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1 Events, Probability and Random Variables

Part I. Measure Theory and Random Variables

1 Events, Probability and Random Variables

In developing an abstract mathematical framework to describe the likelihood of events happening in a
random experiment we can formalise large-sample results, including the Law of Large Numbers and the
Central Limit Theorem. An experiment can be described in the following way.

1. Let the possible outcomes ω of the experiment be the sample space, Ω.

2. Let events A be subsets of the sample space Ω that we may observe. The collection of such subsets
is denoted as F .

3. Assign a value P(A) ∈ [0, 1] to each of the subsets A ∈ F to quantify how likely the event is to
occur.

With this construction, we have a few problems to resolve.

• What should the collection of events F include?

• How should we assign values to the events in F?

It should be the case that we can either observe noting or something, that is, we should let F∗ :=
{∅,Ω} ⊆ F . However, any useful experiment should be able to differentiate different observed out-
comes, and so F should include more than just the whole set Ω as a potential result.
One could suggest letting F contain all possible subsets of Ω. We denote this F = F ∗ := 2Ω, and refer
to it as the power set of Ω. For Ω a countable set, this is fine, and it will often be the case that F = 2Ω.
However, issues arise if Ω is uncountable, for example, if Ω = R.
Next, there are certain properties that P ought to satisfy to make sense. For example, it should be finitely
additive. That is, if A,B ∈ F are disjoint outcomes, then

P(A ∪B) = P(A) + P(B).

When one extends this property to countably many disjoint events, potential contradictions may arise if
F does not have a certain structure. In the uncountable case, 2Ω will often not possess such a structure.
Therefore, we want to choose F such that it contains more information than F∗ but is strictly smaller
than 2Ω.
At this point, one may be wondering why we need to extend the finite additivity property to the countable
additivity property. Well, often one is interested in the long-term behaviour of a random experiment, such
as the expected value of a dynamical system as it continues to run forward in time. Hence, questions
regarding limits arise naturally, for which one needs to reason about countably many events rather than
just a finite number.
Mathematicians, therefore, attempted to find a suitable criterion for F and P so that they would not
give rise to contradictions, but still allow F to be large enough to be useful. One of the most successful
attempts was made by Andrey Kolmogorov in 1933 when he devised the axioms of probability in his
Foundations of the Theory of Probability. His work led to the development of the measure theory, which
forms the foundations of modern probability theory.

1.1 Algebras and σ-algebras
Let Ω be a set of points ω.

Definition 1.1.1 A nonempty system of subsets of Ω is called an algebra A if

• Ω ∈ A ,

• A,B ∈ A implies that A ∪B ∈ A, and

• A ∈ A implies that Ac ∈ A .
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1.1 Algebras and σ-algebras 1 Events, Probability and Random Variables

If in addition, all countable unions
⋃∞

n=1An ∈ A whenever A1, A2, · · · ∈ A , then A is a σ-algebra.

Remark 1.1.2 Note that we can consider the complements of events to show that a σ-algebra (alge-
bra) is also closed under countable (finite) intersections.

Definition 1.1.3

• A set function µ : A −→ [0,∞] is finitely additive if for any disjoint A,B ∈ A we have

µ(A ∪B) = µ(A) + µ(B).

• Let F be a σ-algebra. A set function µ : F → [0,∞] is σ-additive if for any disjoint A1, A2, · · · ∈
F , it follows that

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Such a µ is called a measure on F . A measure µ is a probability measure if µ(Ω) = 1.

• A measure is σ-finite if there exists a partition Ω =
⋃∞

k=1 Ωk, where the Ωk are pairwise disjoint,
such µ(Ωk) <∞ for k ∈ N.

Definition 1.1.4 A probability space is a triple (Ω,F ,P), where Ω is a set called the sample space, F
is a σ-algebra of subsets of Ω, and P is a probability measure on F . An element of F is called an
event.

Proposition 1.1.5 Let (Ω,F ,P) be a probability space. The probability measure P satisfies the follow-
ing.

1. P(∅) = 0.

2. If A,B ∈ F then
P(A ∪B) = P(A) + P(B)− P(A ∩B).

3. If A,B ∈ F and B ⊆ A then
P(B) ≤ P(A).

4. If A1, A2, · · · ∈ F , then

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An).

Proof.

1. As ∅ ∈ F is disjoint from itself, it follows by finite additivity that

P(∅) = P(∅ ∪∅) = 2P(∅).

Hence, P(∅) = 0.

2. As A ∩Bc ∈ F is disjoint from B, it follows that

P(A ∪B) = P (B ∪ (A ∩Bc)) = P(B) + P (A ∩Bc) .

Similarly,
P(A ∪B) = P(A) + P (Ac ∩B) .

Adding these together it follows that

2P(A ∪B) = P (A) + P (B) + P (Ac ∩B) + P (A ∩Bc) .
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1.1 Algebras and σ-algebras 1 Events, Probability and Random Variables

Noting that
A ∪B = (A ∩B) ∪ (Ac ∩B) ∪ (A ∩Bc)

where all individual intersections of the right-hand side are disjoint, it follows by finite additivity
that

P(A ∪B) = P(A) + P(B)− P(A ∩B).

3. As A = (A ∩B) ∪ (A ∩Bc), A ∩B = B, and P is non-negative, it follows that

P(A) = P(A ∩B) + P (A ∩Bc) = P(B) + P (A ∩Bc) ≥ P(B).

4. Let Ã1 := A1, and Ãn = An \
(⋃n−1

k=1 Ak

)
for n ≥ 2. Then

(
Ãn

)
n∈N

are disjoint with

∞⋃
n=1

An =

∞⋃
n=1

Ãn.

Moreover, by statement 3 we have P
(
Ãn

)
≤ P(An). Therefore, using σ-additivity we deduce that

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Ãn

)

=

∞∑
n=1

P
(
Ãn

)
≤

∞∑
n=1

P(An).

■

Proposition 1.1.6 Let µ be a finitely additive measure on an algebra A and let the sets A1, A2, · · · ∈ A
be pairwise disjoint with A =

⋃∞
i=1Ai ∈ A . Then

∞∑
i=1

µ(Ai) ≤ µ(A).

Proof. Note that
⋃n

i=1Ai ⊆ A for any n ∈ N. Therefore, by finite additivity and statement 3 of Proposi-
tion 1.1.5 we have

µ(A) ≥ µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai).

Taking the limit as n→ ∞ preserves the inequality and so

µ(A) ≥
∞∑
i=1

µ(Ai)

as required. ■

Remark 1.1.7 Proposition 1.1.6 shows that a finitely additive measure is almost a measure, up to
an inequality. Proposition 1.1.8 identifies the additional conditions that are necessary for a finitely
additive measure to be a measure.

Proposition 1.1.8 Let P be a finitely additive set function defined over an algebra A , with P(Ω) = 1.
Then the following statements are equivalent.

1. P is σ-additive, and hence a probability measure.

2. P is continuous from below. That is, for sets A1, A2, · · · ∈ A such that A1 ⊆ A2 ⊆ . . . and
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1.1 Algebras and σ-algebras 1 Events, Probability and Random Variables

⋃∞
n=1An ∈ A , we have

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

3. P is continuous from above. That is, for sets B1, B2, · · · ∈ A such that B1 ⊇ B2 ⊇ . . . and⋂∞
n=1Bn ∈ A , we have

lim
n→∞

P(Bn) = P

( ∞⋂
n=1

Bn

)
.

4. P is continuous at ∅. That is, for sets B1, B2, · · · ∈ A such that B1 ⊇ B2 ⊇ . . . and
⋂∞

n=1Bn =
∅, we have

lim
n→∞

P(Bn) = 0.

Proof. (1) ⇒ (2). Consider the sets Ã1 = A1, and Ãn = An \An−1 for n ≥ 2. Then the sets
(
Ãn

)
n∈N

are

a collection of disjoint sets. Moreover,
∞⋃

n=1

An =

∞⋃
n=1

Ãn.

Therefore,

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Ãn

)
(1)
= lim

n→∞

n∑
k=1

P
(
Ãk

)
= lim

n→∞
(P (A1) + (P(A2)− P(A1)) + · · ·+ (P(An)− P(An−1))

= lim
n→∞

P(An).

(2) ⇒ (3). Let n ≥ 1 and consider the events B̃n = B1 \Bn. Then

P
(
B̃n

)
= P(B1)− P (Bn) .

The sequence
(
B̃n

)
n∈N

is an increasing sequence of events with

∞⋃
n=1

B̃n = B1 \
∞⋂

n=1

Bn.

By (2) it follows that

P

( ∞⋃
n=1

B̃n

)
= lim

n→∞
P
(
B̃n

)
.

Therefore,

lim
n→∞

P(Bn) = P(B1)− lim
n→∞

P
(
B̃n

)
= P(Bn)− P

( ∞⋃
n=1

B̃n

)

= P(B1)− P

(
B1\

∞⋂
n=1

Bn

)

= P(B1)− P(B1) + P

( ∞⋂
n=1

Bn

)

= P

( ∞⋂
n=1

Bn

)
.
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1.1 Algebras and σ-algebras 1 Events, Probability and Random Variables

(3) ⇒ (4). As ∅ ∈ A , it follows that

lim
n→∞

P(Bn)
(3)
= P

( ∞⋂
n=1

Bn

)
= P(∅) = 0.

(4) ⇒ (1). Let A1, A2, · · · ∈ A be pairwise disjoint with

A :=

∞⋃
n=1

An ∈ A ,

and

Bn :=

∞⋃
i=n+1

Ai.

Note that
⋃n

i=1Ai and Bn are disjoint sets such that

A =

n⋃
i=1

Ai ∪Bn.

Therefore, by finite additivity we have

P(A) = P

(
n⋃

i=1

Ai

)
+ P(Bn).

The sequence of sets (Bn)n∈N is decreasing and such that
⋂∞

n=1Bn = ∅. Therefore,

∞∑
i=1

P(Ai) = lim
n→∞

n∑
i=1

P(Ai)

= lim
n→∞

P

(
n⋃

i=1

Ai

)
= lim

n→∞
(P (A)− P(Bn))

= P (A)− lim
n→∞

P(Bn)

(4)
= P(A).

■

Example 1.1.9 Let Ω be a sample space. Then,

1. F∗ = {∅,Ω}, and

2. F ∗ = {A : A ⊆ Ω} = 2Ω

are σ-algebras.

Lemma 1.1.10 For any collection E of subsets of Ω there exists a minimal algebra a(E ) and a minimal
σ-algebra σ(E ) that contains all elements of E .

Proof. Let (Ai)i∈I be a collection of algebras. Let A := ∩i∈IAi.

• Ω ∈ A as Ω ∈ Ai for every i ∈ I.

• Let A,B ∈ A . Then A,B ∈ Ai for every i ∈ I, so that A ∪ B ∈ Ai for every i ∈ I. Therefore,
A ∪B ∈ A .

• Let A ∈ A . Then A ∈ Ai for every i ∈ I, so that Ac ∈ Ai for every i ∈ I. Therefore, Ac ∈ A .
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1.2 Measurable Spaces 1 Events, Probability and Random Variables

Thus, A is an algebra. Similarly, one shows that for a collection of σ-algebras (Ai)i∈I , the set ∩i∈IAi is
a σ-algebra. Therefore, one can let

a(E ) =
⋂

E⊆A ,A an algebra

A

and
σ(E ) =

⋂
E⊆A ,A a σ-algebra

A .

■

Remark 1.1.11 In the context of Lemma 1.1.10 we say that σ(E ) is generated by E .

Exercise 1.1.12 Let D = {D1, D2, . . . } be a countable partition of Ω such that Di ∩Dj = ∅ for i ̸= j
and Ω =

⋃∞
j=1Dj . Show that

σ(D) =

⋃
j∈I

Dj : I ⊆ N

 .

1.2 Measurable Spaces

Definition 1.2.1 A measurable space is a pair (E,E ), where E is a set and E is a σ-algebra on E.

Let R = (−∞,∞) be the real line and

(a, b] = {x ∈ R : a < x ≤ b},

for −∞ ≤ a < b <∞. Let A be the algebra of subsets of R such that A ∈ A if for some n <∞ we have

A =

n⋃
i=1

(ai, bi].

Let B(R) be the smallest σ-algebra containing A . Then for a < b we observe that

• (a, b) =
⋃∞

n=1

(
a, b− 1

n

]
,

• [a, b] =
⋂∞

n=1

(
a− 1

n , b
]
, and

• {a} =
⋂∞

n=1

(
a− 1

n , a
]
.

Thus, in addition to containing intervals of the form (a, b], the Borel σ-algebra B(R) also contains sin-
gleton sets {a} and intervals of the form

• (a, b),

• [a, b],

• [a, b),

• (−∞, b),

• (−∞, b], and

• (a,∞).

Exercise 1.2.2 Show that B(R) can be generated by the collection of

1. open intervals of the form (a, b),

2. closed intervals [a, b],

3. half intervals,

8



1.2 Measurable Spaces 1 Events, Probability and Random Variables

4. intervals of the form (−∞, a] or [a,∞),

5. open sets with respect to the Euclidean metric, or

6. closed sets with respect to the Euclidean metric.

Let Rn = R× · · · ×R︸ ︷︷ ︸
n

. That is, the set of ordered n-tuples x = (x1, . . . , xn), where xk ∈ R for k =

1, . . . , n. A rectangle then refers to a set of the form

I = I1 × · · · × In = {x ∈ Rn : xk ∈ Ik, k = 1, . . . , n}

where Ik = (ak, bk] is known as a side of the rectangle. Let I be the collection of all rectangles I. The
smallest σ-algebra σ(I ) generated by the system I is the Borel σ-algebra of subsets of Rn denoted
B (Rn).
Instead of the rectangles I = I1 × · · · × In let us consider the rectangles B = B1 × · · · × Bn with Borel
sides. That is, Bk is a Borel subset of the real line that appears in the kth place in the direct product
R× · · · ×R. The smallest σ-algebra containing all rectangles with Borel sides is denoted by

B(R)⊗ · · · ⊗ B(R)

and called the direct product of the σ-algebras B(R). In fact,

B(Rn) = B(R)⊗ · · · ⊗ B(R). (1.1)

In other words, the σ-algebra generated by the rectangles I = I1 × · · · × In coincides with the σ-algebra
generated by rectangles B = B1 × · · · ×Bn with Borel sides. We will now justify this.

Lemma 1.2.3 Let E be a collection of subsets of Ω and let B ⊆ Ω. Consider

E ∩B = {A ∩B : A ∈ E }.

Then
σ(E ∩B) = σ(E ) ∩B,

where on the left-hand side the σ-algebra is over B, whereas on the right-hand side the σ-algebra is
over Ω.

Proof. Step 1: Show that σ(E ∩B) ⊆ σ(E ) ∩B.
Clearly, B = Ω ∩B ∈ σ(E ) ∩B. Moreover, for any A ∈ σ(E ) we have

B \ (A ∩B) = (Ω \A) ∩B

and so B \ (A ∩B) ∈ σ(E ) ∩B as Ω \A ∈ σ(E ). Note that for A1, A2, · · · ∈ σ(E ) we have

∞⋃
i=1

(Ai ∩B) =

( ∞⋃
i=1

Ai

)
∩B ∈ σ(E ) ∩B,

where the membership follows as
⋃∞

i=1Ai ∈ σ(E ). Therefore, σ(E )∩B is a σ-algebra over B. Hence, as
E ∩B ⊆ σ(E ) ∩B it follows that

σ (E ∩B) ⊆ σ (σ(E ) ∩B) = σ(E ) ∩B.

Step 2: Show that σ(E ) ∩B ⊆ σ(E ∩B).
Let

G := {A : A ∩B ∈ σ(E ∩B)}.

Clearly, Ω ∩B ∈ σ(E ∩B) and so Ω ∈ G . Let A ∈ G , then note that

(Ω \A) ∩B = B \ (A ∩B) .

9



1.2 Measurable Spaces 1 Events, Probability and Random Variables

By assumption A ∩B ∈ σ(E ∩B), which is a σ-algebra over B and so B \ (A ∩B) ∈ σ(E ∩B). Meaning
Ω \A ∈ G . Next let A1, A2, · · · ∈ G , then as( ∞⋃

i=1

Ai

)
∩B =

∞⋃
i=1

(Ai ∩B)

it follows that
⋃∞

i=1Ai ∈ G . Therefore, G is a σ-algebra over Ω. Hence, as E ⊆ G it follows that σ(E ) ⊆
G . So for A ∈ σ(E ) we have A ∈ G which implies that A∩B ∈ σ(E ∩B), and so σ(E )∩B ⊆ σ(E ∩B). ■

It is clear that for n = 1, the σ-algebras B(Rn) and B(R)⊗ · · · ⊗ B(R) are the same.

Lemma 1.2.4 For n = 2, equation (1.1) holds.

Proof. (⊆). For any open set, A we can write

A ⊆
⋃

x∈A∩Q2

R(x, τ(x))

where R(x, τ(x)) is the open square centered at x and of side length τ(x). As A ∩ Q2 is countable and
R(x, τ(x)) ∈ B(R)⊗ B(R), it follows that A ∈ B(R)⊗ B(R).
(⊇). Suffices to check that B1 × B2 ∈ B

(
R2
)

for any Borel sets B1, B2. Note that B1 × R ∈ B
(
R2
)

since
B1 ×R ∈ σ({open subsets of R})×R = σ({open subsets of R×R}).

Similarly, R×B2 ∈ B(R2), and so B1 ×B2 = (B1 ×R) ∩ (R×B2) ∈ B(R2). ■

The case for any n > 2 can be discussed similarly to Lemma 1.2.4. The space ((R∞,B (R∞)), on the
other hand, requires a different approach. However, it is useful to outline this as ((R∞,B (R∞)) is
consistently utilised for constructing probabilistic models of experiments with infinitely many steps. Let
R∞ = {x = (x1, x2, . . . ), xk ∈ R}.

Definition 1.2.5 A set C ⊆ R∞ is called cylindrical if it is of the form

C =
{
x ∈ R∞ : (x1, . . . , xn) ∈ C̃n

}
for some n ≥ 1 and C̃n ∈ B(Rn).

Exercise 1.2.6 Show that the cylindrical sets form an algebra.

The σ-algebra generated by cylindrical sets is called the cylindrical σ-algebra and is denoted B(R∞).
One can verify that

B(R∞) = σ ({A1 ×A2 × · · · ⊆ R∞, Ak ∈ B(R)}) .

Example 1.2.7 For c ∈ R, let

A =

{
x ∈ R∞ : lim sup

n→∞
(xn) = inf

n∈N
sup
k>n

(xk) > c

}
.

Then A ∈ B(R∞) because

A =

∞⋂
n=1

∞⋃
k=n+1

{x ∈ R∞ : xk > c} .

Similarly, letting

B =

{
x ∈ R∞ : lim inf

n→∞
(xn) = sup

n∈N
inf
k>n

(xk) > c

}
,

10



1.3 Probability Distributions 1 Events, Probability and Random Variables

we have that B ∈ B(R∞) because

B =

∞⋃
n=1

∞⋂
k=n+1

{x ∈ R∞ : xk > c} .

Exercise 1.2.8 For c ∈ R, show that D = {x ∈ R∞ : limn→∞(xn) = c} ∈ B(R∞).

1.3 Probability Distributions
Throughout this section, we will consider the importance of non-decreasing functions for describing
probability measures on measurable spaces.

Lemma 1.3.1 A non-decreasing function g(x) on R is continuous up to possibly countably many
discontinuities of the first kind. That is, for ϵ ↘ 0 the limits g(x + ϵ) and g(x − ϵ) exists but are
distinct.

Proof. Note that it must be the case that limϵ↘0 (g(x+ ϵ)− g(x− ϵ)) > 0 due to the non-decreasing
property of g. Thus we can form open balls at the right limit of the function at each jump. These open
sets are distinct and contain at least one rational number. As the rational numbers are countable on
R, it follows that there are at most countably many such open balls, and hence countably many such
jumps. ■

Lemma 1.3.1 is a positive result, as by construction our probability measures behave well in the countable
domain. Moreover, we deduce that the derivative of a non-decreasing function, g(x), denoted g′(x) exists
Lebesgue almost everywhere.

Exercise 1.3.2 Let (R,B(R),P) be a probability space and let F (x) := P((−∞, x]) for x ∈ R. Show
that,

• F (x) is non-decreasing,

• limx→−∞ F (x) = 0, limx→∞ F (x) = 1, and

• F (x) is right-continuous for all x ∈ R.

Definition 1.3.3 A function F : R → [0, 1] satisfying the properties of Exercise 1.3.2 is called a
distribution function on R.

Thus to every probability measure P on (R,B(R)) there corresponds a distribution function. The con-
verse is also true and there exists a one-to-one correspondence between distribution functions and prob-
ability measures.

Theorem 1.3.4 Let F = F (x) be a distribution function on R. Then there exists a unique probability
measure P on (R,B(R)) such that

P((a, b]) = F (b)− F (a),

for all −∞ ≤ a < b <∞.

This relies on the following fundamental result in measure theory.

Theorem 1.3.5 — Caratheodory Theorem. Let µ0 be a σ-additive (pre-)measure on (Ω,A ), where A
is an algebra of subsets of Ω. Then there exists a measure µ on (Ω, σ(A )), such that

µ(A) = µ0(A)

11



1.4 Measures on (R,B(R)) 1 Events, Probability and Random Variables

for all A ∈ A . If µ0 is additionally σ-finite, then the measure µ is unique.

Definition 1.3.6 A measure µ on a σ-algebra Σ on Ω is complete if any subset of a set of measure zero
(null sets) is measurable. That is, if A ∈ Σ is such that µ(A) = 0, then for any B ⊆ A we have that
B ∈ Σ and µ(B) = 0.

Requiring completeness helps avoid any caveats in proving results relating to measures. The space
(R,B(R),P) with P constructed from Theorem 1.3.4 is not complete as there are subsets of Borel sets
that are not themselves Borel sets. Fortunately, one can enlarge the σ-algebra to include null sets. A
measure µ on Σ can be completed by extending Σ to

Σ = σ(Σ ∪ {B ∈ Ω : B ⊆ A ∈ Σ, µ(A) = 0}),

with µ(B) = 0 for any B a subset of a null set. The completion of the measure obtained in Theorem 1.3.4
is called the Lebesgue-Stiltjes measure. In particular, the distribution function F (x) = x corresponds to
the Lebesgue measure on R.

1.4 Measures on (R,B(R))

1.4.1 Discrete Measures

A discrete measure Pdisc has a piece-wise constant distribution Fdisc = F (x). The function F has jumps
at the points x1, x2, . . . , that is ∆F (xi) > 0, where ∆F (x) = F (x)− F (x−).

∆F (x1)

∆F (x2)

∆F (x3)

∆F (x4)

∆F (x5)

x

F (x)

Figure 1: CDF of a discrete measure.

A discrete measure is concentrated at the points x1, x2, . . . , known as atoms. Letting

pk := P({xk}) = ∆F (xk) > 0,

it follows by properties of a distribution function that

∞∑
k=1

pk = 1.

In particular,
Fdisc(x) =

∑
xk≤x

pk,

and for A ⊆ N we have
P(A) =

∑
k∈A

pk.

We refer to (p1, p2, . . . ) as the discrete probability distribution.

12



1.4 Measures on (R,B(R)) 1 Events, Probability and Random Variables

Example 1.4.1

• The Discrete Uniform distribution for n ∈ N has pk = 1
n for k = 1, . . . , n.

• The Bernoulli distribution for B(1, p) has p1 = p and p2 = 1− p for 0 ≤ p ≤ 1.

• The Binomial distribution B(n, p) has pk =
(
n
k

)
pk(1− p)k for k = 0, . . . , n and 0 ≤ p ≤ 1.

• The Poisson distribution Po(λ) has pk = e−λ λk

k! for λ > 0 and k = 0, 1, . . . .

1.4.2 Absolutely Continuous Measures

Proposition 1.4.2 Let f be an integrable non-negative function such that

F (x) = Fac(x) =

∫ x

−∞
f(t) dt

with respect to the Lebesgue measure. Then the set function Pac(A) =
∫
A
f(t) dt for A ∈ F is a

measure. In particular, f is a density of Pac.

Proof. For half-open intervals let Pac((a, b]) =
∫ b

a
f(t) dt. Then use Theorem 1.3.5 to extend the measure

to the σ-algebra. ■

The measure Pac is absolutely continuous with respect to the Lebesgue measure µ. In the sense that if
µ(A) = 0 then Pac(A) = 0.

Theorem 1.4.3 — Radon-Nikodym. If P is a measure such that µ(A) = 0 implies P(A) = 0, then P has
a density.

Note that there is a connection between the absolute continuity of measures and the absolute continuity
of functions. If P is an absolutely continuous measure then Fac(x) is an absolutely continuous function,
with F ′

ac(x) = f(x) almost everywhere.

Example 1.4.4

• The Uniform distribution on [a, b] has density

f(x) =
1

b− a
.

• The Normal or Gaussian distribution on R has density

f(x) =
1√
2πσ2

exp

(
−(x−m)2

2σ2

)
for m ∈ R and σ > 0.

• The Gamma distribution on [0,∞) has

f(x) =
xα−1 exp

(
− x

β

)
Γ(α)βα

for a, β > 0.

1.4.3 Singular Continuous Measures

Definition 1.4.5 A measure ν is concentrated on a measurable set A if ν(E) = 0 for any E ⊆ R \A.

13



1.4 Measures on (R,B(R)) 1 Events, Probability and Random Variables

Singular continuous measures are those whose distribution functions are continuous but have all their
points of increase on sets of zero Lebesgue measure. More specifically, F (x) = Fsc(x) is continuous at any
x and Psc is concentrated on a set of Lebesgue measure zero. In particular, the distribution has no atoms.
For x in this set, F ′

sc(x) ̸= 0 or does not exist. Thus F ′
sc(x) = 0 almost everywhere and by continuity we

have that Psc({x}) = 0 for each point x ∈ R.

Example 1.4.6 Consider the interval [0, 1] and construct F (x) by the following procedure formulated
by Cantor. Divide [0, 1] into thirds and let

F1(x) =


3
2x x ∈

[
0, 13

]
1
2 x ∈

[
1
3 ,

2
3

]
3
2x− 1

2 x ∈
[
2
3 , 1
]
.

0 1
3

2
3

1
0

1
2

1

x

F1(x)

Figure 2: First step of constructing the devil staircase.

Next divide the intervals
[
0, 13

]
and

[
2
3 , 1
]

into thirds and let

F2(x) =



0 x = 0
1
2 x ∈

(
1
3 ,

2
3

)
1
4 x ∈

(
1
9 ,

2
9

)
3
4 x ∈

(
7
9 ,

8
9

)
1 x = 1,

defining it in the intermediate intervals by linear interpolation.

0 1
9

2
9

1
3

4
9

5
9

2
3

7
9

8
9

1
0

1
4

1
2

3
4

1

x

F2(x)

Figure 3: Second step of constructing the Cantor’s construction.
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Continuing, we construct a sequence of functions Fn(x) for n = 1, 2, . . . which converge to a non-
decreasing continuous function F (x), named the Cantor function, whose points of increase form a set
of Lebesgue measure zero. From the construction of F (x) we see that the total length of the intervals(
1
3 ,

2
3

)
,
(
1
9 ,

2
9

)
,
(
7
9 ,

8
9

)
, . . . on which the function is constant is

1

3
+

2

9
+

4

27
+ · · · = 1. (1.2)

Let N be the set of points of increase of the Cantor function F (x). It follows from (1.2) that Leb(N) =
0. At the same time, if µ is the measure corresponding to the Cantor function F (x), we have µ(N) = 1.
That is, µ singular with respect to the Lebesgue measure Leb.

Theorem 1.4.7 — Hahn decomposition. Any probability distribution has a representation of the form

F (x) = a1Fdisc(x) + a2Fac(x) + a3Fsc(x)

for a1 + a2 + a3 = 1.

1.5 Measures on (Rn,B(Rn))

Distribution functions on (Rn,B(Rn)) are defined similarly. For example, when n = 2 we have

F (x, y) = P((−∞, x]× (−∞, y]).

For probability spaces (Ω1,F1,P1), (Ω2,F2,P2) the product measure on (Ω1 × Ω2,F1 ⊗ F2) is defined
as follows.

1. Set
P0(A1 ×A2) = P1(A1)P2(A2)

for A1 ∈ F1 and A2 ∈ F2.

2. Then extend P0 to the algebra generated by A1 ×A2, and show that P0 is a σ-additive measure on
this algebra.

3. Apply Theorem 1.3.5 to obtain the extension.

This extension is the product measure and is denoted P1 ⊗ P2.

1.6 Measures on (R∞,B(R∞))

On Rn for n ≥ 1, probability measures were constructed in the following way.

1. It was first defined for elementary sets of the form (a, b].

2. The definition was then extended to sets of the form A =
∑n

i=1(ai, bi].

3. The extension to sets in B(Rn) was provided by Theorem 1.3.5.

A similar procedure of constructing probability measures also works for the space (R∞,B(R∞)). Let

In(B) = {x ∈ R∞ : (x1, . . . , xn) ∈ B}

denote the cylinder set in R∞ with base B ∈ B(Rn). It is natural to take the cylinder sets as the
elementary sets in R∞ whose probabilities enable us to determine the probability measure on the sets of
B (R∞).

Definition 1.6.1 A sequence (Pn)n∈N of probability measures, where Pn is a probability measure on
(Rn,B (Rn)), is consistent if for all n = 1, 2, . . . and B ∈ B(Rn) we have

Pn+1(B ×R) = Pn(B).
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1.7 Random Variables 1 Events, Probability and Random Variables

Theorem 1.6.2 — Kolmogorov Extension Theorem. For any consistent sequence (Pn)n∈N, there exists a
unique probability measure P on (R∞,B (R∞)) such that

P(In(B)) = Pn(B),

for B ∈ B (Rn) and n ∈ N.

1.7 Random Variables
Let (Ω,F ,P) be a probability space.

Definition 1.7.1 A real function ξ : Ω → R is an F -measurable function, or a random variable if

ξ−1(B) = {ω : ξ(ω) ∈ B} ∈ F

for every B ∈ B(R). Equivalently, ξ−1(B) is a measurable set in Ω. When (Ω,F ) = (Rn,B (Rn)) ,
the B (Rn)-measurable functions are called Borel functions.

Random variables are used to summarise the abstract outcomes ω ∈ Ω with a real number or vector.

Exercise 1.7.2 The experiment of throwing two independent fair six-faced dice can be represented
by the probability space (Ω1,F1,P1) ⊗ (Ω2,F2,P2), where for i = 1, 2, Ωi = {1, 2, 3, 4, 5, 6} is the
outcome from dice i, Fi = 2Ωi and Pi({j}) ≡ 1

6 for each j ∈ {1, 2, 3, 4, 5, 6}. The function X :
Ω1 × Ω2 → R given by

X(ω1, ω2) = ω1 + ω2,

summarises the outcome of the dice by their sum.

1. What is the range of X?

2. Check that X is a measurable function by determining its possible pre-images.

Lemma 1.7.3 Let D be a collection of subsets on R such that σ(D) = B(R). A necessary and
sufficient condition that a function ξ = ξ(ω) is a random variable is that

ξ−1(D) = {ω : ξ(ω) ∈ D} ∈ F

for all D ∈ D .

Proof. Let
G =

{
B : ξ−1(B) ∈ F

}
⊆ B(R).

Clearly, ∅ ∈ G as ξ−1(∅) = ∅ ∈ F . For B ∈ G it follows that

ξ−1 (Bc) =
(
ξ−1(B)

)c ∈ F

and so Bc ∈ G . Moreover, for B1, B2, · · · ∈ G we have

ξ−1

( ∞⋃
i=1

Bi

)
=

∞⋃
i=1

ξ−1(Bi) ∈ F

and so
⋃∞

i=1Bi ∈ G which implies that G is a σ-algebra. Note that D ⊆ G with σ(D) = B(R) so that

B(R) = σ(D) ⊆ σ(G ) = G ⊆ B(R),

therefore, G = B(R) meaning ξ is a random variable. Conversely, if ξ is a random variable then G =
B(R), which implies that D ⊆ G . Hence, ξ−1(D) ∈ F for all D ∈ D . ■
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Corollary 1.7.4 A necessary and sufficient condition for ξ = ξ(ω) to be a random variable is that

{ω : ξ(ω) < x} ∈ F

for every x ∈ R, or that
{ω : ξ(ω) ≤ x} ∈ F

for every x ∈ R.

Proof. These follow from Lemma 1.7.3 as the collections

D1 := {(−∞, x) : x ∈ R}

and
D2 := {(−∞, x] : x ∈ R}

are such that σ(D1) = B(R) and σ(D2) = B(R). ■

Exercise 1.7.5 Let ξ be a random variable. Show that

Fξ :=
{
ξ−1(B) : B ∈ B(R)

}
⊆ F

is a σ-algebra.

