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Abstract

As part of the MATH50002 Group Research Project, our group con-
ducted a survey into Jordan algebras, with the aim of developing a self-
contained introduction to the algebraic structure devised by P. Jordan in
the 1930s. The foundational work regarding Jordan algebras was written
as a series of articles in the 1930s and 1940s. The main theorems are
scattered and have proofs that are dependent on the material from other
articles. Our group has gone through the literature to collect some of the
main results into a coherent document and reconstructed their proofs from
the various articles. A lot of the work of the project has been in updating
notation and terminology to be consistent with modern mathematics. The
report works up to the classification result for Jordan algebras over alge-
braically closed fields. Along the way, general results for Jordan algebras
are given, solvable and nilpotent Jordan algebras are explored, Jordan
algebras are investigated using the trace form, and simple Jordan alge-
bras are discussed. The report also includes an introduction to general
algebras, discusses the Wedderburn-Artin theorem, and the connection
from Jordan algebras to the more well-known Lie algebras, through triple
systems.

Introduction

Jordan algebras were proposed by P. Jordan in the early 1930s with the inten-
tion to encapsulate the algebraic properties of quantum mechanical systems.
Measurements from quantum mechanical systems are represented by Hermitian
matrices, therefore, Jordan wanted an algebraic structure on which operations
would preserve this property. After investigating operations on Hermitian ma-
trices Jordan gave a set of axioms from which he believed his desired structure
would emerge. Work then started to explore these axioms and deduce their
manifestations, with the ultimate goal of finding an infinite-dimensional algebra
under this structure that would accommodate quantum mechanics. During the
1930s to the 1940s much of the theory for so-called Jordan algebras was devel-
oped. Jordan, von Neumann, and Wigner wrote the first article which defined
the axioms and then A. Albert extended their work by proving some fundamen-
tal properties of these Jordan algebras. A. Albert supervised other mathemati-
cians in this new field including Kalisch who contributed many more founda-
tional results which lead to A.Albert giving a classification of finite-dimensional
Jordan algebras in the 1940s. Throughout the 1950s and 1960s, these results
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were developed with the theory starting to venture into the infinite-dimensional
setting. However, the results were not hinting at the existence of an infinite-
dimensional Jordan algebra with the required properties to successfully describe
quantum mechanics. In the late 1970s, Zelmanov provided a classification of
infinite-dimensional Jordan algebras which conclusively showed that Jordan’s
proposed framework would not be able to encompass quantum mechanics. This
was particularly disappointing for physicists, however, the study of Jordan al-
gebras is definitely not futile. For example, the automorphism group of a par-
ticular Jordan algebra manifests as the F4 exceptional Lie group. Furthermore,
Zelmanov used the theory of Jordan algebras to solve the restricted Burnside
problem. Therefore, despite not being adequate for quantum mechanics, Jordan
algebras pose a rich theory that can be applied to various other problems.
In section 1 and section 2 of this report, general notions of algebras are intro-
duced. In section 3, Jordan algebras are introduced and their basic properties
are given which leads to more sophisticated results in sections 4,5,6, and 7. Sec-
tion 4 discusses solvable and nilpotent Jordan algebras, the decomposition of
semisimple algebras is explored in section 5, and section 6 looks at simple Jordan
algebras. In section 7 the specific structure theorems are given, which will intro-
duce the exceptional Jordan algebra. The exceptional Jordan algebras were of
interest to physicists looking to use Jordan algebras to describe their quantum
mechanical systems. It was A. Albert who first showed that only one finite-
dimensional simple exceptional formally real Jordan algebra existed, which is
now called Albert’s algebra. It was Albert’s algebra whose automorphism group
was shown to be isomorphic to the exceptional Lie group F4. Zelmanov went on
to prove that Albert’s algebra was the only simple exceptional Jordan algebra
and no new infinite-dimensional exceptional Jordan algebra emerged. Finally, in
section 8, we will investigate how Jordan algebras relate to the more well-known
Lie algebras.
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1 Introduction to Algebras

1.1 Definitions

In this first section, we give some definitions regarding more general algebras.

Definition 1.1. An algebra is a vector space A over a field F with a bilinear
function

A×A → A, (x, y) 7→ xy.

This bilinear function is called the multiplication of the algebra.

Definition 1.2. An algebra A is called unital if it contains an element e ∈ A
with the property that

ex = xe = x ∀x ∈ A.

Definition 1.3. An algebra A is associative if

(xy)z = x(yz) ∀x, y, z ∈ A.

Definition 1.4. An algebra A is commutative if

xy = yx ∀x, y ∈ A,

and anti-commutative if

xy = −yx ∀x, y ∈ A.

Definition 1.5. An involution of an algebra A is a linear map J : A → A
satisfying the properties

J(J(x)) = x and J(xy) = J(y)J(x) ∀x, y,∈ A.

Definition 1.6. For an associative algebra A define the center, Z(A), as the
set of all elements in A that commute with every other element of A. In other
words,

Z(A) := {x ∈ A : xy = yx, ∀y ∈ A}.

Definition 1.7. For an associative algebra A define the centralizer of an ele-
ment as the set of elements that commute with that element. That is, for a ∈ A
the centralizer of a, C(a), is the set

C(a) := {x ∈ A : xa = ax}.

Definition 1.8. The derived series of an algebra A over a field F is the sequence

A(1) = A, A(n+1) =
[
A(n),A(n)

]
:= Sp

({
xy : x, y ∈ A(n)

})
.

Definition 1.9. The central series of an algebra A over a field F is the sequence

A1 = A, An+1 = [A,An] := Sp ({xy : x ∈ A, y ∈ An}) .

Definition 1.10. An algebra A is solvable (nilpotent) if A(m) = 0 (Am = 0)
for some positive integer m. Similarly, an element x ∈ A is nilpotent if there
exists a positive integer m such that xm = 0.
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1.2 Example

Let A be a unital algebra over a field F , with the involution x 7→ J(x) such that

x+ J(x), xJ(x) ∈ F ∀x ∈ A.

Define the algebra (A, J) as the vector space A⊕A, with the operations

• (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),

• c(x1, x2) = (cx1, cx2), and

• (x1, x2)(y1, y2) = (x1y1 − y2J(x2), J(x1)y2 + y1x2)

for xi, yi ∈ A and c ∈ F . The involution J can be extended to (A, J) by defining

J(x1, x2) = (J(x1),−x2).

This process of generating an algebra from an existing algebra is known as
the Cayley-Dickson doubling process. Explicitly, if one takes F=R, and the
involution to just be the identity map, one constructs an algebra isomorphic to
C. Continuing this process we construct the quaternions (H) and the octonions
(O). These algebras and other algebras constructed in this way will be central
to the classification theorems of Jordan algebras.

1.3 Ideals

Definition 1.11. A subset I of an algebra A is called a left ideal if AI :=
Sp({ax : a ∈ A, x ∈ I}) ⊆ I. Similarly, I is a right ideal if IA ⊆ I. If an ideal
is both a left and a right ideal then I is called a two-sided ideal.

Remark 1.12. When A is commutative, any left/right ideal is a two-sided
ideal. In these cases one often omits the prefix and simply refers to such sets as
ideals.

Definition 1.13. An algebra A is said to be simple if it has no ideals apart
from {0} and A.

Definition 1.14. An ideal I of an algebra A is said to be minimal if for any
other ideal J of A such that J ⊆ I then either J = I or J = 0.

Lemma 1.15. If I and J are ideals in A, with J being minimal, then J ⊆ I
or I ∩ J = {0}.

Proof. As J ∩I is an ideal of J and because J is minimal then either J ∩ I = J
or J ∩ I = {0}. When J ∩ I = J it follows that J ⊆ I.

Definition 1.16. Let A and A′ be two algebras over a field F . Then a linear
transformation of vector spaces ϕ : A → A′ is called a homomorphism of algebras
if

ϕ(xy) = ϕ(x)ϕ(y) ∀x, y ∈ A.
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Theorem 1.17. Let f : A → A′ be a homomorphism between the algebras A
and A′. Then the kernel of f , defined as ker(f) := {x ∈ A : f(x) = 0}, is an
ideal of A.

Proof. Firstly, let x, y ∈ ker(f). Then f(x) = f(y) = 0 and so by the linearity
of the homomorphism

f(x+ y) = f(x) + f(y) = 0 + 0 = 0.

Therefore, x+ y ∈ ker(f). Similarly,

f(−x) = −f(x) = −0 = 0

so that −x ∈ ker(f). Hence, ker(f) forms a group under addition. Next let
a ∈ A and x ∈ ker(f). Then

f(ax) = f(a)f(x) = f(a)0 = 0,

which implies that ax ∈ ker(f). This shows that ker(f) is an ideal of A.

1.4 References

Material for the definition and example came from [14], [4] and [7]. Material
regarding ideals came from [12].
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2 Wedderburn-Artin Theorem

The Wedderburn-Artin theorem is a classification of finite-dimensional associa-
tive algebras. Later on, we will see that Jordan algebras are in general not
associative so this theorem cannot be applied. However, this section will in-
dicate some of the theory that may be necessary to develop to achieve similar
results for Jordan algebras. When Jordan algebras were first introduced, math-
ematicians conducted investigations surrounding ideas similar to those outlined
in this section to try and derive a similar classification result for Jordan algebras.
In section 7 of this report we will see that indeed classification results for Jordan
algebras were achieved, however, they are not as concise as the Wedderburn-
Artin theorem.

2.1 Definitions

Definition 2.1. Let (R,+,×) be a ring, and (M,+) an additive abelian group.
M is called a left-R module if there exists an R-action (− · −) : R ×M → M ,
satisfying:

1. (r1 + r2) ·m = r1 ·m+ r2 ·m,

2. (r1 × r2) ·m = r1 · (r2 ·m),

3. r · (m1 +m2) = r ·m1 + r ·m2, and

4. 1R ·m = m.

The concept of a module over a ring can be regarded as a generalization of
vector spaces over a field. It is necessary to point out that every ring R is a left
R-module itself by defining the left regular action:

L : R×R → R, (α, x) 7→ αx.

Definition 2.2. Suppose M is a left R-module and S ⊆ M . Then S is called
a submodule of M if (S,+) is a subgroup of (M,+) and for all r in R, and s in
S we have that r · s ∈ S.

Remark 2.3. Every ring R is a left R-module, therefore, if S is a submodule
of R it is also a left ideal of R.

Definition 2.4. Suppose M and N are two left R-modules, then the map ϕ :
M → N is called an R-module homomorphism (or an R-linear map) between
M and N if for any r ∈ R and x, y ∈ M the following hold:

1. ϕ(x+ y) = ϕ(x) + ϕ(y), and

2. ϕ(r · x) = r · ϕ(x).

Definition 2.5. If ϕ is a bijective homomorphism between the left R-modules M
and N , then ϕ is called an R-module isomorphism. If an isomorphism between
M and N exists then they are said to be isomorphic, which we denote M ∼=R N .
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For R-modules M and N let HomR(M,N) denote the set of all R-module
homomorphisms between M and N . If M equals N then we use EndR(M) to
denote HomR(M,M). Elements of EndR(M) are called endomorphisms.

Definition 2.6. Suppose (R,+,×) is a ring, the opposite of R is the ring
(Rop,+, ∗) where a ∗ b = b× a.

Definition 2.7. For a ring R let S be the set of all n×n matrices with entries
in R. Then Mn(R) = (S,+, ·) is called a full matrix ring on R, where + is
matrix addition and · is matrix multiplication.

Definition 2.8. A R-module M is said to be simple if it’s non-zero and it has
no other submodules except for 0 and itself.

Definition 2.9. A module M is called semisimple if it is a direct sum of sim-
ple modules. An algebra A is called semisimple if all non-zero A-modules are
semisimple.

2.2 Preliminary Results

Proposition 2.10. Let R be a ring then:

1. (Rop)op = R, and

2. if R is commutative then Rop = R.

Proof. Suppose the multiplication for (Rop)op is ⊗ then

a⊗ b = b ∗ a = a× b

which implies that ⊗ = ×. This means that (Rop)op = R.
If R is commutative then in Rop we have that

a ∗ b = b× a = a× b

and therefore Rop = R.

Lemma 2.11. Let M be a finitely generated R-module. The following properties
are equivalent:

1. Any submodule of M is a direct summand. In other words, if W ⊂ M is
a submodule then there exists a submodule W ′ such that M = W ⊕W ′.

2. M is semisimple.

3. M is a finite sum of simple submodules.

Proof. Note that 1 implies 2 and 2 implies 3. For 3 implies 1 consider the
submodules of M whose intersection with W is {0}. Let L be such a submodule
of maximal dimension. If W ⊕ L ̸= M then there is some simple submodule S
in M that is not in W ⊕L, by the assumption that M is a finite sum of simple
submodules. However, this would imply that the intersection of S + L and W
is also {0} which contradicts the properties of L.
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Proposition 2.12. If a module M is semisimple, then so is every submodule
and every quotient of M .

Proof. If N is a submodule then M = N ⊕ L for some L by Lemma 2.11. This
implies M/L ∼= N , and so it is enough to prove the result for quotient modules.
If M/L is a quotient module consider the projection homomorphism π from M
to M/L. Write M as a sum of simple modules Si and then π(Si) is either simple
or {0}. This proves that M/L is a sum of simple modules, and so the result
follows from Lemma 2.11.

