

(
sA⌊β⌋/v

)⌋
.

2.9 Conclusions from the Completeness Theorem

Theorem 2.9.1 (Compactness). Suppose that Σ is a set of L-sentences. Then Σ has a model if and only if
every finite subset of Σ has a model.

Theorem 2.9.2 (Downward Lowenheim-Skolem). Suppose L is a countable first order language and that A
is an L-structure. Let

T = Th(A) = {θ : A ⊨ θ, θ ∈ Form(L) a sentence}.

Then there is a countable model B such that B ⊨ T .

Using the Lindstrom theorem one can show that predicate logic is the strongest compact and Lowenheim-Skolem
logic.

2.10 Decidability and the Entscheidungsproblem
It has been shown that there is no algorithm to show whether any given first-order formula is valid. The proof of
this statement utilizes Gödel’s incompleteness theorem.

13

Definition 2.10.1. A set of natural numbers S is recursively enumerative (RE) if there is a (not necessarily
terminating) algorithm that generates all the elements of S.

Theorem 2.10.2 (Gödel’s Incompleteness Theorem). No consistent set of axioms that is RE is capable of
generating all valid sentences of ⟨N,+, ·, 0⟩ = N .

That is, no such algorithm can determine whether a formula N is valid, as this would mean the set of valid
sentences of N is RE.
The incompleteness theorem refers to the failure of a logical system to determine the validity of every sentence.

2.11 Dense Linear Orders
Let L be a language containing a single binary relation, ≤.

Definition 2.11.1. An L-structure, A, is a linear order if it satisfies the following.

ϕ-1. ∀x1∀x2(x1 ≤ x2) ∧ (x2 ≤ x1) → (x1
.= x2).

ϕ-2. ∀x1x2x3(x1 ≤ x2) ∧ (x2 ≤ x3) → (x1 ≤ x3).

ϕ-3. ∀x1x2(x1 ≤ x2) ∨ (x2 ≤ x1).

A linear order is dense if it also satisfies the following.

ϕ-4. ∀x1∀z2∃x3(x1 ≤ x2) → (x1 ≤ x3) ∧ (x3 < x2), where x1 < x2
.= (x1 ≤ x2) ∧ ¬ (x1

.= x2).

A dense linear order has no endpoints if it also satisfies the following.

ϕ-5. ∀x1∃x2x1 < x2.

ϕ-6. ∀x1∃x2x2 < x1.

An isomorphism between L-structures A and B is a bijection F : A → B such that the following hold.

• For every constant c ∈ L, we have F
(
cA)

= cB.

• For every m-ary function f ∈ L, we have that F
(
fA(a1, . . . , am)

)
= fB (F (a1), . . . , F (am)).

• For every k-ary relation R ∈ L we have RA(a1, . . . , ak) if and only if RB (F (a1), . . . , F (ak)).

Lemma 2.11.2 (Los-Vaught Test). For every sentence θ either ∆ ⊢ θ or ∆ ⊢ ¬θ.

Theorem 2.11.3 (Cantor). If A and B are two countable dense linear orders without endpoints, then A and
B are isomorphic.

Corollary 2.11.4. If A and B are isomorphic, then for all L-sentences θ we have that A ⊨ θ if and only if
B ⊨ θ.

14

3 Set Theory
Set theory is a first-order theory.

3.1 Basic Set Theory

Definition 3.1.1. Two sets are equal if and only if ∀x(x ∈ A) ↔ (x ∈ B).

Definition 3.1.2. If A is a set, then the power set, P(A) is such that ∀x(x ⊆ A → x ∈ P(A)), where x ⊆ A
if and only if ∀y ∈ x → ∀y ∈ A.

Definition 3.1.3. The ordered pair (x, y) is defined to be the set {{x}, {x, y}}.

• For sets A and B, their product is

A×B = {(a, b) : a ∈ A, b ∈ B}.

• The n-fold product of a set A is defined inductively as

A0 = {∅}, A1 = A, A2 = A1 ×A1, . . . , An = An−1 ×A, . . .

• The set of finite sequences of elements of A is
⋃
n∈NA

n.

Definition 3.1.4. A function f : A → B is a subset f ⊆ A×B which has the property that

∀x ∈ A ∃!b ∈ B (a, b) ∈ f.

where ∃!c ∈ C ϕ(c) if and only if ∃c ∈ C (ϕ(c) ∧ (∀d ∈ Cϕ(d) → (d .= c))), in words this means that there
exists a unique c ∈ C such that ϕ(c) holds.

• A = dom(f) is the domain of f .

• B = ran(f) is the range of f .

• BA ⊆ P(A×B) is the set of functions f : A → B.