Lemma 1.7.6 Let φ = φ(x) be a Borel function and ξ = ξ(ω) a random variable. Then the composition
η = φ ◦ ξ is also a random variable. In particular, η is Fξ- measurable.

Proof. For B ∈ B(R) we have

{ω : η(ω) ∈ B} = {ω : φ(ξ(ω)) ∈ B}
=
{
ω : ξ(ω) ∈ φ−1(B)

}
∈ Fξ ⊆ F ,

where the membership to Fξ follows by the fact that φ−1(B) ∈ B(R). Thus, we conclude that η is
F -measurable, meaning it is a random variable. ■

Example 1.7.7 If ξ is a random variable and f : R→ R is a continuous function then f(ξ) is a random
variable. Therefore, if ξ is a random variable then the following are also random variables.

1. ξn.

2. ξ+ := max(ξ, 0).

3. ξ− := max(−ξ, 0).

4. |ξ|.

Lemma 1.7.8 Let ξ and η be random variables. Then, when the operations are well-defined, the
following are random variables.

1. ξ + η.

2. ξ − η.

3. ξη.

4. ξ
η .

5. max (ξ, η)

17



1.7 Random Variables 1 Events, Probability and Random Variables

6. min (ξ, η).

Proof.

1. Let x ∈ R. Suppose r, s ∈ Q are such that r + s < x. If ω ∈ Ω is such that ξ(ω) < r and η(ω) < s
then ξ(ω) + η(ω) < x. On the other hand, if ξ(ω) + η(ω) < x, then there exists some q ∈ Q such
that ξ(ω) + η(ω) < q < x. In particular, there exists r, s ∈ Q such that r + s = q where ξ(ω) < r
and η(ω) < s. Therefore,

{ω : ξ(ω) + η(ω) < x} =
⋃

r+s<x,(r,s)∈Q2

{ω : ξ(ω) < r} ∩ {ω : η(ω) < s}.

As Q2 is countable and ξ and η are random variables, it follows that {ω : ξ(ω) + η(ω) < x} ∈ F .
Thus, we conclude that ξ + η is a random variable using Corollary 1.7.4.

2. This follows from statement 1 by noting that −η is a random variable.

3. Note that
ξη =

1

2

(
(ξ + η)

2 − ξ2 − η2
)
.

Thus, we conclude that ξη is a random variable as all the terms on the right-hand side are random
variables.

4. This follows from statement 3 by noting that 1
η is a random variable, provided it is well-defined.

5. Note that
max(ξ, η) =

1

2
(|ξ − η|+ ξ + η) .

As the right-hand side is a random variable, max(ξ, η) is a random variable.

6. Noting min(ξ, η) = max(−ξ,−η), we deduce that min(ξ, η) is a random variable by using statement
5.

■

Example 1.7.9 An alternative way of arriving at statement 4 of Example 1.7.7 is by using statement
1 from Lemma 1.7.8 with statements 2 and 3 from Example 1.7.7.

Lemma 1.7.10 Let (ξn)n∈N be a sequence of random variables. Provided they exist, the following are
also random variables.

1. supn∈N(ξn).

2. infn∈N(ξn).

3. limn→∞(ξn).

Proof.

1. For x ∈ R we have {
ω : sup

n∈N
(ξn(ω)) > x

}
=

∞⋃
n=1

{ω : ξn(ω) > x}.

The right-hand side is a countable union of sets in F , and so {supn∈N(ξn) > x} ∈ F . Therefore,
supn∈N(ξn) is a random variable by Corollary 1.7.4.

2. As infn∈N(ξn) = − supn∈N(−ξn), by statement 1 it follows that infn∈N(ξn) is a random variable.

3. If limn∈N(ξn) exists then lim infn→∞(ξn) = limn→∞(ξn). As lim infn→∞ = supn∈N infk≥n(ξn) we
can use statements 1 and 2 to deduce that limn→∞(ξn) is a random variable.

■
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Definition 1.7.11 A random variable ξ is called simple if

ξ(ω) =

n∑
j=1

xjχDj (ω)

for some n ≥ 1, with D1, . . . , Dn being a partition of Ω consisting of measurable sets and

χD(ω) =

{
1, ω ∈ D

0, otherwise.

Lemma 1.7.12

1. For any random variable ξ(ω) ≥ 0 there exists a pointwise non-decreasing sequence of simple
random variables ξ1(ω) ≤ ξ2(ω) ≤ · · · ≤ ξ(ω) such that

lim
n→∞

ξn(ω) = ξ(ω)

for all ω ∈ Ω. Such a sequence is usually denoted ξn ↗ ξ.

2. For every random variable ξ = ξ(ω) there is a sequence of simple random variables (ξn)n∈N,
such that |ξn| ≤ |ξ| and ξn(ω) → ξ(ω) as n→ ∞, for all ω ∈ Ω.

Proof.

1. For n = 1, 2, . . . , let

ξn(ω) =

n2n−1∑
j=0

j

2n
χ{ω: j

2n ≤ξ(ω)< j+1
2n } + nχ{ω:ξ(ω)≥n}.

Then the sequence ξn(ω) is such that ξn ↗ ξ for all ω ∈ Ω.

2. Observe that ξ can be represented in the form ξ = ξ+ − ξ−, where ξ+ = max(ξ, 0) and ξ− =
max(−ξ, 0). Therefore, we can apply statement 1 to ξ+ and ξ− to conclude.

■

One can explicitly build a simple function approximation to the function f(x) = x2 for all x ∈ R.

−1 1

1

2

x

(a) n = 1

−1 1

1

2

x

(b) n = 2

Figure 4: Approximation of x2.

A common strategy to show results relating to random variables is the four-step proof.

1. Prove the statement for indicator functions.

2. Extend the statement for simple random variables by using linearity.

3. Extend the statement to non-negative random variables by taking limits.

4. Extend the statement to arbitrary random variables by considering their positive and negative parts.
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Lemma 1.7.13 Consider a measurable space (Ω,F ) and a disjoint decomposition D = {D1, D2, . . . }
of Ω. Let ξ = ξ(ω) be a σ(D)-measurable random variable. Then ξ is representable in the form

ξ(ω) =

∞∑
k=1

αkχDk
(ω),

where αk ∈ R. That is, ξ(ω) is constant on the elements Dk of the decomposition.

Proof. Suppose that ξ = χD for D ∈ σ(D). Then using Exercise 1.1.12 we know that D =
⋃

k∈I Dk for
some I ⊆ N. Therefore,

ξ =

∞∑
k=1

αkχDk

with

αk =

{
1 k ∈ I

0 otherwise.

Using linearity this is extended to ξ a simple function. When ξ is a non-negative random variable there
exists a sequence of simple functions (ξn)n∈N such that ξn ↗ ξ. As ξ is a random variable its image does
not include infinity. Letting

ξn =

∞∑
k=1

α
(n)
k χDk

(ω)

it follows that αk := limn→∞

(
α
(n)
k

)
is well-defined. As each ξn is a non-negative random variable, we

can apply the monotone convergence to deduce that

ξ = lim
n→∞

(ξn)

= lim
n→∞

( ∞∑
k=1

α
(n)
k χDk

)

=

∞∑
k=1

(
lim
n→∞

α
(n)
k

)
χDk

=

∞∑
k=1

αkχDk
.

For ξ a general random variable, we can extend the result by using the decomposition ξ = ξ+ − ξ−. ■

1.8 Distributions of random variables

Definition 1.8.1 The probability distribution of a random variable ξ on (R,B(R)) is Pξ where

Pξ(B) = P ({ω : ξ(ω) ∈ B})

for B ∈ B(R).

Definition 1.8.2 The function

Fξ(x) := Pξ((−∞, x]) = P({ω : ξ(ω) ≤ x}),

for x ∈ R is the distribution function of ξ.

Example 1.8.3 From Exercise 1.7.2, one can verify that the probability distribution ofX on (R,B(R))
satisfies

PX({j}) = 6− |7− j|
36

,
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for j ∈ {2, 3, . . . , 12}. Using this, we can extend PX to other sets in B(R).

Notice that there are multiple random variables, on potentially different probability spaces, which give
the same distribution function. Indeed, we can always construct a probability measure on (R,B(R))
given a distribution function Fξ. Therefore, for any random variable ξ on a probability (Ω,F ,P), the
identity random variable I(ω) = ω on (R,B(R),Pξ) has the same distribution as ξ. For example, consider
the space

(
Ω, 2Ω, Q

)
, with Ω = {2, 3, . . . , 12} and Q({j}) = PX({j}). Then the random variable ξ(j) = j

for all j ∈ Ω ⊆ R is such that Qξ(A) ≡ PX(A) for all A ∈ B(R).

Definition 1.8.4 The vector function

ξ = (ξ1, . . . , ξn) : Ω → Rn

is a random vector if for any B ⊆ B(Rn), we have ξ−1(B) ∈ F . As before, we construct Pξ and say
that Pξ = P(ξ1,...,ξn) is the joint distribution of ξ1, . . . , ξn given by

Fξ(x1, . . . , xn) = P(ξ1 ≤ x1, . . . , ξn ≤ xn).

Exercise 1.8.5 Show that the vector ξ = (ξ1, . . . , ξn) is a random variable if and only if ξ1, . . . , ξn are
random variables.

For (R∞,B (R∞)) we can similarly define random sequences ξ = (ξ1, ξ2, . . . ).

1.9 Solution to Exercises
Exercise 1.1.12

Solution. Let C =
{⋃

i∈I Di : I ⊆ N
}

.

• As Ω =
⋃

i∈NDi we have that Ω ∈ C .

• For A ∈ C , there exists I ⊆ N such that A =
⋃

i∈I Di. Let I ′ = N \ I and let B =
⋃

i∈I′ Di ∈ C . As
D forms a partition, B = Ac and so Ac ∈ C .

• LetA1, A2, · · · ∈ C . Then eachAi is a countable union of elements from D . Therefore, A =
⋃

i∈NAi

is also a countable union of elements from D and so A ∈ C .

The above show that C is a σ-algebra. Therefore, as D ⊆ C and C ⊆ σ(D) it follows that

σ(D) ⊆ σ(C ) = C ⊆ σ(D).

Hence, σ(D) = C . ■

Exercise 1.2.2

Solution.

1. As (a, b] =
⋂∞

n=1

(
a, b+ 1

n

)
it follows that the open intervals also generate B(R).

2. As (a, b] =
⋂∞

n=1

[
a+ 1

n , b
]

it follows that the closed intervals generate B(R).

3. As (a, b] =
⋂∞

n=1

[
a+ 1

n , b+
1
n

)
it follows that the right-open half intervals generate B(R).

4. As (a, b] = (−∞, a]c∩ (−∞, b] it follows that intervals of the form (−∞, a] or [a,∞) generate B(R).

5. As (a, b) is open it follows from statement 1 that open sets generate B(R).

6. As [a, b] are closed sets it follows from statement 2 that closed sets generate B(R).
■

Exercise 1.2.6

Solution. Let C be the collection of cylindrical sets.
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• Note {x ∈ R∞ : (x1) ∈ R} = R∞ and {x ∈ R∞ : (x1) ∈ ∅} = ∅. Hence, ∅,R∞ ∈ C .

• Let C =
{
x ∈ R∞ : (x1, . . . , xn) ∈ C̃n

}
∈ C with C̃n ∈ B (Rn). Then as

(
C̃n

)c
∈ B (Rn) it follows

that Cc =
{
x ∈ R∞ : (x1, . . . , xn) ∈

(
C̃n

)c}
∈ C .

• Consider C1, . . . , Cm ∈ C where Ci =
{
x ∈ R∞ : (x1, . . . , xni

) ∈ C̃ni

}
for C̃ni

∈ B (Rni). Let

n = maxi=1,...,m(ni), then for each C̃ni
we can let D̃i = C̃ni

× Rn−ni ∈ B (Rn). We note that

Ci =
{
x ∈ R∞ : (x1, . . . , xni

, . . . , xn) ∈ D̃i

}
.

Moreover,
m⋃
i=1

Ci =

{
x ∈ R∞ : (x1, . . . , xn) ∈

m⋃
i=1

D̃i

}
where

⋃m
i=1 D̃i ∈ B (Rn) and so

⋃m
i=1 Ci ∈ C .

Therefore, the cylindrical sets form an algebra. ■

Exercise 1.2.8

Solution. Note x ∈ D if and only if for all ϵ > 0 there exists an N ∈ N such that for n ≥ N we have
|xn − c| < ϵ. Therefore,

D =

∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

{
x ∈ R∞ : |xn − c| < 1

k

}
.

Note that
∞⋂

n=N

{
x ∈ R∞ : |xn − c| < 1

k

}
= R× · · · × R︸ ︷︷ ︸

N−1

×
(
c− 1

k
, c+

1

k

)
×
(
c− 1

k
, c+

1

k

)
× · · · ∈ B (R∞) .

Therefore, D ∈ B (R∞). ■

Exercise 1.3.2

Solution.

1. Let x ≤ y. Then (−∞, x] ⊆ (−∞, y] so that P((−∞, x]) ≤ P((−∞, y]), which implies that F (x) ≤
F (y).

2. Let (xn)n∈N be a sequence such that xn+1 ≤ xn and xn → −∞ as n → ∞. Then the sets An =
(−∞, xn] are a decreasing sequence of events. Therefore,

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An) = lim

n→∞
F (xn).

Note that
⋂∞

n=1An = ∅ so that limn→∞ F (xn) = 0. We conclude that limx→−∞ F (x) = 0. Similarly,
let (xn)n∈N be a sequence such that xn ≤ xn+1 and xn → ∞ as n→ ∞. Then the sets An = (xn,∞)
are a sequence of decreasing events. Therefore,

0 = P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

As P (Ac
n) = F (xn), it follows that 1 = limn→∞ F (xn) from which we conclude that limx→∞ F (x) =

1.

3. Let x ∈ R and consider a sequence (xn)n∈N monotonically converging to x from above. Then the
setsAn = (−∞, xn] are a sequence of decreasing events with the property that

⋂∞
n=1An = (−∞, x].

Therefore,

F (x) = P((−∞, x]) = P

( ∞⋂
n=1

An

)
= lim

n→∞
F (xn).

More generally we see that F (x) = limy↘x F (y) and so F (x) is right-continuous.
■
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1.9 Solution to Exercises 1 Events, Probability and Random Variables

Exercise 1.7.2

Solution. The possible outcomes of X are X(ω1, ω2) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The possible pre-
images are summarised in Table 1.

Image Pre-Image
2 {(1, 1)}
3 {(1, 2)(2, 1)}
4 {(1, 3), (2, 2), (3, 1)}
5 {(1, 4), (2, 3), (3, 2), (4, 1)}
6 {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
7 {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
8 {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
9 {(3, 6), (4, 5), (5, 4), (6, 3)}
10 {(4, 6), (5, 5), (6, 4)}
11 {(5, 6), (6, 5)}
12 {(6, 6)}

Table 1: Pre-images of X.

■

Exercise 1.7.5

Solution.

• As ξ−1(∅) = ∅ it follows that ∅ ∈ Fξ.

• Let A ∈ Fξ, so that A = ξ−1(B) for some B ∈ B(R). Then Ac =
(
ξ−1(B)

)c
= ξ−1 (Bc). As

Bc ∈ B(R) it follows that Ac ∈ Fξ.

• Let A1, A2, · · · ∈ Fξ with Ai = ξ−1(Bi) for some Bi ∈ B(R). Then

∞⋃
i=1

Ai =

∞⋃
i=1

ξ−1 (Bi) = ξ−1

( ∞⋃
i=1

Bi

)
.

As
⋃∞

i=1Bi ∈ B(R) it follows that
⋃∞

i=1Ai ∈ Fξ.
We conclude that Fξ is a σ-algebra. ■

Exercise 1.8.5

Solution. (⇒). Without loss of generality consider ξ1 and B ∈ B(R). Then,

ξ−1
1 (B) = {ω : ξ1(ω) ∈ B}

= {ω : ξ(ω) ∈ B × R× · · · × R}.

As B × R × · · · × R ∈ B (Rn) and ξ is a random variable we conclude that ξ−1
1 (B) ∈ F . Hence, ξ1 is a

random variable.
(⇐). For B ∈ B (Rn), we can write B = B1 × · · · ×Bn for Bi ∈ B(R). Therefore,

ξ−1(B) = {ω : ξ1(ω) ∈ B1, . . . , ξn(ω) ∈ Bn} =

n⋂
i=1

ξ−1
i (Bi).

Then as each ξi is a random variable we have that ξ−1
i (Bi) ∈ F , which implies that ξ−1(B) ∈ F .

Therefore, ξ is a random variable. ■
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2 Expectation and Integrals

2 Expectation and Integrals

2.1 The Lebesgue Integral

The expectation of a simple random variable ξ =
∑n

j=1 xjχDj is

E(ξ) =

n∑
j=1

xjP(Dj),

where the sets Dj form a partition of Ω. For an arbitrary non-negative random variable ξ = ξ(ω) we
can construct a sequence of simple non-negative random variables (ξn)n∈N such that ξn(ω) ↗ ξ(ω), as
n→ ∞ for each ω ∈ Ω. We then set E(ξ) = limn→∞E (ξn), which exists since E (ξn) ≤ E(ξn+1), possibly
taking infinite value.

Definition 2.1.1 The expectation E(ξ) of a non-negative random variable ξ is the Lebesgue integral
with respect to P given by

E(ξ) := lim
n→∞

E(ξn) =

∫
Ω

ξ dP =

∫
Ω

ξ(ω)P(dω).

To see that Definition 2.1.1 is consistent, one has to show it is independent of the choice of ξn ↗ ξ.

Definition 2.1.2 An arbitrary random variable ξ is integrable if E(|ξ|) <∞.

Remark 2.1.3 An integrable random variable may not be non-negative. However, its expectation is
well-defined as |ξ| is a non-negative random variable.

Definition 2.1.4 The expectation of an integrable random variable is E(ξ) = E (ξ+)− E (ξ−).

Definition 2.1.4 is well-defined as E (ξ−) <∞ by assumption.

2.2 Properties

Proposition 2.2.1 Let ξ and η be integrable random variables and let c be a constant. Then

1. E(c) = c,

2. E(cξ) = cE(ξ),

3. ξ + η is integrable with E(ξ + η) = E(ξ) + E(η),

4. ξ ≤ η implies that E(ξ) ≤ E(η),

5. if ξ = η almost everywhere with respect to P, that is the equality holds up to sets of zero
P-measure, then E(ξ) = E(η), and

6. if ξ ≥ 0 is such that E(ξ) = 0, then ξ = 0 almost everywhere.

2.2.1 Exchanging limits and expectations

Theorem 2.2.2 — Monotone Convergence Theorem. Let (ξn)n∈N be a sequence of random variables
such that 0 ≤ ξ1 ≤ ξ2 ≤ . . . . Then

lim
n→∞

E(ξn) = E
(
lim

n→∞
ξn

)
exists, potentially being infinite.
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2.2 Properties 2 Expectation and Integrals

Remark 2.2.3

• Note that Theorem 2.2.2 also holds for a sequence of random variables (ξn)n∈N where η ≤ ξ1 ≤
. . . for E(η) > −∞. Just consider ξn − η instead of ξn in the original formulation of Theorem
2.2.2.

• Similarly, if (ξn)n∈N is a sequence of random variables such that · · · ≤ ξ2 ≤ ξ1 ≤ η, for E(η) <
∞, then just consider η − ξn in the original formulation of Theorem 2.2.2.

Corollary 2.2.4 Let (ξn)n∈N be a sequence of non-negative random variables. Then

E

( ∞∑
n=1

ξn

)
=

∞∑
n=1

E(ξn).

Proof. Let ηn =
∑n

k=1 ξk. Then as each ξk is non-negative, we have that 0 ≤ η1 ≤ η2 ≤ . . . . Therefore

∞∑
k=1

E(ξk) = lim
n→∞

n∑
k=1

E(ξk)

= lim
n→∞

E

(
n∑

k=1

ξk

)
= lim

n→∞
E(ηn)

Thm 2.2.2
= E

(
lim
n→∞

ηn

)
= E

( ∞∑
k=1

ξk

)
.

■

Theorem 2.2.5 — Fatou’s Lemma. Let (ξn)n∈N be a sequence of non-negative random variables. Then

E
(
lim inf
n→∞

(ξn)
)
≤ lim inf

n→∞
E(ξn).

Proof. Let fn = infm≥n ξn. Then, 0 ≤ fn ≤ fn+1 for all n ∈ N. Therefore, by Theorem 2.2.2 we have
that

E
(
lim inf
n∈N

(ξn)

)
= E

(
lim
n→∞

fn

)
= lim

n→∞
(E (fn))

= lim inf
n→∞

(E (fn))

≤ lim inf
n→∞

(E (ξn)) .

■

Remark 2.2.6

• In Theorem 2.2.5, ξn ≥ 0 can be replaced by ξn ≥ η, if E(η) > −∞.

• In Theorem 2.2.5, if ξn < η and E(η) <∞, then the statement holds for lim sup instead.

Theorem 2.2.7 — Dominated Convergence Theorem. Let (ξn)n∈N be a sequence of random variables
such that ξn → ξ almost surely. If there exists an integrable random variable η such that |ξn| ≤ η for
all n ∈ N, then ξ is integrable, with

E(ξn) → E(ξ),
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2.2 Properties 2 Expectation and Integrals

and
E (|ξn − ξ|) → 0

as n→ ∞.

Corollary 2.2.8 Let η, ξ, (ξn)n∈N be random variables such that |ξn| ≤ η, ξn → ξ almost everywhere
and E (ηp) <∞ for some p > 0. Then E (|ξ|p) <∞ and E (|ξ − ξn|p) → 0 as n→ ∞.

Proof. Note that |ξn|p → |ξ|p almost surely, |ξn|p ≤ ηp and E (ηp) <∞ Thus, by Theorem 2.2.7 it follows
that

E (|ξn|p) → E (|ξ|p) .

As the inequality E (|ξn|p) ≤ E (ηp) is preserved under the limit it follows that E (|ξ|p) ≤ E (ηp) < ∞.
Next, consider µn := ξ − ξn. It is clear that µn → 0 almost surely and |µn| ≤ |ξ|+ η with

E (||ξ|+ η|p) ≤ E (|ξ|p) + E (|η|p) ≤ 2E (|η|p) <∞.

So by Theorem 2.2.7 it follows that

E (|ξ − ξn|p) = E (|µn|p) → 0

as n→ ∞. ■

Remark 2.2.9 In all the above theorems, the integral over Ω can be replaced by the integral over any
measurable A ⊆ Ω.

2.2.2 Change of variables

Theorem 2.2.10 Let ξ : F → R be a random variable with probability distribution Pξ. If g = g(x) is a
Borel function, then for all A ∈ B(R) we have∫

A

g(x) dPξ =

∫
ξ−1(A)

g(ξ(ω)) dP,

where the integrals exist or do not exist simultaneously. In particular, for A = R we obtain

E(g(ξ(ω))) =

∫
Ω

g(ξ(ω)) dP =

∫ ∞

−∞
g(x) dPξ ≡

∫ ∞

−∞
g(x) dFξ.

Proof. Step 1: Let g = χB for B ∈ B(R).
In this case, ∫

A

g(x) dPξ =

∫
A

χB Pξ

= Pξ(A ∩B)

= P({ω : ξ(ω) ∈ A ∩B})

=

∫ ∞

−∞
χA∩B(ξ(ω)) dP

=

∫ ∞

−∞
χA(ξ(ω))χB(ξ(ω)) dP

=

∫
ξ−1(A)

g(ξ(ω)) dP.

Step 2: Let g =
∑n

i=1 ciχDi be a simple function.
Using the linearity of the integral and step 1 it follows that∫

A

g(x) dPξ =

n∑
i=1

ci

∫
A

χDi
(x) dPξ
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=

n∑
i=1

ci

∫
ξ−1(A)

χDi
(ξ(ω)) dP

=

∫
ξ−1(A)

g(ξ(ω)) dP.

Step 3: Let g be a non-negative measurable function.
There exists a sequence of simple functions (gn)n∈N such that gn ↗ g. Therefore, using the monotone
convergence theorem and step 2 it follows that∫

A

g(x) dPξ =

∫
A

lim
n→∞

gn(x) dPξ

= lim
n→∞

∫
A

gn(x) dPξ

= lim
n→∞

∫
ξ−1(A)

gn(ξ(ω)) dP

=

∫
ξ−1(A)

lim
n→∞

gn(ξ(ω)) dP

=

∫
ξ−1(A)

g(ξ(ω)) dP.

Step 4: Let g be an arbitrary measurable function.
Using the decomposition g = g+ − g−, it follows by the linearity of the integral and step 3 that∫

A

g(x) dPξ =

∫
A

g+(x) dPξ −
∫
A

g−(x) dPξ

=

∫
ξ−1(A)

g+(ξ(ω)) dP−
∫
ξ−1(A)

g−(ξ(ω)) dP

=

∫
ξ−1(A)

g(ξ(ω)) dP.

■

Remark 2.2.11 Theorem 2.2.10 guarantees that the expectation only depends on the probability
distribution, and not on the underlying probability space.

1. If ξ is discrete, so that Fξ is discrete, taking values x1, x2, . . . with probabilities p1, p2, . . . then

E(g(ξ)) =
∑
n∈N

g(xn)pn.

2. If ξ is absolutely continuous, so that Fξ is absolutely continuous, with density f(x), then

E(g(ξ)) =

∫ ∞

−∞
g(x)f(x) dx.

This provides a way to calculate expectations of g(ξ) without being conscious of the actual distribution
of g(ξ). Thus we can make sense of the expectation of probability distributions without specifying its
underlying probability space. So is there any point in specifying the underlying probability space of
a random variable instead of assuming it to be (R,B(R),Pξ)? Unfortunately, the answer can be no,
since there is a way to develop probability theory, and notions of random variables, without going
through Kolmogorov’s constructions. Indeed, the underlying probability space is insignificant in most
applications; nevertheless, this formulation is still helpful in understanding more complicated random
variables like stochastic processes.
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2.3 Exchanging the Order of Integration 2 Expectation and Integrals

2.3 Exchanging the Order of Integration
Suppose (X1,M1, µ1) and (X2,M2, µ2) are measure spaces. Consider the product measure µ1 × µ2 on
the space

X = X1 ×X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2} .

Assume the measure spaces are complete and σ-finite. Given a set E in M let

1. Ex1
= {x2 ∈ X2 : (x1, x2) ∈ E}, and

2. Ex2 = {x1 ∈ X1 : (x1, x2) ∈ E}.

Theorem 2.3.1 — Fubini’s Theorem. In the setting above, suppose that f(x1, x2) is an integrable func-
tion on (X1 ×X2, µ1 × µ2). Then the following hold.

• For almost every x2 ∈ X2, the slice fx2(x1) = f(x1, x2) is integrable on (X1, µ1).

• The function
∫
X1
f(x1, x2) dµ1 is integrable on X2.

• We can exchange integrals as follows∫
X2

(∫
X1

f(x1, x2) dµ1

)
dµ2 =

∫
X1

(∫
X2

f(x1, x2) dµ2

)
dµ1 =

∫
X1×X2

f d (µ1 × µ2) .

Remark 2.3.2 In general, the product space (X,M , µ) is not complete. One can construct the com-
pletion of this space M , as the collection of sets of the form E ∪ Z, where E ∈ M and Z ⊆ F with
F ∈ M and µ(F ) = 0. One then extends the measure with µ(E ∪ Z) := µ(E).

• M is the smallest σ-algebra containing M and all subsets of elements of M of measure zero.

• The function µ is a measure on M ,

Theorem 2.3.1 continues to hold in this completed space.

In Theorem 2.3.1, we assume that the function f is integrable over the product space. We can relax this
condition, by instead assuming that f is a non-negative measurable function.

Theorem 2.3.3 — Tonelli’s Theorem. Suppose that f(x1, x2) : X1 × X2 → [0,∞] is a non-negative
measurable function on (X1 ×X2, µ1 × µ2). Then∫

X2

(∫
X1

f(x1, x2) dµ1

)
dµ2 =

∫
X1

(∫
X2

f(x1, x2) dµ2

)
dµ1 =

∫
X1×X2

f d (µ1 × µ2) .

Theorem 2.3.4 — Fubini-Tonelli Theorem. If f is a measurable function, then∫
X1

(∫
X2

|f(x1, x2)|dµ2

)
dµ1 =

∫
X2

(∫
X1

|f(x1, x2)|dµ1

)
dµ2 =

∫
X1×X2

|f |d (µ1 × µ2) .

Besides, if any one of these integrals is finite, then∫
X1

(∫
X2

f(x1, x2) dµ2

)
dµ1 =

∫
X2

(∫
X1

f(x1, x2) dµ1

)
dµ2 =

∫
X1×X2

f d (µ1 × µ2) .

The absolute value of f in the conditions of Theorem 2.3.4 can be replaced by either the positive or the
negative part of f . Theorem 2.3.4 is a generalisation of Theorem 2.3.3 as one can take the negative part
of a non-negative function to be zero whilst maintaining a finite integral. Informally all these conditions
say that the double integral of f is well-defined, though possibly infinite. The advantage of the Theorem
2.3.4 over Theorem 2.3.1 is that the repeated integrals of the absolute value of |f | may be easier to
study than the double integral. As in Theorem 2.3.1, the single integrals may fail to be defined on a
zero-measure set.
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Proposition 2.3.5 Let ξ be a non-negative integrable random variable. Then

E(ξ) =

∫
[0,∞)

P(ξ ≥ x) dx. (2.1)

Proof. We have

E(ξ) =

∫
[0,∞)

xdPξ

=

∫
[0,∞)

(∫ x

0

dt

)
dPξ

=

∫
[0,∞)

P(ξ ≥ t) dt,

where we have applied Theorem 2.3.1 to

g(t, x) =

{
1 0 ≤ t ≤ x

0 otherwise.

■

Exercise 2.3.6 Generalise the proof of Proposition 2.3.5 to show that if ξ ≥ 0 and p ≥ 1 then

E (ξp) =

∫ ∞

0

pyp−1P(ξ ≥ y) dy. (2.2)

2.4 Jensen’s Inequality and Lp Spaces

2.4.1 Convex Functions and Jensen Inequality

Definition 2.4.1

• A set Ω ⊆ Rn is convex if for all x, y ∈ Ω and λ ∈ [0, 1] the point (1− λ)x+ λy ∈ Ω.

• Let E ⊆ Rn be a convex set. A function g : E → R is convex if for all x, y ∈ Ω and λ ∈ [0, 1] we
have

g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y).

• Let E ⊆ Rn be a convex set. A function g : E → R is concave if −g is convex.

Proposition 2.4.2 Let g : Rn → R be a convex function. Then for x0 ∈ Rn there is a vector v ∈ Rn,
dependent on x0, such that

g(x) ≥ g(x0) + v⊤(x− x0), (2.3)

for all x ∈ Rn.

Remark 2.4.3 Any vector v satisfying (2.3) is called a subgradient of g at x0.

Theorem 2.4.4 — Jensen’s Inequality. Let ξ be an integrable random variable and let g : R → R be a
measurable convex function. Then

g(E(ξ)) ≤ E(g(ξ)).

Proof. If g(x) is convex then for each x0 ∈ R there is a v ∈ R such that

g(x) ≥ g(x0) + v(x− x0)
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for all x ∈ R. Putting x = ξ and x0 = E(ξ), we find that

g(ξ) ≥ g(E(ξ)) + v(ξ − E(ξ)).

Taking the expectation of both sides we get g(E(ξ)) ≤ E(g(ξ)). ■

Exercise 2.4.5 Prove that the composition of a convex non-decreasing function and a convex function
is convex. Conclude that f(x) = |x|r is a convex function.

Corollary 2.4.6 — Lyapunov’s Inequality. If 0 < p < q <∞, then

(E (|ξ|p))
1
p ≤ (E (|ξ|q))

1
q . (2.4)

Proof. Let r = q
p . Then letting η = |ξ|p and using Exercise 2.4.5 we can apply Jensen’s inequality to

g(x) = |x|r to get that |E(η)|r ≤ E(|η|r). That is,

(E (|ξ|p))
q
p ≤ E (|ξ|q)

from which (2.4) follows. Consequently, if E (|ξ|q) <∞ then E (|ξ|p) = (E (|ξ|q))
p
q <∞. ■

The following chain of inequalities among absolute moments

E(|ξ|) ≤ (E
(
|ξ|2
)
)

1
2 ≤ · · · ≤ (E (|ξ|n)) 1

n ≤ . . .

is a consequence of Lyapunov’s inequality.

Remark 2.4.7 As a warning, Lyapunov inequality is only true when P is a finite measure, which is
certainly the case for probability measures.