Proposition 2.13. An algebra A is semisimple if and only if the A-module is
semisimple.

Proof. Suppose A to be semisimple as a A-module. Let M be an A-module
and choose a set {m1, ...,mr} of generators for M . Let Ar be the direct sum of
r copies of A. Note that Ar is also semisimple as if A =

⊕
j Aj where Aj are

simple A-modules then Ar =
⊕

r

⊕
j Aj . Define the map ϕ : Ar → M by

(a1, . . . , ar) 7→
r∑

i=1

aimi.

Clearly, ϕ is a surjective homomorphism, thus according to the isomorphism
theorem of modules, M is isomorphic to some quotient of a semisimple module
Ar. By Proposition 2.12 it follows that M is semisimple.
The converse of this proposition is trivial.

Proposition 2.14. Suppose that A is a semisimple algebra and let Ai be the
collection of simple distinct A-submodules of A. Let M be an A-module (which
is automatically semisimple). Then there is a set of integers ni such that

M ∼= An1
1 ⊕ · · · ⊕ Anr

r .

Proof. It follows naturally from Lemma 2.11 and 2.13.

Lemma 2.15. Suppose A is a simple unital associative algebra over a field F ,
and let I,J be two minimal left ideals of A. Then there exists α ∈ A such that
I = Jα = {jα : j ∈ J }, thus I ∼= J .

Proof. Note that IA and JA are two-sided ideals of A. As A simple, if I and
J are both not trivial then

IA = JA = A

which implies that
IJA = IA = A

where I, J are not zero. Let α ∈ J , then Iα ⊆ J (by closure of left multipli-
cation). Clearly Iα is a left ideal of A, and since J is a minimal left ideal it
follows that Iα = J . Hence, I ∼= J .
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Lemma 2.16. Suppose Mi and Ni for i = 1, 2, ..., n are left R-modules, then:

HomR

(
n⊕

i=1

Mi, N

)
∼=

n⊕
i=1

HomR(Mi, N), and

HomR

(
M,

n⊕
i=1

Ni

)
∼=

n⊕
i=1

HomR(M,Ni).

Proof. Using induction, it’s sufficient to show

HomR(M1 ⊕M2, N) ∼= HomR(M1, N)⊕HomR(M2, N).

Define a natural mapping Φ : HomR(M1⊕M2, N) → HomR(M1, N)⊕HomR(M2, N)
by

ϕ(m1,m2) 7→ ϕ(m1)⊕ ϕ(m2).

It’s easy to verify that Φ is indeed an isomorphic mapping.

Definition 2.17. A division algebra D is a ring for which every non-zero ele-
ment has a multiplicative inverse.

Lemma 2.18 (Schur’s lemma). Suppose M and N are two simple modules
over a ring R, then any homomorphism ϕ : M → N of R-modules is either an
isomorphism or the zero map. In particular, the endomorphism ring of a simple
module is a division ring.

Proof. For all ϕ ∈ HomR(M,N) note that ker(ϕ) ≤ M and im(ϕ) ≤ N . By the
simplicity of M and N , we can deduce that either

ker(ϕ) = M and im(ϕ) = 0, or ker(ϕ) = 0 and im(ϕ) = N.

Therefore, ϕ is either the zero map or an isomorphism. Hence, EndR(M) is a
division ring since its non-zero elements are invertible automorphisms.

Lemma 2.19. Suppose A is an algebra over the field F , then EndA(A) ∼= Aop.

Proof. Define the right multiplication action of a fixed element α by

Rα : A → A, x 7→ xα.

Next, define the mapping

R : Aop → EndA(A), α 7→ Rα.

First, to verify it’s well-defined we show that Rα is indeed an endomorphism.
To do this it is sufficient to note that

Rα(x+ y) = (x+ y)α = xα+ yα = Rα(x) +Rα(y)

and
Rα(rx) = rxα = rRα(x),∀x, y, r ∈ Aop.
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Then as,

R(a× b)(x) = R(b ∗ a)(x) = xba = R(a)(xb) = R(a) ◦R(b)(x),∀x ∈ A

it follows that R is a multiplicative homomorphism. Next, to show that R is a
bijection we note that for all ϕ ∈ EndA(A) and x ∈ A we have that

ϕ(x) = ϕ(1 · x) = xϕ(1) = R(ϕ(1))(x).

Since ϕ(1) ∈ A we have that R is surjective. Furthermore, ker(R) = 0 implies
that R is injective, thus EndA(A) ∼= Aop.

Lemma 2.20. Suppose Mn(D) is the matrix algebra over a division ring D,
then Mn(D) ∼= (Mn(D))op.

Proof. Define the mapping that transposes a matrix as

T : Mn(D) → (Mn(D))op

A 7→ A⊤, aij 7→ aji.

Note that

• (A+B)⊤ = A⊤ +B⊤,

• (kA)⊤ = kA⊤,

• (A ·B)⊤ = B⊤ ·A⊤, and

• T is invertible.

The above shows that T is an isomorphism, so we conclude that Mn(D) ∼=
(Mn(D))op.

Theorem 2.21. Let Mn(R) be a full matrix ring on the ring R, then any ideal
I is of the form Mn(I) for some ideal I of R.

Proof. If I is an ideal of R, then as scalar multiplication and matrix addition
happen component-wise it is clear that Mn(I) is an ideal of Mn(R). Further-
more, if Mn(I1) = Mn(I2) for ideals I1, I2, it is clear that I1 = I2 because
matrices are equal if and only if each component is equal.
Next, suppose that J is an ideal of Mn(R). Let I denote the set of elements in
the top left entry of the matrices of J , then I is an ideal of R. This is because
first, it’s trivially closed under addition and secondly, if it’s not closed under
multiplication of elements in R, then it contradicts J is an ideal of Mn(R). Let
eij be the matrix with 0 in every entry apart from the ijth entry. Let M ∈ J ,
then e1jMej1 = mije11 ∈ J so that mij ∈ I and hence J ⊆ Mn(I). On
the other hand, let N = (nij) ∈ Mn(I), and take M = (mij) ∈ J such that
m11 = nij . Then nijeij = m11eij = ei1Me1j = m11eij ∈ J . Therefore, as J is
closed under addition, and ij were arbitrary it follows that N ∈ J . Therefore,
Mn(I) ⊆ I which means that Mn(I) = J .
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Corollary 2.21.1. If R is a simple ring, then Mn(R) is also simple.

Proof. By Theorem 2.21, all ideals of Mn(R) are of the form Mn(I) where I is
an ideal of R. As R is simple it only has the ideals R and {0}, therefore, Mn(R)
only has the ideals Mn(R) and {0} meaning it is also simple.

Definition 2.22. A field F is said to be algebraically closed if every polynomial
with coefficients in F has a root in F .

Lemma 2.23. Let D be a finite-dimensional division algebra over an alge-
braically closed field F . Then D = F .

Proof. For all a ∈ D and a ̸= 0, as D is finite dimensional, a, a2, . . . ak, . . . are
linearly dependent. We then choose the smallest n where:

an + c1a
n−1 + · · ·+ cn = 0.

Consider f(x) = xn + c1x
n−1 + · · · + cn, as F is algebraically closed, f has a

root λ in F such that f(x) = (x − λ)g(x) where deg(g(x)) = n − 1. Inserting
x = a we get:

(a− λ)g(a) = 0,

and since f(x) is chosen to be the smallest degree so g(a) ̸= 0 hence invertible
(D is division algebra). It follows that a = λ ∈ F , hence D = F .

2.3 Theorems

Theorem 2.24 (Wedderburn-Artin Theorem for Algebras). Let A be a unital
associative finite-dimensional algebra over field F .

1. A is semisimple if and only if there exist division algebras D1, . . . ,Dr over
F with positive integers n1, . . . , nr such that

A ∼= Mn1
(D1)⊕Mn2

(D2)⊕ · · · ⊕Mnr
(Dr).

2. If F is an algebraically closed field, then A is semisimple if and only if
there exist positive integers n1, . . . , nr, such that

A ∼= Mn1
(F )⊕Mn2

(F )⊕ · · · ⊕Mnr
(F ).

Remark 2.25. Note that statement 2 can be derived easily from statement 1
since the only finite-dimensional associative division algebra on an algebraically
closed field F is F itself by Lemma 2.23.

Proof. (Theorem 2.24)
Suppose that A is semisimple and let Ai be the non-pairwise isomorphic simple
submodules of A. With A = An1

1 ⊕ · · · ⊕ Anr
r , we have that

Aop ∼= EndA(A) ∼= EndA(An1
1 ⊕ · · · ⊕ Anr

r )
∼= EndA(An1

1 )⊕ · · · ⊕ EndA(Anr ).
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Now we note that:

EndA(Ani
i ) = EndA

(
ni⊕
k=1

Ai

)
= HomA

(
ni⊕
k=1

Ai,

ni⊕
l=1

Ai

)

∼=
ni⊕
k=1

ni⊕
l=1

HomA(Ai,Ai)

=

ni⊕
k=1

ni⊕
l=1

EndA(Ai).

By installing everything into the entries of a matrix, we have:

ni⊕
k=1

ni⊕
l=1

EndA(Ai) ∼= Mni
(EndA(Ai)).

By Schur’s lemma, since Ai is simple module, EndA(Ai) is a division algebra.
Letting Di = EndA(Ai), we have

Aop ∼= Mn1
(D1)⊕Mn2

(D2)⊕ · · · ⊕Mnr
(Dr).

Then take the opposite to deduce that

A = (Aop)op ∼= Mn1(D1)⊕Mn2(D2)⊕ · · · ⊕Mnr (Dr).

Theorem 2.26 (Wedderburn-Artin Theorem for Rings). If R is a unital ring,
then R is semisimple if and only if there exist division rings D1, ..., Dr and
positive integers n1, . . . , nr, such that

A ∼= Mn1
(D1)⊕Mn2

(D2)⊕ · · · ⊕Mnr
(Dr).

Proof. The proof of this statement requires material not sufficiently developed
in this report. To see the proof refer to [11].

2.4 References

Material for this section came from [17] and [15].
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3 A General Theory of Jordan Algebras

In this section, the more specific exploration of Jordan algebras begins. The
defining axioms for Jordan algebras were devised by Jordan after investigating
Hermitian matrices. However, he intended to explore how this structure could
be used more generally.

Definition 3.1. An algebra J over a field F satisfying

1. x ◦ y = y ◦ x (Commutativity) and,

2. x ◦
(
x2 ◦ y

)
= x2 ◦ (x ◦ y) (Jordan’s Identity)

is known as a Jordan algebra.

Definition 3.2. The plus algebra A+ of an associative algebra A over a field
F (char(F ) ̸= 2) is the algebra with the same underlying vector space as A but
has multiplication defined as

x ◦ y =
1

2
(xy + yx).

Theorem 3.3. Let A be an associative algebra, then A+ is a Jordan algebra.

Proof. It is clear that the product is commutative as

x ◦ y =
1

2
(xy + yx) =

1

2
(yx+ xy) = y ◦ x.

Furthermore, it satisfies the Jordan identity as

(x ◦ y) ◦ x2 =
1

2

(
(x ◦ y)x2 + x2 (x ◦ y)

)
=

1

2

(
1

2
(xy + yx)x2 +

1

2
x2 (xy + yx)

)
=

1

2

(
1

2
xyx2 +

1

2
yx3 +

1

2
x3y +

1

2
x2yx

)
=

1

2

(
x
1

2

(
yx2 + x2y

)
+

1

2

(
yx2 + x2y

)
x

)
=

1

2

(
x
(
y ◦ x2

)
+
(
y ◦ x2

)
x
)

= x ◦
(
y ◦ x2

)
.

Definition 3.4. A special Jordan algebra is one which is isomorphic to a sub-
algebra of A+ for some associative algebra A, otherwise, it is an exceptional
Jordan algebra.

Remark 3.5. The operation x ◦ y = 1
2 (xy + yx) is often referred to as the

Jordan product.
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Definition 3.6. A Euclidean Jordan algebra is a Jordan algebra that is equipped
with an bilinear product that is compatible with the Jordan product. In other
words, the bilinear product satisfies

⟨x ◦ y, z⟩ = ⟨y, x ◦ z⟩

for all x, y, z in the algebra.

3.1 Jordan Algebra Identities

The following identities are fundamental to the properties of Jordan algebras
as they manifest from the defining axioms. Some of the identities will play
important roles in the proof of the main theorems of this report. Throughout
let J be a Jordan algebra over an infinite field F with multiplication denoted
by ◦.

Lemma 3.7. (Polarization Formula) For a Jordan algebra J the following
identity holds

2(z ◦ y) ◦ (x ◦ z) + z2 ◦ (y ◦ z) = 2x ◦ (y ◦ (x ◦ z)) +
(
x2 ◦ y

)
◦ z

for all x, y, z ∈ J .