• For X ⊆ A, we let f(X) = {f(x) : x ∈ X}.

3.2 Cardinality

Definition 3.2.1. We say two sets A and B are equinumerous, A ≈ B, if there is a bijection f : A → B.

• A set is finite if it is equinumerous with some n ∈ N.

• A set A is countably infinite if A ≈ N.

• A set is countable if it is finite or countably infinite.

Proposition 3.2.2.

1. Every subset of a countable set is countable.

15

2. A set A is countable if and only if there is an injection f : A → N.

3. If A and B are countable then so is A×B.

4. If the axiom of choice* is assumed, then for countable sets A0, A1, . . . we have that
⋃
n∈NAn is

countable.

Theorem 3.2.3 (Cantor). If X is a set, then there is no surjective function f : X → P(X). Moreover, this
implies that X ̸≈ P(X).

Definition 3.2.4. For sets A and B we write |A| ≤ |B| when there exists an injective function f : A → B.

If |A| ≤ |B| then A is equinumerous with a subset of B.

Theorem 3.2.5 (Cantor-Schroder-Bernstein). Suppose that A,B are set and f : A → B and g : B → A are
injective functions. Then A ≈ B.

3.3 Axioms of Set Theory
The Zermelo-Frankel Axioms facilitate the construction of sets using a first-order language.

ZF1. Extensionality - ∀x∀y ((x .= y) ↔ ∀z ((z ∈ x) ↔ (z ∈ y))). In other words, two sets are equal if and only
if they have the same elements.

ZF2. Empty set - ∃x∀y (y ̸∈ x). In other words, there exists a set with no elements. The unique set with this
property is denoted ∅.

ZF3. Pairing - ∀x∀y∃z (∀w (w ∈ z ↔ ((w ∈ x) ∨ (w ∈ y)))). In other words, we can combine the elements of
two sets to form a new set.

ZF4. Union - ∀A∃B∀x ((x ∈ B) ↔ ∃z((z ∈ A) ∧ (x ∈ z))). In other words, we can write any set as the pairing
of sets.

ZF5. Power Set - ∀A∃B∀z ((z ∈ B) ↔ (z ⊆ A)). In other words, for any set, we can form a set containing its
subsets.

ZF6. Axiom Scheme of Specification - For P (x, y1, . . . , yr) ∈ Form(L) we have that ∀A∀(y1, . . . , yr)∃B∀x ((x ∈
B) ↔ ((x ∈ A) ∧ P (x, y1, . . . , yr))). In other words, for a formula and a set, we can construct the subset
of elements of the set for which the formula holds.

Using these axioms we can construct the following commonly used mathematical notions.

1. Intersection - ∩C = {x ∈ A : ∀z((z ∈ C) → (x ∈ Z))}.

2. Cartesian Product of Non-empty Set A and B - A×B = {w ∈ P(P(A ∪B)) : ϕ(w)}, where

ϕ(w) = ∃x∃y∀z ((x ∈ A) ∧ (Y ∈ B)) ∧ (w = {{x}, {x, y}}) .

Definition 3.3.1. For a set a, the successor of a is the set a† = a ∪ {a}. A set, A, is inductive if

(∅ ∈ A) ∧
(
∀x

(
(x ∈ A) →

(
x† ∈ A

)))
.

ZF7. Infinity - ∃A (∅ ∈ A) ∧
(
∀x

(
(x ∈ A) →

(
x† ∈ A

)))
. In other words, there exists a set for whose elements

when paired with itself as a singleton set is still in the set.

16

Definition 3.3.2. Let A be an inductive set, and let ϕ(A) = (∅ ∈ A) ∧
(
∀x

(
(x ∈ A) →

(
x† ∈ A

)))
. Then

N = {x ∈ A : ϕ(B) → (x ∈ B)}.

Remark 3.3.3. The above definition is agnostic to the choice of set A, and can be thought of as the intersection
of all inductive sets. We will also denote this set by ω.

Theorem 3.3.4. Let N be defined as above.

1. N is an inductive set, with the property that N ⊂ B for any inductive set B.

2. Let P (x) be a formula, then ∀k((k ∈ N) → P (k)) if P (x) satisfies the following.

(a) P (∅) holds, and
(b) ∀k

((
k ∈ N) →

(
P (k) → P (k†)))

.

3.4 Linear Orderings

Definition 3.4.1. A linear ordering (A,≤) is a well-ordering if every non-empty subset of A has a least element.

Definition 3.4.2. Suppose Ai = (Ai,≤i) for i = 1, 2 are linear orderings. Then A1 and A2 are isomorphic,
A1 ≃ A2, if there is a bijection α : A1 → A2 such that ∀a, b ∈ a ≤1 b if and only if α(a) ≤2 α(b).