Definition 2.4.8 Let ξ be a random variable with E (|ξ|p) <∞. For integers 0 ≤ k ≤ p, the kth moment
of ξ is E

(
ξk
)
.

Remark 2.4.9 From Corollary 2.4.6, we note that E (|ξ|p) < ∞ ensures E
(
ξk
)

is well-defined for
0 ≤ k ≤ p.

Definition 2.4.10 A sequence (ξn)n∈N of random variables converges in Lp to the random variable ξ if

(E (|ξn − ξ|p))
1
p → 0

as n→ ∞.

Often one uses the notation ∥ξ∥Lp = (E (|ξ|p))
1
p . This is done to allude to the fact that ∥ · ∥Lp defines

a norm on the vector space of functions with finite pth moments, up to sets of P-measure zero. More
formally, we say that ξ ∈ L p if E (|ξ|p) <∞ with ξ ∼ η if ξ = η almost everywhere. Then ∥ · ∥Lp defines
a norm on Lp = L p/ ∼. This result is facilitated by the following inequalities.

Proposition 2.4.11 — Hölder’s Inequality. Let p ∈ [1,∞] and let q ∈ [1,∞] be such that 1
p + 1

q = 1 with
q = ∞ if p = 1 and vice-versa. If ξ ∈ Lp and η ∈ Lq, then

∥ξη∥L1(Ω) := E(|ξη|) ≤ ∥ξ∥Lp ∥η∥Lq .
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2.5 Tail Bounds 2 Expectation and Integrals

Proposition 2.4.12 — Minkowski’s Inequality. If ξ, η ∈ Lp for 1 ≤ p ≤ ∞, then ξ + η ∈ Lp and

(E (|ξ + η|p))
1
p ≤ (E (|ξ|p))

1
p + (E (|η|p))

1
p .

Remark 2.4.13 If the sequence (ξn)n∈N converges in Lp to ξ, then

0 ≤ |∥ξn∥Lp − ∥ξ∥Lp | ≤ ∥ξn − ξ∥Lp → 0

as n→ ∞. That is, ∥ξn∥Lp → ∥ξ∥Lp .

2.5 Tail Bounds
Most large sample results concern extreme events, for example, whether the value of a random variable
deviates from its mean. This section builds the necessary tools to derive upper bounds for the probability
of such events. These bounds are usually called tail bounds since they correspond to the tail of the den-
sities of random variables. In particular, we will see how the tail bounds are related to the integrability
of the random variables.

Example 2.5.1

1. Let ξ1 have a normal distribution N(0, 1) with density

f1(x) =
1√
2π

exp

(
−x

2

2

)
for x ∈ R, such that

P(ξ1 > c) =

∫ ∞

c

1√
2π

exp

(
−x

2

2

)
dx

≤
∫ ∞

c

1√
2π

x

c
exp

(
−x

2

2

)
dx

=
1

c
√
2π

exp

(
−c

2

2

)
=: r1(c).

2. Let ξ2 have a double exponential (Laplace) distribution with density

f2(x) =
1

2
e−|x|

for x ∈ R, such that

P(ξ2 > c) =

∫ ∞

c

1

2
exp (−x) dx

=
1

2
exp(−c)

=: r2(c)

for c > 0.

3. Let ξ3 have a standard Cauchy distribution with density

f3(x) =
1

π(1 + x2)
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for x ∈ R, such that

P(ξ3 > c) =
1

2
− 1

π
arctan c

=
1

π
arctan

1

c

≤ 1

πc
=: r3(c).

Then P(X > c) decays faster for the normal distribution than the double exponential distribution,
and the Cauchy distribution admits the slowest decay. In particular, we have r3(c) ≫ r2(c) ≫ r1(c) in
the sense that r1(c)

r2(c)
→ 0 and r2(c)

r3(c)
→ 0 when c→ ∞.

Exercise 2.5.2 In the context of Example 2.5.1, verify the following observations.

1. ξ1 has zero odd moments, and has (2k)th moments

m1,k = (2k − 1)!! := (2k − 1)× · · · × 3× 1 =
(2k)!

2kk!

for all k ∈ Z≥1.

2. ξ2 has zero odd moments, and has (2k)th moments m2,k = (2k)!.

3. ξ3 has (2k)th moments m3,k = ∞.

Therefore, we see that ∞ = m3,k ≫ m2,k ≫ m1,k as k → ∞, in the sense that as k → ∞ we have
m1,k

m2,k
→ 0. We therefore suspect that there is a connection between the tail bounds and the growth of

moments.

To standardise the discussion of random variables, one often centralises the moments in the following
way.

Definition 2.5.3 The kth central moment, for k ∈ N, of a random variable ξ is E
(
(ξ − E(ξ))k

)
when-

ever E
(
|ξ|k
)
< ∞. In particular, the first central moment is zero. The main central moments of

interest are the following.

• The 2nd central moment V(ξ) := E
(
(ξ − E(ξ))2

)
is called the variance.

• The 3rd central moment E
(
(ξ − E(ξ))3

)
is called the skewness.

• The 4th central moment E
(
(ξ − E(ξ))4

)
is called the kurtosis.

Theorem 2.5.4 — Markov’s Inequality. Let ξ be a non-negative integrable random variable and c > 0 a
constant. Then

P(ξ ≥ c) ≤ E(ξ)

c
.

Proof. This follows from
E(ξ) ≥ E (ξ · χξ≥c) ≥ cE (χξ≥c) = cP(ξ ≥ c).

■

Remark 2.5.5 A generalisation of the Markov inequality considers ξ a random variable and g a non-
negative Borel function. Let c > 0 be a constant and suppose that E(g(ξ)) exists, then

P(g(ξ) ≥ c) ≤ E(g(ξ))

c
. (2.5)
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2.5 Tail Bounds 2 Expectation and Integrals

Let us interrupt our discussion of tail bounds by proving an interesting result regarding Lp norms. How
powerful Markov’s inequality (2.5) is for proving tail bounds for specific distributions depends on the
integrability of ξ.

Corollary 2.5.6 Let ξ ∈ Lp(Ω) for p ≥ 1. Then for all ε > 0, we have

P(|ξ − E(ξ)| ≥ ε) = P (|ξ − E(ξ)|p ≥ εp) ≤ E (|ξ − E(ξ)|p)
εp

. (2.6)

When p = 2 we obtain Chebyshev’s inequality, which states that

P(|ξ − E(ξ)| ≥ ε) ≤ V(ξ)
ε2

.

2.5.1 Chernoff Bound and Moment Generating Function

For the case when ξ ∈ L∞(Ω) and the kth moment does not grow too quickly, one may choose an optimal
p such that the right-hand side of (2.6) is minimised. This is rarely done in practice. Instead, we consider
the moment-generating function.

Definition 2.5.7 — Moment Generating Function. The moment generating function of a random vari-
able ξ is

Mξ(t) = E(exp(tX)) =

∫ ∞

−∞
etx dFξ(x).

A moment-generating function does not necessarily exist for all values of t ∈ R. For example, a random
variable ξ with Cauchy distribution has Mξ(t) = ∞ for all t ̸= 0, and is equal to 1 for t = 0. However,
if we can show that Mξ(t) < ∞ for a small neighbourhood of zero, say t ∈ (−h, h), then we have the
following result.

Proposition 2.5.8 — Chernoff Inequality. Let ξ be a non-negative random variable, then for all ε > 0
and t ∈ (0, h) we have

P(ξ ≥ ε) ≤ MX(t)

etε
. (2.7)

Proof. Noting that etξ is a non-negative random variable, we can use Theorem 2.5.4 to deduce that

P(ξ ≥ ε) = P
(
etξ ≥ etε

)
≤
E
(
etξ
)

etε
=
MX(t)

etε
.

■

Example 2.5.9 Let ξ follow a standard normal distribution N(0, 1). The (2k)th moments of ξ are given
by (2k − 1)!!. Thus, for k ∈ N and c > 0 we have

P(X > c) ≤ (2k − 1)!!

c2k
. (2.8)

Even though using larger k will lead to a faster rate of decay as c → ∞, the numerator is also larger,
so it is harder to use the bound for practical applications. We can obtain a sharper bound than (2.8)
by using the Chernoff bounds. Observe that

E
(
etξ
)
=

1√
2π

∫ ∞

−∞
etx−

x2

2 dx

= exp
t2

2
1√
2π

∫ ∞

−∞
e−

(x−t)2

2 dx

= exp
t2

2
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2.6 Solution to Exercises 2 Expectation and Integrals

so that by (2.7) we have

P(ξ > c) ≤ exp

(
t2

2
− ct

)
= exp

(
−c

2

2
+

1

2
(t− c)2

)
. (2.9)

Since (2.9) holds for all t > 0, we can choose the optimal t such that the right-hand side is minimised.
In our case, we choose c > 0 to obtain

P(ξ > c) ≤ exp

(
t2

2
− ct

)
= exp

(
−c

2

2

)
.

2.6 Solution to Exercises
Exercise 2.3.6

Solution. Note that

E (ξp) =

∫ ∞

0

tp dPξ(t) =

∫ ∞

0

∫ t

0

pyp−1 dy dPξ(t).

Applying Fubini’s theorem to
g(y, t) = pyp−1χ{0≤y≤t}

allows us to interchange the integrals to conclude that

E (ξp) =

∫ ∞

0

∫ ∞

y

pyp−1 dPξ(t) dy

=

∫ ∞

0

pyp−1P(ξ ≥ y) dy.

■

Exercise 2.4.5

Solution. Let f = g ◦ h, where g is a non-decreasing convex function and h is a convex function. Then
for x, y ∈ Ω and λ ∈ [0, 1] we have

(g ◦ h)((1− λ)x+ λy) = g(h((1− λ)x+ λy))

(1)

≤ g((1− λ)h(x) + λh(y))

(2)

≤ (1− λ)(g ◦ h)(x) + λ(g ◦ h)(y),

where in (1) we have used that h is convex and g is non-decreasing, and in (2) we have used that g is
convex. Therefore, g ◦h is a convex function. Hence, with g(x) = xr for x ≥ 0 and h(x) = |x|, we deduce
that f(x) = |x|r is convex. ■

Exercise 2.5.2

Solution.

1. The odd moments are given by ∫ ∞

−∞

x2k+1

√
2π

exp

(
−x

2

2

)
dx

which is zero as the integrand is an odd function. For the even moments, we can proceed by
induction.

• Note that E
(
ξ2
)
= V(ξ) + E(ξ) = 1 = (2(1)− 1)!!.
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• For k ≥ 1 we have

E
(
ξ2k
)
=

∫ ∞

−∞

x2k√
2π

exp

(
−x

2

2

)
dx

= 2

∫ ∞

0

x2k√
2π

exp

(
−x

2

2

)
dx

(1)
= 2

([
−x2k−1 exp

(
−x

2

2

)]∞
0

+

∫ ∞

0

(2k − 1)x2k−2 exp

(
−x

2

2

)
dx

)
= (2k − 1)

∫ ∞

−∞
x2k−2 exp

(
−x

2

2

)
dx

Ind Hyp.
= (2k − 1)(2k − 3)!!

= (2k − 1)!!,

where in (1) we have performed integration by parts with u = x2k−1 and dv
dx = x exp

(
−x2

2

)
.

2. The odd moments are given by ∫ ∞

−∞

x

2
exp(−x) dx

which is zero as the integrand is an odd function. For the even moments, we can proceed by
induction.

• For k = 0 we have E
(
ξ0
)
= 1 = (2(0))!!.

• For k ≥ 1 we have

E
(
ξ2k
)
=

∫ ∞

−∞

x2k

2
exp(−x) dx

=

∫ ∞

0

x2k

2
exp(−x) dx

= 2

([
−x2k exp(−x)

]∞
0

+

∫ ∞

0

2kx2k−1 exp(−x) dx
)

= 2(2k)

∫ ∞

0

x2k−1 exp(−x) dx

= 2(2k)

([
−x2k−1 exp(−x)

]∞
0

+

∫ ∞

0

(2k − 1)x2k−2 exp(−x) dx
)

= 2(2k)(2k − 1)
(2k − 2)!

2
= (2k)!.

3. Recalling that E(|ξ|) = ∞, we use Corollary 2.4.6 to conclude that all higher-order moments are
also infinite.

■
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3 More on Random Variables

3.1 Transformation of Random Variables
Let us consider the problem of determining the distribution function of a random variable which is the
function of other random variables. That is, let ξ be a random variable with distribution function Fξ(x)
(and density fξ(x) if it exists), and let φ = φ(x) be a Borel function such that η = φ(ξ). Then we would
like to determine the distribution function of η. Proceeding directly we get that

Fη(y) = P(η ≤ y) = P
(
ξ ∈ φ−1(−∞, y]

)
=

∫
φ−1(−∞,y]

dFξ,

which expresses the distribution function Fη(y) in terms of Fξ(x) and φ.

Example 3.1.1

1. Let η = aξ + b with a > 0. Then

Fη(y) = P(η ≤ y) = P
(
ξ ≤ y − b

a

)
= Fξ

(
y − b

a

)
.

2. Let η = ξ2. Then it is evident that Fη(y) = 0 if y < 0. While for y ≥ 0, we have

Fη(y) = P(ξ2 ≤ y)

= P (−√
y ≤ ξ ≤ √

y)

= Pξ ((−∞,
√
y])− Pξ ((−∞,−√

y))

= Fξ (
√
y)− Fξ (−

√
y) + P (ξ = −√

y) .

Proposition 3.1.2 — Probability Integral Transform. Let ξ be a random variable on (Ω,F ,P) with dis-
tribution function Fξ(x). Let U be a uniformly distributed random variable on ([0, 1],B([0, 1]), Leb),
where Leb denotes the Lebesgue measure. Define the right inverse of Fξ on [0, 1] as

F−1
ξ (y) = sup ({x : Fξ(x) < y}) , (3.1)

and extend it so that F−1
ξ (0) = −∞ and F−1

ξ (1) = ∞. Then ξ has the same distribution function as

F−1
ξ (U). In such a case we say that F−1

ξ (U) is equally distributed as ξ, or ξ d
= F−1

ξ (U).

Proof. Note that if Fξ is invertible we have

FF−1
ξ (U)(y) = Leb

(
F−1
ξ (U) ≤ y

)
(1)
= Leb (U ≤ Fξ(y)) = Fξ(y),

where in (1) we have used the fact that Fξ is invertible, and hence bijective, to deduce that F−1
ξ (u) ≤ y

if and only if u ≤ Fξ(y). Consequently, F−1
ξ (U)

d
= ξ. Thus, to complete the proof, it suffices to show that

(1) holds for general distribution functions Fξ.
(⇐) Assume u ≤ Fξ(y). Then clearly whenever Fξ(x) < u we have Fξ(x) < Fξ(y) so that x ≤ y.
Therefore, y is an upper bound of the set {x : Fξ(x) < u} and so

F−1
ξ (u) = sup({x : Fξ(x) < u}) ≤ y.

(⇒) Assume F−1
ξ (u) ≤ y but for contradiction that u > Fξ(y). Then y ∈ {x : Fξ(x) < u} so that

y ≤ F−1
ξ (u), which implies that y = F−1

ξ (u). However, consider a sequence (xn)n∈N that monotonically
converges to y from above without ever equalling y. Then since Fξ is a right-continuous decreasing
function it follows that there exists an n ∈ N such that Fξ(y) < Fξ(xn) < u. Therefore, xn ∈ {x : Fξ(x) <
u} which implies that xn ≤ F−1

ξ (u) = y which is a contradiction. ■
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Example 3.1.3 Let F be the distribution function for η which has a uniform distribution on
[
0, 13

]
∪[

2
3 , 1
]

with an atom at 2
3 .

0 1
3

2
3

1
0

1
3

2
3

1

x

u = F (x)

Figure 5: An example of a distribution function.

The inverse F−1(u) is given in Figure 6.

0 1
3

2
3

1
0

1
3

2
3

1

u

x = F−1(u)

Figure 6: The pseudo-inverse of the previous example.

Now we turn to the problem of determining fη(y). Let us suppose that the range of ξ is a (finite or
infinite) open interval I = (a, b). Moreover, suppose that φ = φ(x), with domain (a, b), is a strictly
increasing or decreasing continuously differentiable function. We also suppose that φ′(x) ̸= 0 for x ∈ I
so that we can write h(y) = φ−1(y). For definiteness suppose that φ is strictly increasing so that for
y ∈ φ(I) it follows that,

Fη(y) = P(η ≤ y)

= P (φ(ξ) ≤ y)

= P
(
ξ ≤ φ−1(y)

)
= P(ξ ≤ h(y))

=

∫ h(y)

−∞
fξ(x) dx

=

∫ y

−∞
fξ(h(z))h

′(z) dz.

Therefore,
fη(y) = fξ(h(y))h

′(y).

On the other hand, if φ(x) is strictly decreasing, then

fη(y) = fξ(h(y)) (−h′(y)) .
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In either case
fη(y) = fξ(h(y)) |h′(y)| .

Example 3.1.4 For η = aξ + b with a ̸= 0 we have

h(y) =
y − b

a

and

fη(y) =
1

|a|
fξ

(
y − b

a

)
.

Lemma 3.1.5 Let φ = φ(x), defined on the set
∑n

k=1[ak, bk], be continuously differentiable and either
strictly increasing or strictly decreasing on each open interval Ik = (ak, bk), with φ′(x) ̸= 0 for x ∈ Ik.
Let hk = hk(y) be the inverse of φ(x) for x ∈ Ik. Then

fη(y) =

n∑
k=1

fξ(hk(y)) |h′k(y)| · χDk
(y),

where Dk is the domain of hk(y).

Example 3.1.6

1. Let η = ξ2 with I1 = (−∞, 0) and I2 = (0,∞). Observe that h1(y) = −√
y and h2(y) =

√
y, so

that

fη(y) =

{
1

2
√
y

(
fξ
(√
y
)
+ fξ

(
−√

y
))

y > 0

0 y ≤ 0.

In particular, if ξ ∼ N(0, 1) we have

fξ2(y) =

{
1√
2πy

e−
y
2 y > 0

0 y ≤ 0.

2. Let η = |ξ|, then

f|ξ|(y) =

{
fξ(y) + fξ(−y) y > 0

0 y ≤ 0.

3. Let η =
√
|ξ|, then

f√|ξ|(y) =

{
2y
(
fξ
(
y2
)
+ fξ

(
−y2

))
y > 0

0 y ≤ 0.

3.2 Independent Random Variables

Definition 3.2.1 Let (Ω,F ,P) be a measure space.

• A finite collection of events {A1, . . . , An} is independent if P (∩n
i=1Ai) =

∏n
i=1 P(Ai). An infi-

nite collection {A1, A2, . . . } is (mutually) independent if any finite sub-collection of events is
independent.

• A finite collection of sub-σ-algebras {F1, . . . ,Fn} of F is (mutually) independent if for any
A1 ∈ F1, . . . , An ∈ Fn, we have P (∩n

i=1Ai) =
∏n

i=1 P(Ai). An infinite collection {F1,F2, . . . }
of sub-σ-algebras of F is (mutually) independent if any finite sub-collection is independent.

• A finite collection {ξ1, . . . , ξn} of random variables on (Ω,F ,P) is (mutually) independent if

38
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the collection of corresponding sub-σ-algebras {σ(ξ1), . . . , σ(ξn)} is independent. In particular
if B1, . . . , Bn ∈ B(R), then

P(ξ1 ∈ B1, . . . , ξn ∈ Bn) =

n∏
i=1

P(ξi ∈ Bi) =

n∏
i=1

Pξi(Bi).

An infinite collection {ξ1, ξ2, . . . } of random variables on (Ω,F ,P) is (mutually) independent if
the corresponding collection of sub-σ-algebras {σ(ξ1), σ(ξ2), . . . } is (mutually) independent.

Remark 3.2.2 Another notion of independence says that the collection of events {A1, . . . , An}, is
pairwise independent if for all i, j with i ̸= j we have P(Ai∩Aj) = P(Ai)P(Aj). Mutual independence
implies pairwise independence but pairwise independence does not imply mutual independence.

Proposition 3.2.3 A necessary and sufficient condition for the random variables ξ1, . . . , ξn to be inde-
pendent is that

Fξ(x1, . . . , xn) = Fξ1(x1) . . . Fξn(xn)

for all (x1, . . . , xn) ∈ Rn.

Corollary 3.2.4 If ξ = (ξ1, . . . , ξn) has a density fξ, then each ξi has a density fξi . Furthermore,
ξ1, . . . , ξn are independent if and only if

fξ(x1, . . . , xn) = fξ1(x1) · · · fξn(xn)

for all (x1, . . . , xn) ∈ Rn except possibly for a Borel subset of Rn with Lebesgue measure zero.

Corollary 3.2.5 If ξ1, . . . , ξn are independent and ξi has density fξi , for i = 1, . . . , n, then ξ has a
density fξ given by

fξ(x1, . . . , xn) = fξ1(x1) · · · fξn(xn).

Remark 3.2.6 Even if ξ1, . . . , ξn each has a density, it does not follow that (ξ1, . . . , ξn) has a density.

The outcome of independent random variables does not depend on the outcome of the other variables.
Therefore, it seems as though if we were to combine independent random variables, we should be able
to construct a distribution function for this combination, provided we know the distribution functions of
the individual random variables.

Proposition 3.2.7 Let ξ and η be independent random variables. Then the distribution function Fξ+η

of their sum is given by the convolution of their distribution functions. That is,

Fξ+η(z) = (Fξ ⋆ Fη)(z) =

∫ ∞

−∞
Fξ(z − y) dFη(y) =

∫ ∞

−∞
Fη(z − x) dFξ(x).

Proof. Using Proposition 3.2.3 we note that F(ξ,η)(x, y) = Fξ(x)Fη(y). Then

Fξ+η(z) =

∫
{x,y:x+y≤z}

dF(ξ,η)(z)

=

∫
{x,y:x+y≤z}

dFξ(x) · dFη(y)

=

∫
R2

χx+y≤z dFξ(x) · dFη(y)

=

∫ ∞

−∞

(∫ ∞

−∞
χx+y≤z dFξ(x)

)
dFη(y)

=

∫ ∞

−∞
Fξ(z − y) dFη(y).
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As this argument is symmetric we also get that

Fξ+η(z) =

∫ ∞

−∞
Fη(z − x) dFξ(x).

■

Corollary 3.2.8 If ξ and η are independent absolutely continuous random variables, then the density
of ξ + η is given by the convolution of the densities,

fξ+η(z) = (fξ ⋆ fη)(z) =

∫ ∞

−∞
fξ(z − y)fη(y) dy =

∫ ∞

−∞
fη(z − x)fξ(x) dx.

Example 3.2.9

1. Let ξ ∼ N
(
m1, σ

2
1

)
and η ∼ N

(
m2, σ

2
2

)
, so that

fξ(x) =
1

σ1
φ

(
x−m1

σ1

)
and

fη(x) =
1

σ2
φ

(
x−m2

σ2

)
,

where
φ(x) =

1√
2π
e−

x2

2 .

Then

fξ+η(z) =

∫ ∞

−∞
fη(z − x)fξ(x) dx

=
1√

σ2
1 + σ2

2

φ

(
z − (m1 +m2)√

σ2
1 + σ2

2

)
.

Therefore, ξ + η ∼ N
(
m1 +m2, σ

2
1 + σ2

2

)
.

2. Let ξ1, . . . , ξn be independent N(0, 1) random variables. Then

fξ21+···+ξ2n
(x) =


1

2
n
2 Γ(n

2 )
x

n
2 −1e−

x
2 x > 0,

0 x ≤ 0.
(3.2)

The random variable ξ21 + · · · + ξ2n is usually denoted by χ2
n and its distribution is the χ2-

distribution with n degrees of freedom. To show this one can proceed by induction.

• For n = 1 we can use statement 1 of Example 3.1.6.

• Suppose fξ21+...ξ2n−1
(x) has the form of (3.2). Then,

fξ21+···+ξ2n
(x) =

∫ ∞

−∞
fξ2n(x− z)fξ21+···+ξ2n−1

(z) dz

=

∫ x

0

1√
2π(x− z)

e−
x−z
2

1

2
n−1
2 Γ

(
n−1
2

)z n−1
2 −1e−

z
2 dz

=
e−

x
2

2
n
2
√
πΓ
(
n−1
2

) ∫ x

0

z
n−1
2 −1

√
x− z

dz

z=tx
=

x
n
2 −1e−

x
2

2
n
2
√
πΓ
(
n−1
2

) ∫ 1

0

t
n−1
2 −1

√
1− t

dt
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t=y2

=
x

n
2 −1e−

x
2

2
n
2
√
πΓ
(
n−1
2

) ∫ 1

0

2yn−1√
1− y2

dy

y=sin(θ)
=

x
n
2 −1e−

x
2

2
n
2
√
πΓ
(
n−1
2

) ∫ π
2

0

2 sinn−2(θ) dθ

=
x

n
2 −1e−

x
2

2
n
2
√
πΓ
(
n−1
2

) { (n−3)(n−5)...(1)
(n−2)(n−4)...(2)

π
2 n even

(n−3)(n−1)...(2)
(n−2)(n−4)...(3) n odd

=
x

n
2 −1e−

x
2

2
n
2 Γ
(
n
2

) ,
where in the last equality we use the identity

Γ (n− 1) Γ

(
n− 1

2

)
= 23−2n

√
πΓ(2n− 2)

to make the simplification.

Proposition 3.2.10 Let ξ and η be independent random variables with E(ξ) <∞ and E(η) <∞. Then
E(ξη) <∞ with E(ξη) = E(ξ)E(η).

Proof. Suppose that ξ and η are non-negative. Let

• ξn =
∑∞

k=0
k
nχ{ k

n≤ξ(ω)< k+1
n }, and

• ηn =
∑∞

k=0
k
nχ{ k

n≤η(ω)< k+1
n }.

Then ξn ≤ ξ and ηn ≤ η with |ξ − ξn| ≤ 1
n and |η − ηn| ≤ 1

n for all n ∈ N. Since ξ and η are integrable
we can apply the dominated convergence theorem to deduce that

• limn→∞E(ξn) = E(ξ), and

• limn→∞E(ηn) = E(η).

Hence,

E(ξnηn)
(1)
=
∑
j,k≥0

jk

n2
E
(
χ{ j

n≤ξ< j+1
n }χ{ k

n≤η< k+1
n }
)

(2)
=
∑
j,k≥0

jk

n2
E
(
χ{ j

n≤ξ< j+1
n }
)
E
(
χ{ k

n≤η< k+1
n }
)

= E(ξn)E(ηn),

where (1) is an application of the monotone convergence theorem, and (2) follows from independence.
Moreover,

|E(ξη)− E(ξnηn)| ≤ E(|ξη − ξnηn|)
= E(|ξ(η − ηn) + ηn(ξ − ξn)|)

≤ 1

n
E(|ξ|) + 1

n
E

(
|η|+ 1

n

)
→ 0

as n→ ∞. Therefore,

E(ξη) = lim
n→∞

E(ξnηn) = lim
n→∞

E(ξn) lim
n→∞

E(ηn) = E(ξ)E(η),

and E(ξη) <∞. For general random variables use the representations

• ξ = ξ+ − ξ−, and

• η = η+ − η−.

■
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3.3 Correlation 3 More on Random Variables

Proposition 3.2.11 Integrable random variables ξ and η are independent if and only if for all Borel-
measurable functions f and g we have E(f(ξ)g(η)) = E(f(ξ))E(g(η)).

Proof. (⇒). Step 1: Let f = χB1
and g = χB2

for B1, B2 ∈ B(R).
In this case,

E(f(ξ)g(η)) = E(χ{ξ∈B1}χ{η∈B2})

= E(χ{ξ∈B1,η∈B2})

= P(ξ ∈ B1, η ∈ B2)

= P(ξ ∈ B1)P(η ∈ B2)

= E(χ{ξ∈B1})E(χ{η∈B2})

= E(f(ξ))E(g(η)).

Step 2: Let f and g be simple functions.
By the linearity of the expectations it follows from step 1 that E(f(ξ)g(η)) = E(f(ξ))E(g(η)).
Step 3: Let f and g be non-negative measurable functions.
There exist sequences of simple functions (fn)n∈N and (gn)n∈N such that fn(x) → f(x) and gn(x) → g(x)
with fn(x) ≤ fn+1(x) and gn(x) ≤ gn+1(x). Therefore, by monotone convergence and step 2 it follows
that

E(f(ξ)g(η)) = E( lim
n→∞

fn(ξ)gn(η))

= lim
n→∞

E(fn(ξ)gn(η))

= lim
n→∞

E(fn(ξ))E(gn(η))

= E(f(ξ))E(g(η)).

Step 4: Let f and g be arbitrary measurable functions.
Using the decompositions f = f+−f− and g = g+−g−, and the linearity of expectation, it follows from
step 3 that E(f(ξ)g(η)) = E(f(ξ))E(g(η)).
(⇐). For any B1, B2 ∈ B(R) let f = χB1

and g = χB2
. Then

P(ξ ∈ B1, η ∈ B2) = E(f(ξ)g(η)) = E(f(ξ))E(g(η)) = P(ξ ∈ B1)P(η ∈ B2)

Therefore, ξ and η are independent. ■

3.3 Correlation

Definition 3.3.1 Let ξ and η be random variables defined on the same probability space. Provided that
their expectations exist, their covariance is

Cov(ξ, η) := E((ξ − E(ξ))(η − E(η))).

Remark 3.3.2 Note that
V(ξ + η) = V(ξ) + V(η) + 2Cov(ξ, η).

Hence, Cov(ξ, η) = 0 implies that V(ξ + η) = V(ξ) + V(η).

Definition 3.3.3 Random variables ξ and η are uncorrelated if

Cov(ξ, η) = 0.

Corollary 3.3.4 Independent random variables are uncorrelated.

Proof. Using Proposition 3.2.10 we deduce that

Cov(ξ, η) = E(ξη)− E(ξ)E(η) = 0.

■
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Remark 3.3.5 The converse of Corollary 3.3.4 is not true.

Example 3.3.6 Consider a random variable α which takes the values
{
0, π2 , π

}
uniformly. Then ξ =

sin(α) and η = cos(α) are uncorrelated since

Cov(ξ, η) = E(ξη)− E(ξ)E(η)

= 0−
(
1

3

)
(0)

= 0.

However, they are not independent since

P(ξ = 1, η = 1) = 0 ̸= 1

9
= P(ξ = 1)P(η = 1).

On the other hand, the random variables ξ and η2 are correlated since

Cov
(
ξ, η2

)
= E

(
ξη2
)
− E(ξ)E

(
η2
)

= 0−
(
1

3

)(
2

3

)
= −2

9
.
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4 Convergence in Probability

Part II. Concepts of Convergence

4 Convergence in Probability

We now have sufficient tools from measure theory to get into the first serious topic of probability, limiting
theorems. Given a random sequence (ξ1, ξ2, . . . ) with each ξn independent and identically distributed,
we would like to study the deviation between the empirical mean Sn

n , where Sn = ξ1 + · · ·+ ξn, and the
expectation E(ξ1) as n→ ∞.

4.1 Definition and Properties
We have already encountered one form of convergence, namely Lp convergence. Here we introduce an
alternative notion of convergence, known as convergence in probability.

Definition 4.1.1 A sequence (ξn)n∈N of random variables from a probability space (Ω,F ,P) to R
converges in probability, or in measure P, to the random variable ξ, denoted by ξn

p−→ ξ, if for every
ε > 0 we have

P(|ξn − ξ| > ε) → 0,

as n→ ∞.

Proposition 4.1.2 Let ξ and (ξn)n∈N be random variables on (Ω,F ,P). If ξn
Lp

−→ ξ for p ≥ 1, then
ξn

p−→ ξ.

Proof. The random variable |ξn − ξ|p is non-negative. So for any ϵ > 0, by Markov’s inequality, it follows
that

P (|ξn − ξ| ≥ ϵ) = P (|ξn − ξ|p ≥ ϵp)

≤ E (|ξn − ξ|p)
ϵp

n→∞−→ 0.

Therefore, ξn
p−→ ξ. ■

Example 4.1.3 The converse of Proposition 4.1.2 is not true. Consider ξn = nχ(0, 1
n ]
(ω). Then

P(|ξn| > ϵ) =
1

n

n→∞−→ 0.

Therefore, ξn
p−→ 0. However,

E (|ξn|p) = np−1
n→∞
̸→ 0.

Therefore, ξn
Lp

̸→ 0.

Exercise 4.1.4 Let (ξn)n∈N and (ηn)n∈N be sequences of random variables on (Ω,F ,P), and let ξ, η
be random variables on (Ω,F ,P).

1. Check that the limit of convergence in probability is almost surely unique. That is, if ξn con-
verges in probability to ξ and ξ′ then ξ = ξ′ almost surely.