Proof. For λ ∈ F and z ∈ J substitute x = x + λz into the Jordan Identity.
Expanding the left hand side yields

x ◦
(
x2 ◦ y

)
+ λx((x ◦ z) ◦ y) + λx((z ◦ x) ◦ y) + λz ◦

(
x2 ◦ y

)
+ λ2x ◦

(
z2 ◦ y

)
+ λ2z ◦ ((x ◦ z) ◦ y) + λ2z ◦ ((z ◦ x) ◦ y) + λ3z ◦

(
z2 ◦ y

)
and expanding the right hand side yields

x2 ◦ (x ◦ y) + λ(x ◦ z) ◦ (x ◦ y) + λ(z ◦ y) ◦ (x ◦ y) + λx2 ◦ (z ◦ y)
+ λ2z2 ◦ (x ◦ y) + λ2(x ◦ z) ◦ (z ◦ y) + λ2(z ◦ y) ◦ (z ◦ y) + λ3z2 ◦ (z ◦ y).

By comparing λ coefficients and using the commutativity of ◦ the result follows.

Definition 3.8. For a Jordan algebra J and x ∈ J , define R(x) to be the
linear transformation representing right multiplication by x. So that for y ∈ J
we have

R(x)y = y ◦ x.

Similarly, define L(x) to be the linear transformation representing left multipli-
cation by x. So that for y ∈ J we have

L(x)y = x ◦ y.

Remark 3.9. Note that a Jordan algebra is commutative so that R(x) = L(x)
for any x ∈ J .
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Remark 3.10. Considering the result of Lemma 3.7 as a linear transformation
in z gives the identity

2R(x ◦ y)R(x) +R
(
x2
)
R(y) = 2R(x)R(y)R(x) +R

(
x2 ◦ y

)
.

Through a similar method of proof to that of Lemma 3.7 but applied instead to
the polarization formula yields the identity

R(x ◦ y)R(z) +R(x ◦ z)R(y) +R(y ◦ z)R(x) =

R(z)R(x ◦ y) +R(y)R(x ◦ z) +R(x)R(y ◦ z). (1)

As the above identity is a linear transformation we can apply it to an element
w. Then interchanging the z and the w results in the identity

R((x ◦ y) ◦ z) = R(x)R(y ◦ z) +R(y)R(x ◦ z)
+R(z)R(x ◦ y)− (R(x)R(z)R(y) +R(y)R(z)R(x)). (2)

Again by using (1) it follows that

R((x ◦ y) ◦ z) = R(y ◦ z)R(x) +R(x ◦ z)R(y)

+R(x ◦ y)R(z)− (R(x)R(z)R(y) +R(y)R(z)R(x)). (3)

By interchanging x and z in (2) then subtracting (2) by the result gives

R((x ◦ y) ◦ z)−R(x ◦ (y ◦ z)) = (R(z)R(x)−R(x)R(z))R(y)

−R(y)(R(z)R(x)−R(x)R(z)). (4)

Next, if one defines powers inductively as xt+1 = xt ◦x, then using (3) it follows
that

R
(
xt+1

)
= 2R

(
xt
)
R(x) +R

(
x2
)
R
(
xt−1

)
−
(
R
(
xt−1

)
R
(
x2
)
+R(x)2R

(
xt−1

))
. (5)

Remark 3.11. From (5) it follows by induction that for any x ∈ J and positive
integer t we have that R (xt) is a polynomial in R(x) and R

(
x2
)
.

3.2 Basic Results

We now give some basic properties of Jordan algebras. Some may not contribute
to the proof of the main theorems of this report, however, they do illustrate some
interesting properties of Jordan algebras. Throughout let A be an associative
algebra.

Proposition 3.12. Powers of x ∈ A+ coincide with the powers of x ∈ A.
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Proof. Let xn denote the nth power of x in A, and let x(n) denote the nth power
of x in A+. It is clear that x1 = x(1). We now proceed by induction. Assume
that for k ≤ n we have that xk = x(k). Then,

x(n+1) = x ◦ x(n) = x ◦ xn =
1

2
(xxn + xnx) = xn+1.

Proposition 3.13. For x, y ∈ A the following are equivalent:

1. x and y are commuting in A+, i.e. x ◦ (y ◦ z) = y ◦ (x ◦ z) for all z ∈ A,
and

2. xy − yx is in the center of A.

Proof. If x ◦ (y ◦ z) = y ◦ (x ◦ z) then expanding the Jordan products it must be
the case that

1

2

(
x
1

2
(yz + zy) +

1

2
(yz + zy)x

)
=

1

2

(
y
1

2
(xz + zx) +

1

2
(xz + zx)y

)
from which it follows that

(xy − yx)z = z(xy − yx).

Proposition 3.14. Suppose A has unit element e, then e is also a unit element
of A+.

Proof. For x ∈ A+ it follows that

x ◦ e = 1

2
(xe+ ex) =

1

2
(2x) = x.

By commutativity, we also have e ◦ x = x. Therefore, e is a unit element of
A+.

Theorem 3.15. For a Jordan algebra J , over a field F , and x ∈ J it follows
that for any positive integers s and t,

xs ◦ xt = xs+t.

Proof. Consider J0 as the associative algebra generated by R(x) and R
(
x2
)

(that is the span of finite sums and products of R(x) and R
(
x2
)
). Then by

Remark 3.11 J0 contains R (xt) for all positive integers t. In particular, this
implies that R (xt)R (xs) = R (xs)R (xt) for all positive integers s and t. Using
this we see that for t > 1 the following holds

xs ◦ xt = xs
(
xt−1 ◦ x

)
= R (xs)R

(
xt−1

)
x = R

(
xt−1

)
R (xs)x = xs+1xt−1.

Therefore,
xs ◦ xt = xs+1 ◦ xt−1 = · · · = xs+t−1 ◦ x = xs+t.
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Remark 3.16. Theorem 3.15 says that Jordan algebras are power associative.

Lemma 3.17. Let J be a Jordan algebra and let x, y ∈ J . Then x and x ◦ y
commute if and only if x2 and y commute.

Proof. Letting z = x in (1) gives

2R(x ◦ y)R(x) +R
(
x2
)
R(y) = 2R(x)R(x ◦ y) +R(y)R

(
x2
)

which rearranges to give

2R(x ◦ y)R(x) = 2R(x)R(x ◦ y) = R(y)R
(
x2
)
−R

(
x2
)
R(y).

Therefore, the transformations R(x) and R(x ◦ y) commute if and only if the
transformations R

(
x2
)
and R(y) commute.

Theorem 3.18. For a Jordan algebra J defined over a field F with x, y ∈ J ,
then the following assertions are equivalent:

1. x, y and x ◦ y commute pairwise,

2. F [x, y] (the algebra of polynomials in variables x, y with coefficients in F )
is an associative subalgebra of J whose elements commute pairwise.

Proof. Since x, y and x ◦ y belong to F [x, y], it is clear that 2. implies 1. The
proof of the implication for the other direction is done in 3 steps.
Step 1: All the terms xr, ys, x ◦ y commute by pairs and we have

yq ◦ (xr ◦ ys) = xr ◦ yq+s, xp ◦ (xr ◦ ys) = xp+r ◦ ys.

From Lemma 3.17 we have that x2, y commute and similarly y2, x commute. By
Remark 3.10 we also see that x2◦y, x, y commute by pairs. Again from applying
Lemma 3.17 to y and x2 we have that x2, y2 commute. Then applying it again
to x and x ◦ y we have that x2, x ◦ y commute (and analogously we have that
y2, x ◦ y commute). Then by Remark 3.11 we have that xr, ys, x ◦ y commute
by pairs for every positive integer r and s. Therefore,

yq ◦ (xr ◦ ys) = xr ◦ (yq ◦ ys) = xr ◦ yq+s

and similarly
xp ◦ (xr ◦ ys) = (xp ◦ xr) ◦ ys = xp+r ◦ ys.

Step 2: R (xr ◦ ys) is a polynomial in R(x), R
(
x2
)
, R(y), R

(
y2
)
, R(x ◦ y).

We prove the assertion for r = 1 by induction on s, putting x◦ys = x for s = 0.
Assume the assertion is true for R(x ◦ ys−1) and R(x ◦ ys). Using Remark
3.10 we get the result for s + 1. Now we prove the assertion for a given s by
induction on r. Assume that R(xr−1 ◦ ys) and R(xr ◦ ys) are polynomials in
R(x), . . . , R(x ◦ y). Again using Remark 3.10, we get the assertion for r + 1.
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Step 3: Proof of the theorem.
The hypothesis and Step 2 imply that xr, xp ◦ yq commute. Thus Step 1 yields

(xr ◦ ys) ◦ (xp ◦ yq) = xr ◦ ((xp ◦ yq) ◦ ys) = xr ◦
(
xp ◦ yq+s

)
= xr+p ◦ yq+s.

Therefore F [x, y] is closed with respect to multiplication and is associative.

Define the quadratic representation of an algebra A as

P (x)y = 2x ◦ (x ◦ y)− x2 ◦ y

for x, y ∈ A. Which can be written in terms of linear transformations as

P (x) = 2R2(x)−R
(
x2
)
.

If A has unit element e then P (e) = Id, where Id is the identity transformation.

Theorem 3.19. Let A be a commutative algebra over (an infinite) field F with
a unit element e. If char(F ) ̸= 2, 3, 5 then A is a Jordan algebra if and only if
P (x2) = P 2(x) holds for every x ∈ A.

Proof. By using Remark 3.10 we find that

3R(
(
x2
)
R(x) = 2R(x)3 +R(

(
x3
)

and
2R
(
x3
)
R(x) +R

(
x2
)
= 2R(x)R

(
x2
)
R(x) +R

(
x4
)
.

Applying Jordan’s identity to the second expression yields

2R
(
x3
)
R(x) +R

(
x2
)
= 2R(x)2R

(
x2
)
+R

(
x4
)
.

Substituting the first into the second and rearranging gives the identity

R
(
x4
)
= 4R

(
x2
)
− 4R(x)4 +R

(
x2
)2

.

Therefore,

P
(
x2
)
= 2R

(
x2
)2 −R

(
x4
)

= 2R
(
x2
)2 − (4R

(
x2
)
− 4R(x)4 +R

(
x2
)2
)

= R
(
x2
)2 − 4R

(
x2
)
R(x)2 + 4R(x)4

= P (x)2.

Hence, we have shown the forward implication of the theorem. For the reverse
implication substitute e+ λx (with λ ∈ F ) into P

(
x2
)
= P (x)2. Now compare

the λ3 coefficients to conclude that

4R(x)3 + 2R
(
x3
)
= 3R(x)R

(
x2
)
+ 3R

(
x2
)
R(x).

19



The assumption P
(
x2
)
= P (x)2 when applied as a linear transformation to e

yields
x4 = x2 ◦ x2.

Replacing x with x+ λy (λ ∈ F ) and comparing λ coefficients gives

4x2 ◦ (x ◦ y) = 2x ◦ (x ◦ (x ◦ y)) + x ◦
(
x2 ◦ y

)
+ x3 ◦ y,

which when viewed as a linear transformation applied to y gives the identity

4R
(
x2
)
R(x) = 2R(x)3 +R(x)R

(
x2
)
+R

(
x3
)
.

When combined with the previous identity we conclude that R
(
x2
)
R(x) =

R(x)R
(
x2
)
(provided that char(F ) ̸= 5), which is Jordan’s identity. Hence, A

is a Jordan algebra.

For A+, the quadratic representation simplifies to P (x)y = xyx.

Theorem 3.20. Let J be a Jordan algebra with a unit element e, and let x ∈ J .
Then the inverse x−1 exists if and only if det(P (x)) ̸= 0. In such a case we also
have that x−1 = P−1(x)x.

Proof. Assume that x−1 exists. Then by Theorem 3.18 we have that R (xn) and
R (xm) commute for integers n,m. Letting y = x−1 and y = x−2 in Remark
3.10 we have that

R(x) = P (x)R
(
x−1

)
and 2R(x)R

(
x−1

)
− P (x)R

(
x−2

)
= Id.

Substituting the first into the section yields

P (x)P
(
x−1

)
= Id

which implies that det(P (x)) ̸= 0. Conversely, suppose that x−1 does not exist.
We now show that this means that x is a zero divisor in F [x] = Sp

(
{e, x, x2, . . . }

)
.

Consider the map F [x] → F [x] defined by y 7→ x ◦ y. Then this map is an in-
jective endomorphism as if x ◦ y1 = x ◦ y2 then x ◦ (y1 − y2) = 0 which means
that y1 − y2 is a zero divisor as x is not a divisor, from which we deduce that
y1 = y2. Hence, the map is also a bijection which implies there exists a y such
that x◦y = e, but this contradicts x−1 not existing. Therefore, there must exist
a y such that x ◦ y = 0 and hence

P (x)y = x ◦ (x ◦ y) = 0

which implies that det(P (x)) = 0.
Consequently, we can conclude that when det(P (x)) ̸= 0 that

P−1(x)x = P
(
x−1

)
x = 2x−1 ◦

(
x−1 ◦ x

)
− x−2 ◦ x = x−1.
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Proposition 3.21. The inverse of x ∈ A exists if and only if the inverse of x
in A+ exists.

Proof. Let y ∈ A be such that xy = yx = e then it is clear that x◦y = y◦x = e.
Hence, y is the inverse of x in A+. Now let y be the inverse of x in A+. Then,
y = P−1(x)x and hence

P (x)(e− xy) = x(c− xy)x = x2 − x2yx = x2 − xP (x)y = x2 − x2 = 0.

Therefore, e = xy and similarly yx = e.

3.3 Ideals

Theorem 3.22 (The Second Isomorphism Theorem). For a Jordan algebra J
with ideals I and K it follows that

(I +K)/J ∼= I/(I ∩ K).

