When operators use a piece of equipment it is useful
to know the potential lifespan of that piece of equip-
ment, as well as how often that piece of equipment
may fail and require repairs.

In this project I develop stochastic processes, to try
and simulate the reliability of a piece of equipment.

I will leverage some work done to model earthquake
shocks [1] and rainfall intensity [2], which utilise dou-
ble stochastic Poisson processes.

2: IN-HOMOGENEOUS FAILURE REPAIR MODEL

In our first model we consider a IHPPP, where at a
point of failure the intensity function is shifted for-
ward in time based on a random repair coefficient [3].
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We tind that its expected value should be
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1.2: DEFINITIONS

e Intensity Function: This is a function of time and can be thought of as the rate
at which the events of our stochastic process occur. Variations of which will
denoted by pu(-)
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* Immigration events: These are the events caused by the underlying Poisson

process. The set of these events will be denoted {Ti(o)}
 Offspring events: These are the events caused by the Poisson process initi-
ated by previous events in the processes history. The set of these events will

* In-homogeneous Poisson Process (IHPP): A form of stochastic process driven

by a non-constant intensity function. be denoted {Ti(n)}

3.1: COMPOUNDING POISSON PROCESSES

The compounded stochastic process will be defied as UZO:O{TZ.(M}. If we suppose that the times between successive immi-

gration events follows a pdf g(-) it can be shown that x(-) and ¢g(-) are related in the following way:

— ﬁi"‘;)(s) o) = ptwyes (- [ uts)as).

Our cumulative intensity function, CIF, can be written as:

p(w) =

ANt | He) = p(t) + Pt | He), He = {t1,...,1

Where ®(t | Ht) = ), nh(t — t;), which is the cumulative intensities, caused by the off springs.
n is a random variable for the initial offspring intensity, and h(-) is the offspring intensity density:.

n | ti <t Vi < n} denotes the history of the process

We can find the expected value of the CIF over some time interval, say a period of time in which we wish to operate the piece

of equipment.

EA® | He)] =

Elu(t)] + E(n) / () dpa(t — ).

3.2: SIMULATIONS
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Here we simulate a generalisation known as the Hawke’s Pro- In this case we refine the ideas from [2], ;(-) is sinusoidal, n

cess. Each event triggers an IHPP, which in turn generates off- follows a uniform distribution and h(:) = exp(—p8t). The
spring events. Given the functional form of x(-), h(-) and 1 CIF here represents the current reliability of the piece of

we can perform maximum likelihood on this data using EM equipment, for a given time period we can find the expected
algorithms

log L(O | t1.n) = En:log [)\ti (t | Ht)i| — /OT As | Hs)ds

1=1

value for this quantitative measure for unreliability

o ([ aou) (5)

Spencer W, Vladimir F, and Didier S. The hawkes process with renewal immigration and its estimation with an em algorithm. Computational Statistics and Data Analysis, 94:120-135, 2016.
Ramesh N, Garthwaite A, and Onof C. A doubly stochastic rainfall model with exponentially decaying pulses. Stochastic Environmental Research and Risk Assessment, 32:1645-1664, 2017.

=
I

=
N

o
o)

(-
o
\‘{“‘
).
-~
\)
—
—
p—
SN

Intensity
o
o))

o
>

o
N

0.0

0 5 10 15 20 25
Time

[llustrated above is the CIF for a compounded
stochastic process with an underlying IHPP,
driven by a sinusoidal intensity. At realisations
of this process spikes of intensity decay expo-
nentially.

4: SIMULATING POINT PROCESSES

To simulate these IHPP we utilise the mapping theo-
rem [4],the Probability Integral Transform and the su-
perposition of point processes|5]

Mapping Theorem: For a transformation f: R — R,
let Il C R be a Poisson process with intensity p. If
p*(A) = p~(A) for A C R, then the Poisson process
on the f transformed set II* C R is Poisson process
with intensity p*.

Using this it can be shown that for a Poisson process
with intensity p(t) that the inter arrival times have
distribution

Fr.(t)=1—exp ( /t ,u(a;‘)dx) .

Which we can simulate from the Probability Integral
Transform.
Superpositon of Point Process: For Posisson process
I1;,1Is C R with intensities pq(f) and ps(t) respec-
tively, then

I, U Il

Anirban DasGupta. Probability for Statistics and Machine Learning. Springer, New York, 1 edition, 2011.
Zak Varty. Simulating poisson processes, June 2022.

r 1 T 1 T 1 T 1 T 1
¢ J | J | ] | J | J

R. Guo and C. E. Love. Simulating nonhomogeneous poisson processes with proportional intensities. Naval Research Logistics, 41:516-520, 1994.

is a Poisson process with intensity 1 (¢) 4+ pa(t).