2. Prove that if ξn
p→ ξ and ηn

p→ η then for all real numbers a, b we have aξn + bηn
p→ aξ + bη.
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4.2 Coin Flipping Example 4 Convergence in Probability

3. Prove that if ξn
p→ ξ and ηn

p→ η then ξnηn
p→ ξη. Notice this is not necessarily true if we have

Lp convergence. What’s wrong with the argument, and can we refine the statement?

4. Show that if ξn
p−→ ξ, ηn

p−→ η and φ(x, y) is a continuous function, then φ(ξn, ηn)
p−→ φ(ξ, η).

4.2 Coin Flipping Example
We can motivate the notion of convergence in probability by considering flipping n independent coins.
Firstly, consider the flipping of just one coin. Assume the outcomes are zero and one with a probability
p ∈ (0, 1) of getting a one. We aim to express this as a {0, 1}-valued random variable ξ on a suitable
probability space (Ω,A ,P), such that Pξ({0}) = 1− p and Pξ({1}) = p, or in other words,

Pξ({x}) = px(1− p)1−x, (4.1)

for x = 0, 1. For the probability space, there are several choices.

• The natural choice would be

– Ω = {0, 1},

– A = 2Ω, and

– P({ω}) = pω(1− p)1−ω.

In this case, our desired random variable would be η(ω) = ω.

• A more complicated choice would be

– Ω = [0, 1],

– A = B([0, 1]), and

– P(E) = Leb(E).

In this case, our desired random variable would be ξ(ω) = χ(p,1](ω).

Remark 4.2.1 The more complicated formulation represents how a computer simulates the flipping
of a biased coin. First, it generates a random number r ∈ [0, 1] from a uniform distribution (for
instance, by using the numpy.random.rand function in Python), then returns zero if r < 1 − p and
one otherwise.

In both cases we see that Pξ({0}) = 1− p and Pξ({1}) = p. In fact, from Theorem 2.2.10 we know that
the distribution functions, and therefore the expectation, will not depend on our choice of probability
spaces and random variables, as long as Pξ satisfies (4.1). How can we extend the experiment to the
flipping of n coins? It would be wrong to define ξ1, . . . , ξn on the same sample space (Ω,A ,P) such that
ξ1 = · · · = ξn. This would correspond to the flipping of a single coin once and recording the result n
times. It is clear that in such a construction the random variables would not be independent. It will be
hard to write down a large number of independent random variables defined on any of the sample spaces
(Ω,A ,P) in the above example. A standard way of describing n independent coin flips (or n independent
trials in general) is to assume that the random variables ξ1, . . . , ξn lie in different probability spaces. That
is, ξ1 is defined on (Ω1,A1,P1), ξ2 is defined on (Ω2,A2,P2) and so on. Proceeding in this way requires
us to operate in these different spaces simultaneously. Thus we need to consider the product space(
Ω(n),A (n),P(n)

)
= ⊗n

i=1(Ωi,An,Pn). The sample space of this product space is

Ω(n) = Ω1 × · · · × Ωn = {ω = (ω1, . . . , ωn) : ωi ∈ Ωi, for i = 1, . . . , n} ,

the collection of events are

A (n) = σ ({A1 × · · · ×An : Ai ∈ Ai, for i = 1, . . . , n}) ,

and the probability measure P(n) satisfies

P(n)(A1 × · · · ×An) =

n∏
i=1

Pi(Ai).
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4.3 Bernoulli’s Law of Large numbers 4 Convergence in Probability

Consequently, we define the family of projection functions onto the ith component, proj(n)i :
(
Ω(n),A (n)

)
→

(Ωi,Ai) such that proj(n)i (ω1, . . . , ωn) = ωi. For convenience, we drop the superscript (n) if there is no
ambiguity. Notice that the projection functions are measurable since the pre-image of any set in Ai is

proj−1
i (Ai) = Ω1 × · · · × Ωi−1 ×Ai × Ωi+1, · · · × Ωn ∈ A (n).

We can define the random variables ξ̃i :
(
Ω(n),A (n),P(n)

)
→ {0, 1} such that ξ̃i(ω) = ξi(proji(ω)). These

random variables are an accurate description of flipping n coins.

Exercise 4.2.2 Verify the following.

1. The marginal distribution of ξi, defined as the measure A 7→ Pξ̃i
(Ω1×· · ·×A×· · ·×Ωn) satisfies

(4.1).

2. The family
(
ξ̃i

)n
i=1

of random variables is independent.

Next, we want to extend the above construction to infinity. More specifically, we want to consider the
space (Ω,A ) = ⊗∞

i=1(Ωi,Ai) with a suitable probability measure P, so that we can discuss large-sample
theorems. It should be the case that this probability measure satisfies

P (A1 × · · · ×An × Ωn+1 × . . . ) =

n∏
i=1

Pi(Ai).

If we use Ωi ≡ Ω and Ai ≡ A in our above examples and assume the natural choice, then we can safely
set

P ({(ω1, ω2, . . . )}) =
∞∏
i=1

pωi(1− p)1−ωi = p
∑

i∈N ωi(1− p)
∑

i∈N(1−ωi),

since the probability measure is well-defined for all singletons {(ω1, ω2, . . . )}. If we use the example
when Ωi = [0, 1], we can check that our sequence of measures

(
P(n)

)
n∈N is consistent and we can apply

Theorem 1.6.2 to construct P.
The above shows that we need not worry about specifying a single probability space to describe a se-
quence of independent experiments. If we want to describe an infinite sequence of experiments with an
underlying distribution Pξ, we can consider the infinite product space (R∞,B (R∞)) equipped with the
probability measure P as determined by Theorem 1.6.2. The projections onto the ith component proji
are random variables with distribution Pξ. From now on, we abuse notation by not mentioning the un-
derlying probability space, dropping the tilde sign above ξ and interpreting any operations in the above
sense.

4.3 Bernoulli’s Law of Large numbers
For k ∈ N let ξk be a {0, 1}-valued random variable, taking value one with probability p ∈ (0, 1), and
consider Sn = ξ1 + · · ·+ ξn. Then

E(Sn) =

n∑
k=1

E(ξk) =

n∑
k=1

(1 · Pξk(ξk = 1) + 0 · Pξk(ξk = 0)) = np.

Thus the mean value of Sn

n is equal to p. The question now is what does | 1nSn(ω) − p| converge to for
large n? Moreover, in what sense does this convergence occur? It cannot be that∣∣∣∣Sn(ω)

n
− p

∣∣∣∣→ 0

uniformly or pointwise in ω, because there exists an ω such that ξk(ω) = 1 for all k ∈ N, so 1
nSn(ω) ≡

1 ↛ p. Therefore, we must consider a weaker notion of convergence, as illustrated in the following
exercise.
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4.4 Weak Law of Large Numbers 4 Convergence in Probability

Exercise 4.3.1 Verify that Sn ∼ B(n, p). Hence, show that∥∥∥∥Sn

n
− p

∥∥∥∥2
L2

→ 0

as n→ ∞.

With a more general analysis, we have Lp convergence for any p ∈ [1,∞). Moreover, by Chebyshev’s
inequality, it follows for any fixed ϵ > 0 that

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ > ϵ

)
≤

V
(
Sn

n

)
ϵ2

=
p(1− p)

nϵ2
. (4.2)

Hence, we can always make the probability P
(∣∣Sn

n − p
∣∣ > ϵ

)
arbitrarily small. That is, we have conver-

gence in probability. Stating the above formally gives us the Bernoulli Law of Large numbers.

Theorem 4.3.2 — Bernoulli Law of Large Numbers. Let (ξn)n∈N be a sequence of independent and
identically distributed Bernoulli random variables, with parameter p ∈ (0, 1). Then Sn

n converges in
probability to p.

4.4 Weak Law of Large Numbers
We can generalise the ideas of the previous section. Note, from Markov’s inequality, if ξn → ξ in Lp for
p ≥ 1, then we must have ξn

p−→ ξ because

P(|ξn − ξ| > ε) ≤
∥ξn − ξ∥pLp

εp
→ 0.

Let ξ1, . . . , ξn be random variables and let

S(c)
n =

n∑
k=1

(ξk − E(ξk)).

Observe that E
(
S
(c)
n

)
= 0. How can we use Chebyshev’s inequality to make the weakest assumptions

on the ξ1, . . . , ξn such that S(c)
n converges? For simplicity, we can first assume that the ξk ∈ L2 with

V(ξk) ≤ C for some constant C that is independent of k ∈ N. Then, if we assume that the ξ1, . . . , ξn are
pairwise uncorrelated, which is a weaker assumption than independence, we have

V(Sn) =

n∑
k=1

V(ξk) ≤ Cn.

Theorem 4.4.1 — L2 Weak Law of Large Numbers. Let (ξn)n∈N be a sequence of uncorrelated L2

random variables such that V(ξn) ≤ C for some C > 0 and every n ∈ N. Then

S
(c)
n

n

p−→ 0.

Proof. Using Chebyshev’s inequality and the fact the random variables are uncorrelated, it follows for all
ϵ > 0 that

P

(∣∣∣∣∣S(c)
n

n

∣∣∣∣∣ > ε

)
≤

V
(

S(c)
n

n

)
ε2

≤ C

nε2
n→∞−→ 0.

■

Corollary 4.4.2 Let (ξn)n∈N be integrable, independent and identically distributed random variables,
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4.5 Local and Central Limit Theorem 4 Convergence in Probability

such that V(ξn) <∞. Then
Sn

n

p−→ E(ξ1).

Example 4.4.3 Consider f a measurable function on [0, 1] with

C :=

∫ 1

0

|f(x)|2 dx <∞.

The integral

θ =

∫ 1

0

f(x) dx,

is often intractable to compute in practice. However, if U is a random variable on some probability
space (Ω,F ,P) with uniform distribution Unif[0, 1], then θ = E(f(U)). For example, one could take
U : ω ∈ ([0, 1],B[0, 1], Leb) 7→ ω. Therefore, an approach to estimating θ would be to use an empirical
mean approach.

1. Let (Un(ω))n∈N be an independent and identically distributed sample from U ∼ Unif[0, 1].

2. Then evaluate the empirical mean

θ̂n(ω) :=
f(U1(ω)) + · · ·+ f(Un(ω))

n
.

It is clear that E
(
θ̂n

)
= θ. Moreover, since the random variables f(Ui) are independent and identi-

cally distributed with finite variance

V(f(Ui)) = E
(
(f(Ui))

2
)
− θ2 = C − θ2 <∞,

Theorem 4.4.1 tells us that θ̂n(ω)
n→∞−→ θ in probability.

Exercise 4.4.4 — L2 Weak Law of Large Number for weakly correlated random variables. Let (ξn)n∈N
be a sequence random variables on a common probability space (Ω,F ,P) with E(ξi) = 0 and

E(ξiξj) = r|i−j|, where (rk)k∈N is a sequence of real numbers such that rk
k→∞−→ 0. Let Sn =

∑n
i=1 ξi.

Show that Sn

n

n→∞−→ 0 in probability.

4.5 Local and Central Limit Theorem
We return to the coin-flipping scenario. Let Sn = ξ1 + · · ·+ ξn, where ξk ∼ B(1, p) are independent and
identically distributed. As discussed in the previous section, Sn tends to be close to np for large n.
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∼ np
np− ϵn np− ϵn

k

P(Sn = k)

Specifically, let us take some interval In = (n(p− ε), n(p+ ε)). If we pick some sufficiently large ε, say
ε = nα where α > 1

2 , then by Chebyshev’s inequality (4.2) we know that

P(Sn ∈ I c
n) = P

(∣∣∣∣Sn

n
− p

∣∣∣∣ > nα−1

)
≤ p(1− p)

n1+2α−2
=
p(1− p)

n2α−1

n→∞−→ 0.

These decaying bounds of P(Sn ∈ I c
n) no longer exist when α ≤ 1

2 . How much do we know about
P(Sn ∈ I c

n) for this case? Will it tend to some non-trivial constant in (0, 1), or will it increase and tend
to one? We will see that the central limit theorem suggests that at the boundary α = 1

2 , the quantity
P (Sn ∈ I c

n) tends to some non-trivial constant in (0, 1). This suggests that the rescaled mean Sn√
n

will
converge in some way to a non-trivial distribution.

Definition 4.5.1 Consider sequences (fn)n∈N and (gn)n∈N.

• Big O notation. We say that gn = O(fn) as n → ∞ if
∣∣∣ gnfn ∣∣∣ is bounded for sufficiently large n.

That is, there exists constant C > 0 and N ∈ N such that for all n ≥ N we have |gn| ≤ C|fn|.

• Small o notation. We say that gn = o(fn) as n → ∞ if
∣∣∣ gnfn ∣∣∣ → 0 as n → ∞. In other words,

for all ϵ > 0, there exists N := N(ϵ) ∈ N such that for all n ≥ N we have |gn| ≤ ϵ|fn|. We
sometimes write gn ≪ fn or fn ≫ gn.

• Asymptotic equivalence. We write gn ∼ fn if
∣∣∣ gnfn ∣∣∣ → 1 as n → ∞. Equivalently, we have

gn = (1 + o(1))fn.

• Order. We write gn = Θ(fn) = ord(fn) if gn = O(fn) but gn is not o(fn).

Remark 4.5.2

• The use of equal sign is an abuse of notation.

• The statements of Definition 4.5.1 can be extended to any functions f(x) defined on real or
complex numbers, in such case, we can assume x tends to some point x0 including ∞.

• We can also consider order notation for sequences of functions. Let gn = gn(α) and fn = fn(α).
We say gn(α) = O(|fn(α)|) uniformly if the statement 1 of Definition 4.5.1 holds for constants
C > 0 and N ∈ N independent of α. We also have analogous definition for gn(α) = o(|fn(α)|).
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Lemma 4.5.3 — Stirling’s Approximation. As n→ ∞, we have

n! =
√
2πn

(n
e

)n(
1 +O

(
1

n

))
.

Using Lemma 4.5.3 we can sketch an asymptotic analysis of the binomial coefficient. Suppose n, k, n− k
tend to infinity, for example let k = np for p ∈ (0, 1). With Lemma 4.5.3 we obtain(

n

k

)
=

n!

k!(n− k)!

=

√
n√

2πk(n− k)

(
n
e

)n(
k
e

)k (n−k
e

)n−k

1 +O
(
1
n

)(
1 +O

(
1
n

)) (
1 +O

(
1
n

))
=

√
n√

2πk(n− k)
exp (n log(n)− k log(k)− (n− k) log(n− k))

1 +O
(
1
n

)(
1 +O

(
1
n

)) (
1 +O

(
1
n

)) .
To gain intuition, one can treat O

(
1
n

)
as being exactly equal to 1

n . That is,(
1 +O

(
1

n

))−2

=

(
1 +

1

n

)−2

= 1− 2

n
+ . . . ,

and so,

1 +O
(
1
n

)(
1 +O

(
1
n

)) (
1 +O

(
1
n

)) =

(
1 +

1

n

)(
1− 2

n
+ . . .

)
= 1− 1

n
+ · · · = 1 +O

(
1

n

)
.

Putting this together, we have(
n

k

)
=

√
n√

2πk(n− k)
exp (n log(n)− k log(k)− (n− k) log(n− k))

(
1 +O

(
1

n

))
. (4.3)

Exercise 4.5.4 Show that P(Sn = k) is monotone in k below and above its point of maximum.

With this, we can prove the local limit theorem, which specifies the local asymptotics of a probability
mass distribution at the point Sn = k.

Theorem 4.5.5 — Local Limit Theorem. For any 0 < p < 1, we have

max
0≤k≤n

∣∣∣∣∣P(Sn = k)− 1√
2πp(1− p)

√
n
e−

x2

2p(1−p)

∣∣∣∣∣ = o

(
1√
n

)
,

as n→ ∞ and where x = xk,n :=
k − np√

n
.

Proof. Consider k such that

|xk,n| ≤
An√
n

where An = nϵ for ϵ ∈ (0, 1). Then as k = np+ x
√
n we have that

k = np

(
1 +O

(
An

n

))
which implies that

n− k = n(1− p)

(
1 +O

(
An

n

))
.

Hence, k and n− k tend to infinity as n→ ∞, which means we can utilise (4.3) to get that

P(Sn = k) =

√
n√

2πk(n− k)︸ ︷︷ ︸
(A)

exp (n log(n)− k(log(k)− log(p))− (n− k)(log(n− k)− log(1− p)))︸ ︷︷ ︸
(B)

(
1 +O

(
1

n

))
.
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Analysing (A) we notice that

(A) =

√
n√

2πk(n− k)

=
1√

2πnp(1− p)
(
1 +O

(
An

n

)) (
1 +O

(
An

n

))
=

1√
2πnp(1− p)

(
1 +O

(
An

n

))
.

Similarly, analysing (B) we notice that

(B) = exp

(
n log(n)− k

(
log(n) + log

(
1 +

x

p
√
n

))
− (n− k)

(
log(n) + log

(
1− x

(1− p)
√
n

)))
= exp

(
−
(
(np+ x

√
n) log

(
1 +

x

p
√
n

)
+ (n(1− p)− x

√
n) log

(
1− x

(1− p)
√
n

)))
= exp

(
−
(
np

(
x

p
√
n
− x2

2p2n
+O

(
x3

n
3
2

)
+
x2

p
+O

(
x3

n
1
2

))
+ n(1− p)

(
− x

(1− p)
√
n
− x2

2(1− p)2n
+O

(
x3

n
3
2

))
+

x2

(1− p)
+O

(
x3

n
1
2

)))
= exp

(
− x2

2p(1− p)
+O

(
x3√
n

))
= exp

(
− x2

2p(1− p)
+O

(
A3

n

n2

))
= exp

(
− x2

2p(1− p)

)(
1 +O

(
A3

n

n2

))
.

Hence,

P(Sn = k) =
1√

2πp(1− p)n
exp

(
− x2

2p(1− p)

)(
1 +O

(
An

n

)
+O

(
A3

n

n2

))
.

Letting ε = 7
12 , we get A3

n

n2 = n−
1
4 and An

n = n−
5
12 , so that

max
|x|≤An√

n

P(Sn = k) =
1√

2πp(1− p)n
exp

(
− x2

2p(1− p)

)(
1 +O

(
1

n
5
12

))
︸ ︷︷ ︸

=1+o
(

1√
n

)
. (4.4)

Now consider |x| > An√
n

. Observe that

max
|x|>An√

n

∣∣∣∣∣P(Sn = k)− 1√
2πp(1− p)n

exp

(
− x2

2p(1− p)

)∣∣∣∣∣
≤ max

|x|>An√
n

|P(Sn = k)|+ max
|x|>An√

n

∣∣∣∣∣ 1√
2πp(1− p)n

exp

(
− x2

2p(1− p)

)∣∣∣∣∣
≤ max |P(Sn = ⌊np+An⌋), P(Sn = ⌈np−An⌉)|+

1√
2πp(1− p)n

exp

(
− A2

n

2np(1− p)

)
.

Where the first bound is an application Exercise 4.5.4. With An = n
7
12 , the second term is o

(
1√
n

)
.

Furthermore, as

n
1
12 − n−

1
2 =

np+An − np− 1√
n

≤ ⌊np+An⌋ − np√
n

≤ np+An − np√
n

= n
1
12

we note that x⌊np+An⌋,k ∼ n
1
12 . A similar result holds for x⌈np+An⌉,k, and so the first term is also o

(
1√
n

)
.

Combining these results with (4.4) completes the proof. ■
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Theorem 4.5.5 says that

P
(
Sn − np√

n
= x

)
=

1√
n

(
1√

2πp(1− p)
e−

x2

2p(1−p) + o(1)

)

as n→ ∞. At first glance, you may find this result not useful, as it only tells us that the probability decays

to zero at a rate of O
(

1√
n

)
. However, since

Sn − np

np(1− p)
seems to converge to a continuous distribution,

we really should look at the density by ignoring the 1√
n

. The things inside the square bracket suggest

that the density function of n−
1
2 (Sn − np) converges to the normal distribution N(0, p(1 − p)), which is

equivalent to the distribution of Sn−np
np(1−p) converging to the standard normal N(0, 1). The above heuristics

can be formalised by adding the local probabilities and considering the cumulative distribution function.
We therefore arrive at the central limit theorem.

Theorem 4.5.6 — de Moivre-Laplace CLT. For any 0 < p < 1 and x ∈ R we have,

lim
n→∞

(
P

(
Sn − np√
np(1− p)

≤ x

))
= Φ(x),

where

Φ(x) =

∫ x

−∞

1√
2π
e−

y2

2 dy,

is the density of N(0, 1).

Proof Sketch. Note

P

(
Sn − np√
np(1− p)

≤ x

)
= P

(
Sn ≤ np+ x

√
np(1− p)

)

=

⌊
np−n

7
12

⌋
−1∑

k=0

P(Sn = k) +

⌊
np+x

√
np(1−p)

⌋∑
k=

⌊
np−n

7
12

⌋ P(Sn = k).

The first term is a sum of a polynomial number of terms of order O
(
exp

(
−n 1

2

))
and so will vanish as

n→ ∞. The second term is a Riemann sum. Writing

Tn =
{
k :
⌊
np− n

7
12

⌋
≤ k ≤

⌊
np+ x

√
np(1− p)

⌋}
we have

∑
k∈Tn

P(Sn = k) =
∑
k∈Tn

1√
n

1√
2πp(1− p)

exp

−1

2

(
k − np√
np(1− p)

)2


=
∑

k∈Tn−np

1√
n

1√
2πp(1− p)

exp

−1

2

(
k√
n√

p(1− p)

)2
 .

This is almost a Riemann sum on a partition of (−∞, x] with a mesh size of 1√
n

, however, it is missing
some boundary terms. One can show that the boundary terms lead to an o(1) contribution to conclude
that

lim
n→∞

P

(
Sn − np√
np(1− p)

≤ x

)
=

∫ x

−∞

1√
2π
e−

y2

2 dy.

We omit the details here. ■

Theorem 4.5.6 demonstrates that for a sequence of independent Bernoulli random variables the quantity√
n(Sn

n − p) converges in distribution to a random variable with normal distribution N(0, p(1− p)).
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Exercise 4.5.7 Using Theorem 4.5.6 prove Theorem 4.3.2.

Remark 4.5.8 Regarding Sn ∼ Bin(n, p), we can consider the behaviour of Sn if we let p be a function
of n. Specifically, we let p = p(n) be such that p(n) → 0 and p(n) · n → λ > 0 as n → ∞. Then for
fixed k ∈ N we have

P(Sn = k) =
n!

k!(n− k)!
p(n)k(1− p(n))k

=
n(n− 1) · · · (n− k + 1)

k!

(
λ

n
+ o

(
1

n

))k (
1− λ

n
+ o

(
1

n

))n−k

.

Therefore,

P(Sn = k) → 1

k!
λke−λ,

and so Sn ∼ Bin(n, p(n)) converges to a Po(λ) distribution.

4.6 Solution to Exercises
Exercise 4.1.4

Solution.

1. Consider the sets Ak =
{
ω : |ξ(ω)− ξ′(ω)| > 1

k

}
. Note that {ω : ξ(ω) ̸= ξ′(ω)} =

⋃∞
k=1Ak. More-

over,

P(Ak)
(1)

≤ P
(
|ξ − ξn|+ |ξn − ξ′| > 1

k

)
(2)

≤ P
(
|ξ − ξn| >

1

2k

)
+ P

(
|ξn − ξ′| > 1

2k

)
n→∞−→ 0,

where (1) is an application of the triangle inequality, and in (2) we use the fact that{
|ξ − ξn|+ |ξn − ξ′| > 1

k

}
⊆
{
|ξ − ξn| >

1

2k

}
∪
{
|ξn − ξ′| > 1

2k

}
.

Therefore, P(Ak) = 0 which implies that

P (ξ ̸= ξ′) = P

( ∞⋃
k=1

Ak

)
= lim

n→∞
P(Ak)

= 0,

where we have used the continuity of the measure P, as (Ak)k∈N is a sequence of increasing events.
We conclude that ξ = ξ′ almost everywhere.

2. Using the triangle inequality we have that

|aξn + bηn − aξ − bη| ≤ |a||ξn − ξ|+ |b||ηn − η|.

Therefore,
P(|aξn + bηn − aξ − bη| ≥ ϵ) ≤ P(|a||ξn − ξ|+ |b||ηn − η| ≥ ϵ).

If ω satisfies the inequality on the right-hand side, it must be the case that either

(a) |a||ξn − ξ| ≥ ϵ
2 , or

(b) |b||ηn − η| ≥ ϵ
2 .
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Hence,

P(|a||ξn − ξ|+ |b||ηn − η| ≥ ϵ) ≤ P
(
|ξn − ξ| ≥ ϵ

2|a|

)
+ P

(
|ηn − η| ≥ ϵ

2|b|

)
.

Both terms on the right-hand side tend to zero as n→ ∞ by assumption. Therefore,

P(|aξn + bηn − aξ − bη| ≥ ϵ)
n→∞−→ 0,

which implies that aξn + bηn
p−→ aξ + bη.

3. Observe that

P(|ξnηn − ξη| ≥ ϵ) ≤ P
(
|ξn||ηn − η| ≥ ϵ

2

)
+ P

(
|η||ξn − ξ| ≥ ϵ

2

)
. (4.5)

Consider the first term on the right-hand side, note that given an M > 0 it follows that{
|ξn||ηn − η| ≥ ϵ

2

}
⊆ {|ξn − ξ| ≥ 1} ∪ {|ξ| ≥M} ∪

{
|ηn − η| ≥ ϵ

2(M + 1)

}
.

This follows by considering the event that none of the events on the right-hand side hold, then

|ξn||ηn − η| ≤ (|ξn − ξ|+ |ξ|) |ηn − η| < (M + 1)
ϵ

2(M + 1)
=
ϵ

2
.

Therefore,

P
(
|ξn||ηn − η| ≥ ϵ

2

)
≤ P(|ξn − ξ| ≥ 1) + P(|ξ| ≥M) + P

(
|ηn − η| ≥ ϵ

2(M + 1)

)
n→∞−→ P(|ξ| ≥M)

M→∞−→ 0.

Similarly, for the second term on the right-hand side of (4.5) we have

P
(
|η||ξn − ξ| ≥ ϵ

2

)
≤ P(|η| ≥M) + P

(
|ηn − η| ≥ ϵ

2M

)
n→∞−→ P(|η| ≥M)

M→∞−→ 0.

Therefore, we can conclude that

P(|ξnηn − ξη| ≥ ϵ)
n→∞−→ 0

which implies that ξnηn
p−→ ξη.

4. Let M ∈ R. On [−M,M ]2 the function φ(x, y) is uniformly continuous. Therefore, given an ϵ > 0
there exists a δ > 0 such that for all (x, y), (x′, y′) ∈ [−M,M ]2 with |(x, y)− (x′, y′)| < δ we have

|φ(x, y)− φ (x′, y′)| < ϵ.

Therefore,

P
(
|φ(ξn, ηn)− φ(ξ, η)| ≥ ϵ

∣∣∣(ξn, ηn), (ξ, η) ∈ [−M,M ]2
)

≤ P
(
|(ξn, ηn)− (ξ, η)| ≥ δ

∣∣∣(ξn, ηn), (ξ, η) ∈ [−M,M ]2
)

≤ P
(
|ξn − ξ| ≥ δ

2

∣∣∣ξn, ξ ∈ [−M,M ]

)
+ P

(
|ηn − η| ≥ δ

2

∣∣∣ηn, η ∈ [−M,M ]

)
n→∞−→ 0.

Sending M → ∞ completes the proof.
■
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Exercise 4.2.2

Solution.

1. It is clear that

Pξi({x}) = Pξ̃i
(Ω1 × · · · × {x} × · · · × Ωn)

= P(n)(Ω1 × · · · × {x} × · · · × Ωn)

= Pi({x})
= px(1− p)1−x

for x = 0, 1.

2. By construction

P
(
ξ̃1 ∈ A1, . . . , ξ̃n ∈ An

)
= P(n)(A1 × · · · ×An)

=

n∏
i=1

Pi(Ai).

Therefore, the
(
ξ̃i

)
are independent.

■

Exercise 4.3.1

Solution. As Sn ∼ B(n, p) we know that E(Sn) = np and V = np(1− p). Therefore,

E

(∣∣∣∣Sn

n
− p

∣∣∣∣2
)

= E

(∣∣∣∣Sn − np

n

∣∣∣∣2
)

=
1

n2
E
(
(Sn − np)2

)
=

1

n2
V(Sn)

=
p(1− p)

n
n→∞−→ 0.

■

Exercise 4.4.4

Solution. As (rk)k∈N converges to zero, the sequence is bounded. Suppose that rk ≤ M for all k ∈ N.
Moreover, for any δ > 0 we can find an Nδ ∈ N such that rk ≤ δ for all k ≥ Nδ. Therefore, for an ϵ > 0
and n > Nδ we have

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ϵ

)
≤ V(Sn)

n2ϵ2

=

∑n
i,j=1 E(ξiξj)
n2ϵ2

≤
2n
∑n−1

i=1 |rj |
n2ϵ2

=
2n
(∑Nδ−1

i=1 |ri|+
∑n−1

i=Nδ
|ri|
)

n2ϵ2

≤ 2nNδM + 2n(n−Nδ)δ

n2ϵ2

n→∞−→ 2δ

ϵ2
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As δ > 0 was arbitrary, for a fixed ϵ > 0 we conclude that

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ϵ

)
n→∞−→ 0.

■

Exercise 4.5.4

Solution. Consider the quotient

q =

(
n

k+1

)
pk+1(1− p)n−k−1(

n
k

)
pk(1− p)n−k

=
(n− k)p

(k + 1)(1− p)
.

When q < 1 deduce that the binomial probability density function (PDF) is decreasing and when q > 1
we deduce that the binomial PDF is increasing. Therefore,

• the PDF is increasing for k < p(n+ 1)− 1, and

• the PDF is decreasing for k > p(n+ 1)− 1.

When p(n+ 1) is an integer the PDF is maximal for both (n+ 1)p and (n+ 1)p− 1. ■

Exercise 4.5.7

Solution. Given a δ > 0 there exists an Xδ > 0 such that for all x > Xδ we have

Φ(x)− Φ(−x) =
∫ x

−x

1√
2π

exp

(
−x

2

2

)
dx ≥ 1− δ.

From Theorem 4.5.6 we have that

lim
n→∞

P

(
Sn − np√
np(1− p)

≤ x

)
= Φ(x)

which implies that

lim
n→∞

P

(
Sn

n
− p ≤

x
√
p(1− p)√
n

)
= Φ(x).

For fixed ϵ > 0, fix x > Xδ and choose N ≥ x2p(1−p)
ϵ2 . It follows for n ≥ N that

lim
n→∞

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ < ϵ

)
≥ lim

n→∞
P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≤ x
√
p(1− p)√
n

)

= lim
n→∞

(
P

(
Sn

n
− p ≤

x
√
p(1− p)√
n

)
− P

(
Sn

n
− p ≤ −

x
√
p(1− p)√
n

))
= Φ(x)− Φ(−x)
≥ 1− δ.

Hence,

lim
n→∞

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

)
< δ.

We conclude that Sn

n

p−→ p. ■
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5 Almost Sure Convergence

5 Almost Sure Convergence

5.1 Definition

Definition 5.1.1 A sequence (ξn)n∈N of random variables on probability space (Ω,F ,P) converges
P-almost surely to the random variable ξ, denoted by ξn

a.s.−→ ξ, if

P
({
ω : ξn(ω)

n→∞↛ ξ(ω)
})

= 0.

Further discussions will follow, for which the aim is to determine the following implications of conver-
gence.

• Almost sure convergence and convergence in Lp both imply convergence in probability.

• Convergence in probability implies convergence in distribution.

Lp

→

a.s.→ p→ d→

5.2 Connection to Convergence in Probability

5.2.1 Borel-Cantelli Lemma

Definition 5.2.1 Let (An)n∈N be a sequence of events.

• Let

lim sup
n→∞

(An) =

∞⋂
n=1

⋃
k≥n

Ak.

If ω ∈ lim supn→∞(An), we say that An occurs infinitely often.

• Let

lim inf
n→∞

(An) =

∞⋃
n=1

⋂
k≥n

Ak.

If ω ∈ lim infn→∞(An), we say that An occurs eventually.

Exercise 5.2.2

1. Show that
P
(
lim inf
n→∞

(An)
)
≤ lim inf

n→∞
P(An).

2. Describe the complement of lim supn→∞(An).

Theorem 5.2.3 — Borel-Cantelli Lemma. Let (An)n∈N be a sequence of events.

1. If
∑∞

n=1 P(An) <∞ then P(An i.o.) = 0.

2. If
∑∞

n=1 P(An) = ∞ and An are mutually independent then P(An i.o.) = 1.