Proof. Define a map ϕ : I → (I +K)/J by

ϕ(i) = i+K, i ∈ I.

Then for i ∈ I if ϕ(i) = K we must have that i ∈ K. Similarly, if i ∈ K then
ϕ(i) = K. Hence, ker(ϕ) = I ∩ K. Furthermore, for i1 and i2 ∈ I it follows that

ϕ(i1 + i2) = i1 + i2 +K = (i1 +K) + (i2 +K) = ϕ(i1) + ϕ(i2)

and

ϕ(i1 ◦ i2) = i1 ◦ i2 +K = i1 ◦ i2 + i1 ◦ K +K ◦ i2 +K ◦ K = ϕ(i1) ◦ ϕ(i2).

Therefore, by the first isomorphism theorem, the desired relation is established.

Proposition 3.23. Let J be a Jordan algebra. Then:

1. If J is solvable, then all subalgebras of J are solvable.

2. If J is solvable, then all quotient algebras J /I are solvable.

3. If I is a solvable ideal, and J /I is solvable, then J is solvable.

4. For solvable ideals I and K it follows that I +K is solvable.

Proof. 1. Suppose J (m) = 0, and let M ⊂ J be a subalgebra. Assume that
M(k) ⊆ J (k) for all k < n. Then, for m ∈ M(n) we have that m = x ◦ y
for some x, y ∈ M(n−1) ⊆ J (n−1). Hence, m ∈ J (n) from which it follows
that M(m) ⊆ J (m) = 0. Therefore, M is also solvable.
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2. Let I be an ideal and J (m) = 0. For j1, j2 ∈ J we have

[j1 + I, j2 + I] = (j1 + I)(j2 + I) + (j2 + I)(j1 + I)
= [j1, j2] + I

and hence, (J /I)(1) = J (1)/I = (J (1) + I)/I. By induction it follows
that (J /I)(k) = (J (k) + I)/I. Hence,

(J /I)(m) = (J (m) + I)/I = 0

So that J /I is solvable.

3. Assume that I(m) = 0 and (J /I)(n) = 0, then

(J (n) + I)/I = I

which implies that J (n) ⊆ I. Hence,

0 =
(
J (n)

)(m)

= J (n+m)

so that J is solvable.

4. By Theorem 3.22 it follows that

(I +K)/I ∼= K/(I ∩ K)

The right-hand side of which is solvable by (2) and so I +K is solvable
by part 3 of this proposition.

3.4 References

Introductory material for this section came from [18]. Most of the identities are
from [4] along with the proof of the power associativity of a Jordan algebra. The
polarization formula and other results regarding Jordan algebras came from [12].
The section on ideals was motivated by similar results for Lie algebras found in
[16].
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4 Solvable and Nilpotent Jordan Algebras

Definition 4.1. An algebra (ideal) in which every element is nilpotent is called
a nil algebra (ideal).

Proposition 4.2. A nilpotent algebra A is a nil algebra.

Proof. Let A be nilpotent, then there exists a positive integer m such that
Am = 0 which implies that for all x ∈ A we have that xm = 0. This means that
A is a nil algebra.

Lemma 4.3. Let F [x] be the associative algebra generated by a non-nilpotent
element x. Then, F [x] contains a non-zero idempotent element, e.

Proof. Let f(t) be a non-zero polynomial of least degree such that f(0) = 0
and f(x) = 0. Let f(t) = tkh(t) where h(0) ̸= 0 and k ≥ 1. Then, as x is
not nilpotent it must be the case that deg(h(t)) > 0. Therefore, the greatest
common divisor of tk and h(t) is 1, as h(t) has a non-zero constant term. So
by Bezout’s identity, there exists polynomials p(t) and q(t) with deg(p(t)) <
deg(h(t)) such that

p(t)tk + q(t)h(t) = 1.

Let g(t) = p(t)tk, so that g(0) = 0 and e := g(x) ̸= 0. Furthermore, deg(g(t)) <
deg(f(t)) as deg(p(t)) < deg(h(t)). Now, tkg(t) + q(t)f(t) = tk so that tkg(t) ≡
tk mod f(t). Therefore, g(t) ≡ 1 mod f(t) and hence, g(t)2 ≡ g(t) mod f(t).
As f(x) = 0 we deduce that, e2 = g(x)2 = g(x) = e.

Proposition 4.4. Any finite-dimensional power associative algebra, A, that is
not a nil algebra, contains a non-zero idempotent e.

Proof. Let x ∈ A not be nilpotent and consider F [x]. Then F [x] contains an
idempotent element, by Lemma 4.3, e ̸= 0 that is also in A.

Let J be a Jordan algebra, and let B be a subalgebra of J . Then the set of
multiplications of elements in J generates an associative algebra E(J ). That
is, E(J ) consists of finite sums of finite products of multiplication by elements
of J . Similarly, we define E(B) to be the subalgebra of E(J ) that contains the
finite sums of finite products of multiplication by elements of B. On the other
hand, define B∗ to be the algebra containing all finite sums of finite products of
elements in B. There is an important distinction between these two definitions.
One can see that E(J ) = J ∗ but note that in general E(B) and B∗ are not
equal.

Lemma 4.5. An ideal B of a Jordan algebra J is nilpotent if and only if E(B)
is nilpotent.

Proof. Suppose B is nilpotent with index k. Then a product of k + 1 elements
x, a2, . . . , ak+1 with x ∈ J and a2, . . . ak+1 ∈ B can also be seen as a product
of k elements by taking b1 = x · a2, b2 = a3, . . . , bk = ak+1. Note that each bi
is in B as it is an ideal and hence this product is 0 by assumption. However,
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a transformation T ∈ E(B) applied to x ∈ J is simply a product of k + 1
elements. Therefore all the transformations T are 0 so that E(B) is nilpotent
with an index at most k. Now suppose that E(B) is nilpotent with index k.
Then for all multiplications Si by elements in B, we have that bS1 . . . Sk = 0 for
all b ∈ B. Hence, S1 . . . Sk = 0 which means that B is nilpotent.

Theorem 4.6. Let B be a solvable subalgebra of the Jordan algebra J over a
field F with char(F ) ̸= 2. Then B∗ is nilpotent.

Proof. For algebras B of size 1 we have that B = bF . Now b2 = b3 = 0 as
B is solvable and therefore, R

(
b2
)
= R

(
b3
)
= 0 so that by (1) we must have

R(b)3 = 0. This implies that (B∗)3 = 0 and hence B∗ is nilpotent. Assume the
result holds for solvable subalgebras of size t, and let B be of size t+ 1.
Claim: We have that B = C + wF for C a solvable subalgebra of size t.
For a non-associative algebra B, the product of any two elements of the quotient
algebra B/B2 is zero. Let [w], [w2], . . . , [wm] be a basis of residue classes for
B/B2 and consider C0 = Sp({[w2], . . . , [wm]}), which could be 0 if B/B2 is of
dimension 1. If it is non-zero then it is closed under multiplication as the product
of any two elements is 0 and it is closed under addition as elements are linearly
independent of [w]. Therefore, C0 forms a subalgebra of B/B2. Now consider
the elements of the residue classes [w2], . . . , [wm] as a subset of B. By similar
arguments, this forms a subalgebra C of B. Now because w ̸= 0 we must have
that B2 ⊆ C, so that either C = B2 or C2 = B2. In either case, as B is solvable
it follows that C is solvable. This finishes the proof of the claim.
Now by the inductive hypothesis C∗ is nilpotent. For x, y, z ∈ B and we have

R(x◦y)R(z)+R(y◦z)R(x)+R(z◦x)R(y)−R((x◦z)◦y) ∈ C∗B∗+C∗ =: D.

By (3) we have D(x, y, z) := R(x)R(y)R(z) + R(z)R(y)R(x) ∈ D. We now
consider some cases:

1. If x ∈ C, then R(x)R(y)R(z) ∈ C∗B∗ ⊆ D.

2. If a = w and c ∈ C, then

R(x)R(y)R(z) = D(x, y, z)−R(z)R(y)R(x) ∈ D.

3. If x = z = w then

2R(x)R(y)R(z) = D(x, y, z) ∈ D.

Therefore, R(x)R(y)R(z) ∈ C for every x, y, z ∈ B. Hence, (B∗)3 is a subalgebra
of C∗B∗ + C∗. As B is an associative algebra, (B∗)2 is a subalgebra of B and
(B∗)4 is a subalgebra of (C∗B∗)2 + C∗B∗ it follows that (B∗)4 is a subalgebra of
C∗B∗. These computations show that (B∗)3k+1 is a subalgebra of (C∗)kB∗ for
k = 1. Proceeding by induction it follows that this holds for all k. Therefore,
choosing k to be the nilpotency index of C∗ establishes the nilpotency of B∗.
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Corollary 4.6.1. A Jordan algebra J that is solvable is nilpotent.

Proof. Let B = J in Theorem 4.6 to conclude that J ∗ is nilpotent. Therefore,
as E(J ) = J ∗ we have that J is nilpotent by Lemma 4.5.

Remark 4.7. From Proposition 4.2 it follows that a solvable Jordan algebra is
a nil algebra.

Proposition 4.8. A Jordan algebra J that is nilpotent is solvable.

Proof. Elements of J (1) are finite sums of products of the form a ◦ x. Suppose
J (k) are finite sums of products of the form ak = a ◦ x1 ◦ · · · ◦ xk = aS1 . . . Sk,
where Si are right multiplications. Then the elements of J (k+1) are finite sums
of products of the form akbk, where ak, bk ∈ J (k). So that

akbk = a ◦ x1 ◦ · · · ◦ xk ◦ bk = aS1 . . . SkSk+1.

Therefore, by induction J (m) consists of the finite sum of elements of the form
aS1 . . . Sm, where Si are right multiplications. Hence, if J is nilpotent there
exists a positive integer t such that every product of t multiplications is zero.
That is, aS1 . . . St = 0 which implies that J (t) = 0.

In the following ◦ is omitted and products are simply written in the standard
way for conciseness.
Let J be a Jordan algebra and B a subalgebra. Then if x ∈ J and xB :=
Sp({xb : b ∈ B}) ⊆ B then it is clear that xB∗ ⊆ B. Conversely, if for x ∈ J we
have that xB∗ ⊆ B then it is also clear that xB ⊆ B.
For the subalgebra B = JE, where E is an idempotent linear transformation
of rank equal to the dimension of B. Define T to be the set of all linear trans-
formations on J such that ET = ETE.

Lemma 4.9. If x ∈ J then xB∗ ⊆ B if and only if R(x) ∈ T .

Proof. A quantity of B is of the form aE for some a ∈ J . Therefore, xb = xaE
if and only if

bR(x) = aER(x) = bR(x)E = aER(x)E = aER(x)E.

Which happens if and only if

ER(x) = ER(x)E.

Lemma 4.10. Let R(x) ∈ T . Then R
(
xk
)
R(b), R(b)R

(
xk
)
and R

(
xkb
)
are

in T for every b ∈ B and positive integer k.

Proof. As B is a Jordan algebra, it satisfies the Jordan identity which implies
that R(x)R(xb) = R(x)2R(b). Therefore, because we have R(x) ∈ T it follows
by Lemma 4.9 that R(xb) ∈ T , which then implies that R(b) ∈ T . Therefore,
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the case k = 1 is true and we can proceed by induction. Assume the result is
true for k = 1, . . . , t. Then,

R
(
xt+1b

)
= R

((
xtx
)
b
)
= R

(
xt(xb)

)
+
(
R(b)R

(
xt
))

R(x)

−
(
R
(
xt
)
R(b)

)
R(x)−R(x)

(
R(b)R

(
xt
))

−R(x)
(
R(b)R

(
xt
))

+R(x)
(
R
(
xt
)
R(b)

)
.

As R (xt(xb)) ∈ T by inductive assumptions, xb ∈ B and all other terms are
also in B, it follow that R(xt+1b) ∈ T . Using (4)

R
(
xt+1b

)
= R

(
xt
)
R(xb) +R(x)R

(
xtb
)
+R(b)R

(
xt+1

)
−
(
R
(
xt
)
R(b)

)
R(x)−R(x)

(
R(b)R

(
xt
))

,

from which we deduce that R(b)R(xt+1) ∈ T . Applying (3) instead shows that
R
(
xt+1

)
R(b) ∈ T , completing the induction.

The following identities will be useful later on and are derived from Jordan’s
Identity, (2) and (5):

R
(
x4
)
R
((
x2
) (

x2
))

= R
(
x2
)2

+ 2R(x)R
(
x3
)
− 2R(x)2R

(
x2
)

= R
(
x2
)2

+ 2R(x)
(
3R(x2)R(x)− 2R (x)

3
)
− 2R(x)2R

(
x2
)
.

Which implies that R
(
x4
)
= R

(
x2
)2

+ 4R(x)2R
(
x2
)
− 4R(x)4 so that

• R
(
x2
)2

= R
(
x4
)
− 4R(x)2R

(
x2
)
+ 4R(x)4,

• R
(
x2
)2

R(b) = R
(
x4
)
R(b)− 4R(x)2

(
R
(
x2
)
R(b)

)
+ 4R(x)4R(b),

• R(b)R
(
x2
)2

= R(b)R
(
x4
)
−
(
R(b)R

(
x2
))

R(x)2 + 4R(b)R(x)4.