• For any map α, if the forward implication of the above holds then α is order preserving.

Definition 3.4.3. Let Ai for i = 1, 2 be linear orderings.

• The reverse-lexicographic product A1 × A2 is the linear order (A1 ×A2,≤) defined by the property that
(a1, a2) ≤ (a′

1, a
′
2) if and only if a2 < a′

2 or a2
.= a′

2 and a1 ≤1 a2.

• The disjoint union of A1 and A2 is defined as

A1 ⊔A2 = {(a, i) ∈ (A1 ∪A2) × {0, 1} : (a ∈ A1) ↔ (i .= 0) ∧ (a ∈ A2) ↔ (i .= 1)} .

• The sum A1 + A2 is the linear ordering (A1 ⊔ A2,≤) where a1 ≤ a2 for all a1 ∈ A1 and a2 ∈ A2. All
other orderings are as in A1 and A2.

Lemma 3.4.4. Let A1 and A2 be linear orders.

1. A1 + A2 and A1 × A2 are linear orders.

2. If A1 and A2 are well ordered sets, then so are A1 + A2 and A1 × A2.

3.5 Ordinals

Definition 3.5.1. Let X and α be sets.

1. X is transitive if every element of X is a subset of X.

2. α is ordinal if

17

(a) α is transitive, and
(b) the relation x < y if and only if x ∈ y is a strict well-ordering.

Lemma 3.5.2. If α is an ordering, then α† is also an ordering.

Proposition 3.5.3. Let ω be as defined previously.

1. If n ∈ ω then n is an ordinal.

2. ω is a transitive set.

Proposition 3.5.4. Suppose α is an ordinal.

1. α ̸∈ α.

2. If β ∈ α then β is an ordinal.

3. If β is an ordinal such that β ⊊ α, then β ∈ α.

4. α = {β : β an ordinal such that β ∈ α}.

Definition 3.5.5. If α and β are ordinals then α < β means that α ∈ β and α ≤ β means that α < β or
α = β.

Theorem 3.5.6. Suppose that α, β, γ are ordinals.

1. If α < β and β < γ then α < γ.

2. If α ≤ β and β ≤ α then α = β.

3. We have the trichotomy α < β, α = β and β < α.

4. A collection of ordinals, X, is well ordered. Moreover, the least element is given by ∩X.

Corollary 3.5.7.

1. If X is a set of ordinals, then ∪X is an ordinal.

2. ω is an ordinal.

Theorem 3.5.8. If (A,≤) is a well-ordered set, then there is a unique ordinal which is similar to (A,≤).

Definition 3.5.9. Suppose that (A,≤) is a well-ordered set. Then X ⊆ (⊊)A is an (proper) initial segment
of A if whenever y < x ∈ X then y ∈ X.

Lemma 3.5.10. Suppose that (A,≤) is a well-ordered set. If X ⊂ A is a proper initial segment of A, then
there is a x ∈ A such that

X = {a ∈ A : a < x} =: A[x].

18

Theorem 3.5.11. Suppose that (A,≤) is a well-ordered set, f : A → A is order-preserving and f [A] is an
initial segment of A. Then ∀x ∈ A f(x) = x.

Corollary 3.5.12. For ordinals α and β, if α ̸= β then α ̸≈ β.

Definition 3.5.13. Suppose that F (x, y, z1, . . . , zr) ∈ Form(L) is such that for fixed sets s1, . . . , sr and b
there is a unique set a such that F (a, b, s1, . . . , sr) holds.

• b 7→ a defines a function F called an operation on sets with parameter variables z1, . . . , zr.

• The sets s1, . . . , sr are the parameters of the operation.

ZF8. Replacement - Let F (x, y, z1, . . . , zr) be an operation on sets with parameters s1, . . . , sr, and let B be a
set. Then there is a set A such that

A = {a : F (a, b, s1, . . . , sr) holds for some b ∈ B}.

In other words, the image of an operation on a set is also a set.

3.6 Transfinite Induction

Theorem 3.6.1 (Transfinite Induction). Let P (x) be a property of sets. Assume that

∀α(∀β((β < α) → P (β))) → P (α)).

Then P (γ) holds for all ordinals γ.

Theorem 3.6.2. Suppose that α is an infinite ordinal, ω ≤ α, then α ≈ α× α.

Corollary 3.6.3.

1. If (A,≤) is an infinite well ordered set, then |A| = |A| × |A|.

2. Assuming the axiom of choice*, then any set A can be well ordered so that if A is infinite we have that
|A| = |A| × |A|. This is called the fundamental theorem of cardinal arithmetic.