Proof.
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5.2 Connection to Convergence in Probability 5 Almost Sure Convergence

1. By continuity of the measure we have

P(An i.o.) = lim
n→∞

P

⋃
k≥n

Ak

 ≤ lim
n→∞

∞∑
k=n

P(Ak) = 0.

2. Observe that {An i.o.}c = {Ac
n ev.} =

⋃∞
n=1

⋂
k≥nA

c
k. Hence, we have

1− P(An i.o.) = lim
n→∞

P

⋂
k≥n

Ac
k

 .

By independence we have that

P

⋂
k≥n

Ac
k

 =
∏
k≥n

P(Ac
k).

Note that log(1− x) ≤ −x for x ∈ [0, 1), and thus

log

P

⋂
k≥n

Ac
k

 = log

∏
k≥n

(1− P(Ak))


≤ −

∑
k≥n

P(Ak)

= −∞,

That is, P
(⋂

k≥nA
c
k

)
= 0 for all n ∈ N. Therefore,

1− P (An i.o.) = lim
n→∞

P

⋂
k≥n

Ac
k

 = 0

so that P(An i.o.) = 1.
■

Remark 5.2.4 Theorem 5.2.3 is an example of a zero-one law.

Example 5.2.5 For real numbers in [0, 1], we consider the event that its binary expansion contains a
finite string of {0, 1} infinitely many times. Assume the desired string to be (x1, . . . , xm). We consider
the sequence of events

An := {ω : ξnm+1(ω) = x1, . . . , ξnm+m(ω) = xm}

for n ≥ 0 on ([0, 1],B([0, 1]), Leb), where ξk(ω) = ωk. The event An occurs when the desired string
appears starting from digit nm + 1. These are mutually independent, given that the ξk are inde-
pendent. Moreover, they are identically distributed as P(An) = 1

2m for every n ∈ N. Therefore, as∑∞
n=1 P(An) = ∞, it follows from Theorem 5.2.3 that P(An i.o.) = 1. In other words, the finite string

(x1, . . . , xm) ∈ {0, 1}m appears infinitely often in the binary expansion of almost every real number
in the interval [0, 1].

5.2.2 Applications of the Borel-Cantelli Lemma

Proposition 5.2.6 A sequence (ξn)n∈N converges P-almost surely to ξ if and only if

P
(
sup
k≥n

|ξk − ξ| ≥ ε

)
n→∞−→ 0,
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5.2 Connection to Convergence in Probability 5 Almost Sure Convergence

for every ε > 0.

Proof. Note that ξn(ω) ̸→ ξ(ω) if and only if there exists an ϵ > 0 such that

|ξn(ω)− ξ(ω)| ≥ ϵ

infinitely often. So let Aϵ
n = {ω : |ξn(ω)− ξ(ω)| ≥ ϵ} and Aϵ = lim supn→∞ (Aϵ

n). Then

{ω : ξn(ω) ̸→ ξ(ω)} =
⋃
ε≥0

Aε.

As the sets Aϵ are nested, one can restrict ϵ to the form ϵ = 1
m for some positive integer m, so that

{ω : ξn(ω) ̸→ ξ(ω)} =

∞⋃
m=1

A
1
m .

Hence, P ({ω : ξn(ω) ̸→ ξ(ω)}) = 0 if and only if P
(⋃∞

m=1A
1
m

)
= 0. If this holds it follows for all m ≥ 1

that

P
(
A

1
m

)
≤ P

( ∞⋃
m=1

A
1
m

)
= 0.

Conversely, if for m ≥ 1 we have P
(
A

1
m

)
= 0 then by the continuity of the measure it follows that

P
(⋃∞

m=1A
1
m

)
= 0. Now P

(
A

1
m

)
= 0 for all m ≥ 1 happens if and only if P (Aϵ) = 0 for all ϵ > 0.

Therefore, as

P(Aε) = P

⋂
n≥1

⋃
k≥n

Aε
k


= lim

n→∞

P

⋃
k≥n

Aε
k


= P

(
sup
k≥n

|ξk − ξ| ≥ ε

)
,

we complete the proof. ■

Corollary 5.2.7 Convergence almost surely implies convergence in probability.

Lp

→

a.s.→ p→ d→

Proof. Suppose that the sequence (ξn)n∈N converges P-almost surely to ξ. Let ϵ > 0. Then for any δ > 0
we can use Proposition 5.2.6 to find an N ∈ N such that

P
(
sup
k≥n

|ξk − ξ| ≥ ϵ

)
≤ δ

for all n ≥ N . It follows that
P (|ξn − ξ| < ϵ) ≥ 1− δ

for all n ≥ N . In particular,
lim
n→∞

P (|ξn − ξ| < ϵ) = 1

which implies that
lim

n→∞
P (|ξn − ξ| ≥ ϵ) = 0.

Meaning ξn → ξ in probability. ■
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Exercise 5.2.8 Show that the sequence (ξn)n∈N converges almost surely if and only if, for all ε > 0,
we have

lim
n→∞

P

(
sup
k,l≥n

|ξk − ξl| ≥ ε

)
= 0,

or equivalently,

lim
n→∞

P
(
sup
k≥0

|ξn+k − ξn| ≥ ε

)
= 0.

Example 5.2.9 Consider the sequence fn := χAn for

An =

[
n

2k
− 1,

n+ 1

2k
− 1

]
whenever k ≥ 0 and 2k ≤ n < 2k+1. Namely,

• A1 = [0, 1],

• A2 =
[
0, 12

]
,

• A3 =
[
1
2 , 1
]
,

• A4 =
[
0, 14

]
,

• A5 =
[
1
4 ,

1
2

]
,

•
...

Plotting these indicator functions one observes that they move from left to right over [0, 1], half their
width and repeat. Therefore, the functions converge in probability to zero. However, given that the
indicator function moves from left to right infinitely many times, for all ω ∈ [0, 1], we have fn(ω) = 1
infinitely often and so fn(ω) does not converge almost surely.

There is a partial converse to the implication that almost sure converge implies convergence in proba-
bility. More specifically, we will see that if a sequence converges in probability, then we can extract a
subsequence that converges almost surely.

Lemma 5.2.10 A sufficient condition for a sequence of random variables (ξn)n∈N to converge almost
surely to ξ is that

∞∑
n=1

P(|ξn − ξ| ≥ ε) <∞

is satisfied for all ε > 0.

Proof. Let Aε
n = {ω : |ξn(ω) − ξ(ω)| ≥ ε}. Since

∑∞
n=1 P (Aϵ

n) < ∞, by Theorem 5.2.3 we know that
P(Aε) := P(Aϵ

n i.o.) = 0 for all ϵ > 0. Following the arguments in Proposition 5.2.6 we know that
P ({ω : ξn(ω) ̸→ ξ(ω)}) = 0 as desired. ■

Corollary 5.2.11 Let (εn)n∈N be a sequence of positive numbers such that εn ↘ 0 as n → ∞. If
(ξn)n∈N and ξ are such that

∞∑
n=1

P(|ξn − ξ| ≥ εn) <∞,

then ξn
a.s.−−→ ξ.
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Proof. Fix ϵ > 0. Choose N ∈ N such that for all n ≥ N we have ϵn < ϵ. Then

∞∑
n=1

P(|ξn − ξ| ≥ ϵ) ≤
N−1∑
n=1

P(|ξn − ξ| ≥ ϵ)︸ ︷︷ ︸
≤N−1<∞

+

∞∑
n=N

P(|ξn − ξ| ≥ ϵn)︸ ︷︷ ︸
<∞

,

so by Lemma 5.2.10 we have ξn
a.s.→ ξ. ■

Theorem 5.2.12 If ξn
p−→ ξ, then there exists a subsequence such that ξnk

a.s.−−→ ξ.

Proof. Since limn→∞
(
P
(
|ξn − ξ| > 1

k

))
= 0 for all k ∈ N, we can choose a subsequence (ξnk

)k∈N such
that

P
(
|ξnk

− ξ| > 1

k

)
≤ 1

2k

for all k ∈ N. Since
∑∞

k=1
1
2k

converges, by Corollary 5.2.11 we have ξnk

a.s.−−→ ξ. ■

Corollary 5.2.13 If ξ1 ≥ ξ2 ≥ · · · ≥ 0 are random variables such that ξn
p−→ 0, then ξn

a.s.−−→ 0.

Proof. Let ε > 0 and let An = {ω : ξn(ω) > ε}. Then by continuity,

P
(
lim sup

n∈N
(ξn) > ε

)
≤ P(ξn > ε i.o.) = lim

n→∞
P

⋃
k≥n

Ak

 .

Since the sequence of events (An)n∈N is non-increasing, the right-hand side equals limn→∞(P(An)) which
is zero since ξn

p−→ 0. Thus,

P
(
lim sup

n∈N
(ξn) > ε

)
= 0

for all ϵ > 0 and hence

P(ξn ̸→ ξ) = P

 ∞⋃
m=1

∞⋂
N=1

⋃
n≥N

{
ξn >

1

m

}
= P

( ∞⋃
m=1

lim sup
n∈N

(ξn) >
1

m

)

≤
∞∑

m=1

P
(
lim sup

n∈N
(ξn) >

1

m

)
= 0.

■

5.3 Connection to Lp convergence
Example 4.1.3 shows that almost sure convergence does not guarantee Lp convergence. However, if we
have almost sure convergence and convergence in mean, then we have L1 convergence.

Theorem 5.3.1 Let (ξn)n∈N be a sequence of non-negative random variables such that ξn
a.s.−−→ ξ and

E(ξn) → E(ξ) <∞. Then ξn
L1

−−→ ξ, that is,

E(|ξn − ξ|) → 0

as n→ ∞.
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5.4 Strong Law of Large Numbers 5 Almost Sure Convergence

Proof. For sufficiently large n ∈ N we have E(|ξn|) <∞. Hence,

E(|ξn − ξ|) = E ((ξ − ξn)χξ≥ξn) + E ((ξn − ξ)χξn>ξ)

= 2E ((ξ − ξn)χξ≥ξn) + E(ξn − ξ).

The term E(ξn − ξ) tends to zero by assumption. Note that 0 ≤ (ξ − ξn)χξ≥ξn ≤ ξ, so by the dominated
convergence theorem it follows that E(ξ − ξn)χξ≥ξn → 0. Therefore, E(|ξn − ξ|) → 0 as n→ ∞. ■

Example 5.3.2 Let (ξn)n∈N be independent {0, 1}-valued random variables on the probability space
(Ω,F ,P), with P(ξn = 1) = 1

n . Then

E (|ξn − 0|p) = 1

n
→ 0,

so ξn
Lp

−−→ 0. However,

{ω : ξn → 0} = {ξn = 0 eventually}

=

∞⋃
n=1

⋂
k≥n

{ξk = 0},

where the inner intersections are an increasing sequence of sets. Therefore,

P(ξn → 0) = lim
n→∞

P

⋂
k≥n

{ξk = 0}


= lim

n→∞

∏
k≥n

P(ξk = 0)

= lim
n→∞

∏
k≥n

(
1− 1

k

)
= 0.

Indeed,

∏
k≥n

(
1− 1

k

)
= lim

N→∞

N∏
k=n

k − 1

k

= lim
N→∞

n− 1

n

n

n+ 1
· · · N − 1

N

= 0.

Thus, the sequence (ξn)n∈N does not converge almost surely to zero. Hence, we conclude that Lp

convergence does not imply almost sure convergence.

5.4 Strong Law of Large Numbers

Definition 5.4.1 Let (ξn)n∈N be a sequence of integrable random variables and let Sn = ξ1 + · · ·+ ξn.
Then the sequence (ξn)n∈N satisfies the strong law of large numbers if

Sn − E(Sn)

n

a.s.−−→ 0.

Note that the strong law of large numbers properties is stronger than the weak law of large numbers, as
now we require convergence almost surely which is stronger than convergence in probability. Recall that
for independent and identically distributed random variables (ξn)n∈N with V(ξ1) <∞ we showed the L2

weak law of large numbers. Imposing a stronger moment assumption we arrive at a strong law of large
numbers.
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5.4 Strong Law of Large Numbers 5 Almost Sure Convergence

Proposition 5.4.2 — Cantelli’s Strong Law of Large Numbers. Let (ξn)n∈N be a sequence of independent
and identically distributed random variables with E

(
ξ41
)
<∞. Then

Sn − E(Sn)

n

a.s.−−→ 0.

Proof. Without loss of generality, we centralise the random variables by subtracting their mean, that is
E(ξ1) = 0. Note by Chebyshev’s inequality we have

P
(∣∣∣∣Sn

n

∣∣∣∣ > ϵ

)
<

E
(∣∣Sn

n

∣∣4)
ϵ4

.

In the expansion of forth moments, the only non-vanishing terms are terms of the form E
(
ξ4j
)

and
E
(
ξ2i ξ

2
j

)
= E

(
ξ2i
)
E
(
ξ2j
)

with i ̸= j, noticing that the odd moments of ξi vanish. We therefore have the
expansion

E
(
S4
n

)
= E

 n∑
k=1

ξ4k +

(
4

2, 2

) ∑
j,k=1,j<k

ξ2j ξ
2
k


where

(
4
2,2

)
= 4!

(2!)2 = 6 comes from the multinomial theorem. There are n(n−1)
2 unique ways to choose

the indices (j, k) such that j < k, therefore with the independent and identically distributed assumption
we have

E

(∣∣∣∣Sn

n

∣∣∣∣4
)

=
1

n4

(
nE
(
ξ41
)
+ 3n(n− 1)E

(
ξ21
)2)

.

From Corollary 2.4.6 we have that E
(
ξ21
) 1

2 ≤ E
(
ξ41
) 1

4 , and so

E

(∣∣∣∣Sn

n

∣∣∣∣4
)

≤ 3n2 − 2n

n4
E
(
ξ41
)
≲

1

n2
.

Therefore
∑

n∈N P
(∣∣Sn

n

∣∣ ≥ ϵ
)
≲
∑

n∈N
1
n2 <∞. Thus we can conclude by applying Lemma 5.2.10. ■

We will now work towards Kolmogorov’s strong law of large numbers.

Proposition 5.4.3 — Kolmogorov’s Maximal Inequality. Let (ξn)n∈N be independent random variables
with finite variances. Then for all n ≥ 1 and x > 0, we have

P
(

max
1≤k≤n

|Sk − E(Sk)| ≥ x

)
≤ V(Sn)

x2
.

Proof. Without loss of generality, we suppose E(ξ1) = 0. Consider the event

A =

{
ω : max

1≤k≤n
|Sk(ω)| ≥ x

}
and the events

Ak = {ω : |Sj | < x for j = 1, . . . , k − 1 and |Sk| ≥ x}

for k = 1, . . . , n. The sets Ak are mutually disjoint and such that A =
⋃n

k=1Ak. Therefore,

E
(
S2
n

)
≥ E

(
S2
nχA

)
=

n∑
k=1

E
(
S2
nχAk

)
=

n∑
k=1

E
(
(Sk + ξk+1 + . . . ξn)

2
χAk

)
=

n∑
k=1

E
(
S2
kχAk

)︸ ︷︷ ︸
≥x2P(Ak)

+2E ((SkχAk
)(ξk+1 + · · ·+ ξn))︸ ︷︷ ︸

=2E(SkχAk)E(ξk+1+···+ξn)=0

+E
(
(ξk+1 + · · ·+ ξn)

2
)︸ ︷︷ ︸

≥0
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≥ x2
n∑

k=1

P(Ak)

= x2P(A).

Therefore,
V (Sn) = E

(
S2
n

)
≥ x2P(A).

■

Remark 5.4.4 Note that Proposition 5.4.3 is stronger than Chebyshev’s inequality since Chebyshev’s
inequality only gives

P (|Sk − E(Sk)| ≥ x) ≤ V(Sn)

x2

for k = 1, . . . , n. Which when combined with a union bound gives

P
(

max
1≤k≤n

|Sk − E(Sk)| ≥ x

)
= P

(
n⋃

k=1

{|Sk − E(Sk)| ≥ x}

)
≤ nV(Sn)

x2
.

Hence, Proposition 5.4.3 removes the factor of n in the bound.

Lemma 5.4.5 Let (ξn)n∈N be a sequence of real-valued independent random variables with E(ξn) = 0
for all n ∈ N. If

∑∞
n=1 V(ξn) <∞, then

∑∞
n=1 ξn converges almost surely.

Proof. Note that

0 ≤ sup
m,n≥k

|Sn − Sm| ≤ sup
m,n≥k

(|Sn − Sk|+ |Sk − Sm|)

= 2 sup
n≥k

|Sn − Sk| =: 2σk.

By Proposition 5.4.3, we have that

P(σk ≥ x) = lim
m→∞

P
(

max
m≥n≥k

|Sn − Sk| ≥ x

)
≤ 1

x2
lim

m→∞

m∑
n=k+1

V(ξn)

≤ 1

x2

∞∑
n=k+1

V(ξn)

k→∞−→ 0.

Therefore,

lim
k→∞

P

(
sup

n,m≥k
|Sn − Sm| ≥ ϵ

)
= 0

and so we conclude by using the result of Exercise 5.2.8. ■

Theorem 5.4.6 Let (ξn)n∈N be a sequence of independent random variables. If
∑∞

n=1E(ξn) and∑∞
n=1 V(ξn) converge, then

∑∞
n=1 ξn converges almost surely.

Proof. Consider
∞∑

n=1

ξn =

∞∑
i=n

(ξn − E (ξn)) +

∞∑
n=1

E (ξn) .

By assumption we know that
∑∞

i=n E(ξn) converges almost surely, and
∑∞

n=1(ξn − E(ξn)) converges
almost surely by Lemma 5.4.5. Therefore,

∑∞
n=1 ξn converges almost surely. ■

In our aim to prove Kolmogorov’s strong law of large numbers, we require some results regarding the
convergence of weighted averages.
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Lemma 5.4.7 — Toeplitz. Let (an)n∈N be a sequence of non-negative numbers. Let bn =
∑n

i=1 ai so
that b1 = a1 > 0, and bn ↗ ∞ as n → ∞. Let (xn)n∈N be a sequence of numbers converging to x.
Then

1

bn

n∑
j=1

ajxj → x.

In particular, if an = 1, then
x1 + · · ·+ xn

n
→ x.

Proof. Fix ϵ > 0. Choose N0 := N0(ϵ) such that for all n ≥ N0 we have |xj − x| < ϵ
2 . Choose N1 > N0

such that 1
bN1

∑N0

j=1 |aj ||xj − x| < ϵ
2 , which exists since |xj − x| is bounded for j = 1, . . . , N0. Then for

any n > N1, we have∣∣∣∣∣∣ 1bn
n∑

j=1

ajxj − x

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1bn

N0∑
j=1

aj(xj − x)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1bn

n∑
j=N0+1

aj(xj − x)

∣∣∣∣∣∣
≤ 1

bN1

∣∣∣∣∣∣
N0∑
j=1

aj(xj − x)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1bn

n∑
j=N0+1

aj(xj − x)

∣∣∣∣∣∣
<
ϵ

2
+
ϵ

2

 1

bn

n∑
j=N0+1

aj


︸ ︷︷ ︸

≤1

≤ ϵ.

■

Exercise 5.4.8 Suppose (ξk)k∈N is a sequence of independent random variables with common mean
m and variance V(ξk) = kη(k) with the condition that V(ξk) → ∞, η(k) > 0 and η(k) ↘ 0 as k → ∞.
Using Lemma 5.4.7 prove that the sequence satisfies the weak law of large numbers. That is, show
that 1

n

∑n
i=1 ξi → m as n→ ∞ in L2 and in probability.

Lemma 5.4.9 Let (an)n∈N, (bn)n∈N be as in Lemma 5.4.7 and let (xn)n∈N be a sequence of numbers
such that

∑∞
n=1 xn converges. Then

1

bn

n∑
j=1

bjxj → 0

as n→ ∞. In particular, if bn = n, xn = yn

n and
∑∞

j=1
yj

j converges, then

y1 + · · ·+ yn
n

→ 0

as n→ ∞.

Proof. Let b0 = S0 = 0 and Sn =
∑n

j=1 xj . Then

n∑
j=1

bjxj =

n∑
j=1

bj(Sj − Sj−1)

= bnSn − b0S0 −
n∑

j=1

Sj(bj − bj−1)

= bnSn − b0S0 −
n∑

j=1

ajSj .
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Dividing by bn gives
1

bn

n∑
j=1

bjxj = Sn − b0S0

bn︸ ︷︷ ︸
→0

− 1

bn

n∑
j=1

ajSj .

So when n→ ∞, we see that b−1
n

∑n
j=1 bjxj

n→∞−→ 0 by Lemma 5.4.7. ■

Theorem 5.4.10 Let (ξn)n∈N be a sequence of independent random variables with E
(
ξ2n
)
<∞ for all

n ∈ N. Let (bn)n∈N be a sequence of positive numbers such that bn ↗ ∞ and

∞∑
n=1

V(ξn)
b2n

<∞.

Then
Sn − E(Sn)

bn

a.s.−−→ 0.

When bn = n we obtain a strong law of large numbers.

Proof. Observe that
Sn − E(Sn)

bn
=

1

bn

n∑
i=1

bk
ξk − E(ξk)

bk
. (5.1)

Moreover,

V

(
n∑

k=1

ξk − E(ξk)
bk

)
=

n∑
k=1

V
(
ξk − E(ξk)

bk

)
=
∑
k=1

V(ξk)
b2k

<∞.

Therefore, by Theorem 5.4.6 the sum
∑∞

k=1
ξk−E(ξk)

bk
converges almost surely. Hence, applying Lemma

5.4.9 to (5.1) completes the proof. ■

Exercise 5.4.11 For ξ an integrable non-negative random variable, show that

∞∑
n=1

P(ξ ≥ n) ≤ E(ξ) ≤ 1 +

∞∑
n=1

P(ξ ≥ n).

Theorem 5.4.12 — Kolmogorov’s Strong Law of Large Numbers. Let (ξn)n∈N be a sequence of indepen-
dent and identically distributed random variables with E(|ξ1|) <∞. Then

Sn

n

a.s−→ E(ξ1)

as n→ ∞.

Proof. Without loss of generality assume that E(ξ1) = 0. By Exercise 5.4.11 it follows that
∑

n∈N P(|ξn| ≥
n) ≤ E(|ξ1|) <∞. By statement 1 of Theorem 5.2.3, we know that P(|ξn| ≥ n i.o.) = 0. That is, |ξn| < n
eventually P-almost everywhere. So letting ξ̃n = ξnχ|ξn|<n, we have

Sn

n

a.s−→ 0

if and only if
1

n

n∑
i=1

ξ̃i
a.s−→ 0.
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By dominated convergence theorem it follows that E
(
ξ̃n

)
n→∞−−−−→ E(ξ1) = 0. Therefore, using Lemma

5.4.7 with xn = E
(
ξ̃n

)
it follows that 1

n

∑n
i=1E

(
ξ̃i

)
→ 0 as n→ ∞. Therefore

Sn

n

a.s.−→ 0

if and only if
1

n

n∑
i=1

(
ξ̃i − E

(
ξ̃i

))
a.s.−→ 0. (5.2)

By Lemma 5.4.9 we know that (5.2) holds if
∑∞

n=1

ξ̃n−E(ξ̃n)
n converges. Using Theorem 5.4.6 this is the

case if
∑∞

n=1

V(ξ̃n−E(ξ̃n))
n2 converges. Observe that

V

 ∞∑
n=1

ξ̃n − E
(
ξ̃n

)
n

 ≤
∞∑

n=1

E
(
ξ21χ|ξ1|<n

)
n2

=

∞∑
n=1

1

n2

n∑
k=1

E
(
ξ2nχ{|ξ1|∈[k−1,k)}

)
=

∞∑
k=1

E
(
ξ2nχ|ξ1|∈[k−1,k)

)( ∞∑
n=k

1

n2

)
︸ ︷︷ ︸

≤2/k

= 2

∞∑
k=1

E

|ξ| |ξ|
k︸︷︷︸
≤1

χ{|ξ1|∈[k−1,k)}


≤ 2E(|ξ1|)
<∞.

Hence, (5.2) holds which completes the proof. ■

Example 5.4.13 Consider the probability space ([0, 1),B([0, 1)), Leb). The binary representation of
ω ∈ [0, 1) is

ω =
ω1

2
+
ω2

22
+ · · · = 0.ω1ω2 . . .

where ωj ∈ {0, 1}. Let ξj(ω) = ωj . Then for (x1, . . . , xn) ∈ {0, 1}n consider

A(x1,...,xn) = {ω : ξ1 = x1, . . . , ξn = xn}

=

{
ω :

x1
2

+ · · ·+ xn
2n

≤ ω <
x1
2

+ · · ·+ xn
2n

+
1

2n

}
so that P

(
A(x1,...,xn)

)
= 1

2n . Therefore, the (ξn)n∈N are independent and identically distributed
Bernoulli random variables with P(ξ1 = 1) = 1

2 , and so by the strong law of large numbers we
conclude that

1

n

n∑
k=1

ξk
a.s−→ E(ξ1) =

1

2
.

That is, for almost every number in [0, 1) the proportion of zeros and ones in its binary expansion
tends to 1

2 . We call such numbers normal.

5.5 Kolmogorov’s 0-1 Law
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Definition 5.5.1 Let (Ω,F ,P) be a probability space.

1. Let (Fn)n∈N be a sequence of sub-σ-algebras of F . Define the σ-algebra generated by their
union as

n∨
i=1

Fi = σ

(
n⋃

i=1

Fi

)
,

with the natural extension for when n = ∞.

2. Let (ξn)n∈N be a sequence of random variables defined on (Ω,F ,P). Then

σ(ξ1, . . . , ξn) =

n∨
i=1

σ(ξi),

with the natural extension for when n = ∞.

Definition 5.5.2 Under setting of Definition 5.5.1, let F p
n = σ(ξn, . . . , ξp) for p ≥ n and F∞

n =
σ(ξn, . . . ). For a sequence of random variables (ξn)n∈N, let

T =

∞⋂
n=1

F∞
n

be referred to as the tail σ-algebra. Events of T are called tail events.

Example 5.5.3

• For B ∈ B(R), note that

{ξn ∈ B i.o.} =

∞⋂
n=1

⋃
k≥n

{ξk ∈ B} ∈ T .

• Similarly, {
∑∞

n=1 ξn converges} ∈ T .

• The event {ξ10 ∈ B} may not be in T , since its occurrence may be affected by changing a finite
number of ξn, namely changing ξ10. Similarly, {ω : ξn /∈ B for all n ∈ N} is not in T since its
occurrence may be affected by just a single ξn.

Lemma 5.5.4 If A ,B ⊂ F are independent, that is for all A ∈ A and B ∈ B we have P(A ∩ B) =
P(A)P(B), then σ(A ) and σ(B) are independent.

Proof. Consider A ∈ A and the measures

• P(1)
A (B) = P(AB), and

• P(2)
A (B) = P(A)P(B).

These measures coincide on B, and so by Theorem 1.3.5 they coincide on σ(B). That is, P(AB) =
P(A)P(B) for all A ∈ A and B ∈ σ(B). Now let B ∈ σ(B) and consider the measures

• Q
(1)
B (A) = P(AB), and

• Q
(2)
B (A) = P(A)P(B).

Similarly, we conclude using Theorem 1.3.5 that for all A ∈ σ(A ) and B ∈ σ(B) we have P(AB) =
P(A)P(B). ■
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Lemma 5.5.5 Let (ξn)n∈N be a sequence of independent random variables. Then T is independent
of itself.

Proof. Note that Fn
1 is independent of Fn+k

n+1 for all k ∈ N as the random variables ξi are independent
for all i ∈ N. Hence, Fn

1 is independent with
⋃∞

k=1 Fn+k
n+1 . So by using Lemma 5.5.4 we deduce that Fn

1

is independent with F∞
n+1. As T ⊂ F∞

n+1 it follow that Fn
1 is independent of T . Hence,

⋃∞
n=2 Fn

1 is
independent with T , and so by using Lemma 5.5.4 we have that F∞

1 is independent with T . However,
as T ⊂ F∞

1 we get that T is independent of T . ■

Theorem 5.5.6 — Kolmogorov’s Zero-One Law. Let (ξn)n∈N be a sequence of independent random
variables and let A ∈ T . Then P(A) ∈ {0, 1}.

Proof. Using Lemma 5.5.5 we have P(A) = P(A ∩ A) = P(A)2. Hence, P(A) must have a value of zero
or one. ■

Example 5.5.7 For the independent events (An)n∈N, the sequence of random variables (χAn
)n∈N are

independent, so that the event lim supn→∞(An) := {χAn = 1 i.o.} is a tail event. Theorem 5.5.6 then
says that lim supn→∞(An) must have probability zero or one, which coincides with observations made
in Theorem 5.2.3.

5.6 Law of Iterated Logarithms

Definition 5.6.1

1. A function φ∗(n) is called upper for Sn if Sn ≤ φ∗(n) for all n ≥ n0, for some n0 ∈ N, with
probability one.

2. A function φ∗(n) is called lower for Sn if Sn > φ∗(n) for infinitely many n with probability one.

Remark 5.6.2 If a function ψ(n) is such that for all ϵ > 0 the function (1 + ϵ)ψ(n) is upper for Sn and
the function (1− ϵ)ψ(n) is lower for Sn, then the function ψ(n) is an optimal rate of convergence for
Sn.

Example 5.6.3 Let (ξn)n∈N be a sequence of independent Bernoulli random variables with P(ξn =
1) = P(ξn = −1) = 1

2 and let Sn = ξ1 + · · ·+ ξn. We know that

Sn

n

a.s−→ 0.

Moreover, since
∑∞

n=1
1

n log(n)2 <∞, it follows that

Sn√
n log(n)

a.s.−−→ 0

by Theorem 5.4.10. However, by Theorem 4.5.6 we know that

Sn√
n

d

̸→ 0,

instead it converges in distribution to a normal random variable.

Consider some φ(n).

• Then {
lim sup
n→∞

(
Sn

φ(n)

)
≤ 1

}
=

{
lim
n→∞

sup
m≥n

(
Sm

φ(m)

)
≤ 1

}
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which means that for all ϵ > 0 there exists an n1 ∈ N such that supm≥n

(
Sm

φ(m)

)
≤ 1 + ε for all n ≥

n1. Equivalently, Sm ≤ (1 + ε)φ(m) for all m ≥ n1. Therefore, if P
(
lim supn→∞

(
Sn

φ(n)

)
≤ 1
)
= 1,

it follows that (1 + ε)φ(n) is upper for Sn for all ε > 0.

• Similarly, {
lim sup
n→∞

(
Sn

φ(n)

)
≥ 1

}
=

{
lim
n→∞

sup
m≥n

(
Sm

φ(m)

)
≥ 1

}
means that for all ϵ > 0 there exists an n1 ∈ N such that supm≥n

(
Sm

φ(m)

)
≥ 1 − ε for all n > n1.

Equivalently, Sm ≥ (1− ε)φ(m) for infinitely many m. So if P
(
lim supn→∞

(
Sn

φ(n)

)
≥ 1
)
= 1 then

(1− ε)φ(n) is lower for Sn for all ε > 0.

The following propositions will be useful for proving Theorem 5.6.6. The proof of Proposition 5.6.4 is
beyond the scope of these notes, for its proof refer to Theorem 9.4 in [2].

Proposition 5.6.4 Let (ξn)n∈N be a sequence of independent and identically distributed random vari-
ables with E(ξ1) = 0 and E

(
ξ21
)
= 1. Let (an)n∈N ⊆ R be such that an → ∞ and an√

n
→ 0. Further-

more, let (bn)n∈N ⊆ R be a sequence such that bn → 0. Then

P
(
Sn ≥ an

√
n
)
= exp

(
−a

2
n(1 + bn)

2

)
.

Proposition 5.6.5 Let (ξn)n∈N be a sequence of independent random variables with E(ξi) = 0 and
E
(
ξ2i
)
= 1. Then for α ≥

√
2 we have

P
(
Mn√
n

≥ α

)
≤ 2P

(
Sn√
n
≥ α−

√
2

)
where Mn := max(S0, S1, . . . , Sn) for S0 = 0.

Proof. Let
Aj =

{
Mj−1 ≤ α

√
n ≤Mj

}
.

Then

P
(
Mn√
n

≥ α

)
≤ P

(
Sn√
n
≥ α−

√
2

)
+

n−1∑
j=1

P
(
Aj ∩

{
Sn√
n
≤ α−

√
2

})
.