From this, we deduce that

R(b)R
(
x2
)2

and R
(
x2
)2

R(b) ∈ T .

Lemma 4.11. Let R(x) be in T and b ∈ B, y = x2b. Then R(y), R
(
y2
)
are in

T .

Proof. R(y) ∈ T by Lemma 4.10. By (3) we have that

R
(
y2
)
= R

(
y
(
x2b
))

= R(y)2 +R
(
y
(
x2
))

+R(yb)R
(
x2
)
−R

(
x2
)
R(y)R(b)−R(b)R(y)R

(
x2
)
.

As R(y) ∈ T it follows that R(y)2 ∈ T . Also as yb ∈ B it follows that
R(yb)R(x2) ∈ T by Lemma 4.10. As

R
(
yx2
)
= R

((
x2b
)
x2
)

= 2R
(
x2b
)
R
(
x2
)
+R

(
x4
)
R(b)−R

(
x2
)2

R(b) +R(b)R
(
x2
)2

26



we have that

R
(
yx2
)
R(b) = 2R

(
x2b
)
(R(x)R(b)) +

(
R
(
x4
)
R(b)

)
R(b)

−
(
R
(
x2
)2

R(b)
)
R(b)−

(
R(b)R

(
x2
)2)

R(b).

So by Lemma 4.10 it follows that R
(
yx2
)
R(b) ∈ T .

Writing R(y) as 2R(x)R(xb) +R(b)R
(
x2
)
− 2R(x)R(b)R(x) it follows that

R
(
x2
)
R(y)R(b) = 2R(x)

(
R
(
x2
)
R(xb)

)
R(b) +

(
R
(
x2
)
R(b)

)2
− 2R(x)

(
R
(
x2
)
R(b)

)
R(x)R(b) ∈ T

as xb ∈ B. Similarly, R(b)R(y)R
(
x2
)
∈ T and hence R

(
y2
)
∈ T .

Lemma 4.12. Let R(y), R
(
y2
)
∈ T . Then R

(
yk
)
∈ T for ever positive integer

k.

Proof. This follows from Remark 3.11.

Theorem 4.13. Let J be a Jordan algebra over field F of characteristic not 2.
Then if all elements of J are nilpotent then J is a solvable algebra.

Proof. The result is clear for the algebras of size one, so suppose the result holds
true for all algebras of size less than n.
If J = F [x], then xk = 0 for some k so that J (k) = F [x2k] and is therefore
solvable. So suppose instead that J ̸= F [x] for any x ∈ J and let B be the
maximal proper subalgebra of J . By the inductive assumptions, it follows that
B is solvable. Therefore, by a previous theorem, it follows that (B∗)k = 0 for
some integer k. If JB ⊆ B, then B is an ideal and J /B contains only nilpotent
elements (as to not contradict the maximality of B). Therefore, by the inductive
assumptions J /B is solvable, and hence, J is solvable.
Suppose instead that JB is not contained in B. Then J (B∗)k = 0 so that
(JB∗)k ⊆ B which implies that there exists 0 < t < k where

J (B∗)t ̸⊆ B and J (B∗)t+1 ⊆ B.

Let x ∈ J (B∗)t such that x ̸∈ B and xB∗ ⊆ B. If x2B ̸⊆ B then there is a b ∈ B
such that y = x2b ̸∈ B. By Lemma 4.9 and Lemma 4.11 we have that

yB∗ ⊆ B, and y2B∗ ⊆ B.

Therefore, by Lemma 4.12 there always exists an element z ̸∈ B such that

zB ⊆ B and z2B ⊆ B

and hence,
zkB ⊆ B ∀k ∈ N.

The algebra generated by z is an algebra for which B is an ideal. So it must be
the case that J is equal to the algebra generated by z which is a contradiction,
hence proving the theorem.
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Corollary 4.13.1. Let J be a Jordan algebra over field F of characteristic not
2. If J is a nil algebra then J is nilpotent.

This section has shown that for Jordan algebra being solvable, nilpotent and
a nil algebra are equivalent properties. Note that this is not a general fact about
algebras.

4.1 References

Some of the initial definitions and propositions were given by [12]. Then the
results in the middle part of the section are attributed to [5]. The second half
of the section was developed from [4]. Lemma 4.5 was taken from [3].
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5 Decomposition of Semisimple Jordan Algebras

5.1 The Radical

Theorem 5.1. Any finite-dimensional Jordan algebra J has a unique solvable
ideal that contains every solvable ideal of J .

Proof. Let R be a solvable ideal of maximal dimension. Then for any other
solvable ideal I it follows by Proposition 3.23(4) that I +R is solvable. By the
definition of R it must be the case that dim(I + R) ≤ dim(R) which implies
that I +R = R and that I ⊆ R.

Definition 5.2. Let A be an algebra, then the unique maximal solvable ideal is
called the radical, R, of A.

The aim of this section is to show that if R = {0} for a Jordan algebra J ,
then J is semisimple.

Definition 5.3. Let J be a Jordan algebra. Then for x, y ∈ J let

τ(x, y) := tr (R(x ◦ y)) .

This is called the trace form.

Proposition 5.4. The trace form, τ , is a symmetric bilinear form on the vector
space of a Jordan algebra J .

Proof. Symmetry follows from the commutativity of ◦, required in the definition
of a Jordan algebra. Linearity follows from the linearity of R.

Lemma 5.5. For all x, y, w ∈ J it follows that

τ(x ◦ y, w) = τ(x, y ◦ w).

Proof. Permuting the variables of (3) cyclically gives the identity

R(y ◦ z)R(x) +R(x ◦ y)R(z) +R(z ◦ x)R(y)

= R(z)R(y)R(x) +R(x)R(y)R(z) +R(y ◦ (z ◦ x)).

Hence,

τ(y ◦ x, z)− τ(y, x ◦ z) = tr (R((y ◦ x) ◦ z)−R(y ◦ (x ◦ z))
= tr[R(z)R(y)R(x) +R(x)R(y)R(z)−R(x)R(z)R(y)

−R(y)R(z)R(z)]

= 0.

Therefore, τ(y ◦ x, z) = τ(y, x ◦ z).
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In terms of linear transformations, the above lemma says that

τ(xL(y), z) = τ(y, zR(x)).

Therefore, for a sequence of multiplications Si (right or left), it follows that

(xS1 . . . Sn, y) = (x, yS′
n . . . S

′
1).

In the future, the notation may be simplified by T = S1 . . . Sn and T ′ = S′
n . . . S

′
1.

Proposition 5.6. If I is an ideal of an algebra J on which a bilinear form, τ ,
is defined, then I⊥ := {y ∈ J : τ(y, x) = 0, ∀x ∈ I} is also an ideal of J .

Proof. Firstly, if y1, y2 ∈ I⊥ we have that

τ(y1 + y2, x) = τ(y1, x) + τ(y2, x) = 0 + 0 = 0 ∀x ∈ I,

therefore I⊥ is closed under addition. Now let x ∈ I and y ∈ I⊥ and a ∈ J .
Then, x ◦ a and a ◦ x ∈ I so that by application of Lemma 5.5 it follows that

τ(a ◦ x, y) = τ(x ◦ a, y) = 0

which implies that
τ(x, y ◦ a) = (x, a ◦ y) = 0.

Therefore, a ◦ y and y ◦ a ∈ I⊥.

Proposition 5.7. For a non-zero idempotent element e of a Jordan algebra J
we have that

tr(R(e)) ̸= 0.

Proof. Using (5) with t = 2 it follows that for an idempotent element e

2R(e)3 − 3R(e)2 +R(e) = 0.

Therefore, the characteristic roots of R(e) are 0, 1, 1
2 and there is a basis of J

such that R(e) has the matrix representationI1 0 0
0 1

2I2 0
0 0 0

 .

If the characteristic roots were all 0 then e = 0, contradicting the assumptions.
Hence, tr(R(e)) ̸= 0.

Theorem 5.8. For a Jordan algebra J we have that R = J⊥.

Proof. J⊥ is an ideal of J by Proposition 5.6. If J⊥ is not a nil ideal, then
J⊥ would contain an idempotent element e ̸= 0 by Proposition 4.4. However,
(e, e) = tr(R(e)) ̸= 0 which would contradict the properties of the elements in
J⊥. Hence J⊥ is a nil ideal meaning it is solvable which implies that J⊥ ⊆ R.
Conversely, if x ∈ R, then xy ∈ R for y ∈ J as R is an ideal. Therefore
R(x ◦ y) is nilpotent by Remark 4.7. It follows that (x, y) = 0 which implies
that x ∈ J⊥. Therefore, R ⊆ J⊥.
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5.2 Main Theorem

Theorem 5.9. Let A be a finite-dimensional algebra over F such that

1. there exists a non-degenerate associative trace form defined on A, and

2. I2 ̸= 0 for every ideal I ≠ 0.

Then A is a semisimple algebra.

Proof. Let I ≠ 0 be a minimal ideal of A so that by Proposition 5.6 we have
that I⊥ is an ideal of A. Then, by Lemma 1.15 either, I∩I⊥ = 0 or I∩I⊥ = I.
Suppose I ⊆ I⊥, then as I2 ̸= 0 it must be the case that the ideal generated
by I2 is the minimal ideal I which means that I = I2. An element s ∈ I can
be written as

s =
∑

(aibi)Ti ai, bi ∈ I

Therefore, for y ∈ A it follows that

(s, y) =
∑

(aibi, yT
′
i ) =

∑
(ai, bi(yT

′
i )) = 0

as bi(yT
′
i ) ∈ I ⊆ I⊥. Therefore, s = 0 as (, ) is non-degenerate, so that I = 0

which is a contradiction. Therefore, it must be the case that I ∩ I⊥ = 0 and
hence, A = I ⊕ I⊥. The restriction of the trace form to I⊥ is also a non-
degenerate trace form meaning (i) holds for I⊥ as well. Moreover, (ii) holds for
I so that by induction arguments on the dimension of A the conclusion of the
proof follows.

Corollary 5.9.1. Any finite-dimensional Jordan algebra J over a field F of
characteristic 0 for which R = 0 is semisimple.

Proof. If R = 0 then by Theorem 5.8 we have that the trace form is a non-
degenerate bilinear form. Furthermore, if an ideal I of J is such that I2 = 0
then I is nilpotent. Hence, I is solvable by Proposition 4.8 which means that
I ⊆ R = {0} so that I = 0. Now Theorem 5.9 can be applied to get the desired
conclusion.

5.3 References

For the part on the radical, the proof of the first theorem was inspired by a
similar argument made in [16]. The second theorem is from [7]. Intermediate
results made to complete the proof of this theorem were taken from multiple
sources including [4],[12], and [14]. The main theorem and proof of it were given
in [7].

31



6 Special Jordan Algebras

6.1 Algebras and Involutions

Throughout let A be a finite-dimensional associative algebra over a field F ,
where char(F ) ̸= 2. Now let J : A → A be an involution on A and AJ :=
Sp({a ∈ A : J(a) = a}) (i.e. the span of the J-symmetric elements of A).
Similarly, let As

J := Sp({a ∈ A : J(a) = −a}) (i.e. the span J-skew elements of
A).

Theorem 6.1. Let A be a finite-dimensional and associative algebra over a
field F , (char(F ) ̸= 2). Then, AJ is a special Jordan algebra.

Proof. Firstly, by the linearity of J we have that AJ is a linear subspace of the
vector space A. Next let x, y ∈ AJ , then

J(x ◦ y) = 1

2
(J(xy) + J(yx))

=
1

2
(J(y)J(x) + J(x)J(y))

=
1

2
(J(x)J(y) + J(y)J(x))

= J(x) ◦ J(y)
= x ◦ y.

Therefore, AJ is closed under the Jordan product, so that AJ ⊆ A+ and is thus
a special Jordan algebra.

Let L be a linear subspace of A, with T : A → A an automorphism. It is
clear that LT := {T (a) : a ∈ L} is also a linear subspace of the same dimensions,
as T is a bijection. This motivates the following proposition.

Proposition 6.2. Consider a special Jordan algebra J of the associative algebra
A and let T : A → A an automorphism. Then J T with multiplication as in J
is also a special Jordan algebra.

Proof. For x, y ∈ J T there exists elements a, b ∈ J such that T (a) = x and
T (b) = y. Therefore,

xy = T (a)T (b) = T (ab) = T (ba) = T (b)T (a) = yx

which shows that multiplication is still commutative in J T . Furthermore,

x
(
x2y
)
= T (a)

(
T (a)2T (b)

)
= T (a)

(
T
(
a2b
))

= T
(
a
(
a2b
))

= T
(
a2 (ab)

)
= T (a)2(T (a)T (b))

= x2(xy)
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which shows that the Jordan identity is still satisfied in J T . It is clear that
J T ⊆ A+, meaning it is also special.

Proposition 6.3. Let J and K be involutions acting on an associative algebra
A such that K = TJT−1 for some automorphism T : A → A. Then the
corresponding special Jordan algebras AK and AJ are isomorphic.

Proof. Let a ∈ AJ then

KT (a) = TJT−1T (a) = T (a)

so that T (a) ∈ AK and AT
J ⊆ AK . Similarly, for a ∈ AK we have

JT−1(a) = T−1KTT−1(a) = T−1(a).