3.7 Transfinite Recursion
Transfinite recursion lets us construct sets for ordinals that can be obtained from smaller ordinals via some
operation.

• Let G(·) be a set constructed from an ordinal. Then there exists an operation F such that

G(α) = F ({G(β) : β < α}) = F (G ↾ α).

Theorem 3.7.1 (Transfinite Recursion). Let F be an operation on sets, then there is an operation G such
that for all ordinals α we have

G(α) = F (G ↾ α).

Moreover, if G′ also has this property, then for all ordinals α we have G′(α) = G(α).

19

Remark 3.7.2. Note that G and G′ may still differ on non-ordinal sets.

Lemma 3.7.3 (Lindenbaum). Suppose L is a first order language whose alphabet of symbols, P , is well
ordered. Let Σ be a consistent set of L-sentences. Then there is a consistent set Σ∗ ⊃ Σ of L-sentences such
that every L-sentence ψ is such that either ψ ∈ Σ∗ or ¬ψ ∈ Σ∗.

3.8 The Axiom of Regularity
ZF9. Regularity - ∀((x ̸= ∅) → (∃a ((a ∈ x) ∧ (a ∩ x = ∅)))). In other words, there is no set b such that b ∈ b.

20

4 The Axiom of Choice
4.1 The Well-Ordering Principle

Definition 4.1.1. The axiom of choice is applied to a set of non-empty sets, A, and says that there is a
function f : A → ∪A such that f(a) ∈ a for all a ∈ A.

The Zermelo-Frankel axioms (ZF) with the axiom of choice is denoted ZFC.

Definition 4.1.2. Let X be a non-empty set of sets, let A = P(X) \ {∅}. By the axiom of choice, there is
a function f : A → X such that f(Y) = Y for all non-empty subsets of X. This function is called a choice
function on X.

Theorem 4.1.3 (Well-Ordering Principle). Suppose that X is a non-empty set and let f : P(X) \ {∅} → X
be a choice function. Then there is a well-ordering ≤ of X.

Lemma 4.1.4. For any set A there exists an ordinal α such that h : α → A cannot be injective.

Corollary 4.1.5. Assume ZF, then the axiom of choice is equivalent to the well-ordering principle, ZF ⊢
(AC ↔ WO).

Corollary 4.1.6. Assume ZFC.

1. For any set A, there is an ordinal, α, such that α ≈ A.

2. For any sets A or B, we have that |A| ≤ |B or |B| ≤ |A|.

3. For any infinite set A, we have that |A| = |A×A|.

Lemma 4.1.7. Assume ZFC. For sets ∅ ≠ A and B we have |A| ≤ |B| if and only if there exists a surjective
function h : B → A.

4.2 Cardinals and Cardinality
Throughout this section assume ZFC.

Definition 4.2.1. An ordinal α is cardinal if it is not equinumerous with any β < α.

Lemma 4.2.2. For any set A, there is a unique cardinal such that α ≈ A. We call this cardinal the cardinality
of A and denote it be card(A) or |A|.

Definition 4.2.3. For disjoint sets A and B with |A| = κ and |B| = λ for cardinals κ and γ. Define

• κ+ λ = |A ∪B|, and

• κ · λ = |A×B|.

21

Theorem 4.2.4. For cardinals κ and λ where κ ≤ λ and λ is infinite, we have that

1. κ+ λ = λ, and

2. κ · λ = λ if κ ̸= 0.

Theorem 4.2.5. For an infinite set A with cardinality γ, suppose each element of A is a set with cardinality
≤ κ. Then | ∪A| ≤ λ · x.

4.3 Zorn’s Lemma

Definition 4.3.1. A partially ordered set, or poset, (A,≤) has the following properties.

1. ∀xyz ∈ A (x ≤ y ≤ z → x ≤ z).

2. ∀xyz ∈ A ((x ≤ y) ∧ (y ≤ x) → (x .= y)).

3. ∀xyz ∈ A (x ≤ x).

Definition 4.3.2. For a poster (A,≤).

• A chain, C ⊆ A, has the property that

(∀x ∈ C)(∀y ∈ C)((x ≤ y) ∨ (y ≤ x)).

• An upper bound, a ∈ A of C has the property that

∀x ∈ C x ≤ a.

Definition 4.3.3. Zorn’s Lemma, ZL, supposes we have a non-empty poset (A,≤) in which every chain in A
has an upper bound in A and says that A has a maximal element.

Theorem 4.3.4.