Note that the variance of Sn − Sj is n − j, so using independence and Chebyshev’s inequality it follows
that

P
(
Aj ∩

{
|Sn − Sj |√

n
>

√
2

})
= P(Aj)P

(
|Sn − Sj |√

n
>

√
2

)
≤ P(Aj)

n− j

2n

≤ 1

2
P(Aj).

Since
⋃n−1

j=1 Aj ⊆ {Mn ≥ α
√
n} we deduce that

P
(
Mn√
n

≥ α

)
≤ P

(
Sn√
n
≥ α−

√
2

)
+

1

2
P
(
Mn√
n
+ α

)
,

which upon rearrangement gives the desired inequality. ■
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Theorem 5.6.6 — Law of Iterated Logarithm. Let (ξn)n∈N be a sequence of independent identically
distributed random variables with E(ξ1) = 0 and E

(
ξ21
)
= σ2 > 0. Then

P
(
lim sup
n→∞

(
Sn

ψ(n)

)
= 1

)
= 1, (5.3)

where
ψ(n) =

√
2σ2n log (log(n)).

That is, for all ε > 0, the function (1 + ε)ψ is upper and the function (1− ε)ψ is lower for Sn.

Proof. For simplicity, we will assume that σ2 = 1. Note that (5.3) is equivalent to

P (Sn ≥ (1 + ϵ)ψ(n) i.o.) = 0 (5.4)

and
P (Sn ≥ (1− ϵ)ψ(n) i.o.) = 1 (5.5)

for all ϵ > 0.
Step 1: Show (5.4).
Given an ϵ > 0, choose θ > 1 such that θ2 < 1 + ϵ. Let nk =

⌊
θk
⌋

and xk = θ
√
2 log(log(nk)). Using

Proposition 5.6.4 and Proposition 5.6.5, it follows that

P
(
Mnk√
nk

≥ xk

)
≤ 2 exp

(
−1

2

(
xk −

√
2
)2

(1 + bk)

)
where bk → 0. Note that 1

2

(
xk −

√
2
)
(1 + bk) = O

(
θ2 log(k)

)
, and so for large k we have

P
(
Mnk√
nk

≥ xk

)
≤ 2

kθ
.

Since θ > 1, it follows by statement 1 of Theorem 5.2.3 that

P (Mnk
≥ θψ(nk) i.o.) = 0.

Suppose that nk−1 < n ≤ nk and Sn > (1 + ϵ)ψ(n). Then ψ(n) ≥ ψ (nk−1) ∼ 1√
θ
ψ (nk). Hence, by our

choice of θ it follows that
(1 + ϵ)ψ(n) > θψ (nk)

for large enough k. Thus for k sufficiently large we have that Sn > (1 + ϵ)ψ(n) implies Mnk
≥ θψ (nk),

and so we have show (5.4).
Step 2: Show (5.5).
Given ϵ > 0, choose θ ∈ N such that 3√

θ
< ϵ. Let nk = θk so that nk−nk−1 → ∞. Let xk =

(
1 + 1

θ

)
ψ(nk),

and apply Proposition 5.6.4 with an = xk√
nk−nk−1

to deduce that

P
(
Snk

− Snk−1
≥ xk

)
= P

(
Snk−nk−1

≥ xk
)
= exp

(
− x2k
2 (nk − nk−1)

(1 + bk)

)
,

where bk → 0. Note that

x2k
2 (nk − nk−1)

(1 + bk) = O

((
1 +

1

θ

)
log(k)

)
and so for k large enough we have that

P
(
Snk

− Snk−1
≥ xk

)
≥ 1

k
.

As the events are independent we can apply statement 2 of Theorem 5.2.3 to deduce that

P
(
Snk

− Snk−1
≥ xk i.o.

)
= 1.
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On the other hand, one can apply (5.4) to (−ξn)n∈N to deduce that

P
(
−Snk−1

≤ 2ψ (nk−1) e.v
)
= 1.

As 2ψ (nk−1) ≤ 2√
θ
ψ (nk) it follows that

P
(
Snk

≥ xk − 2√
θ
ψ(nk) i.o.

)
= 1.

Noting that xk − 2√
θ
ψ(nk) > (1− ϵ)ψ (nk), by our choice of θ, (5.5) follows. ■

5.7 Solution to Exercises
Exercise 5.2.2

Solution.

1. Recall that

lim inf
n→∞

(An) =

∞⋃
n=1

⋂
k≥n

Ak.

Note that ⋂
k≥n

Ak ⊆
⋂

k≥n+1

Ak

so that by the continuity of the measure it follows that

P
(
lim inf
n→∞

(An)
)
= lim

n→∞
P

⋂
k≥n

Ak

 .

Moreover, as ∩k≥nAk ⊆ Ak for all k ≥ n it follows that

P

⋂
k≥n

Ak

 ≤ inf
k≥n

P(Ak)

for all m ≥ n. Therefore,
P
(
lim inf
n→∞

(An)
)
≤ lim inf

n→∞
P (An) .

2. Using de Morgan’s law it follows that

(
lim sup
n→∞

(An)

)c

=

 ∞⋂
n=1

⋃
k≥n

Ak

c

=

∞⋃
n=1

⋂
k≥n

Ac
k = lim inf

n→∞
(Ac

n) .

■

Exercise 5.2.8

Solution. For n ∈ N and ϵ > 0 consider the set

Bϵ
n =

{
ω : sup

k,l≥n
|ξk(ω)− ξl(ω)| ≥ ϵ

}
.

If ξn(ω) ̸→ ξ(ω) then there exists an ϵ > 0 such that for all n ∈ N there exists k, l ≥ n such that
|ξk(ω)− ξl(ω)| ≥ ϵ. Otherwise, (ξn(ω))n∈N would be Cauchy and therefore convergent. Hence,

{ω : ξn(ω) ̸→ ξ(ω)} ⊆
∞⋃

m=1

∞⋂
n=1

B
1
m
n .
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On the other hand, if ω ∈
⋂∞

n=1B
1
m
n for some m ∈ N then for all n ∈ N there exists k, l ≥ n such that

|ξk(ω)− ξl(ω)| ≥ 1
2m . Hence, ξn(ω) ̸→ ξ(ω). Therefore,

∞⋃
m=1

∞⋂
n=1

B
1
m
n ⊆ {ω : ξn(ω) ̸→ ξ(ω)}.

Note that for any m′ ∈ N we have

P

( ∞⋂
n=1

B
1

m′
n

)
≤ P

( ∞⋃
m=1

∞⋂
n=1

B
1
m
n

)
≤

∞∑
m=1

P

( ∞⋂
n=1

B
1
m
n

)
.

So that P
(⋃∞

m=1

⋂∞
n=1B

1
m
n

)
= 0 if and only if P

(⋂∞
n=1B

1
m
n

)
= 0 for all m ∈ N. As the sets B

1
m
n are

decreasing in n we know that

P

( ∞⋂
n=1

B
1
m
n

)
= lim

n→∞
P
(
B

1
m
n

)
= lim

n→∞
P

(
sup
k,l≥n

|ξk − ξl| ≥
1

m

)

for all m ∈ N. Therefore, ξn → ξ almost surely if and only if

lim
n→∞

P

(
sup
k,l≥n

|ξk − ξl| ≥ ϵ

)
= 0

for all ϵ > 0. ■

Exercise 5.4.8

Solution. Let Sn = 1
n

∑n
k=1 ξk. Then

V(Sn) =
1

n2

n∑
k=1

kη(k). (5.6)

In the notation of Lemma 5.4.7 let ak = k − 1 and xk = η(k) so that

bn =

n∑
k=1

ak =
1

2
n(n− 1) ≤ 1

2
(n+ 1)2.

Consequently,
2

n2

n∑
k=1

kη(k) ≤ 1

bn

n∑
k=1

kη(k)
n→∞−→ 0.

Therefore, using (5.6) we have that V(Sn) → 0 as n → ∞, hence, Sn → m in L2. Moreover for ϵ > 0,
using Chebyshev’s inequality we observe that

P (|Sn −m| ≥ ϵ) ≤ V(Sn)

ϵ2
.

Hence, Sn → m in probability. ■

Exercise 5.4.11

Solution. Proceeding directly from
∑∞

n=1 P(ξ ≥ n) it follows that

∞∑
n=1

P(ξ ≥ n) =

∞∑
n=1

∑
k≥n

P(k ≤ ξ < k + 1)

=

∞∑
k=1

kP(k ≤ ξ < k + 1)

=

∞∑
k=0

E
(
kχ[k,k+1)

)
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≤
∞∑
k=0

E
(
ξχ[k,k+1)

)
= E(ξ)

≤
∞∑
k=0

E
(
(k + 1)χ[k,k+1)

)
= 1 +

∞∑
n=1

P(ξ ≥ n).

■
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6 Convergence in Distribution

In this section, we focus on the weak convergence of measures defined (R,B(R)).

6.1 Weak Convergence

Definition 6.1.1 For n ∈ N, let ξn : (Ωn,Fn,Pn) → (R,B(R)) be a random variable. Then ξn → ξ
weakly as n→ ∞ if

lim
n→∞

(EPn
(f(ξn))) = EP(f(ξ))

for every f ∈ Cb(R).

It is important to note that we do not need to specify the probability space of ξn when establishing
convergence in distribution, what matters is the distribution of ξn. Weak convergence is often taken to be
the definition of convergence in distribution, however, convergence in distribution has also been defined
differently. Specifically, we say that ξn → ξ in distribution if the distribution function Fξn(x) → Fξ(x)
pointwise for all x where Fξ is continuous. To show that weak convergence is equivalent to our usual
definition of convergence in distribution, we have to show that weak convergence can be formulated on
a single probability space.

Theorem 6.1.2 Suppose µ and (µn)n∈N are probability measures such that the corresponding dis-
tribution functions Fn converge pointwise to F at the points of continuity of F . Then there exists
random variables ξ and (ξn)n∈N on a probability space (Ω′,F ′,P′) such that ξ has distribution µ, ξn
has distribution µn, and ξn → ξ almost surely with respect to P′.

Proof. Let (Ω′,F ′,P′) = ([0, 1],B([0, 1]), Leb). Then µ and µn induce distribution functions Fn and
F . Let F−1 and F−1

n be their right inverses as defined in equation (3.1). Then by Proposition 3.1.2
the random variables F−1(U) and F−1

n (U), where U is the uniformly distributed random variables on
([0, 1],B([0, 1]), Leb), have the same distribution as µ and µn respectively. It remains to show that
F−1
n (u) → F−1(u) almost surely as n → ∞. Note that if F−1({u}) is not finite, then u is a point of

discontinuity of F−1. Hence, there are only countably many such points as F−1 is a non-decreasing
right-continuous function. Thus, it suffices to show that the limit holds for points u whose preimage
under F is finite. Let u be such a point and observe the following.

• If x < F−1(u), then using the argument in the proof of Proposition 3.1.2 we have F (x) < u. If x is
a point of continuity of F , then Fn(x) → F (x) by assumption, which implies that Fn(x) < u for suf-
ficiently large n. For such n we have that x ≤ F−1

n (u) which implies that x ≤ lim infn→∞
(
F−1
n (u)

)
.

Therefore, as we can choose a sequence (xk)k∈N of points of continuity of F such that xk ↗ F−1(u),
we obtain F−1(u) ≤ lim infn→∞

(
F−1
n (u)

)
.

• If x > F−1(u), then F (x) ≥ u. In fact we must have F (x) > u, for if F (x) = u then F (y) = u
for any y ∈ [F−1(u), x], contradicting the assumption that the preimage of singleton {u} is finite.
Repeating the above arguments yields F−1(u) ≥ lim supn→∞

(
F−1
n (u)

)
.

Combining the observations its follows that F−1
n (u) → F−1(u). ■

Theorem 6.1.3 Let ξ and (ξn)n∈N be integrable random variables. Then the following are equivalent.

1. ξn → ξ weakly.

2. lim supn→∞ (P(ξn ∈ E)) ≤ P(ξ ∈ E) for any closed set E ⊆ R.

3. lim infn→∞ (P(ξn ∈ O)) ≥ P(ξ ∈ O) for any open set O ⊆ R.

4. limn→∞ (P(ξn ∈ C)) = P(ξ ∈ C) for any C such that P(ξ ∈ ∂C) = 0.

5. Let Fξn(x) be the distribution function of ξn and similarly for Fξ(x). Then Fξn(x) → Fξ(x)
pointwise at any point of continuity of Fξ(x).

6. For all bounded Lipschitz functions f , it follows that E(f(ξn)) → E(f(ξ)).a
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aThis statement is not examinable for the lecture series, therefore its proof is omitted.

Proof. (1) ⇒ (2). Let E ⊆ R be a closed set and consider the function f(x) = χE(x). Let

g(t) =


1 t ≤ 0

1− t 0 ≤ t ≤ 1

0 t ≥ 1.

Then consider

fϵ(x) = g

(
1

ϵ
ρ(x,E)

)
where

ρ(x,E) = inf{|x− y| : y ∈ E}.

Note that Eϵ := {x : ρ(x,E) < ϵ} forms a decreasing sequence of sets as ϵ ↘ 0 such that Eϵ ↘ E.
Observe that,

Pn(ξn ∈ E) =

∫
f dPn ≤

∫
fϵ dPn.

Consequently,

lim sup
n→∞

(Pn(ξn ∈ E)) ≤ lim sup
n→∞

(∫
fϵ dPn

)
(⋆)
=

∫
fϵ dP

≤ P(ξ ∈ Eϵ)

ϵ↘0−→ P(ξ ∈ E),

where (⋆) follows from the fact that ξn → ξ weakly.

1

x
ϵ ϵE

Eϵ

(2) ⇒ (3). Let O ∈ R open, then E = R \O is closed. Therefore,

lim inf
n→∞

(P(ξn ∈ O)) = lim inf
n→∞

(1− P(ξn ∈ E))

= 1− lim sup
n→∞

(P (ξn ∈ E))

(2)

≥ 1− P(ξ ∈ E)

P(ξ ∈ O).

(3) ⇒ (4). Recall that C̄ = C ∪ ∂C and C̊ = C \ ∂C. As P(ξ ∈ ∂C) = 0 it follows that

• lim supn→∞ (Pn(ξn ∈ C)) ≤ lim supn→∞
(
Pn

(
ξn ∈ C̄

))
≤ P

(
ξ ∈ C̄

)
= P(ξ ∈ C), and

• lim infn→∞ (Pn(ξn ∈ C)) ≥ lim infn→∞

(
Pn

(
ξn ∈ C̊

))
≥ P

(
ξ ∈ C̊

)
= P(ξ ∈ C).

Therefore, limPn(ξn ∈ C) = P(ξ ∈ C).
(4) ⇒ (5). Let x ∈ R be a point of continuity for Fξ. Then P(ξ = x) = 0. Therefore,

Fξn(x) = P(ξn ∈ (−∞, x])

(4)−→ P(ξ ∈ (−∞, x])
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= Fξ(x).

(5) ⇒ (1). Let f be a bounded continuous function. Let X,X1, X2, . . . be the random variables given
by Theorem 6.1.2, defined on the probability space (Ω′,F ′,P′). It follows that f(Xn) → f(X) almost
surely with respect to P′. Therefore, using the dominated convergence theorem we conclude that

En(f(ξn)) = E(f(Xn)) → E(f(X)) = E(f(ξ)).

Hence, ξn → ξ weakly. ■

Remark 6.1.4 Theorem 6.1.3 establishes equivalent notions of weak convergence, also known as
convergence in distribution due to statement 5 of Theorem 6.1.3. In any case, we will use ξn

d−→ ξ
to indicate that a sequence of random variables (ξn)n∈N converges weakly to ξ.

Corollary 6.1.5 Suppose that the random variables ξn, ξ have densities fn(x), f(x), respectively. If

fn(x) → f(x) for any x ∈ R then ξn
d−→ ξ.

Proof. It suffices to show that

Fn(x) =

∫ x

−∞
fn(y) dy → F (x) =

∫ x

−∞
f(y) dy

for any x. Using

|Fn(x)− F (x)| ≤
∫ x

−∞
|fn(y)− f(y)|dy,

we just need to check that

lim
n→∞

∫ ∞

−∞
|fn(y)− f(y)|dy = 0.

Note that a = a+ − a− and |a| = a+ + a− for any real a. Since fn and f are densities, they integrate to
one, so for each n ∈ N we have

0 =

∫ ∞

−∞
f(y)− fn(y) dy =

∫ ∞

−∞
(f(y)− fn(y))+ − (f(y)− fn(y))− dy.

Hence, ∫ ∞

−∞
|f(y)− fn(y)|dy = 2

∫ ∞

∞
(f(y)− fn(y))+ dy.

Therefore, as
0 ≤ (f(y)− fn(y))+ ≤ f(y),

we use the dominated convergence theorem to deduce that∫ ∞

−∞
|f(y)− fn(y)|dy = 2

∫ ∞

∞
(f(y)− fn(y))+ dy

n→∞−→ 0.

■

Exercise 6.1.6

1. Let F be a continuous distribution function. Suppose Fn(x) → F (x) pointwise. Show that Fn

converges uniformly to F . That is,

sup
x∈R

|Fn(x)− F (x)| n→∞−→ 0.

2. Give an example of distribution functions (Fn)n∈N and F such that Fn(x)
d−→ F (x), but

sup
x∈R

|Fn(x)− F (x)| ̸→ 0,

as n→ ∞.
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3. Give an example of probability measures (Pn)n∈N and P on (R,B(R)) such that Pn
d−→ P, but

convergence Pn(B) → P(B) does not hold for all B ∈ B(R).

6.2 Connection to Convergence in Probability
We will show convergence in probability is a strictly stronger notion than convergence in distribution.
However, there does exist a partial converse that we will explore.

Theorem 6.2.1 Let ξ and (ξn)n∈N be random variables from (Ω,F ,P) to (R,B(R)). If ξn
p−→ ξ then

ξn
d−→ ξ.

Lp

→

a.s.→ p→ d→

Proof. Let f : R→ R be a continuous function, such that

|f(x)| ≤ C

for all x ∈ R. Choose M such that P (|ξ| > M) ≤ ϵ
6C . Note that for x ∈ [−M,M ] the function f is

uniformly continuous. Therefore, there exists a δ > 0 such that for |x− y| < δ, with x, y ∈ [−M,M ], we
have

|f(x)− f(y)| ≤ ϵ

3
.

Moreover, there exists an N ∈ N such that

P(|ξn − ξ| > δ) <
ϵ

6C

for n ≥ N . Hence for n ≥ N it follows that,

E(|f(ξn)− f(ξ)|) ≤ E (|f(ξn)− f(ξ)|||ξn − ξ| ≤ δ, |ξ| ≤M)

+ E (|f(ξn)− f(ξ)|||ξn − ξ| ≤ δ, |ξ| > M)

+ E (|f(ξn)− f(ξ)|||ξn − ξ| > δ)P(|ξn − ξ| > δ)

≤ ϵ

3
+ 2C

ϵ

6C
+ 2C

ϵ

6C
= ϵ.

■

Proposition 6.2.2 Let (ξn)n∈N be a sequence of random variables such that ξn → c in distribution,
where c is a constant. Then ξn → c in probability.

Proof. Given an ϵ > 0, the set Eϵ = R \Bϵ(c) is closed. Therefore, by Theorem 6.1.3 we conclude that

lim
n→∞

(P(|ξn − c| ≥ ϵ)) = lim
n→∞

(P(ξn ∈ Eϵ))

= lim sup
n→∞

(P(ξn ∈ Eϵ))

≤ P(c ∈ Eϵ)

= 0.

Therefore, ξn → c in probability. ■
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Example 6.2.3 Note that convergence in distribution does not imply convergence in probability. Con-
sider a real-valued random variable X that is symmetric about zero, such as ξ ∼ N(0, 1). Then the
sequence ξn := (−1)n+1ξ converges in distribution, but not in probability.

Proposition 6.2.4 — Continuous Mapping Theorem. Let φ : R → R be a measurable function with
points of discontinuity Uφ. Let ξ, (ξn)n∈N : (Ω,F ,P) → (R,B(R)) be random variables where P(ξ ∈
Uφ) = 0 and ξn

d−→ ξ. Then φ(ξn)
d−→ φ(ξ).

Proof. Let E ⊆ R be a closed set. Let x ∈ φ−1(E) \ Uφ. By construction, there exists a sequence
(xn)n∈N ⊆ φ−1(E) such that xn → x. As φ is continuous at x it follows that φ(xn) → φ(x). As
(φ(xn))n∈N ⊆ E and E is closed, it follows that φ(x) ∈ E which implies that x ∈ φ−1(E). Therefore,

φ−1(E) ⊆ φ−1(E) ∪ Uφ.

Hence,

lim sup
n→∞

(P(φ(ξn) ∈ E)) = lim sup
n→∞

(
P
(
ξn ∈ φ−1(E)

))
(1)

≤ lim sup
n→∞

(
P
(
ξn ∈ φ−1(E)

))
Stat 2 Thm 6.1.3

≤ P
(
ξ ∈ φ−1(E)

)
≤ P

(
ξ ∈ φ−1(E)

)
+ P(Uφ)

= P
(
ξ ∈ φ−1(E)

)
= P(φ(ξ) ∈ E),

where (1) is justified as φ−1(E) ⊆ φ−1(E). Therefore, by statement 5 of Theorem 6.1.3 we conclude
that φ(ξn) → φ(ξ) in distribution. ■

Theorem 6.2.5 Let ξ, (ξn)n∈N : (Ω,F ,P) → (R,B(R)) be random variables such that ξn → ξ in
distribution. Moreover, let (ηn)n∈N : (Ω,F ,P) → (R,B(R)) be random variables such that P(|ξn −
ηn| > ϵ) → 0 as n→ ∞ for all ϵ > 0. Then ηn → ξ in distribution.

The proof Theorem 6.2.5 relies on point 6. of Theorem 6.1.3, and so we will omit it here.

Corollary 6.2.6 Consider the random variables ξ, (ξn)n∈N and (ηn)n∈N from (Ω,F ,P) to (R,B(R)).
Assume ξn

n→∞−→ ξ in distribution and ηn
n→∞−→ c in probability, with c being a constant. For the

random variables Tn : ω ∈ Ω 7→ (ξn(ω), ηn(ω)) and T : ω ∈ Ω 7→ (ξn(ω), c) we have that Tn
n→∞−→ T in

distribution.

One can refer to [3] for proof of these results.

Theorem 6.2.7 — Slutsky’s Theorem. Consider the random variables ξ, (ξn)n∈N and (ηn)n∈N from

(Ω,F ,P) to (R,B(R)). If ξn
d−→ ξ and ηn

p−→ c, with c being a constant, then the following
hold.

1. ξn + ηn
d−→ ξ + c.

2. ξnηn
d−→ cξ.

3. If c ̸= 0, then ξn
ηn

d−→ ξ
c .

Proof. Using Corollary 6.2.6 we can apply Proposition 6.2.4 to φ(x, y) = x+y, φ(x, y) = xy and φ(x, y) =
x
y respectively. ■
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Example 6.2.8 Consider a real-valued random variable ξ that is symmetric about zero. Let ξn = ξ and
ηn = (−1)n+1ξ. Then ξn+ηn takes the form (2ξ, 0, 2ξ, 0, . . . ) which does not converge in distribution.

Hence, it is not true in general that ξn
d−→ ξ and ηn

d−→ η implies ξn + ηn
d−→ ξ + η.

6.3 Relative Compactness and Tightness
Soon we will prove the central limit theorem by method of characteristic functions. To establish the re-
lationship between characteristic functions and measures, we need some tools relating to the collections
of measures and clarify the meaning of relatively compact and tight collections. These concepts are also
useful for working with stochastic processes and ergodic theory.

Definition 6.3.1 A family of probability measures P = (Pα)α∈A with the corresponding family of
distribution functions (Fα)α∈A, is relatively compact if every sequence of measures from P contains
a subsequence that weakly converges to a probability measure.

Remark 6.3.2 We emphasise that in this definition the limit measure needs to be a probability mea-
sure, although it need not belong to the original class P. In fact, P is relatively compact if its closure
with respect to the Levi-Prokhorov metric is compact.

Example 6.3.3 The collection consisting of weakly convergent sequences of measures is relatively
compact.

Lemma 6.3.4 Let P be a probability measure and (Pn)n∈N a family of probability measures. Then

Pn
d−→ P if and only if every subsequence

(
Pn′

k

)
k∈N

of (Pn)n∈N contains a subsequence
(
Pn′′

k

)
k∈N

such that Pn′′
k

d−→ P.

Proof. (⇒). For Pn
d→ P it is the case that∫

f(x) dPn(x) →
∫
f(x) dP(x)

for all bounded and continuous functions f . Clearly, if this holds then any subsequence
(
Pn′

k

)
k∈N

con-

verges in distribution to P. Hence, one can take the subsequence n′′k = n′k.

(⇐). Suppose for contradiction that Pn

d

̸→ P. Then for some ϵ > 0 there exists a bounded and continuous
function f such that ∣∣∣∣∫ f(x) dPk(x)−

∫
f(x) dP

∣∣∣∣ ≥ ϵ

for infinitely many k ∈ N. Hence, we can extract a subsequence
(
Pn′

k

)
k∈N

⊆ (Pn)n∈N such that∣∣∣∣∫ f(x) dPn′
k
(x)−

∫
f(x) dP

∣∣∣∣ ≥ ϵ

for all k ∈ N. However, this has no subsequence converging to P. Hence, we get a contradiction. ■

Example 6.3.5 A given family of probability measures P is not necessarily relatively compact. Let
(ξn)n∈N be a sequence of real-valued random variables and suppose Fξn(x) → F (x) for all x ∈ R\UF .
Then F (x) is not necessarily a distribution function. Hence, the family (ξn)n∈N is not relatively
compact.

1. The variables could run away to infinity. Let ξn be U [n, n+ 1], then F (x) ≡ 0.
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2. The variables could spread across infinity. Let ξn be U [−n, n], then F (x) ≡ 1
2 .

Let us denote the collection of non-decreasing, right-continuous functions with an image in [0, 1] as
G = {F : R → [0, 1]}, and refer to it as the collection of generalised distribution functions. Distribution
functions form a subset of G for which limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Theorem 6.3.6 — Helly’s Selection Theorem. The collection G of generalised distribution functions is
sequentially compact. That is, for any sequence (Fn)n∈N ⊆ G , there exists a function F ∈ G and a
subsequence (Fnk

)k∈N ⊆ (Fn)n∈N such that Fnk
(x) → F (x) for every point x ∈ R \ UF , where UF is

the set of discontinuities of F .

Proof. Let (qk)k∈N be an enumeration of Q, that is a bijection from N to Q.

• The sequence (Fn(q1))n∈N is bounded, so by the Bolzano-Weierstrass theorem it has a subsequence(
F
n
(1)
k

(q1)
)
k∈N

which converges to some G(q1) ∈ [0, 1].

• Consider the sequence
(
F
n
(1)
k

(q2)
)
k∈N

. This is also bounded and so by the Bolzano-Weierstrass

theorem it has a subsequence
(
F
n
(2)
k

(q2)
)
k∈N

which converges to some G(q2) ∈ [0, 1].

• We repeat to extract further subsequences.

We can illustrate the above procedure with the following diagram.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓

F
n
(1)
1

F
n
(1)
2

F
n
(1)
3

F
n
(1)
4

F
n
(1)
5

F
n
(1)
6

F
n
(1)
7

. . .

↓ ↓ ↓ ↓ ↓
F
n
(2)
1

F
n
(2)
2

F
n
(2)
3

F
n
(2)
4

F
n
(2)
5

. . .

↓ ↓ ↓
F
n
(3)
1

F
n
(3)
2

F
n
(3)
3

. . .

↓ ↓
...

...

We now extract the diagonal subsequence, that is we let nk = n
(k)
k for all k ∈ N. Note that for any m ∈ N

we have (nk)k∈N ⊆
(
n
(m)
k

)
k∈N

. Hence, Fnk
(qm) → G(qm) as

(
F
n
(m)
k

)
k∈N

is a converging sequence, and

any subsequence of a converging sequence converges to the same limit as the main sequence. Therefore,
Fnk

(q) → G(q) for all q ∈ Q. Moreover, for any p, q ∈ Q we have G(p) ≤ G(q) by the monotonicity of
limits. Let

F (x) = inf{F (q) : q ∈ Q , q > x} = lim
q↘x

G(q).

It is clear that F ∈ G . Moreover, for all q ∈ Q we have F (q) ≥ G(q) and for x < q we have F (x) ≤ G(q).
It remains to show that Fnk

(x) → F (x) for all x ∈ R \ UF , so let us fix x ∈ R \ UF and some arbitrary
ϵ > 0. One can choose y < r < x < q with r, q ∈ Q, such that

F (x)− ϵ < F (y) ≤ F (r) = G(r) ≤ F (x) ≤ F (q) = G(q) < F (x) + ϵ,

and so for sufficiently large k, it follows that Fnk
(r), Fnk

(q) ∈ (F (x) − ϵ, F (x) + ε) which implies that
Fnk

(x) ∈ (F (x)− ϵ, F (x) + ε). Since ε > 0 is arbitrary, the proof is complete. ■

It turns out that the tightness provides a necessary and sufficient condition for a family of probability
measures (or finite measures) to be relatively compact.

Definition 6.3.7 A family of probability measures P = (Pα)α∈A on (R,B(R)) is tight if for all ε > 0
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6.4 Solution to Exercises 6 Convergence in Distribution

there exists a compact set K ⊆ R such that

sup
α∈A

(Pα(R\K)) ≤ ε.

Theorem 6.3.8 — Prokhorov’s theorem. A family of probability measures P is tight if and only if it is
relatively compact.

Proof. (⇐). Let us suppose that P := (Pα)α∈A is relatively compact but not tight. Then there exists a
ϵ > 0 such that for any compact K ⊆ R we have supα∈A (Pα(R \K)) > ϵ. Hence, for any n ∈ N there is
a Pαn

such that
Pαn

(R \ (−n, n)) > ϵ. (6.1)

By relative compactness, there is a subsequence (Pαnk
)k∈N such that Pαnk

k→∞−→ Q weakly, where Q is a
probability measure. Therefore, by Theorem 6.1.3, it follows that

lim sup
k→∞

(
Pαnk

(R \ (−n, n))
)
≤ Q(R \ (−n, n)).

But the right-hand side tends to zero as n→ ∞, which contradicts (6.1). Hence P must be tight.
(⇒). Now let P be tight, and (Pn)n∈N be a sequence of elements in P with corresponding distribution
functions (Fn)n∈N. By Theorem 6.3.6, there exists a subsequence (Fnk

)k∈N such that Fnk
(x) → F (x) for

x ∈ R \ UF where F is some generalised distribution function. We now check that limx→−∞ F (x) = 0
and limx→∞ F (x) = 1. Fix ϵ > 0, then from tightness there is an I = (a, b] such that,

sup
n∈N

(Pn(R \ I)) < ϵ.

Consequently, 1 − infn∈N (Pn(I)) > ϵ which implies that Pn(I) > 1 − ϵ for all n ∈ N. Now let a′ < a <
b < b′ where a′, b′ ∈ R \ UF , then

1− ϵ < Pnk
((a, b])

< Pnk
((a′, b′])

= Fnk
(b′)− Fnk

(a′)

k→∞−→ F (b′)− F (a′) .

This implies that F (+∞)−F (−∞) ≥ 1. Since, F : R → [0, 1] we must have F (+∞) = 1 and F (−∞) = 0.
Therefore, F is a distribution function which implies that P is relatively compact. ■

Remark 6.3.9

1. From Theorem 6.3.8, one sees that for a family of random variables (ξn)n∈N, if

Fξn(x) → F (x)

for all points of continuity of F , where F is a distribution function, then (ξn)n∈N is tight.

2. Theorem 6.3.8 remains true for measures on Rn, R∞ and more generally on any complete
separable metric space with a Borel σ-algebra of sets.

Exercise 6.3.10 Let (ξn)n∈N be a family of random variables such that E(|ξn|) ≤ M for every n ∈ N.
Show that (ξn)n∈N is tight.

6.4 Solution to Exercises
Exercise 6.1.6

Solution.
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1. Fix ϵ > 0. As limx→∞ F (x) = 1, limx→−∞ F (x) = 0 and F (x) is non-decreasing, there exists an
M ∈ R such that for x > M we have F (x) ∈

(
1− ϵ

2 , 1
]

and for x < −M we have F (x) ∈ [0, ϵ2 ).
Let xϵ > M , then there exists an N1 ∈ N such that |Fn(xϵ) − F (xϵ)| < ϵ

2 for n ≥ N1. Therefore,
for all x ≥ xϵ and n ≥ N1 it follows that Fn(x) ∈ (1 − ϵ, 1], so that |Fn(x) − F (x)| < ϵ. Similarly,
there exists an N2 ∈ N such that for x ≤ −xϵ and n ≥ N2 we have |Fn(x) − F (x)| < ϵ. As F is
continuous it is uniformly continuous on [−xϵ, xϵ] so that we can choose

−xϵ = x0 < · · · < xk = xϵ

such that |F (xi+1)− F (xi)| < ϵ
5 for each i ∈ {0, . . . , k}. For each i ∈ {0, . . . , k} let Ñi ∈ N be such

that
|Fn(xi)− F (xi)| ≤

ϵ

5

for all n ≥ Ñi. For n ≥ Ñ := maxi∈{0,...,k}

(
Ñi

)
it follows that

|Fn(xi+1)− Fn(xi)| ≤ |Fn(xi+1)− F (xi+1)|+ |F (xi+1)− F (xi)|+ |F (xi)− Fn(xi)|

≤ ϵ

5
+
ϵ

5
+
ϵ

5

≤ 3ϵ

5
.