Therefore, T−1(a) ∈ AJ which implies that a ∈ AT
J and hence AK ⊆ AT

J .

Definition 6.4. Let A be an algebra over a field F , and B a subset of A. Then
the algebra generated by B is the intersection of all subalgebras of A that contains
B. For a subset B, denote the algebra generated by B as B.

The following proposition considers the transposition on matrix algebras.
Which will relate closely to the algebras considered in the structure theorems
stated in the next section.

Proposition 6.5. Let J be the transposition on a matrix algebra A of dimension
n, then the algebra generated by AJ equals A.

Proof. For n = 1 it is clear that AJ = A, therefore the result is trivial. For n
larger than 1, consider the canonical basis

e11, . . . , eij , . . . , enn

so that J(eij) = eji. Note that eii and eij + eji are in AJ for all i, j. It is
clear that eii(eij + eji) = eij ∈ ĀJ when i ̸= j. Hence, the canonical basis is
contained within ĀJ and so the conclusions of the proposition follow.

6.2 Simple Jordan Algebras

Theorem 6.6. Let A be an associative algebra of finite dimension over a field
F (char(F ) ̸= 2). Then, A+ is a special simple Jordan algebra if and only if A
is simple.

Proof. Let I be an ideal of A. Then for x ∈ I and a ∈ A it follows that
x ◦ a = 1

2 (ax + xa) ∈ I which shows that I+ is an ideal of A+. Hence, if A+

is simple, then either I+ is 0 or A+. Therefore, I = 0 or I = A which implies
that A is simple.
Now suppose that A is simple. If A is a matrix algebra then A has the basis

e11, . . . , eij , . . . , enn
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where eij is the matrix with 0s everywhere apart from the ijth entry which is
1. Then if I ≠ 0 is an ideal of A+ and 0 ̸= x ∈ I it follows that

b =
∑
ij

βijeij βij ∈ F, i, j = 1, . . . , n.

Therefore,

eiib+ beii =
∑
j

βijeij +
∑
k

βkieki ∈ I (6)

and,

ejj(eiib+ beii) + (eiib+ beii)ejj = βjieji + βijeij ∈ I ∀i and j ̸= i. (7)

If βii ̸= 0 for some i then by (6) we have that 2βiieii ∈ I which implies that
eii ∈ I. If not then βji ̸= 0 for some i ̸= j, so that by (7) we have

eij(βjieji + βijeij) + (βjiejieij)eij = βjieii + βjiejj ∈ I

which is a reduction to the first case, and so again we have the conclusion that
eii ∈ I. For i ̸= j we have

• eij = eiieij + eijeii ∈ I,

• eji = ejieii + eiieji ∈ I, and

• ejj = eijeji + ejieij − eii ∈ I.

Therefore, I = A+ so that A+ is simple. In the general case where A is
any simple algebra, then over F there is a scalar extension F ′ of F such that
A′ is a matrix algebra. (A′)+ is simple by the above reasoning. Noting that
(A′)+ = (A+)′ it follows that A+ is simple for every scalar extension F ′ of F .
Which proves the theorem in the general case as well.

Theorem 6.7. Let A be a matrix algebra of finite dimension over a field F of
characteristic not 2. If J : A → A is an involution on A then the set of AJ of
J-symmetric elements of A is a special Jordan algebra, that is simple.

Proof. Note that AJ has a basis

fij = fji =
1

2
(eij + eji) i, j = 1, . . . , n.

For i, j, k, t ∈ 1, . . . , n being distinct the multiplication in A is defined as follows:

• f2
ii =

1
2 (f

2
ii + f2

ii) = f2
ii = fii,

• 4f2
ij = (eij + eji)

2 = e2ij + eijeji + ejieij + e2ji = eii + ejj = fii + fjj ,

• 4fijfik = 1
2 ((eij + eji)(eik + eki) + (eik + eki)(eij + eji)) =

1
2 (ejk+ekj) =

fjk,
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• 2fiifik = 1
4 (2eii(eik + eki) + (eik + eki)(2eii)) = fik,

• fiifjj = fiiftk = fijftk = 0.

Let I ≠ 0 be an ideal of AJ . If 0 ̸= b =
∑

ij βijfij ∈ I then

1. 2fiib =
∑

i̸=j βij + 2βiifii ∈ I, and

2. (2fiib)(2fjj) = βijfij ∈ I, for i ̸= j.

Therefore, if all βij = 0 then some βii ̸= 0 so that by Identity 1. it follows that
fii ∈ I. From which we have that 2fiifij = fij ∈ I for i ̸= j. Hence there is
some fij ∈ I, therefore, (2fij)2 = fii+ fjj ∈ I. Consequently, 2fiifik = fik ∈ I
and (2fik)

2 = fii + fkk. Hence the difference (fii + fkk) − fii = fkk ∈ I.
Therefore, I contains every fii and every 2fiifij = fij . Showing that I = AJ ,
and that AJ is simple.

Consider for a moment an arbitrary field F an involution J . Let F1 = F
and let Fi = (Fi−1, J), that is the resulting algebra when applying the Cayley-
Dickson doubling process to the algebra Fi−1 with the extension of J . Denote
the F -algebra of matrices of dimension n with entries in Fi by Mn(Fi). We can
define an involution on this algebra to be transposing the matrix and applying
the involution J component-wise. We have just shown that the set of symmetric
elements with respect to this involution, which we will denoteHn(Fi), is a simple
special Jordan algebra when Mn(Fi) is an associative algebra.

Now previously we have previously seen that R,C,H and O are a result of the
Cayley-Dickson doubling process when applied to R. In this case Hn(R),Hn(C),
Hn(H) and Hn(O) are the familiar Hermitian matrices (that is the matrices that
are equal to their conjugate transpose). Therefore, Hn(R),Hn(C) and Hn(H)
are simple special Jordan algebras as R,C and H are associative. However,
O is not associative, so we cannot conclude anything about Hn(O) from this
theorem.

6.3 References

Material for this section was developed in [5].
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7 Classification of Jordan Algebras

7.1 Structure Theory

The first classification result only considers so-called formally real Jordan alge-
bras over the reals and came from Jordan, von Neumann, and Wigner. Consider
a real commutative finite-dimensional algebra that is not necessarily associative.
The algebra is formally real if

x2
1 + x2

2 + x2
3 + · · · = 0

implies that
x1 = x2 = x3 = · · · = 0.

The algebra is a formally real Jordan algebra if in addition, it is also a Jordan
algebra.

Theorem 7.1. A formally real algebra that is power associative is a formally
real Jordan algebra, and a formally real Jordan algebra is power associative.

Proof. First, consider a formally real Jordan algebra and let [x, y, z] = (xy)z −
x(yz). Then by commutativity

[x, y, z] + [z, y, x] = 0, and (8)

[x, y, z] + [y, z, x] + [z, x, y] = 0. (9)

Replace x and y in Jordan’s identity by λx+ µy + νz and w respectively. Note
the terms proportional to λµν to conclude that

[zy, w, z] + [yz, w, x] + [zx,w, y] = 0. (10)

Suppose that power associativity holds for n,m such that n+m ≤ N . Then by
(8) and (10) and 1 ≤ m ≤ N it follows that[

xm+1, y, xN−m−1
]
=
[
xm, y, xN−m

]
+
[
x, y, xN−1

]
so that [

xp, y, xN−p
]
= p

[
x, y, xN−1

]
for p = 1, . . . , N − 1.

In particular,
−
[
x, y, xN−1

]
= (N − 1)

[
x, y, xN−1

]
which implies that [x, y, xN−1] = 0 and [xp, yN−p] = 0. Letting x = y we have

xp+1xN−p = xpxN−p+1 = xxN = xN+1.

Therefore power associativity holds for n+m = N+1, so by induction, it follows
that power associativity holds in general. The proof for the other direction is
more involved and requires concepts that have not been developed sufficiently
in this report. For further details please refer to [2].
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Example (Spin Factor): Let ⟨·, ·⟩ be the Euclidean inner product on Rn.
Then the Jordan spin factor, Sn, has the underlying vector space R ⊕ Rn and
acts over the real numbers. Multiplication is defined as

(v, x) ◦ (w, y) := (xw + yv, ⟨v,w⟩+ xy).

This is a formally real Jordan algebra.

Proof. Clearly, v ◦w = w ◦ v. On the one hand,

((v, x) ◦ (w, y)) ◦ (v, x)2 = (xw + yv, ⟨v,w⟩+ xy) ◦
(
2xv, |v|2 + x2

)
=
( [

2x⟨v,w⟩+ 3x2y + y|v|2
]
v +

[
x3 + x|v|2

]
w,

3x2⟨v,v⟩+ 3xy|v|2 + x3y + |v|2⟨v,w⟩
)

and on the other hand,(
v, x) ◦ ((w, y) ◦ (v, x)2

)
= (v, x) ◦

(
(w, y) ◦

(
2xv, |v|2 + x2

))
= (v, x) ◦

(
2xyv +

(
|v|2 + x2

)
w, ⟨w, 2xv⟩+ y|v|2 + x2y

)
=
( [

2x⟨v,w⟩+ 3x2y + y|v|2
]
v +

[
x3 + x|v|2

]
w,

3x2⟨v,v⟩+ 3xy|v|2 + x3y + |v|2⟨v,w⟩
)
.

Therefore, Jordan’s identity is satisfied. Note that |v|2 = ⟨v,v⟩ > 0 for 0 ̸=
v ∈ Rn. If,

(v1, x1)
2 + . . . (vn, xn)

2 = 0

then (
2x1v1, x

2
1 + |v1|2

)
+ · · ·+

(
2xnvn, x

2
n + |vn|2

)
= 0.

By comparing the R component, it is clear that this can only happen if xi = 0
and vi = 0 for all i.

Consider the basis (0, 1) and (ei, 0) for i = 1, . . . n, where ei is the ith

standard basis vector of Rn. Then the defining relations for multiplication on
Sn are

(ei, 0) ◦ (ei, 0) = (0, 1), (0, 1) ◦ (0, 1) = 1, (ei, 0) ◦ (ej , 0) = 0 for i ̸= j.

Therefore, one can equivalently define Sn as the algebra over R with the linear
basis 1, s1, . . . , sn. In which a ± b and λa are defined in the usual way for
a, b ∈ Sn and λ ∈ F but multiplication is defined by the relations

11 = 1, 1si = si, sisj = δij1.

It was under these conditions that Jordan was able to give the first classification
theorem of Jordan algebras.
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Theorem 7.2. The only simple formally real Jordan algebras over the reals are:

• R,

• Sn for n ≥ 2,

• H3(Ki), i = 1, 2, 3, 4,

• Hn(Ki), i = 1, 2, 3 and n ≥ 4.

Where K1,K2,K3 and K4 correspond to R,C,H and O.

Theorem 7.3. All the Jordan algebras in the above list, with the exception of
H3(O), are special.

Proof. This is clear for R. For Hn(Ki) (i = 1, 2, 3), it is also clear as the
reals, complexes, and quaternions are associative algebras. For Sn we show
that it arises by defining the Jordan product on the system in which 1 is the
identity, s2i = 1, and sisj = −sjsi (i ̸= j and i, j = 1, . . . , n). We have that
1 ◦ 1 = 1

2 (11 + 11) = 1 and 1 ◦ si = 1
2 (1si + si1) = si. Furthermore,

sisj =

{
1
2 (s

2
i + s2i ) = 1 = δij1 i = j

1
2 (sisj + sjsi) =

1
2 (sisj − sisj) = 0 = δij1 i ̸= j

.

Hence, the multiplication rules are satisfied. Proof that H3(O) is not special is
developed in the next subsection.

Work was done by A. Albert to extend these results to deal with finite-
dimensional Jordan algebras over arbitrary fields. A corollary of these results in-
cludes the classification of finite-dimensional Jordan algebras over algebraically
closed fields.

Theorem 7.4. Let J be a finite-dimensional simple Jordan algebra over an
algebraically closed field F . Then one of the following holds:

1. J = F

2. J = F ⊕ B, the Jordan algebra of a non-degenerate bilinear form in a
vector space B where dim(B) > 1.

3. J = Hn(Fi), for i = 1, 2, 3 and n = 3.

4. J = Hn(Fi), for i = 1, 2, 3, 4 and n ≥ 4.

Remark 7.5. Note that this provides a classification of semisimple Jordan al-
gebras, as semisimple Jordan algebras can be written as a direct sum of simple
algebras.

Extensions of these results to arbitrary fields were made by Kalisch, F.D
Jacobson, and N. Jacobson. Later work in 1979 by Zelmanov had significant
implications on the original motivations of Jordan algebras. Zelmanov showed
that there were no new exceptional algebras in infinite dimensions. Therefore,
Jordan’s proposed framework could not accommodate quantum mechanics as
intended. Zelmanov also gave a complete classification of Jordan algebras over
division algebras.
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7.2 The Exceptional Jordan Algebra

The octonions, O, are a real algebra with units 1(= e0), e1, . . . , e7, and multi-
plication rule:

eiej =


ej ei = 1

ei ej = 1

−δij1 + ϵijkek otherwise.

Within the octonions, there are systems that are equivalent to the quaternions:

• (1, e1, e2, e3),

• (1, e1, e4, e5),

• (1, e1, e6, e7),

• (1, e2, e5, e7),

• (1, e2, e4,−e6), and

• (1, e3, e5, e6).