1. Assume ZFC, then ZL holds.

2. Assume ZF and ZL, then AC holds.

22

5 Applications
5.1 An Introduction to Computational Semantics
Mathematical logic has significant applications in the realm of theoretical computer science. The foundations of
computation are described logically using semantics. Mathematical logic describes the syntax of how we construct
formulas and expressions, whereas semantics contextualises this into a framework to capture different philosophies
and properties. Three main types of semantics are used to describe computation.

1. Operational Semantics - Contextualises computations are executions running on abstract machines.

2. Denotational Semantics - Uses mathematical objects, and functions, to describe computation.

3. Axiomatic Semantics - Defines computation in terms of logical formulas that are satisfied during execution.

Here we will provide an introduction to operational semantics which describes how a program executes expressions
on an abstract machine.

• Var is a set of program variables.

• Int is a set of constant integers.

• Exp is a domain of expressions. We specify an expression using a syntax defined by the grammar,

e ::= x | n | e1 + e2 | e1 ∗ e2 | x := e1; e2.

Using this we formalize our abstract machine as a configuration, Config := Store×Exp where Store = Var ⇀ Int.

• A small-step operational semantic →⊆ Config×Config describes how we transition between configurations.
We can define inference rules for this semantic in the same as we did previously.

n = σ(x)
⟨σ, x⟩ → ⟨σ, n⟩

Var

⟨σ, e1⟩ → ⟨σ′, e′
1⟩

⟨σ, e1 + e2⟩ → ⟨σ′, e′
1 + e2⟩

LADD

⟨σ, e1⟩ → ⟨σ′, e′
2⟩

⟨σ, n+ e2⟩ → ⟨σ′, n+ e′
2⟩

RADD

p = m+ n

⟨σ, n+m⟩ → ⟨σ, p⟩
ADD

⟨σ, e1⟩ → ⟨σ′, e′
1⟩

⟨σ, e1 ∗ e2⟩ → ⟨σ′, e′
1 ∗ e2⟩

LMUL

⟨σ, e2⟩ → ⟨σ′, e′
2⟩

⟨σ, n ∗ e2⟩ → ⟨σ′, n ∗ e2⟩
RMUL

p = m× n

⟨σ,m ∗ n⟩ → ⟨σ, p⟩
⟨σ, e1⟩ → ⟨σ′, e′

1⟩
⟨σ, x := e1; e2⟩ → ⟨σ′, x := e′

1; e2⟩
ASSGN1

σ′ = σ[x 7→ n]
⟨σ, x := n; e2⟩ → ⟨σ′, e2⟩

ASSGN

• Similarly, we can define large-step semantics, ⇓⊆ (Store × Exp) × (Store × Int), so that we evaluate
expressions directly, rather than performing lots of small-step deductions. Again this is specified by a set of

23

inference rules.

⟨σ, n⟩ ⇓ ⟨σ, n⟩
INT

n = σ(x)
⟨σ, x⟩ ⇓ ⟨σ, n⟩

VAR

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 + n2

⟨σ, e1 + e2⟩ ⇓ ⟨σ′′, n⟩
ADD

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′, e2⟩ ⇓ ⟨σ′′, n2⟩ n = n1 × n2

⟨σ, e1 ∗ e2⟩ ⇓ ⟨σ′′, n⟩
MUL

⟨σ, e1⟩ ⇓ ⟨σ′, n1⟩ ⟨σ′[x 7→ n1], e2⟩ ⇓ ⟨σ′′, n2⟩
⟨σ, x := e1; e2⟩ ⇓ ⟨σ′′, n2⟩

ASSGN

Using the framework we can then go on to investigate properties such as soundness, and completeness for
computational programs. This has ramifications for the construction of programming languages and hence is a
fundamental theory of computer science.

24

	Propositional Logic
	Propositional Formulas
	Valuation Maps
	Substitution
	The Deductive Approach
	Soundness and Completeness Theorems
	Consistent and Maximally Consistent Sets of Formulae

	Predicate Logic
	First Order Structures, Languages and Formulas
	Interpretations of Languages and Assignments
	Variable Binding and Sub-formals
	Substitution
	Variable Scoping
	Natural Deduction
	Completeness and the Model Existence Lemma
	Soundness of Equality Deduction Rules
	Conclusions from the Completeness Theorem
	Decidability and the Entscheidungsproblem
	Dense Linear Orders

	Set Theory
	Basic Set Theory
	Cardinality
	Axioms of Set Theory
	Linear Orderings
	Ordinals
	Transfinite Induction
	Transfinite Recursion
	The Axiom of Regularity

	The Axiom of Choice
	The Well-Ordering Principle
	Cardinals and Cardinality
	Zorn's Lemma

	Applications
	An Introduction to Computational Semantics