Note that for any x ∈ [−xϵ, xϵ) we have xi ≤ x < xi+1 for some i ∈ {0, . . . , k − 1}. By the
non-decreasing property of F we know that F (xi) ≤ F (x) ≤ F (xi+1) and similarly for each Fn.
Therefore,

|Fn(x)− F (x)| ≤ |Fn(x)− Fn(xi)|+ |Fn(xi)− F (xi)|+ |F (xi)− F (x)|
≤ |Fn(xi+1)− Fn(xi)|+ |Fn(xi)− F (xi)|+ |F (xi)− F (xi+1)|

≤ 3ϵ

5
+
ϵ

5
+
ϵ

5
< ϵ.

Therefore, for n ≥ N := max
(
N1, N2, Ñ

)
we have that

|Fn(x)− F (x)| < ϵ

for all x ∈ R. Hence, supx∈R |Fn(x)− F (x)| → 0 which is equivalent to uniform convergence.

2. Consider the random variable ξ : Ω → R where P(ξ = 1) = 1. The distribution function of ξ is
given by

F (x) =

{
0 x < 1

1 x ≥ 1.

For n ∈ N, let ξn : Ω → R be the random variable where P
(
ξn = 1− 1

n

)
= 1. Similarly, the

distribution function of ξn is given by

Fn(x) =

{
0 x < 1− 1

n

1 x ≥ 1− 1
n .

Then for x > 1 it is clear that Fn(x) = F (x) = 1 for all n ∈ N which implies that limn→∞ Fn(x) =
F (x). For x < 1, there exists a N ∈ N such that 1

N < 1 − x. Therefore, for n ≥ N we have that
Fn(x) = F (x) = 0 and so limn→∞ Fn(x) = F (x). As F is only continuous for R \ {0} we conclude

that Fn
d−→ F . However, supx∈R |Fn(x)− F (x)| = 1 for all n ∈ N.

3. Consider the setting of statement 2 and let B = (0, 1) ∈ B(R). Then P(ξn ∈ B) = 1 for all n ∈ N,
but P(ξ ∈ (0, 1)) = 0.

■

Exercise 6.3.10
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Solution. For ϵ > 0 let K =
[
− 2M

ϵ , 2Mϵ
]
. Then using Markov’s inequality it follows that

P (ξn ∈ R \K) = P
(
|ξn| >

2M

ϵ

)
≤ E(|ξn|)

2M
ϵ

≤ ϵ

2M
M

< ϵ.

Therefore, the family (ξn)n∈N is tight. ■
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7 Convergence of Characteristic Functions

In this chapter, we look at the characteristic function of measures of (Rn,B (Rn)).

7.1 Characteristic Function

Definition 7.1.1 The characteristic function of a random variable ξ : Ω → R is

φξ(t) := E
(
eitξ
)
=

∫
Ω

eitξ(ω) P(dω)

for t ∈ R.

Remark 7.1.2 We may generalise Definition 7.1.1 to random variables on (Rn,B (Rn)). The charac-
teristic function of a random vector ξ := (ξ1, . . . , ξn) is

φξ(t1, . . . , tn) := E

(
exp

(
i

n∑
k=1

tkξk

))
.

The characteristic function of a random variable only depends on its distribution. If F (x) has density
f(x), with respect to the Lebesgue measure, then

φ(t) =

∫
Rn

eit
⊤xf(x) dx.

Proposition 7.1.3

1. If ξ is a random variable and η = aξ + b for constants a, b, then φη(t) = eitbφξ(at).

2. For a characteristic function φ we have |φ(t)| ≤ φ(0) = 1.

3. Let ξ be a random variable. Then φξ(t) is uniformly continuous on R.

4. If ξ1, . . . , ξn are independent random variables and S = ξ1 + · · ·+ ξn, then

φS(t) =

n∏
j=1

φξj (t).

Proof.

1. From the linearity of the expectation,

φη(t) = E
(
eitη
)

= E
(
eit(aξ+b)

)
= E

(
eiatξeitb

)
= eitbE

(
eiatξ

)
= φξ(at).

2. Observe that

|φ(t)| =
∣∣∣∣∫

Ω

eitξ(ω) P(dω)
∣∣∣∣ ≤ ∫

Ω

∣∣∣eitξ(ω)
∣∣∣ P(dω) ≤ ∫

Ω

P(dω) = 1.

3. Note that
|φ(t+ h)− φ(t)| =

∣∣E (eitξ (eihξ − 1
))∣∣ ≤ E (∣∣eihξ − 1

∣∣) .
By dominated convergence theorem we know that E

(∣∣eihξ − 1
∣∣) → 0 as h → 0. Therefore, φ is

uniformly continuous.
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4. As the random variables are independent, we can use Proposition 3.2.11 to deduce that

φS(t) = E
(
eit(

∑n
j=1 ξj)

)
= E

 n∏
j=1

eitξj


=

n∏
j=1

E
(
eitξj

)
=

n∏
j=1

φξj (t).

■

Example 7.1.4 Let φ(t) be a characteristic function.

• From statement 2 of Proposition 7.1.3 we note that ψ(t) := Im(φ(t)) cannot be a characteristic
function as ψ(0) = 0.

• Using statement 1 of Proposition 7.1.3 we note that ψ(t) := φ(−t) is a characteristic function.
Therefore, as |φ(t)|2 = φ(t)φ(t) = φ(t)ψ(t), it follows from statement 2 of Proposition 7.1.3
that |φ(t)|2 is a characteristic function.

The moment-generating function also shares properties 1 and 4 of Proposition 7.1.3, but the lack of
properties 2 and 3 means it is preferable to use characteristic functions to establish weak convergence.

Exercise 7.1.5

1. Let ξ ∼ B(n, p). Then
φξ(t) =

(
peit + (1− p)

)n
.

2. Let ξ ∼ N(m,σ2). Then

φξ(t) = exp

(
itm− t2σ2

2

)
.

3. Let ξ ∼ Po(λ). Then
φξ(t) = e−λ+λeit .

7.2 Obtaining Moments
The existence of moments for a real-valued random variable is determined by the smoothness of its
characteristic function at zero.

Proposition 7.2.1 Let ξ be a random variable with a characteristic function φ and distribution function
F .

1. If E (|ξ|n) <∞ for some n ≥ 1 then φ(τ)(t) exists for any 0 ≤ τ ≤ n and the following hold.

(a) φ(τ)(t) =
∫∞
−∞(ix)τeitx dF (x).

(b) E (ξτ ) = φ(τ)(0)
iτ .

(c) φ(t) =
∑n−1

τ=0
(it)τ

τ ! E (ξτ ) + (it)n

n! εn(t), where |εn(t)| ≤ 3E (|ξ|n) and εn(t) → 0 as t→ 0.
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2. If E (|ξ|n) <∞ for all n ≥ 1 and

lim sup
n→∞

(
E (|ξ|n)

1
n

n

)
=

1

e · T
<∞,

for T > 0, then

φ(t) =

∞∑
n=0

(it)n

n!
E (ξn)

converges for |t| < T .

Proof.

1. Since E (|ξ|n) <∞, we have E (|ξ|r) <∞ for any r ≤ n by Corollary 2.4.6. Consider the difference
quotient

φ(t+ h)− φ(t)

h
= E

(
eitξ

(
eihξ − 1

h

))
.

Note that ∣∣∣∣eitξ eihξ − 1

h

∣∣∣∣ = ∣∣∣∣eihξ − 1

h

∣∣∣∣
=

∣∣∣∣∣1 + ihx+O
(
h2
)
− 1

h

∣∣∣∣∣
≤ |ξ|.

So, if E (|ξ|) <∞ it follows from the dominated convergence theorem that

φ′(t) = lim
h→0

φ(t+ h)− φ(t)

h

= lim
h→0

E

(
eitξ

(
eihξ − 1

h

))
= E

(
eitξ lim

h→0

(
eihξ − 1

h

))
= E

(
iξeitξ

)
= i

∫ ∞

−∞
xeitx dF (x).

The existence of the derivatives φ(r)(t) for 1 < r ≤ n follows by induction. Note that (b) follows
immediately from (a). To establish (c), consider the Taylor expansion

eiy =

n−1∑
k=0

(iy)k

k!
+

(iy)n

n!
(cos(θ1y) + i sin(θ2y))

for y ∈ R, |θ1| ≤ 1, and |θ2| ≤ 1. Then,

eitξ =

n−1∑
k=0

(itξ)k

k!
+

(itξ)n

n!
(cos(θ1ξ) + i sin(θ2ξ))

so that

E
(
eitξ
)
=

n−1∑
k=0

(it)k

k!
E
(
ξk
)
+

(it)n

n!
(E (ξn) + εn(t)),

where
εn(t) = E (ξn(cos(θ1tξ) + i sin(θ2tξ)− 1)) .

It is clear that |εn(t)| ≤ 3E (|ξn|). Then dominated convergence shows that εn(t) → 0 as t→ 0.
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2. Let 0 < t0 < T . Then

lim sup
n→∞

(
(E (|ξ|n)) 1

n

n

)
≤ 1

et0

implies that

lim sup
n→∞

(
(E (|ξ|nentn0 ))

1
n

n

)
≤ 1.

Thus

lim sup
n→∞

((
E (|ξ|nentn0 )

nn

) 1
n

)
< 1.

By Stirling’s formula we have that

lim sup
n→∞

((
E (|ξ|ntn0 )

n!

) 1
n

)
< lim sup

n→∞

((
E (|ξ|nentn0 )

nn

) 1
n

)
< 1.

Consequently, the series
∑∞

n=0E
(

|ξ|ntn0
n!

)
converges by the root test and so the series

∑∞
n=0

(it)n

n! E (ξn)

converges for |t| ≤ t0. By statement 1, for n ≥ 1 we know that

φ(t) =

k∑
n=0

(it)n

n!
E (ξn) +Rk(t),

where |Rk(t)| ≤ 3|t|k
k! E

(
|ξ|k
)
. Therefore

φ(t) =

∞∑
n=0

(it)n

n!
E (ξn)

for all |t| < T .
■

Remark 7.2.2 Statement 2 of Proposition 7.2.1 gives a sufficient condition for the moments E (ξn)
to determine φ(t) uniquely. Indeed, let |s| < T

2 . Then by considering t0 such that 0 < |t0 − s| < T ,
it follows by the same arguments as made in the proof of statement 2 of Proposition 7.2.1 that the
series

∑∞
n=0 E

(
|ξ|n|t0−s|n

n!

)
converges. Hence, we deduce that

φ(t) =

∞∑
n=0

i(t− s)n

n!
E (ξn)

converges for |t− s| < T . In other words,

φ(t) =

∞∑
n=0

(it)n

n!
E(ξn)

converges for |t| < 3
2T . Continuing in this way, we determine φ(t) on R uniquely using the moments.

Theorem 7.2.3 — Carleman’s test. A sufficient condition for the unique determination of the charac-
teristic function φ(t) is

∞∑
n=0

1

(E (ξ2n))
1
2n

= ∞.

Example 7.2.4 If E (ξn) grows too fast, there may be multiple characteristic functions φ(t) with the
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same moments. Consider a random variable distributed as a standard log-normal distribution,

f(x) =
1

x
√
2π

exp

(
− (log(x))2

2

)
,

for x ≥ 0. Consider another random variable with density

fa(x) = f(x)× (1 + a sin(2π log(x))) ,

for x ≥ 0 and a ∈ [−1, 1].

1 2 3 4 5

0.5

1

1.5

x

f(x)

These seemingly different random variables have the same rth moment. To see this, it suffices to
evaluate the integral ∫ ∞

0

xr−1 exp

(
− (log(x))2

2

)
sin(2π log(x)) dx,

for r = 0, 1, . . . . With a variable substitution of s = log(x), the integral becomes∫ ∞

−∞
exp ((r − 1)s) exp

(
−s

2

2

)
sin(2πs) dx.

The integrand is an L1 function multiplied by sin(2πs). Therefore, by the Riemann-Lebesgue lemma,
the integral is zero, and the random variables have the same moments.

Exercise 7.2.5

1. Verify that if ξ has a standard normal distribution, then exp(ξ) has a standard log-normal distri-
bution.

2. Show that the rth moment of exp(ξ) is equal to exp
(

r2

2

)
.

Notice that the moments grow too fast for the characteristic function to be analytic.

7.3 Inversion Formula

Theorem 7.3.1 — Inversion formula I. Let ξ be a random variable on (Ω,F ,P) → (R,B(R)) with
distribution F (x) and characteristic function φ(t). If a < b are points of continuity of F then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t) dt.

To prove Theorem 7.3.1 let us introduce

S(T ) =

∫ T

0

sinx

x
dx.
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Note S(T ) is a differentiable function with S(T ) > 0 whenever T > 0. Moreover, it can be shown with
standard calculus techniques1 that

lim
T→∞

S(T ) =

∫ ∞

0

sinx

x
dx =

π

2
.

We therefore know that S(T ) is a bounded function and supT>0 S(T ) exists. We also note that∫ T

0

sin(kx)

x
dx =

∫ T

0

sin(kx)

kx
d(kx) = S(kT )

for k > 0 and when k < 0, we have∫ T

0

sin(kx)

x
dx = −

∫ T

0

sin(|k|x)
x

dx = −S(|k|T ).

Equivalently, we can write ∫ T

0

sin(kx)

x
dx = sgn(k)S(|k|T ).

Moreover, as the integrand is even we know that∫ T

−T

sin(kx)

x
dx = 2 sgn(k)S(|k|T ).

Proof. (Theorem 7.3.1). For fixed T > 0, let

IT =

∫ T

−T

e−ita − e−itb

it
φ(t) dt =

∫ T

−T

∫ ∞

−∞

e−ita − e−itb

it
eitx dF (x) dt

Note that the integrand is bounded uniformly in (t, x) by∣∣∣∣e−ita − e−itb

it
eitx
∣∣∣∣ ≤

∣∣∣∣∣
∫ b

a

e−its ds

∣∣∣∣∣ ≤ |b− a|, (7.1)

and ∫ T

−T

∫ ∞

−∞
|b− a|dF (x) dt = 2T |b− a| <∞.

Therefore, by Fubini’s theorem we may exchange the order of integration so that

IT =

∫ ∞

−∞

∫ T

−T

e−ita − e−itb

it
eitx dtdF (x) =

∫ ∞

−∞

∫ T

−T

eit(x−a) − eit(x−b)

it
dtdF (x).

Since the domain of integration of the inner integral is symmetric, we can ignore the odd parts of the
integrand,

IT =

∫ ∞

−∞

∫ T

−T

sin(t(x− a))− sin(t(x− b))

t
dtdF (x).

Now let

JT,x :=

∫ T

−T

sin(t(x− a))− sin(t(x− b))

t
dt

so that

IT =

∫ ∞

−∞
JT,x dF (x).

Note that

|JT,x| ≤

∣∣∣∣∣
∫ T

−T

sin(t(x− a))

t
dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

−T

sin(t(x− b))

t
dt

∣∣∣∣∣ ≤ 4 sup
T>0

S(T ) <∞,

1https://www.wikihow.com/Integrate-the-Sinc-Function
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which is integrable with respect to F . Therefore, by the dominated convergence theorem we have that

I∞ := lim
T→∞

IT =

∫ ∞

−∞
lim

T→∞
JT,x dF (x).

Note that

lim
T→∞

JT,x =


0 x ̸∈ [a, b]

π x ∈ {a, b}
2π x ∈ (a, b).

Therefore,
I∞ = 2π(F (b−)− F (a))− π (F (a)− F (a−)− (F (b−)− F (b))) ,

but as a and b are points of continuity we conclude that

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t) dt.

■

Corollary 7.3.2 There is a one-to-one correspondence between probability distributions on (R,B(R))
and characteristic functions.

Proof. Let F and G be probability distribution functions on (R,B(R)) with the same characteristic func-
tion. By Theorem 7.3.1 we note that F (b) − F (a) = G(b) − G(a) for any a < b that are points of
continuity of F and G, which are dense in R. Since the collection of open intervals {(a, b) : a < b}
generates (R,B(R)), we must have F = G. ■

Exercise 7.3.3 Let X and Y be independent identically distributed random variables with zero mean
and unit variance. Prove using characteristic functions that if the distribution F of X+Y√

2
is the same

as that of X and Y , then F is the standard normal distribution.

Proposition 7.3.4 — Inversion formula II. Let ξ be a random variable on (Ω,F ,P) → (R,B(R)) with
distribution F (x) and characteristic function φ(t). If

∫∞
−∞ |φ(t)|dt < ∞, then F (x) is absolutely

continuous with density f(x), and

f(x) =
1

2π

∫ ∞

−∞
e−itxφ(t) dt. (7.2)

Proof. Let f(x) be as given by (7.2). Then for |h| > 0 consider

f(x+ h)− f(x) =
1

2π

∫ ∞

−∞

(
e−it(x+h) − e−itx

)
φ(t) dt.

Note that ∣∣∣e−it(x+h) − e−itx
∣∣∣ |φ(t)| ≤ 2|φ(t)|

and (
e−it(x+h) − e−itx

)
φ(t)

|h|→0−→ 0.

Therefore, as ∫ ∞

−∞
2|φ(t)|dt = 2

∫ ∞

−∞
|φ(t)|dt <∞

we deduce from the dominated convergence theorem that

|f(x+ h)− f(x)| |h|→0−→ 0,
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which implies that f is continuous. Similarly, one can show that f is differentiable. Hence, f is integrable
on [a, b] for a < b. Therefore, ∫ b

a

f(x) dx =

∫ b

a

∫ ∞

−∞

1

2π
e−itxφ(t) dtdx

Fubini.
=

∫ ∞

−∞

1

2π

e−ita − e−itb

it
φ(t) dt

Thm 7.3.1
= F (a)− F (b)

where F (x) =
∫ x

−∞ f(y) dy for all x ∈ R and so F is absolutely continuous. Suppose F has density g,
then

φ(t) =

∫ ∞

−∞
eitxg(x) dx.

As φ(t) is integrable we can apply the inversion formula for Fourier transforms to deduce that

g(x) =
1

2π

∫ ∞

−∞
e−itxφ(t) dt = f(x).

Therefore, the density of F is f . ■

7.4 Central Limit Theorems

Exercise 7.4.1 Let ξ be an integer-valued random variable with characteristic function φξ(t). Show
that

P(ξ = k) =
1

2π

∫ π

−π

e−iktφξ(t) dt,

for k ∈ Z.

Example 7.4.2 Characteristic functions can be used to understand the asymptotics of sequences of
random variables. For example, consider the random variable Sn = Xn −X ′

n, where Xn and X ′
n are

independent and identically binomial random variables with parameters n ∈ N and p ∈ (0, 1). Then
using statement 1 of Exercise 7.1.5 we have

φSn
(t) =

(
1

2
+

1

2
eit
)n(

1

2
+

1

2
e−it

)n

=
1

4n
(
2 + eit + e−it

)n
=

1

2n
(1 + cos(t))

n

=

(
1− sin2

(
t

2

))n

.

Hence, using Exercise 7.4.1 we get that

P(Sn = 0) =
1

2π

∫ π

−π

(
1− sin2

(
t

2

))n

dt

=
1

π

∫ π

0

(
1− sin2

(
t

2

))n

dt.

Therefore, with the understanding that the main contribution from an increasingly small neighbour-
hood of zero, we deduce that

P(Sn = 0) =
1

π

∫ ϵ

0

(
1− sin2

(
t

2

))n

dt+
1

π

∫ π

ϵ

(
1− sin2

(
t

2

))n

dt
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≤ 1

π
√
n

∫ ϵ
√
n

0

(
1− sin2

(
s

2
√
n

))n

dt+
(
1− sin2

( ϵ
2

))n
=

1

π
√
n

∫ ∞

0

χ{s≤ϵ
√
n}

(
1− sin2

(
s

2
√
n

))n

dt+ o

(
1√
n

)
∼ 1

π
√
n

∫ ∞

0

(
1−

(
s

2
√
n

)2
)n

dt+ o

(
1√
n

)
∼ 1

π
√
n

∫ ∞

0

e−
s2

4 ds+ o

(
1√
n

)
=

1√
π
√
n
+ o

(
1√
n

)
=

1√
πn

(1 + o(1)) .

The following lemma will be useful for proving Theorem 7.4.5.

Lemma 7.4.3 If P is a probability measure on (R,B(R)) with characteristic function φ(t), then

P
(
|x| ≥ 2

ϵ

)
≤ 1

ϵ

∫ ϵ

−ϵ

1− φ(t) dt

for all ϵ > 0.

Proof. Note that for x ̸= 0, we have∫ ϵ

−ϵ

1− eitx dt = 2ϵ− eitϵ − e−itϵ

ix
= 2ϵ

(
1− sin ϵx

ϵx

)
.

Therefore,

1

ϵ

∫ ϵ

−ϵ

1− φ(t) dt =
1

ϵ

∫ ϵ

−ϵ

(
1−

∫
R

eitx µ(dx)

)
dt

=
1

ϵ

∫ ϵ

−ϵ

∫
R

1− eitx µ(dx) dt

Fubini.
=

∫
R

(
1

ϵ

∫ ϵ

−ϵ

1− eitx dt

)
P(dx)

=

∫
R

2

(
1− sin ϵx

ϵx

)
︸ ︷︷ ︸

≥0

P(dx)

≥ 2

∫ − 2
ϵ

−∞

(
1− sin ϵx

ϵx

)
P(dx) + 2

∫ ∞

2
ϵ

(
1− sin ϵx

ϵx

)
P(dx).

Note that
1− sin ϵx

ϵx
≥ 1

2

for |x| ≥ 2
ϵ . Therefore,

1

ϵ

∫ ϵ

−ϵ

1− φ(t) dt ≥
∫ − 2

ϵ

−∞
P(dx) +

∫ ∞

2
ϵ

P(dx)

= P
(
|x| ≥ 2

ϵ

)
.

■
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Remark 7.4.4 Lemma 7.4.3 shows that the tail of the measure P, hence the existence of moments, is
determined by the smoothness of φ at zero.

Theorem 7.4.5 — Levi’s Continuity theorem. Let (φn)n∈N be the characteristic functions corresponding
to the sequence of distribution functions (Fn)n∈N.

1. If Fn → F weakly, where F is a distribution function, then φn(t) → φ(t) pointwise for all t ∈ R,
where φ is the characteristic function of F .

2. If φ(t) := limn→∞ φn(t) exists for all t ∈ R, and is continuous at t = 0, then φ(t) is a character-
istic function of some distribution function F . Moreover, Fn → F weakly.

3. If φn(t) is a characteristic function corresponding to a distribution function Fn and φ(t) is a
characteristic function corresponding to some distribution function F . Then φn(t) → φ(t) for
all t ∈ R if and only if Fn → F weakly.

Proof.

1. Recall that Fn → F weakly means that

lim
n→∞

∫ ∞

−∞
f(x) dFn(x) =

∫ ∞

−∞
f(x) dF (x)

for every bounded and real continuous functions f . As Re
(
eitx
)

and Im
(
eitx
)

are bounded and
real continuous functions, it follows that

lim
n→∞

φn(t) = lim
n→∞

∫ ∞

−∞
eitx dFn(x)

= lim
n→∞

(∫ ∞

−∞
Re
(
eitx
)
dFn(x) +

∫ ∞

−∞
Im
(
eitx
)
dFn(x)

)
=

∫ ∞

−∞
Re
(
eitx
)
dF (x) +

∫ ∞

−∞
Im
(
eitx
)
dF (x)

=

∫ ∞

−∞
eitx dF (x)

= φ(t).

2. As φ is continuous at zero we know that φ(0) = 1 as φn(0) = 1 for all n ∈ N. Therefore, for all
ϵ > 0 there is u > 0 such that

1− φ(t) ≤ ϵ

4
for all t ∈ [−u, u]. Hence, using the dominated convergence theorem it follows that

ϵ

2
≥ 1

u

∫ u

−u

1− φ(t) dt = lim
n→∞

1

u

∫ u

−u

1− φn(t) dt.

Using Lemma 7.4.3, there is an n0 ∈ N such that

Pn

(
|x| ≥ 2

u

)
≤ 1

u

∫ u

−u

1− φn(t) dt ≤ ϵ (7.3)

for all n ≥ n0. In particular, one can choose u such that (7.3) holds for all n ∈ N. Thus, (Pn)n∈N is
tight. Consequently, using Theorem 6.3.8, we have that for any subsequence (Fnk

)k∈N ⊆ (Fn)n∈N,
there is a further subsequence that converges weakly to some F . Using statement 1 it follows that
φ(t) is the characteristic function of this F . In particular, this shows that the limiting distribution
function is the same regardless of the subsequence we choose. Suppose that Fn ̸→ F weakly. Then
there is a point y ∈ R \ UF , such that a subsequence

(
Fn′

k

)
k≥1

exists with the property that∣∣∣Fn′
k
(y)− F (y)

∣∣∣ ≥ ϵ

for all k ∈ N. However, by the above arguments, there is a further subsequence (Fnkj
)j∈N which

converges to F , giving rise to a contradiction. Therefore, we conclude that Fn → F weakly.
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3. (⇐). This is statement 1.
(⇒). As φ(t) is a characteristic function, it is continuous at zero so we can use statement 2 to
deduce that Fn → F weakly.

■

Remark 7.4.6 The utility of statement 2 in Theorem 7.4.5 is that it does not assume a priori that
φ(t) is a characteristic function. Instead, it shows that with the additional requirement that φ(t) is
continuous at zero, then φ(t) must be a characteristic function.

Theorem 7.4.7 — Central Limit Theorem. Let (ξn)n∈N be a sequence of independent and identically
distributed non-degenerate random variables with E

(
ξ21
)
<∞ and Sn = ξ1 + · · ·+ ξn. Then

P

(
Sn − E(Sn)√

V(Sn)
≤ x

)
→ Φ(x) =

1√
2π

∫ x

−∞
e−

u2

2 du

as n→ ∞ for all x ∈ R. In other words,

Sn − E (Sn)√
V (Sn)

d−→ N(0, 1).

Proof. Set m = E (ξ1), σ2 = V (ξ1), and φ(t) = E
(
eit(ξ1−m)

)
. Then by independence, we have

φn(t) = E

(
exp

(
it
Sn − E(Sn)√

V(Sn)

))

=

(
φ

(
t

σ
√
n

))n

.

Since E
(
ξ21
)
<∞, we have that

φ(t) = 1− σ2t2

2
+ o

(
t2
)

as t→ 0. So

φn(t) =

(
1− t2

2n
+ o

(
1

n

))n

→ e−
t2

2

for all t ∈ R. This is the characteristic function of N(0, 1) and so the result follows by Theorem 7.4.5. ■

Theorem 7.4.8 — Lindeberg’s Central Limit Theorem. Let (ξn)n∈N be a sequence of independent ran-
dom variables on the (Ω,F ,P) with E

(
ξ2n
)
<∞ for every n ∈ N. Let

1. mk = E(ξk),

2. σ2
k = V(ξk) > 0,

3. Sn = ξ1 + · · ·+ ξn, and

4. D2
n =

∑n
k=1 σ

2
k.

Moreover, suppose that
1

D2
n

n∑
k=1

E
(
|ξk −mk|2χ{|ξk−mk|≥εDn}

) n→∞−→ 0 (7.4)

for every ε > 0. Then
Sn − E(Sn)

Dn

d−→ N(0, 1).

Remark 7.4.9 The condition given in equation (7.4) is known as the Lindeberg condition.
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We focus on some special cases in which the Lindeberg condition is satisfied and consequently, the central
limit theorem is valid. One of the most prominent is the Lyapunov condition.

Corollary 7.4.10 — Lyapunov’s Central Limit Theorem. Assume the conditions of Theorem 7.4.8 and in
addition assume that the sequence (ξn)n∈N is such that

1

D2+δ
n

n∑
k=1

E
(
|ξk −mk|2+δ

)
→ 0 (7.5)

for some δ > 0 as n → ∞. Then the sequence (ξn)n∈N satisfies the Lindeberg condition and so the
conclusions of Theorem 7.4.7 hold.

Proof. Let ε > 0. Then

E
(
|ξk −mk|2+δ

)
≥ E

(
|ξk −mk|2+δχ{|ξk−mk|≥εDn}

)
≥ εδDδ

nE
(
|ξk −mk|2χ{|ξk−mk|≥εDn}

)
,

which implies that

1

D2
n

n∑
k=1

E
(
|ξk −mk|2χ{|ξk−mk|≥ϵDn}

)
≤ 1

εδ
1

D2+δ
n

n∑
k=1

E
(
|ξk −mk|2+δ

)
n→∞−→ 0.

Therefore, (ξk)k∈N satisfies the Lindeberg condition. ■

Remark 7.4.11 The condition of equation (7.5) is known as the Lyapunov condition.

Exercise 7.4.12 Under the setting of Corollary 7.4.10, suppose that there exists K such that

|ξn| ≤ K <∞

for all n ∈ N, and that Dn → ∞ as n → ∞. Show that the sequence (ξn)n∈N satisfies the Lindeberg
condition.

Theorem 7.4.7 does not hold when E
(
ξ21
)
= ∞. Let (ξn)n∈N be independent and identically distributed

with the Cauchy distribution, that is they have the density

f(x) =
θ

π (x2 + θ2)

for θ > 0. Then for t > 0 we use an upper semi-circular contour to deduce that

φξ1(t) =
θ

π

∫ ∞

−∞

eitx

x2 + θ2
dx =

2πiθ

π
Res

(
eitx

x2 + θ2
, iθ

)
= e−tθ.

Similarly, for t < 0 we use a lower semi-circular contour to deduce that

φξ1(t) = −2πiθ

π
Res

(
eitx

x2 + θ2
,−iθ

)
= etθ.

Therefore,
φξ1(t) = e−θ|t|

for t ∈ R, which implies that

φSn
n
(t) =

(
exp

(
−θ|t|
n

))n

= e−θ|t|,

Therefore, Sn

n also has a Cauchy distribution.
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7.5 Berry-Esseen Inequality 7 Convergence of Characteristic Functions

7.5 Berry-Esseen Inequality

Theorem 7.4.7 implies that if Fn(x) is the distribution function of the random variable Sn−E(Sn)√
V(Sn)

, then

sup
x∈R

(|Fn(x)− Φ(x)|) n→∞−→ 0.

At what rate does the left-hand side decay? If (ξn)n∈N are independent and identically distributed with
ξ1 ∈ L3, then we get bounds on the rate of decay.

Theorem 7.5.1 — Berry-Esseen Inequality. Let (ξn)n∈N be a sequence of independent and identically
distributed random variables with E

(
|ξ1|3

)
<∞. Then

sup
x∈R

∣∣∣∣∣P
(
Sn − E(Sn)√

V(Sn)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C
E
(
|ξ1 − E(ξ1)|3

)
σ3

√
n

,

where the constant C satisfies
1√
2π

≤ C ≤ 1

2
.

Although we do not provide a proof of Theorem 7.5.1, we note that the rate O
(

1√
n

)
is optimal.

Remark 7.5.2 Let (ξn)n∈N be independent and identically distributed Bernoulli random variables with
P(ξn = 1) = P(ξn = −1) = 1

2 . By symmetry, we know that,

2P

(
2n∑
k=1

ξk < 0

)
+ P

(
2n∑
k=1

ξk = 0

)
= 1.

Therefore, ∣∣∣∣∣P
(

2n∑
k=1

ξk < 0

)
− 1

2

∣∣∣∣∣ = 1

2
P

(
2n∑
k=1

ξk = 0

)

=
1

2

(
2n

n

)
1

22n

∼ 1

2
√
πn

=
1√

2π
√
2n
.

Then E
(
|ξ1|3

)
= 1 = σ, and Theorem 7.5.1 cannot be improved in terms of O

(
1√
n

)
and C ≥ 1√

2π
.

Exercise 7.5.3 For a sequence (ξn)n∈N of independent and identically distributed Bernoulli random
variables with parameter p ∈ (0, 1), show that there exists C1, C2 > 0 such that

C1√
n
≤ sup

x∈R
|FSn

− Φ(x)| ≤ C2√
n

for sufficiently large n.

