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Abstract

When conducting research involving computer simulations, often, a random function is used at some
point within the code. These ’random’ functions can be taken for granted and used without knowing exactly
how it is ’random’. Consider the example of generating uniform random values in the interval [0, 1); If one
was to set the random generators in Python, R, or C++ to have the same seed then we would get different
sequences of randomly generated observations. This can be particularly frustrating for someone who
wants to reproduce someone else’s research within a different programming language, or for collaborators
who have different programming language preferences. In this work, we explore why these differences
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occur, and what we can do to align the generators to facilitate reproducible research to occur across the
languages. We focus our attention on the generation of random uniform values in the interval [0, 1) as
they form the basis of most other random functions, allowing the results of this investigation to be utilised
in aligning other random functions. For example, a popular method for generating non-uniform variates
involves passing uniform observations through the inverse CDF of these distributions. Interestingly the
default pseudo-random number generator used in these languages is the same, the Mersenne Twister.
The discrepancy in the randomly generated sequences arises in how the initial state of the generator is set
and how the outputs are processed to generate the random observations. Knowing this we can construct
functions to reproduce results seen in R or C++ within a Python environment.

1 Introduction

In this work, we investigate pseudo-random number generators (PRNG) in Python, R, and C++. The aim
of the investigation is to understand how the languages go about generating random numbers, and how
they then go on to generate samples from a uniform distribution. The intention of this work is to be able to
provide frameworks to allow us to align the generation of uniform variates across the languages. This can
facilitate research endeavours across different programming languages and can help reproduce the results
of investigations involving random simulations. For example, if we are working in Python and R we note
that even if we set the seed using the same integer when we go to generate uniform observations we get
different outputs.

import numpy.random as rng
from rpy2 import robjects

rng.seed(1)
print(rng.uniform(size=5))

robjects.r(’’’
set.seed(1)
print(runif(5))
’’’)

Similarly, if we run the following code in C++ we obtain discrepancies in the samples observed, despite
setting the seed to be 1 in each of the languages.

#include <iostream>
#include <random>

int main()
{

std::mt19937 gen(1);
for (int n = 0; n < 5; n++) {

std::cout << std::generate_canonical<double,
std::numeric_limits<double>::digits>(gen)<< ’\n’;;

}
}

The results of the investigations conducted are available in the following GitHub repository. Using the
’Aligning Pseudo Random Number Generators Notebook’ one can see implementations on which this report
makes remarks. The repository establishes a connection from R and C++ random number generators to a
Python environment. For Python we will concern ourselves with random functions from the NumPy library,
for R we will deal with the standard random functions, and for C++ we will look both at its standard random
functions and those instantiated by the boost library.
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2 The Mersenne Twister

This is an algorithm for generating pseudo-random numbers as is the default for each of our considered
languages. The reason for its popularity is its large period and the strong results it provides under the
k-distribution test.

2.1 Terminology

To understand how the algorithm works we should clear up some terminology. We will be dealing with words
of size w, that is we are considering integers between 0 and 2w −1. For a given word we can associate with
it a word vector, this is simply the w-dimensional row vector over F2 that is the binary representation of the
integer with the least significant bit appearing to the right. To denote these word vectors we will use bold
vector notation, x.

2.2 Distribution test

The k-distribution test is a test that attempts to quantify the ’randomness’ of an algorithm. The outline is as
follows:

• Start with a pseudo-random sequence, (xi), of w-bit integers of period P .

• Consider the vectors formed by the leading v bits of k of these w-bit integers.

– If we denote the leading v bits of x as truncc(x), then the vectors we are considering are

(truncv(xi), . . . , truncv(xi+k+1)

for 0 ≤ i ≤ P .

• There are 2kv possible vectors, so we that the random sequence (xi) is k-distributed to v-bit accuracy
if each combination of bits occurs the same number of times within a period, except for the all-zero
combination that occurs once less often.

In [1] there is an illustrative geometric intuition for the test.