For a = λ0 +
∑7

i=1 λiei define:

• ā = λ0 −
∑7

i=1 λiei,

• T (a) = a+ ā = 2λ0, and

• N(a) = aā =
∑7

i=0 λ
2
i .

From which it follows that:

• w2 − T (a)w +N(a) = 0,

• ab = b̄ā,

• N(ab) = N(a)N(b),

• T (λa+ µb) = λT (a) + µT (b) for λ, µ ∈ R, and

• a(āb) = (aā)b.

Theorem 7.6. Let i be any unit of O and let a, b ∈ O. Then

i(ab)i = (ia)(bi), (iai)(ib) = −i(ab), and (ai)(ibi) = −(ab)i. (11)

Proof. Suffices to prove the result for units. If i, a, b are in a quaternion system
then the results hold by application of the associative law. If not then without
loss of generality let i = e1, a = e2 and b = e4. Then,

i(ab)i = −i2(ab) = e2e4 = −e6, and (ia)(ib) = e3(−e5) = −e6
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which proves the first identity. Next,

(iai)(ib) = a(ib) = e2e5 = e7, and − i(ab) = e1e6 = e7

proves the second identity. Finally,

(ai)(ibi) = (−e3)(e4) = −e7, and − (ab)i = i(ab) = −e7

proves the third identity and completes the proof.

Theorem 7.7. For j = 0, . . . , 7 the transformations which replace ej by iej , eji, ieji
for a unit i ̸= 1 are orthogonal transformations.

Proof. Consider

a =

7∑
j=0

λjej , b =
7∑

k=0

µkek,

so that
T (ab̄) =

∑
j,k

λjµkT (ej ēk).

As

ej ēk =

{̸
= ±1 j ̸= k

1 j = k

it follows that

T (ej ēk) =

{
0 j ̸= k

2 j = k.

Hence, we have that

T (ab̄) = 2

7∑
j=0

λjµj . (12)

Let ui = ±ei for i = 0, . . . , 7, then

1

2
T (uj ūk) =

{
0 j ̸= k

1 j = k.

Therefore, the value of (12) is unchanged under such a transformation, showing
the transformations are orthogonal.

Let

H3(O) =

A =

α a c̄
ā β b
c b̄ γ

 = A[(α, β, γ), (a, b, c)] : α, β, γ ∈ R and a, b, c ∈ O

 .

For δ ∈ R and B = A[(λ, µ, ν), (f, g, h)] note that

A+B = A[(α+ λ, β + µ, γ + ν), (a+ f, b+ g, c+ h)], and

δA = A[(δα, δβ, δγ), (δa, δb, δc)].
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Furthermore,

AB = BA =
1

2
(A ·B +B ·A) = A[(ξ, η, ζ), (p, q, r)]

where A ·B denotes regular matrix product and

ξ = αλ+ 1
2T (af̄) +

1
2T (c̄h), 2p = (α+ β)f + (λ+ µ)a+ c̄ḡ + h̄b̄

η = βµ+ 1
2T (bḡ) +

1
2T (āf), 2q = (β + γ)g + (µ+ ν)b+ āh̄+ f̄ c̄

ζ = γν + 1
2T (ch̄) +

1
2T (b̄g), 2p = (γ + α)h+ (ν + λ)c+ b̄f̄ + ḡā.

(13)

Therefore, for A2 = A[(α0, β0, γ0), (a0, b0, c0)] we have that

α0 = α2 +N(a) +N(c), a0 = (α+ β)a+ c̄b̄
β0 = β2 +N(b) +N(a), b0 = (β + γ)b+ āc̄
γ0 = γ2 +N(c) +N(b), c0 = (γ + α)c+ b̄ā.

(14)

Theorem 7.8. For every A ∈ H3(O) and B = A[(λ, µ, ν), (0, 0, 0)] it follows
that

(AB)A2 = A(BA2).

Proof. Consider the map

A = A[(α, β, γ), (a, b, c)] ↔ A∗ = [(α, β, γ), (a′, b′′, c′′′)]

where a′ = iai, b′′ = ib, c′′′ = ci for any unit i. The mapping is preserved
under addition, real scalar multiplication, and under multiplication. Hence, it
defines an automorphism on H3(O). The first two preservations are clear, but
multiplication requires justification. Let

(AB)∗ = A[(ξ, η, ζ), (p′, q′′, r′′′)], and

A∗B∗ = A[(ξ∗, η∗, ζ∗), (p∗, q∗, r∗)].

By Theorem 7.7 the transformations of units are orthogonal so the values of
T (·) remain unchanged. It is clear from (13) that ξ = ξ∗, η = η∗ and ζ = ζ∗.
Next,

(c̄ḡ)′ = i(c̄ḡ)i = (c̄ḡ)∗ = (c̄̄i)(̄iḡ) = (ic̄)(ḡi) = i(c̄ḡ)i

by Theorem 7.6, hence, p′ = p∗. Similarly, q′′ = q∗ and r′′′ = r∗ by applications
of Theorem 7.6.

Lemma 7.9. Let F (B,D, . . . ,K) be a polynomial in variables B,D, . . . ,K in
H3(O), let F have real coefficients and be linear in B, and let F = 0 for any
real matrix B ∈ H3(O). Then F = 0 for all B, . . . ,K of H3(O).

Proof. Let B = A[(0, 0, 0), (0, 0, 1)], then B∗ = A[(0, 0, 0), (0, 0, i)] (using the
automorphism in the proof of Theorem 7.8). As F = 0 for B, it follows that
F = 0 for any such B∗. As F is linear in B, and elements of O are linear
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combinations of the units, it follows that F = 0 for B = A[(0, 0, 0), (0, 0, c)]
where c ∈ O. Permuting elements cyclically it follows that F = 0 for

A[(0, 0, 0), (0, b, 0)], and A[(0, 0, 0), (a, 0, 0)].

By assumption F = 0 for B = A[(α, β, γ), (0, 0, 0)] so using the above observa-
tions it follows that F = 0 for arbitrary B ∈ H3(O).

Lemma 7.10. Let A∗ = U ·A · U−1 for

U =
1√
2

√
2 0 0
0 1 −1
0 1 1

 , U ′ = U−1

a real orthogonal matrix. Then A∗ ∈ H3(O) and A ↔ A∗ generates an auto-
morphism.

Proof. We have that A∗ is hermitian when A is hermitian so that A∗ ∈ H3(O).
Furthermore,

(A+B)∗ = A∗ +B∗, and (δA)∗ = δA∗.

Next note that

(AB)∗ =
1

2

[
(U · (A ·B) · U−1) + U · (B ·A) · U−1

]
and U · (A · B) · U−1 = A∗ · B∗ because U is real and matrix multiplication of
matrices with only two non-real components is associative. Therefore,

(AB)∗ =
1

2
(A∗ ·B∗ +B∗ ·A∗) = A∗B∗.

Theorem 7.11. For every A and B of H3(O) we have (AB)A2 = A(BA2) so
that H3(O) is a formally real Jordan algebra.

Proof. Using the automorphism defined in Lemma 7.10 and Theorem 7.8 we
can show that F = (AB)A2 − A(BA2) satisfies the conditions of Lemma 7.9
which will then prove the theorem. To see this note that

B1 = A[(0, 1,−1), (0, 0, 0)] ↔ B∗
1 = A[(0, 0, 0), (0, 0, 1)]

so that F = 0 for B1 and it follows that F = 0 for B∗
1 . Therefore, for B =

A[(0, 0, 0), (a, b, c)] we have F = 0. Using a similar method of proof as Lemma
7.9 it follows that F = 0 for any B ∈ H3(O).

Theorem 7.12. There exists no associative algebra A for which H3(O) is iso-
morphic to a subalgebra of A+. Thus, the algebra H3(O) is an exceptional
Jordan algebra.
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Proof. Suppose that H3(O) is derived from an algebra A. Let,

J1 =

1 0 0
0 0 0
0 0 0

 , J2 =

0 0 0
0 1 0
0 0 0

 , J3 =

0 0 0
0 0 0
0 0 1


Ei =

0 ei 0
ēi 0 0
0 0 1

 , Fj =

 0 0 ej
0 0 0
ēj 0 0

 , Gk =

0 0 0
0 0 ek
0 ēk 0


for i, j, k = 0, . . . , 7 be a basis for H3(O). Let A have the corresponding basis
K1,K2,K3, Pi, Qj , Rk. That is these matrices form a basis on the underlying
vector space with the normal notion of matrix multiplication. As the Ji are
each idempotent it follows by Proposition 3.12 that each Ki is idempotent.
Furthermore,

J1J2 =
1

2
(J1 · J2 + J2 · J1) = 0

so that K1K2 = 0. Note that

K1K2 =
1

2
(K1 ·K2 +K2 ·K1)

so that K1 ·K2 +K2 ·K2 = 0. However,

K1 · (K1 ·K2 +K2 ·K1) ·K1 = K1 · (K2 ·K1 +K1 ·K2) ·K1

= K1 ·K2 ·K2
1 +K2

1 ·K2 ·K1

= 2K1 ·K2 ·K1

which implies that

0 = K1 · (K1 ·K2 +K2 ·K1) = K2
1 ·K2 +K1 ·K2 ·K1 = K1 ·K2.

Similarly, Ki · Kj = 0 when i ̸= j and i, j = 1, 2, 3. Choose the basis of A so
that

K1 =

(
L1 0
0 0

)
, ,K2 =

(
L2 0
0 0

)
, K3 =

(
L3 0
0 0

)
where

L1 =

I1 0 0
0 0 0
0 0 0

 , L2 =

0 0 0
0 I2 0
0 0 0

 , L3 =

0 0 0
0 0 0
0 0 I3


and I1, I2, I3 are identity matrices of r, s, t rows respectively. As J1 + J2 + J3 is
the identity of H3(O) it follows that K = K1 +K2 +K3 is the identity of A.

Hence, for A =

(
a b
c d

)
∈ A we have

KA =
1

2
(K ·A+A ·K) =

1

2
(2A) = A,
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but,

KA =

(
a 1

2b
1
2c 0

)
so that b = c = d = 0. Therefore, without loss of generality the elements of A
can be taken to be square matrices of dimension r + s + t which implies that
Ki = Li for i = 1, 2, 3. Consider,

E =

7∑
i=0

λiEi ∈ H3(O)

so that by (13) we have
2J1E = 2J2E = E.

If

P =

7∑
i=0

λiPi ∈ A

then it must also be the case that 2L1P = 2L2P = P . Let P = (aij) then,

P =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

L1 · P + P · L1 =

2a11 a12 a13
a21 0 0
a31 0 0

 ,

L2 · P + P · L2 =

 0 a12 0
a21 2a22 a23
0 a32 0

 .

Therefore,

Pi =

 0 pi 0
pi0 0 0
0 0 0


where pi is a real matrix of r rows and s columns, with pi0 being a real matrix
of s rows and r columns. Similarly,

Qj =

 0 0 qj
0 0 0
qj0 0 0

 , Rk =

0 0 0
0 0 rk
0 rk0 0

 .

Again by (13) we deduce that

2EiEj =

eiēj + ej ēi 0 0
0 ēiej + ējei 0
0 0 0
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and

2PiPj =

pipj0 + pjpi0 0 0
0 pi0pj + pj0pi 0
0 0 0

 .

As eiēi = 1 it follows that 2EiEj =

2 0 0
0 2 0
0 0 0

 which implies that pipi0 = I1

and pi0pi = I2 for i = 0, . . . , 7. Similar relations arise when investigating Qj

and Rk. Moreover, for i ̸= j as eiēj + ej ēi = ēiej + ējei = 0 it follows that
pipj0 = −pjpi0 for i, j = 0, . . . , 7. Now

2EiGj =

 0 0 eiej
0 0 0

ēj ēi 0 0

 = λijFk where eiej = λijek ∈ O.

Hence,

λijQk = 2PiRj =

 0 0 pirj
0 0 0

rj0pi0 0 0


from which it is deduced that

pirj = λijqk, rjopi0 = λijqk0 i, j = 0, . . . , 7. (15)

• With i = 1 it follows that ej = λ0jek which implies that λ0j = 1 and
k = j.

• With j = 0, eie0 = λi0ek so that ei = λi0ek which implies λ = 1 and i = k
and therefore, pir0 = qi.

Combining both of these it follows that p0ri = pir0. Multiply both on the left
by p00 to obtain ri = (p00pi)r0. Use qi = pir0 from (15) to deduce that

pirj = pi(p00pj)r0 = λijqk = λijpkr0

and multiply on the right by r00 to obtain pi(p00pj) = λijpk. Let ui = pip00,
then ui is a real valued r-rowed non-zero square matrix, with u0 = I1. The set of
square matrices ui forms a basis for the algebra generated by the ui. However,
pi(p00pj)p00 = uiuj = λijuk so this algebra has the same multiplication rules
as O. This is not possible as the square matrices are associative, whereas, O is
not. This contradiction completes the proof.

7.3 References

Structure theory material was developed in [2]. The spin factor example was
developed from [18]. Information relating to the history of the various classifica-
tion theorems along with the theorem relating to A.A. Albert’s work came from
[8]. The piece on Zelmanov’s work came from [13]. The material on exceptional
Jordan algebras was developed from [1].
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8 Connection to Lie Algebras

Definition 8.1. For an algebra A, with multiplication denoted in the usual way,
the commutator is defined as

[a, b] := ab− ba

and the anti-commutator is defined as

{a, b} := ab+ ba.