7.6 Constructing Characteristic Functions
The following theorems determine whether a function φ is a characteristic function of some measure on
R, and if so, whether we can easily construct the underlying measure. The constructions are usually
difficult and therefore are not usually covered in great detail. Nevertheless, the proofs in this section
serve as great examples of using tools developed in the previous chapter. For further discussions refer to
[1].
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Exercise 7.6.1

1. For k ∈ N let φk(t) be a characteristic function and let (λk)k∈N ⊆ R>0 satisfy
∑∞

k=1 λk = 1.
Show that

∑∞
k=1 λkφk(t) is a characteristic function.

2. Let φ(t) be a characteristic function. Show that Re(φ(t)) is a characteristic function.

3. Let φ(t) be a characteristic function. Show that eλ(φ(t)−1), for λ > 0, is a characteristic function.

Theorem 7.6.2 — Bochner-Khinchin. Let φ(t) be continuous, t ∈ R, with φ(0) = 1. A necessary and
sufficient condition that φ(t) is a characteristic function is that it is positive semi-definite. That is, for
all t1, . . . , tn ∈ R, λ1, . . . , λn ∈ C, and n = 1, 2, . . . we have

n∑
j,k=1

φ(tj − tk)λjλk ≥ 0.

To show necessity, we note that if φ is a characteristic function of a real-valued random variable ξ, then

n∑
j,k=1

φ(tj − tk)λjλk = E (ηη̄) = E
(
|η|2
)
≥ 0,

where η =
∑n

j=1 λje
itjξ.

Exercise 7.6.3 Let φ(t) be a characteristic function. Show that
∫ 1

0
φ(ut) du is a characteristic function.

7.6.1 Polya’s Criterion

Theorem 7.6.4 — Polya’s criterion. Let a continuous even real-valued function φ(t) satisfy φ(t) ≥ 0,
φ(0) = 1, φ(t) → 0 as t→ ∞ and be convex on 0 ≤ t <∞. Then φ(t) is a characteristic function.

As an observation, we note that the function φ(t) must be strictly decreasing over [0,∞). To see this, we
let 0 < r < s, and consider t0 > s such that 0 < f(t0) <

f(r)
2 . By convexity, we have

f(s) ≤ f(t0)− f(r)

t0 − r
(s− r) + f(r) < f(r).

7.6.2 Marcinkiewicz Theorem

Theorem 7.6.5 — Marcinkiewicz’s Theorem. If a characteristic function φ(t) is of the form ep(t), where
p(t) is a polynomial, then the degree of p(t) is at most two.

Example 7.6.6 As a simple example, e−t4 is not a characteristic function of any real-valued random
variables.

7.6.3 Cumulants

Definition 7.6.7 If an expansion

log (φξ(t)) =

n∑
k=0

(it)k

k!
sk + o (|t|n) ,

exists as t→ 0, then the coefficients sk are called the cumulants of ξ.
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Exercise 7.6.8 Show that E(ξ) = s1, and V(ξ) = s2.

Remark 7.6.9 If ξ ∼ N(m,σ2) then

• s1 = m,

• s2 = σ2, and

• sk = 0 for k ≥ 3.

In general, by Theorem 7.6.5, if for a random variable ξ there exists n ∈ N such that sk = 0, for all
k ≥ n, then sk = 0 for all k ≥ 3 and ξ ∼ N(s1, s2).

7.6.4 Degenerate distributions

The following theorem shows that a property of the characteristic function of a random variable can lead
to a non-trivial conclusion about the nature of the random variable.

Theorem 7.6.10 Let φ(t) be a characteristic function of a random variable ξ. If |φ(t0)| = 1 for some
t0 ̸= 0, then ξ is concentrated at the points a+ nh for some a ∈ R and where h = 2π

t0
. That is,

∞∑
n=−∞

P(ξ = a+ nh) = 1.

Proof. If |φ(t0)| = 1 for some t0 ̸= 0 then φ(t0) = eit0a for some a ∈ R. Therefore,

eit0a =

∫ ∞

−∞
eit0x dF (x)

which implies that

1 =

∫ ∞

−∞
eit0(x−a) dF (x).

Equating real parts we see that

1 =

∫ ∞

−∞
cos (t0(x− a)) dF (x)

which then implies that ∫ ∞

−∞
1− cos (t0(x− a)) dF (x) = 0.

Since 1 − cos (t0(x− a)) ≥ 0, it follows that 1 = cos (t0(x− a)) for P-almost every x. That is, P is

concentrated at the points x = a+ n
(

2π
t0

)
for n ∈ Z. ■

7.7 Solution to Exercises
Exercise 7.1.5

Solution.

1. If ξ1 = B(1, p), then
φξ1 = E

(
eitξ1

)
= e0(1− p) + eitp.

Therefore, by statement 4 of Proposition 7.1.3 we deduce that

φξ(t) =
(
peit + (1− p)

)n
.

2. Let η = ξ−m
σ . Then η ∼ N(0, 1) has density

f(x) =
1√
2π

exp

(
−x

2

2

)
.
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It is then sufficient to show that φη(t) = e−
t2

2 . Observe that

φη(t) = E
(
eitη
)

=
1√
2π

∫ ∞

−∞
eitx−

x2

2 dx

= e−
t2

2
1√
2π

∫ ∞

−∞
e−

1
2 (x−it)2 dx

= e−
t2

2
1√
2π

∫ ∞−it

−∞−it

e−
z2

2 dz

(1)
= e−

t2

2
1√
2π

∫ ∞

−∞
e−

x2

2 dx

= e−
t2

2 .

We justify (1) using contour integration. Let

IR =

∮
γ

e−
z2

2 dz

where γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 for

• γ1 := {z = −u : −R ≤ u ≤ R},

• γ2 := {z = −R− itu : 0 ≤ u ≤ 1},

• γ3 := {z = u− it : −R ≤ u ≤ R}, and

• γ4 = {z = R− it(1− u) : 0 ≤ u ≤ 1}.

Note that ∫
γ2

exp

(
−z

2

2

)
dz =

∫ 1

0

exp

(
− (−R− itu)2

2

)
(−it) du

=

∫ 1

0

exp

(
−R

2

2

)
exp (−Rtui) exp

(
t2u2

2

)
(−it) du.

Hence,
∫
γ2

exp
(
− z2

2

)
dz

R→∞−→ 0. Similarly,
∫
γ4

exp
(
− z2

2

)
dz

R→∞−→ 0. On the other hand,

∫
γ1

exp

(
−z

2

2

)
dz = −

∫ R

−R

exp

(
−u

2

2

)
du

and ∫
γ3

exp

(
−z

2

2

)
=

∫ R

−R

exp

(
− (u− it)2

2

)
du

v=u−it
=

∫ R−it

−R−it

exp

(
−v

2

2

)
dv.

Therefore, as e−
z2

2 is analytic in the region defined by γ we deduce that

0 =

∫
γ

exp

(
−z

2

2

)
dz =

(∫
γ1

+

∫
γ2

+

∫
γ3

+

∫
γ4

)
exp

(
−z

2

2

)
dz.

Consequently, as R→ ∞ we deduce that

0 = −
∫ ∞

−∞
exp

(
−u

2

2

)
du+

∫ ∞−it

−∞−it

exp

(
−v

2

2

)
dv

which implies that ∫ ∞

−∞
exp

(
−u

2

2

)
du =

∫ ∞−it

−∞−it

exp

(
−v

2

2

)
dv.
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3. Proceeding directly we see that

φξ(t) = E
(
eitξ
)

= e−λ
∞∑
k=0

eitk
λk

k!

= e−λ
∞∑
k=0

(
eitλ

)k
k!

= e−λeλe
it

= e−λ+λeit .

■

Exercise 7.2.5

Solution.

1. Let η = exp(ξ). Then as exp(·) is a strictly increasing function we note that

fη(x) = fξ (log(x))
1

x
=

1

x
√
2π

exp

(
− (log(x))2

2

)
for x > 0. Therefore, η has a standard log-normal distribution.

2. Observe that

E (ηr) = E (exp(ξ)r)

=

∫ ∞

−∞
exp(rx)

1√
2π

exp

(
−x

2

2

)
dx

=

∫ ∞

−∞

1√
2π

exp

(
− (x− r)2

2
+
r2

2

)
dx

= exp

(
r2

2

)∫ ∞

−∞

1√
2π

exp

(
− (x− r)2

2

)
dx

= exp

(
r2

2

)
.

■

Exercise 7.3.3

Solution. Let φ(t) be the characteristic function of F . Then

φ(t) = φX+Y√
2

(t) = φX

(
t√
2

)
φY

(
t√
2

)
= φ

(
t√
2

)2

.

Let ψ(t) = log(φ(t)) so that ψ(t) = 2ψ
(

t√
2

)
, with ψ(0) = 0. Then,

1. ψ′(t) =
√
2ψ′

(
t√
2

)
, and

2. ψ′′(t) = ψ′′
(

t√
2

)
.

From statement 1 we deduce that ψ′(0) =
√
2ψ′(0), so that ψ′(0) = 0. From statement 2, as ψ′′(t) is

continuous at zero, we deduce that ψ′′(t) is constant. In particular,

ψ′′(t) = ψ′′(0) =
φ(0)φ′′(0)− (φ′(0))

2

φ(0)2
=
i2V(X)

1
= −1.

Hence, ψ′(t) = −t and so ψ(t) = − t2

2 . Hence, φ(t) = exp
(
− t2

2

)
and so, by Corollary 7.3.2, F has a

standard normal distribution. ■
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Exercise 7.4.1

Solution. Note that,

1

2π

∫ π

−π

e−iktφξ(t) dt =
1

2π

∫ π

−π

e−ikt
∑
m∈Z

eimtP(ξ = m) dt.

As
∑

m∈Z e
imtP(ξ = m) is absolutely convergent we can interchange the integral and the sum to deduce

that
1

2π

∫ π

−π

e−iktφξ(t) dt =
1

2π

∑
m∈Z

∫ π

−π

ei(m−k)tP(ξ = m) dt.

Then as ∫ π

−π

ei(m−k)t dt =

{
2π m = k

0 otherwise,

we conclude that
1

2π

∫ π

−π

e−iktφξ(t) dt = P(ξ = k).

■

Exercise 7.4.12

Solution. Note that
|mk| = |E(ξk)| ≤ E(|ξk|) ≤ K

for all k ∈ N. Therefore, |ξk −mk| ≤ 2K for all k ∈ N. As Dn → ∞ monotonically, it follows that for
some N ∈ N we have

χ{|ξk−mk|≥ϵDn} = 0

for n ≥ N . Therefore, for n ≥ N we have

1

D2
n

n∑
k=1

E
(
|ξk −mk|2χ{|ξk−mk|≥ϵDn}

)
=

1

D2
n

N−1∑
k=1

E
(
|ξk −mk|2χ{|ξk−mk|≥ϵDn}

)
+

1

D2
n

n∑
k=N

E
(
|ξk −mk|2χ{|ξk−mk|≥ϵDn}

)
=

1

D2
n

N−1∑
k=1

E
(
|ξk −mk|2χ{|ξk−mk|≥ϵDn}

)
≤ 4K2(N − 1)

D2
n

n→∞−→ 0.

Hence, Linderberg’s condition is satisfied. ■

Exercise 7.5.3

Solution. From Theorem 7.5.1 we know that supx∈R |FSn
(x)− Φ(x)| is O

(
1√
n

)
as E

(
|ξ1|3

)
< ∞. On

the other hand, we note that the continuous approximation Φ(x) of the discontinuous function FSn
(x),

can be at best half the size of the discontinuous. That is,

sup
x∈R

|FSn
(x)− Φ(x)| ≥ 1

2
sup
x∈R

∣∣FSn
(x)− FSn

(
x−
)∣∣

=
1

2
sup
x∈R

∣∣∣P(Sn = np+ x
√
p(1− p)n

)∣∣∣ .
From Theorem 4.5.5 we know that that the right-hand side is of order 1√

n
. ■

Exercise 7.6.1

Solution.
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1. For k ∈ N let ζk be a random variable with characteristic function φk(t). Let η be the random
variable where P(η = k) = λk for k ∈ N. Note that ζη(ω) =

∑∞
k=1 ζkχ{η=k}(ω) is the sum of

the product of random variables and hence a random variable. Therefore, we can consider its
characteristic function. Namely,

φζη (t) = E
(
eitζη

)
=

∞∑
k=1

E
(
eitζk

)
P(η = k)

=

∞∑
k=1

λkφk(t).

Therefore,
∑∞

n=1 λkφk(t) is a characteristic function.

2. From statement 1 of Proposition 7.1.3, we note that φ(−t) is a characteristic function. Therefore,
as

Re(φ(t)) =
1

2

(
φ(t) + φ(t)

)
=

1

2
φ(t) +

1

2
φ(−t),

we can use statement 1 to deduce that Re(φ(t)) is a characteristic function.

3. Let (ξk)k∈N be a sequence of independent and identically distributed random variables with the
characteristic function φ(t), and let η be a random variable independent of the sequence (ξk)k∈N
with Po(λ) distribution, for λ ≥ 0. Let X =

∑η
k=0 ξk, then

φX(t) = E (exp (itX))

= E

(
exp

(
η∑

k=0

itξk

))

=

∞∑
n=0

E

(
n∏

k=0

exp (itξk)

)
P(η = n)

(1)
=

∞∑
n=0

n∏
k=0

E (exp (itξk))
e−λλn

n!

= e−λ
∞∑

n=0

φ(t)nλn

n!

= e−λeλφ(t)

= eλ(φ(t)−1)

where in (1) we have used the independence assumption of the sequence (ξk)k∈N. Therefore,
eλ(φ(t)−1) is a characteristic function.

■

Exercise 7.6.3

Proof. Let ψ(t) =
∫ 1

0
φ(ut) du. Then ψ(0) =

∫ 1

0
1 du = 1. Moreover for all t1, . . . , tn ∈ R, λ1, . . . , λn ∈ C

and n = 1, 2, . . .we have that

n∑
j,k=1

ψ(tj − tk)λjλk =

n∑
j,k=1

(∫ 1

0

φ(u(tj − tk)) du

)
λjλk

=

∫ 1

0

∑
j,k=1

φ(t′j − t′k)λjλk du

where t′i = uti ∈ R. Therefore, as φ(t) is a characteristic function we know that

n∑
j,k=1

φ
(
t′j − t′k

)
λjλk ≥ 0

103



7.7 Solution to Exercises 7 Convergence of Characteristic Functions

by Theorem 7.6.2. This implies that

n∑
j,k=1

ψ(tj − tk)λjλk ≥ 0

and so by Theorem 7.6.2 ψ(t) =
∫ t

0
φ(ut) du is a characteristic function. ■

Exercise 7.6.8

Solution. On the one hand,
d

dt
log(φξ(t)) =

φ′
ξ(t)

φξ(t)

and on the other hand,
d

dt
log(φξ(t)) =

n∑
k=1

i(it)k−1

(k − 1)!
sk + o

(
|t|n−1

)
.

Substituting t = 0 gives

is1 =
iE(ξ)
(1)

= iE(ξ)

and so E(ξ) = s1. Similarly,

d2

dt2
log(φξ(t)) =

φξ(t)φ
′′
ξ (t)−

(
φ′
ξ(t)
)2

(φξ(t))
2

and
d2

dt2
log(φξ(t)) =

n∑
k=2

i2(it)k−2

(k − 2)!
sk + o

(
|t|n−2

)
.

Substituting t = 0 gives

i2s2 =
(1)
(
i2E

(
ξ2
))

− (iE(ξ))2

12
= i2V(ξ)

and so V(ξ) = s2. ■
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8 Conditional Expectation

Part III. Introduction to Stochastic Analysis

8 Conditional Expectation

When studying stochastic processes (ξα)α∈A, it is natural to determine how different random variables
are related. In particular, we want to know if observing one random variable will give more information
on the other random variables in the process. For this, we need the notion of conditional probability and
conditional expectation.

8.1 Preliminary Measure Theory
To ensure that our notions of conditional probability and conditional expectation are well-defined it will
be useful to make note of the following result in measure theory.

Theorem 8.1.1 — Radon-Nikodym Theorem. Let µ be a finite measure on the measure space (Ω,F ).
Let λ be a measure on F that is absolutely continuous with respect to µ. That is, λ(A) = 0 whenever
µ(A) = 0. Then there exists an F -measurable function f such that

λ(A) =

∫
A

f dµ

for all A ∈ F . Moreover, f is determined uniquely up to sets of measure zero. Consequently, f is
called the derivative of λ with respect to µ and is often denoted f = dλ

dµ .

If ξ is a non-negative random variable on a probability space (Ω,F ,P), and G ⊆ F is a σ-algebra, then
the measure defined byQ(G) =

∫
G
ξ dP for allG ∈ G is an absolutely continuous measure with respect to

P. Hence, by Theorem 8.1.1 there exists a G -measurable function f , such thatQ(G) =
∫
G
f dP for allG ∈

G . We can extend this naturally to general random variables ξ that satisfy max (E (ξ+|G ) ,E (ξ−|G )) <∞
almost surely.

8.2 Conditional Expectation and Probability

Definition 8.2.1 Let ξ be an integrable random variable on (Ω,F ,P) and let G ⊆ F be a σ-algebra.
Then there exists a random variable E(ξ|G ), referred to as the conditional expectation of ξ given G ,
that satisfies the following.

• E(ξ|G ) is G -measurable and integrable.

• For every G ∈ G we have

E(χGE(ξ|G )) =

∫
G

E(ξ|G ) dP =

∫
G

ξ dP = E(χGξ).

Remark 8.2.2 Theorem 8.1.1 ensures that the conditional expectation of an integrable random vari-
able is unique up to sets of measure zero.

Definition 8.2.3 Let (Ω,F ,P) be a probability space. Then the conditional probability of B ∈ F with
respect to a σ-algebra G ⊆ F is

P(B|G ) = E(χB |G ).

Note that for a fixed B ∈ F , the conditional probability P(B|G ) is a G -measurable random variable such
that ∫

G

P(B|G ) dP =

∫
G

χB dP = P(G ∩B)

105



8.3 Properties of Conditional Expectation 8 Conditional Expectation

for all G ∈ G as we would expect from traditional notions of conditional probabilities. Moreover, let ξ
be a random variable on a probability space (Ω,F ,P) and let G = σ ({D1, D2, . . . }) where {D1, D2, . . . }
forms a disjoint partition of Ω. That is,

Ω =

∞⋃
i=1

Di

with each Di disjoint. Moreover, suppose that P(Di) > 0 for i = 1, 2, . . . . Then all G -measurable
functions have the form

f(ω) =

∞∑
i=1

ciχDi
(ω)

and thus are constant on each Di. As E(ξ|G ) is G measurable it must be of this form. In particular,
suppose that E(ξ|G ) =

∑∞
i=1 ciχDi(ω), then

E (ξχDi
) =

∫
Di

ξ dP

=

∫
Di

E(ξ|G ) dP

= ciP(Di),

hence

E(ξ|Di) := ci =
E(ξχDi

)

P(Di)
.

Similarly,

P(B|Di) = E (χB |Di)

=
E (χBχDi

)

P(Di)

=
P(B ∩Di)

P(Di)
,

so that

P(B|G ) =

∞∑
i=1

P(B ∩Di)

P(Di)
χDi

.

In particular,
P(B|{∅,Ω}) = P(B).

8.3 Properties of Conditional Expectation

Proposition 8.3.1 Let ξ and η be random variables on a probability space (Ω,F ,P) and let G ⊆ F be
a σ-algebra. Then,

E(aξ + bη + c |G ) = aE(ξ |G ) + bE(η |G ) + c

almost surely.

Proof. For all G ∈ G , we have

E (χGE(aξ + bη + c |G )) = E(χG(aξ + bη + c))

= aE(χGξ) + bE(χGη) + cE(χG)

= aE (χGE(ξ |G )) + bE(χGE(η |G )) + cE(χG)

= E (χG(aE(ξ |G ) + bE(η |G ) + c)) .

As aE(ξ|G ) + bE(η|G ) + c is G -measurable, it follows that

E(aξ + bη + c |G ) = aE(ξ |G ) + bE(η |G ) + c.

■
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Proposition 8.3.2 Let ξ and η be random variables on a probability space (Ω,F ,P) such that ξ ≤ η
almost surely and let G ⊆ F be a σ-algebra. Then,

E(ξ|G ) ≤ E(η|G )

almost surely.

Proof. Consider the event G = {E(ξ|G ) > E(η|G )}. We know G ∈ G as E(ξ|G ) and E(η|G ) are G -
measurable. Thus, ∫

G

ξ dP =

∫
G

E(ξ|G ) dP

>

∫
G

E(η|G ) dP

=

∫
G

η dP.

Hence, P(G) = 0 as to not contradict ξ ≤ µ almost surely. Therefore, E(ξ|G ) ≤ E(η|G ) almost surely. ■

Corollary 8.3.3 Let η be a random variable on a probability space (Ω,F ,P) with η ≥ 0 almost surely.
Then for a σ-algebra G ⊆ F we have

E(η |G ) ≥ 0

almost surely.

Proof. Letting ξ = 0 in the context of Proposition 8.3.2, it follows that

E(η|G ) ≥ E(ξ|G ) = 0

almost surely. ■

Exercise 8.3.4 Let ξ and η be random variables defined on a probability space (Ω,F ,P) and let
G ⊆ F be a σ-algebra.

1. Show that E(ξ|{∅,Ω}) = E(ξ).

2. Show that E(ξ|F ) = ξ almost everywhere.

3. Suppose that ξ is independent of G , which means that ξ and χB are independent for all B ∈ G ,
then E(ξ|G ) = E(ξ).

Theorem 8.3.5 Suppose that (Ω,F ,P) is a probability space and ξ is an integrable random variable
taking values in an open interval I ⊆ R. Let g : I → R be convex and let G ⊆ F be a σ-algebra. If
E(|g(ξ)|) <∞, then

g(E(ξ|G )) ≤ E(g(ξ)|G )

almost surely.

Corollary 8.3.6 Suppose that (Ω,F ,P) is a probability space and ξ is an integrable random variable.
Then

|E(ξ|G )| ≤ E(|ξ||G )

almost surely.

Proof. One can apply Theorem 8.3.5 with φ(x) = |x|. Or one can proceed as follows. Note that for any
G ∈ G we have ∫

G

|E(ξ|G )|dP ≤
∫
G

E
(
ξ+|G

)
dP+

∫
G

E
(
ξ−|G

)
dP
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=

∫
G

ξ+ + ξ− dP

=

∫
G

|ξ|dP

=

∫
G

E(|ξ||G ) dP.

As this holds for all G ∈ G it follows that E(|ξ||G ) ≥ |E(ξ|G )| almost surely. ■

Proposition 8.3.7 Let (Ω,F ,P) be a probability space, ξ an integrable random variable and F1,F2 ⊆
F σ-algebras with F1 ⊆ F2. Then,

E(E(ξ|F2)|F1) = E(ξ|F1) = E(E(ξ|F1)|F2) (8.1)

almost surely.

Proof. Let G ∈ F1. On the one hand, ∫
G

E(ξ|F1) dP =

∫
G

ξ dP.

On the other hand, as G ∈ F1 ⊆ F2, we have∫
G

E (E (ξ|F2) |F1) dP =

∫
G

E(ξ|F2) dP =

∫
G

ξ dP.

Hence, by the uniqueness of the conditional expectation of ξ with respect to F1 we deduce thatE(E(ξ|F2)|F1) =
E(ξ|F1). Now let G ∈ F2. As E(ξ|F1) is F1-measurable it is also F2-measurable. Hence, as∫

G

E(ξ|F1) dP =

∫
G

E (E(ξ|F1)|F2) dP

it follows that E(ξ|F1) = E(E(ξ|F1)|F2). ■

Corollary 8.3.8 For ξ an integrable random variable on the probability space (Ω,F ,P) we have

E(E(ξ|G )) = E(ξ).

Proof. Take F1 = {∅,Ω} and F2 = G in Proposition 8.3.7 and then use statement 1 of Exercise 8.3.4 to
conclude. ■

Proposition 8.3.9 Let (ξn)n∈N be a sequence of random variables. Suppose |ξn| ≤ η where E(η) <∞,
and ξn → ξ almost surely. Then,

E(ξn|G )
a.s.−−→ E(ξ|G )

and
E(|ξn − ξ||G )

a.s.−−→ 0.

Proof. Let ζn = supm≥n |ξm − ξ|. Then 0 ≤ |ζn| ≤ 2η and ζn → 0 almost surely, so by the dominated
convergence theorem we have E(ζn)

n→∞−→ 0. By Corollary 8.3.6 it follows that

0 ≤ |E(ξn|G )− E(ξ|G )| ≤ E(|ξn − ξ||G ) ≤ E(ζn|G ). (8.2)

Since the sequence (E(ζn|G )(ω))n∈N is decreasing in n for fixed ω, its limit exists ω-almost surely. In
particular,

0 ≤ E
(
lim
n→∞

E(ζn|G )
)
≤ lim

n→∞
E (E(ζn|G )) = lim

n→∞
E(ζn) = 0.

Hence, limn→∞E(ζn|G ) = 0 almost everywhere, so from (8.2) it follows that

E(ξn|G )
a.s−→ E(ξ|G )

and
E(|ξn − ξ||G )

a.s−→ 0.

■
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Corollary 8.3.10 Let ξ and η be random variables on a probability space (Ω,F ,P) with ξ, η and ξη
integrable. Let G ⊆ F be a σ-algebra and suppose that η is G -measurable. Then

E(ξη|G ) = ηE(ξ|G )

almost everywhere.

Proof. Note that E(ξ|G ) and η are G -measurable.
Step 1. Consider η = χA for A ∈ G .
Let B ∈ G . On the one hand,

E (χBE (ξη|G )) = E (χBξη)

= E (χA∩Bξ) .

On the other hand,

E (χBηE(ξ|G )) = E (χA∩BE (ξ|G ))

= E (χA∩Bξ) ,

where we have used that A ∩B ∈ G . Thus, E(ξη|G ) = ηE(ξ|G ).
Step 2. Consider η to be a simple random variable.
We can extend the result of step 1 to simple random variables by using Proposition 8.3.1.
Step 3. Consider η a general integrable random variable.
Any integrable random variable η can be approximated by simple functions (ηn)n∈N with |ηn| ≤ η.
Moreover, ηnξ → ηξ almost surely, with |ηnξ| ≤ |ηξ|. Therefore, as E(ηξ) < ∞ we can apply statement
1 of Proposition 8.3.9 to deduce that E(ηnξ|G ) → E(ηξ|G ). From step 2 we know that E(ηnξ|G ) =
ηnE(ξ|G ). Therefore, as ηnE(ξ|G ) → ηE(ξ|G ) we deduce that E(ηξ|G ) = ηE(ξ|G ). ■

8.4 Conditioning on a Random Variable

Definition 8.4.1 The conditional expectation of a random variable ξ with respect to a random variable
η is

E(ξ|η) := E(ξ|σ(η)),

where σ(η) is the σ-algebra generated by η.

Theorem 8.4.2 Let µ and η be random variables such that µ is σ(η)-measurable. Then there exists a
Borel-measurable function f : R → R such that

µ = f(η).

In particular, there exists a Borel-measurable function g : R → R such that

E(µ|η) = g(η).

Proof. Step 1. Consider µ =
∑n

i=1 cjχAj
, with (Aj)

n
j=1 partitioning Ω.

As µ is σ(η)-measurable it must be the case that Aj ∈ σ(η) for j = 1, . . . , n. Hence, for j = 1, . . . , n there
exists Bj ∈ B(R) such that η−1(Bj) = Aj . It is clear that (Bj)

n
j=1 partitions η(Ω). Hence, set

f(x) =

{∑n
i=1 cjχBj

(x) x ∈
⋃n

j=1Bj

0 otherwise,

so that f(η(ω)) = µ(ω) as required.
Step 2. Consider µ a general random variable.
We can approximate µ with a sequence of simple random variables (µn)n∈N such that µn(ω) → µ(ω) for
ω ∈ Ω. By step 1 we have Borel-measurable functions fn such that µn = fn(η). Set

f(x) =

{
limn→∞(fn(x)) if it exists on η(Ω)
0 otherwise.
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Then f(x) is Borel-measurable and

µ(ω) = lim
n→∞

(µn(ω)) = lim
n→∞

(fn(η(ω))) = f(η(ω))

as required. ■

Example 8.4.3 Consider real-valued random variables X and Y defined on a probability space
(Ω,F ,P). Assume the random vector (X,Y ) has a continuous joint density fX,Y (x, y) > 0. Re-
call that X has a density fX(x) =

∫
Ω
fX,Y (x, y) dy and Y has a density fY (y) =

∫
Ω
fX,Y (x, y) dx.

Assume fX(x), fY (y) > 0 almost everywhere in R and h : R → R is a Borel measurable function
with E(|h(X)|) < ∞. By Theorem 8.4.2, we know that E(h(X) |Y ) = ϕ(Y ) for some unique Borel-
measurable ϕ almost everywhere. That is,

E(χAϕ(Y )) = E(χAh(X))

for all A ∈ σ(Y ). Since A ∈ σ(Y ) ⊆ F , we know that A = Y −1(B) for some B ∈ B(R). Then,

E(χAh(X)) = E(χB(Y )h(X))

=

∫ ∞

−∞

∫ ∞

−∞
h(x)χB(y)fX,Y (x, y) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
h(x)χB(y)

fX,Y (x, y)

fY (y)
fY (y) dy dx

Fubini
=

∫ ∞

−∞

∫ ∞

−∞
h(x)χB(y)

fX,Y (x, y)

fY (y)
fY (y) dx dy

=

∫ ∞

−∞
χB(y)

(∫ ∞

−∞
h(x)

fX,Y (x, y)

fY (y)
dx

)
fY (y) dy.

So by the uniqueness of ϕ we deduce that

ϕ(y) =

∫ ∞

−∞
h(x)

fX,Y (x, y)

fY (y)
dx.

Exercise 8.4.4

1. Let X and Y be random variables taking values in N, with joint mass pX,Y (x, y) for x, y ∈ N.
Assume h : N→ R is such that E(|h(X)|) <∞. Verify that E(h(X) |Y ) = ϕ(Y ) where

ϕ(y) =
∑
x∈N

h(x)
pX,Y (x, y)

pY (y)

for pY (y) ̸= 0.

2. Consider random variables Z1, Z2 on a probability space (Ω,F ,P) with Z1 ∼ Po(λ1) and Z2 ∼
Po(λ2). Assuming p = λ1

λ1+λ2
, show that

P(Z1 = k |Z1 + Z2 = n) =

(
n

k

)
pk(1− p)n−k.

Proposition 8.4.5 If E(ξ2) <∞, then

min
f
E
(
(ξ − f(η))2

)
= E

(
(ξ − E(ξ|η))2

)
,

where the minimum is taken over all σ(η)-measurable functions such that E
(
f2(η)

)
<∞.
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8.5 Solution to Exercises
Exercise 8.3.4

Solution.

1. As E(ξ) is a constant it is {∅,Ω}-measurable. Moreover,∫
∅
ξ dP = 0 =

∫
∅
E(ξ) dP

and ∫
Ω

ξ dP = E(ξ) = E(ξ)
∫
Ω

dP =

∫
Ω

E(ξ) dP.

Therefore, E (ξ|{∅,Ω}) = E(ξ).

2. As ξ is F -measurable it follows that E(ξ|F ) = ξ.

3. Let B ∈ G , then ∫
B

ξ dP = E (ξχB)

= E(ξ)E (χB)

= E(ξ)
∫
B

dP

=

∫
B

E(ξ) dP.

■

Exercise 8.4.4

Solution.

1. It suffices to consider singleton sets {Y = y} as Y takes values in N. Proceeding as in Example
8.4.3 we see that

E
(
h(X)χ{Y=y}

)
=
∑
x∈N

h(x)pX,Y (x, y)

=
∑
x∈N

h(x)
pX,Y (x, y)

pY (y)
pY (y)

= E
(
ϕ(y)χ{Y=y}

)
.

2. Recall that Z1 + Z2 ∼ Po(λ1 + λ2). Let h = χ{Z1=k}, then

P(Z1 = k|Z1 + Z2 = n) = E (h(Z1)|Z1 + Z2) (n).

Hence,

P(Z1 = k|Z1 + Z2 = n) =
∑
x∈N

h(x)
P(Z1 = x, Z1 + Z2 = n)

P(Z1 + Z2 = n)

=
P(Z1 = k)P(Z2 = n− k)

P(Z1 + Z2 = n)

=

(
e−λ1λk

1

k!

)(
e−λ2λn−k

2

(n−k)!

)
(

e−(λ1+λ2)(λ1+λ2)n

n!

)
=

n!

k!(n− k)!

(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

=

(
n

k

)
pk(1− p)n−k.

■
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