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1.1: AIM

When operators use a piece of equipment it is useful
to know the potential lifespan of that piece of equip-
ment, as well as how often that piece of equipment
may fail and require repairs.
In this project I develop stochastic processes, to try
and simulate the reliability of a piece of equipment.
I will leverage some work done to model earthquake
shocks [1] and rainfall intensity [2], which utilise dou-
ble stochastic Poisson processes.
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2: IN-HOMOGENEOUS FAILURE REPAIR MODEL

In our first model we consider a IHPP, where at a
point of failure the intensity function is shifted for-
ward in time based on a random repair coefficient [3].
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We find that its expected value should be

E(LS) =
∞∑

n=0

[
n−1∑
k=0

pk
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0

tµk(t) exp

[
−
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0

µk(t)dt

]
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)
(1− pn+1).

Where µk(t) is a conditional intensity, dependent on
the history up to the kth event.

pk = P (k failures) =
∫ µ−1

k
(β)
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1.2: DEFINITIONS

• Intensity Function: This is a function of time and can be thought of as the rate
at which the events of our stochastic process occur. Variations of which will
denoted by µ(·)

• In-homogeneous Poisson Process (IHPP): A form of stochastic process driven
by a non-constant intensity function.

• Immigration events: These are the events caused by the underlying Poisson
process. The set of these events will be denoted {T (0)

i }
• Offspring events: These are the events caused by the Poisson process initi-

ated by previous events in the processes history. The set of these events will
be denoted {T (n)

i }

3.1: COMPOUNDING POISSON PROCESSES
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Illustrated above is the CIF for a compounded
stochastic process with an underlying IHPP,
driven by a sinusoidal intensity. At realisations
of this process spikes of intensity decay expo-
nentially.

The compounded stochastic process will be defied as
⋃∞

k=0{T
(k)
i }. If we suppose that the times between successive immi-

gration events follows a pdf g(·) it can be shown that µ(·) and g(·) are related in the following way:

µ(w) =
g(w)

1−
∫ w

0
g(s)ds

, g(w) = µ(w) exp

(
−
∫ w

0

µ(s)ds

)
.

Our cumulative intensity function, CIF, can be written as:

λ(t | Ht) = µ(t) + Φ(t | Ht),Ht = {t1, . . . , tn | ti < t ∀i ≤ n} denotes the history of the process

Where Φ(t | Ht) =
∑

i≤k ηh(t− ti), which is the cumulative intensities, caused by the off springs.
η is a random variable for the initial offspring intensity, and h(·) is the offspring intensity density.
We can find the expected value of the CIF over some time interval, say a period of time in which we wish to operate the piece
of equipment.

E[λ(t | Ht)] = E[µ(t)] + E(η)
∫ t

0

h(u)dµ(t− u).

4: SIMULATING POINT PROCESSES

To simulate these IHPP we utilise the mapping theo-
rem [4],the Probability Integral Transform and the su-
perposition of point processes[5]

Mapping Theorem: For a transformation f :R → R,
let Π ⊂ R be a Poisson process with intensity µ. If
µ∗(A) = µ−1(A) for A ⊂ R, then the Poisson process
on the f transformed set Π∗ ⊂ R is Poisson process
with intensity µ∗.
Using this it can be shown that for a Poisson process
with intensity µ(t) that the inter arrival times have
distribution

FTi(t) = 1− exp

(
−
∫ t

ti−1

µ(x)dx

)
.

Which we can simulate from the Probability Integral
Transform.
Superpositon of Point Process: For Posisson process
Π1,Π2 ⊂ R with intensities µ1(t) and µ2(t) respec-
tively, then

Π1 ∪Π2

is a Poisson process with intensity µ1(t) + µ2(t).

3.2: SIMULATIONS
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Here we simulate a generalisation known as the Hawke’s Pro-
cess. Each event triggers an IHPP, which in turn generates off-
spring events. Given the functional form of µ(·), h(·) and η
we can perform maximum likelihood on this data using EM
algorithms

logL(θ | t1:n) =
n∑

i=1

log
[
λti(t | Ht)

]
−
∫ r

0

λ(s | Hs)ds.
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In this case we refine the ideas from [2], µ(·) is sinusoidal, η
follows a uniform distribution and h(·) = exp(−βt). The
CIF here represents the current reliability of the piece of
equipment, for a given time period we can find the expected
value for this quantitative measure for unreliability

E(η)
(∫ t

0

µ(t)dt

)(
1− e−βt

β

)
.