Therefore, a special Jordan algebra has its multiplication defined as half the
anti-commutator operator on an associative algebra.

Definition 8.2. A Lie algebra AL is a vector space V over a field F with a
binary operation [·, ·] : V × V → V such that for all x, y, z ∈ AL and a, b ∈ F
the following are satisfied:

1. [ax+by, z] = a[x, z]+b[y, z] and [x, ay+bz] = a[x, y]+b[x, z] (Bilinearity),

2. [x, x] = 0 (Alternativity), and

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi Identity).

Proposition 8.3. Let A be an associative algebra. Then the algebra defined on
the same vector space as A with multiplication being the commutator operator,
which we will denote AL, is a Lie algebra.

Proof. Bilinearity follows immediately from the fact that multiplication on A is
bilinear. It is also clear that alternativity is satisfied. Therefore, it suffices to
show that the Jacobi identity is satisfied to complete the proof. Let x, y, z ∈ A
then

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = x(yz − zy)− (yz − zy)x

+ y(zx− xz)− (zx− xz)y

+ z(xy − yx)− (xy − yx)z

= x(yz)− x(zy)− y(zx) + z(yx)

+ y(zx)− y(xz)− z(xy) + x(zy)

+ z(xy)− z(yx)− x(yz) + y(xz)

= 0.

Lemma 8.4. The Lie algebra AL is anti-commutative.

Proof. For x, y ∈ AL, by L2 we have that [x + y, x + y] = 0. Therefore, by
bilinearity it follows that

0 = [x, x] + [x, y] + [y, x] + [y, y].
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Now applying alternativity we conclude that

0 = [x, y] + [y, x].

From which it is clear that [x, y] = −[y, x], and thusAL is anti-commutative.

A triple system is similar to an algebra in that it is a vector space over a
field F together with some function. For algebras, this function is a bilinear
map known as multiplication and for triple systems, it is a trilinear map (·, ·, ·) :
V × V × V → V .

Definition 8.5. A Lie triple system VL is a triple system where the trilinear
map, denoted [·, ·, ·], satisfies:

L1: [u, v, w] = −[v, u, w],

L2: [u, v, w] + [w, u, v] + [v, w, u] = 0, and

L3: [u, v, [w, x, y]] = [[u, v, w], x, y] + [w, [u, v, x], y] + [w, x, [u, v, y]]

for u, v, w, x, y ∈ VL.

Definition 8.6. A Jordan triple system VJ is a triple system where the trilinear
map, denoted {·, ·, ·}, satisfies:

J1: {u, v, w} = {w, v, u}, and

J2: {u, v, {w, x, y}} = {{u, v, w}, x, y} − {w, {v, u, x}, y}+ {w, x, {u, v, y}}

for u, v, w, x, y ∈ VJ .

Over an associative algebra, we use (xyz) = xyz+zyx to deduce the following
ternary compositions.

1. [[x, y], z] = xyz + zyx− yxz − zxy = (xyz)− (yxz),

2. {{x, y}, z} = xyz + zyx+ yxz + zxy = (xyz) + (yxz).

Lemma 8.7. A Lie triple system is a subspace of an associative algebra that is
closed under the ternary operation [[x, y], z].

This tells us that a Lie algebra is a Lie triple system with respect to the
trilinear map [x, y, z] 7→ [[x, y], z]

Lemma 8.8. A Jordan triple system is a subspace of an associative algebra that
is closed under the ternary operation {{x, y}, z}.

This tells us that a special Jordan algebra is a Jordan triple system with
respect to the trilinear map {x, y, z} 7→ {{x, y}, z}
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8.1 Triple Systems and Algebras

In this section, we explore the connections between Jordan triple systems, Lie
triple systems, special Jordan algebras, and Lie algebras. First, we shall consider
the behaviour of mappings in Lie and Jordan triple systems.

Lemma 8.9. Let VL be a Lie triple system. Let Lu,v : VL → VL be the linear
map Lu,v(w) = [u, v, w]. The vector space S = Sp({Lu,v : u, v ∈ VL}) is a Lie
algebra.

Proof. Let Lu,v, Lr,s ∈ S. Then,

[Lu,v, Lr,s] = Lu,vLr,s − Lr,sLu,v

= [u, v, [r, s, ·]]− [r, s, [u, v, ·]].

Now applying L3 we get that

[Lu,v, Lr,s] = [[u, v, r], s, ·] + [r, [u, v, s], ·]
= L[u,v,r],s − Lr,[u,v,s] ∈ S.

Therefore, S is closed under the commutator operation and hence forms a Lie
algebra.

Lemma 8.10. Let VJ be a Jordan triple system. Let Ju,v : VJ → VJ be the
linear map Ju,v(w) = {u, v, w}. The vector space S = Sp({Ju,v : u, v ∈ VJ }) is
a Lie algebra.

Proof. Let Ju,v, Jr,s ∈ S. Then,

[Ju,v, Jr,s] = Ju,vJr,s − Jr,sJu,v

= {u, v, {r, s, ·}} − {r, s, {u, v, ·}}.

Now applying J2 we get that

[Ju,v, Jr,s] = {{u, v, r}, s, ·} − {r, {v, u, s}, ·}
= J{u,v,r},s − Jr,{v,u,s} ∈ S.

Therefore, S is closed under the commutator operation and hence forms a Lie
algebra.

Now we shall consider the relation between Lie and Jordan triple systems.

Lemma 8.11. Any Jordan triple system is a Lie triple system with respect to
the triple product

[x, y, z] 7→ {x, y, z} − {y, x, z}.
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Proof. It is sufficient to check that the Lie triple system axioms are satisfied
with respect to this map. Firstly,

[v, u, w] = {v, u, w} − {u, v, w}
= − ({u, v, w} − {v, u, w})
= −[u, v, w]

and therefore L1 holds. Next, note that

[u, v, w] + [w, u, v] + [v, w, u] = {u, v, w} − {v, u, w}+ {w, u, v}
− {u,w, v}+ {v, w, u} − {w, v, u}

= ({u, v, w} − {w, v, u}) + ({w, u, v} − {v, u, w})
+ ({v, w, u} − {u,w, v})

so that by L1 we have that

[u, v, w] + [w, u, v] + [v, w, u] = 0 + 0 + 0 = 0

which shows that L2 holds. Finally,

[u, v, [w, x, y]] = [u, v, ({w, x, y} − {x,w, y})]

so by linearity we have

[u, v, [w, x, y]] = [u, v, {w, x, y}]− [u, v, {x,w, y}].

Then using our definition of [·, ·, ·] it follows that

[u, v, [w, x, y]] = {u, v, {w, x, y}} − {v, u, {w, x, y}}
− {u, v, {x,w, y}}+ {v, u, {x,w, y}}.

Now by applying J2 of Jordan triple systems and appropriate grouping of terms
we deduce that

[u, v, [w, x, y]] =({{u, v, w}, x, y} − {x, {u, v, w}, y} − {{v, u, w}, x, y}+ {x, {v, u, w}, y})
+ ({w, {u, v, x}, y} − {{u, v, x}, w, y} − {w, {v, u, x}, y}+ {{v, u, x}, w, y})
+ ({w, x, {u, v, y}} − {x,w, {u, v, y}} − {w, x, {v, u, y}}+ {x,w, {v, u, y}}).

Again by our definition of [·, ·, ·] it follows that

[u, v, [w, x, y]] =([{u, v, w}, x, y]− [{v, u, w}, x, y])
+ ([w, {u, v, x}, y]− [w, {v, u, x}, y])
+ ([w, x, {u, v, y}]− [w, x, {v, u, y}])

=[[u, v, w], x, y] + [w, [u, v, x], y] + [w, x, [u, v, y]].

Which establishes L3 and completes the proof.
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Finally, we construct an alternative way of transitioning from a Jordan algebra
to a Jordan triple system as the proof of Lemma 8.8 has not been provided.

Definition 8.12. Let J be a Jordan algebra over a field F . Then for x, y, z ∈ J
define the Jordan triple product as

(x, y, z) = (x ◦ y) ◦ z + (y ◦ z) ◦ x− (z ◦ x) ◦ y.

Lemma 8.13. Any special Jordan algebra is a Jordan triple system.

Proof. Claim: any special Jordan algebra J with the trilinear map {x, y, z} 7→
((x, y, z), (y, z, x), (z, x, y)) is a Jordan triple system where x, y, z ∈ J .
For ease of notation let X = (x, y, z), Y = (y, z, x), Z = (z, x, y). From the
construction of our trilinear map, we have:

{x, y, z} = ((x, y, z) ◦ (y, z, x)) ◦ (z, x, y)
+ ((y, z, x) ◦ (z, x, y)) ◦ (x, y, z)
− ((z, x, y) ◦ (x, y, z)) ◦ (y, z, x)

= (X ◦ Y ) ◦ Z + (Y ◦ Z) ◦X − (Z ◦X) ◦ Y.

Noting that each term is a cyclic permutation of the other terms we shall con-
sider (X ◦ Y ) ◦ Z. Evaluating Z = (z, x, y) we have

(X ◦ Y ) ◦ Z = (X ◦ Y ) ◦ ((z ◦ x) ◦ y + (x ◦ y) ◦ z − (x ◦ y) ◦ z)

Evaluating Y = (y, z, x) we have

(X ◦ Y ) ◦ Z = X ◦ ((y ◦ z) ◦ x+ (z ◦ x) ◦ y − (x ◦ y) ◦ z)
◦ ((z ◦ x) ◦ y + (x ◦ y) ◦ z − (y ◦ z) ◦ x).

Letting (a)2 := (a) ◦ (a) and using the linearity of ◦ we have

(X ◦ Y ) ◦ Z =X ◦ (((z ◦ x) ◦ y)2 − ((y ◦ z) ◦ x)2

− ((x ◦ y) ◦ z)2 + 2((y ◦ z) ◦ x) ◦ ((x ◦ y) ◦ z)).

Evaluating X = (x, y, z) we have

(X ◦ Y ) ◦ Z =((x ◦ y) ◦ z + (y ◦ z) ◦ x− (z ◦ x) ◦ y)
◦ (((z ◦ x) ◦ y)2 − ((y ◦ z) ◦ x)2 − ((x ◦ y) ◦ z)2

+ 2((y ◦ z) ◦ x) ◦ ((x ◦ y) ◦ z)).

Again by linearity, we have

(X ◦ Y ) ◦ Z =− ((x ◦ y) ◦ z)3 − ((y ◦ z) ◦ x)3 − ((z ◦ x) ◦ y)3

+ ((z ◦ x) ◦ y)2 ◦ ((x ◦ y) ◦ z + (y ◦ z) ◦ x)
+ ((y ◦ z) ◦ x)2 ◦ ((x ◦ y) ◦ z + (z ◦ x) ◦ y)
+ ((x ◦ y) ◦ z)2 ◦ ((y ◦ z) ◦ x+ (z ◦ x) ◦ y)
− 2((z ◦ x) ◦ y) ◦ ((y ◦ z) ◦ x) ◦ ((x ◦ y) ◦ z).
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As this expression is closed under cyclic permutations of x, y, z we deduce that

{x, y, z} = (X ◦ Y ) ◦ Z + (Y ◦ Z) ◦X − (Z ◦X) ◦ Y = (X ◦ Y ) ◦ Z.

Now it suffices to check the Jordan triple system axioms hold for the trilinear
map {x, y, z} for special Jordan algebras. J1 holds due to commutativity of x◦y
and closure under cyclic permutations

{x, y, z} = (X ◦ Y ) ◦ Z = (Y ◦ Z) ◦X = (Z ◦ Y ) ◦X = (Z ◦ Y ) ◦X = {z, y, x}.

Similarly, J2 holds due to the commutativity of x ◦ y and closure under cyclic
permutations. Let X ′ = (x, y, {z, a, b}), Y ′ = (y, {z, a, b}, x), Z ′ = (z, a, b), A′ =
(a, b, z) and B′ = (b, z, a) then,

{x, y, {z, a, b}} = (X ′ ◦ Y ′) ◦ ((Z ′ ◦A) ◦B) .

So by commutativity of x ◦ y and closure under cyclic permutations we can
rearrange the expansion of X ′, Y ′ along with Z ′, A′, B′ to show that

{x, y, {z, a, b}} = {{x, y, z}, a, b} − {z, {y, x, a}, b}+ {z, a, {x, y, b}}

completing the proof.

From the above lemmas, there is a natural way of moving from a special
Jordan algebra to a Lie algebra. Lemma 8.13 and Lemma 8.8 give us functors
from special Jordan algebras to a Jordan triple system. Lemma 8.11 gives
us a functor from Jordan triple systems to Lie triple systems. To construct
a functor from Lie triple systems to Lie algebras further theory on algebras
must be developed. However, it is worth noting that for finite-dimensional Lie
triple systems, we can construct a general functor to a Lie algebra. Thus we
have constructed a natural way of mapping from special Jordan algebras to Lie
algebras.

8.2 References

Definitions regarding Lie algebras were provided by [10], the definition for Jor-
dan triple systems was taken from [9] and then [6] was used to verify some of
the definitions and proofs.
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