2.3 The Algorithm

The Mersenne Twister algorithm as described in [1] employs a linear recurrence to generate 32-bit integer
words, and then to improve its performance on the k-distribution test it employs what is called a temper-
ing stage. Essentially, this involves transforming the outputted 32-bit integer word by right multiplying its
associated word vector by a w × w invertible matrix. The specific linear recurrence employed is

xk+n := xk+m ⊕ (xu
k |xl

k+1)A, (k = 0, 1, . . . ),

where

• n: The degree of the recurrence,

• r (hidden in the definition of xu
k): 0 ≤ r ≤ w − 1,

• m: 1 ≤ m ≤ n, and

• A: An element of Mw×w(F2).
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With xu
k denoting the upper u(= w − r) bits of xk and xl

k denoting the lower r bits of xk and (xu
k |xl

k+1)
simply denoting their concatenation. To make this linear recurrence easy to implement, the matrix A is
often taken to have the simpler form 

1
1

. . .
1

aw−1 aw−2 . . . . . . a0


This allows the calculation xA to be reduced to

xA =

{
shiftright(x) if x0 = 0

shiftright(x) if x0 = 1

As a consequence of this when implementing a specific instance of this algorithm the matrix A is simply
given as a word of size w (as ai ∈ F2, the concatenation of the ai s forms a binary value). We then move
onto the tempering stage of the algorithm, which as briefly described above involves a transformation.
More specifically, we have a sequence of transformations, x 7→ z. The transformations are carried out in
the following way:

y := x⊕ (x ≫ u)

y := y ⊕ ((y ≪ s) AND b)

y := y ⊕ ((x ≪ t) AND c)

z := y ⊕ (x ≫ l)

Where u, s, t, and l are integers, ≪ k denotes a left bit shift by k and ≫ k denotes a right bit shift by k. b
and c are called bitmasks.

2.4 MT19937

Python, R, and C++ each employ the MT19937 instance of the Mersenne Twister algorithm, which is simply
a version of the algorithm where the parameters take on specific values. The choice of these parameters
is important as it affects the size of the period for the sequence of random numbers generated, as well as
their distribution amongst the bits. The period parameters of the MT19937 instance are

• w = 32

• n = 624

• r = 31

• m = 397

• a = 0x9908b0df

Whilst the tempering parameters are

• u = 11

• s = 7

• t = 15

• l = 18

• b = 0x9d2c5680

• c = 0xefc60000

With these specific set of parameters, the algorithm has a period of 219937−1 and is 623-distributed amongst
the full 32-bits. Along with the property of being easy to implement sufficiently in code, the MT19937
algorithm is a popular option as a PRNG.
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2.5 Implementation

We use the following method to implement this algorithm:

1. We set the generator with an initial list of 624 words, which we are going to call the key.

2. Using this initial key we update the 624 words using the linear recurrence to generate a new key of
624 words.

3. We sample this key at its first value and temper this word to generate an output.

4. After this we sample the key at its next element.

5. We temper this value to generate our next integer output.

6. Repeating this we will eventually reach the end of our key, at which point we use the key and the linear
recurrence to generate a new key and start sampling again from the beginning.

7. This is repeated to keep generating a sequence of random integers.

Throughout this report, the ‘state’ will refer to the tuple (position, key), where position gives the index at
which we are sampling the key.

3 Setting the Generator

As noted in the previous section we must provide an initial key and a starting position to allow us to start
generating pseudo-random integers. If we want to have each programming language generate the same
sequence of random numbers then it is important we understand how they each set up the generators. As
we will see there are methods to set up the generator directly or in-directly.

3.1 Python

In Python, we can do this directly by using numpy.set_state(), which takes as input the type of generator
we are using (in our case it is ‘MT19937’, however, NumPy does offer the ability to use other generators), the
key (taken to be a list of 624 32-bit integers) and the position to sample the key. Or we can use numpy.seed()
which simply takes an integer as an input. From this integer, it will generate a list of 624 and set the initial
position to be at the end of the list. This is so that when we want to generate our first output the key is
updated according to the linear recurrence and we take our sample to be the first word in this new key.

3.2 R

Similarly, in R we set the state directly by defining .Random.seed. We do so by supplying a list with the
following format, [type of generator (10403 in our case), index to take sample, key]. Or we can simply
supply set.seed() with an integer and the key is generated from this integer, and again the position is set
to the end of this key.

3.3 C++

In C++ we set the seed when we define the generator. If we are working with the standard random functions,
we would include the random header, #include <random>, and then define the generator, std::mt19937
gen(seed). If we were to use the boost the library we would again have to import the header, #include
<boost/random.hpp>, and then define the generator, boost::random::mt19937 gen{seed}.
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3.4 Remarks

There are a few points we should note about these particular functions and methodologies for setting up
the generator.

1. Python and C++ generate their initial 624 words, in the same way, meaning that given an initial integer
seed, the MT19937 generator will be set to the same state.

2. R uses a different algorithm to generate its state from an initial integer seed.

(a) The method R implements is similar to that described in the initial paper for the MT19937 algo-
rithm, published in 1998. However, in 2002 issues were raised in regard to the algorithm yielding
nearly shifted sequences when two different integer seeds were provided. The concerns were in
relation to how this affected the ’randomness’ of the generator. This issue arose when the two
supplied integers were close in terms of their Hamming distance. Therefore, an updated method
for generating the key from the integer seed was given and this is the one that Python and C++
adopt. However, R’s implementation of the initial method is a slight variant of that proposed in the
original paper and people believe that it doesn’t suffer the same issues that forced the update in
2002. I believe the slight variant that R employs is the initial looping of the integer before starting
to generate the key.

4 Generating Uniform Variates

We have seen how each language generates a 32-bit word and analyzed some of the differences in the
methodologies they adopt for doing this. Now we will move on to seeing how each language takes those 32-
bit words to generate a uniform variate. For Python, we will consider the function numpy.random.uniform()
which according to [2] samples uniformly over the half-open interval [low, high), where by default low=0 and
high=1. For R we will look at the standard runif() function [3] which, differing to Python will sample from
the interval (min,max), where by default min=0 and max=1. For C++ we will investigate multiple methods
for generating uniform variates. From the standard library [4], we will look into generate_canonical which
produces variates from the interval [0, 1). Then we will look at uniform_real_distribution from the boost
library [5] which samples from the interval [min,max), with min=0 and max=1. What we see is the following.

• The combination implemented by Python and C++ may seem arbitrary at first glance, however, it is
used to help solve a prominent issue in floating point operations. Due to how we store floating point
numbers, when we divide our integer output the effects of rounding will cause some bits to be over-
represented and others to not be present at all in the final output space. Therefore, to try and increase
the uniformity of the distribution of bits amongst the output space, Python and C++ use two outputs
from the generator to generate a larger 53-bit integer which is then divided to get our variate

– I will only explain Python’s process for forming this larger integer as C++’s method is almost
identical. We draw two 32-bit words from our generator. We apply a bitshift of 5 to the first
(effectively dividing it by 25) making it a 27-bit integer. Then it is multiplied by 67108864 = 226,
making it a 53-bit integer. However, in binary this new integer will have 26 zeros at the right, this
is where we use our second integer. We take our second integer and perform a bitshift of 6,
which forms a new 26-bit integer. We take this and add it to the 53-bit integer so that we populate
its remaining bits. We can now divide by 253 to get our variate between [0, 1)

• We must note as well that the effects of rounding may cause 1 to be an output of this process despite
the MT19937 having a range of [0, 232 − 1) and we are dividing by 232

• R simply divides the output of the generator by 232 − 1 to generate its variates.

– In this case, if 0 or 1 is to be returned it has predetermined values that it will output instead. If 0
was to be outputted 1

2(232−1) is outputted instead and if 1 were to be outputted the function will
output 1− 1

2(232−1)
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• Now in regards to the way C++ generates its variates

– We notice that for generate_canonical we simply divide by 232, like in R and we deal with the
potential of returning 1 by calling the function again in the event that 1 is to be returned. This has
minor effects on the uniformity of the output space.

– Boost’s uniform_real_distribution works in a similar but yet different way to Python’s numpy.uniform().
Note that it divides by 253 − 1 to reduce the risk of returning 1.

– We note that the standard library also has a uniform_real_distribution function, which works
in the same way as generate_canonical.

– Boost also has a function uniform_01 which is just the special case of boost::uniform_real_distribution
we are considering.

5 Aligning PRNGs Across Programming Languages

We are now in a position to be able to align the generation of pseudo-random integers across the languages.
There are multiple ways of doing this, each of which is explored in the associated notebook mentioned in
the introduction to this report.

6 Generating Exponential Random Variates

Python uses the inverse-CDF method by default, despite having an implementation of the Ziggurat method
within the source code and stating within the documentation that the Ziggurat method is used. R uses an
algorithm attributed to Jh Ahrens and U Dieter to generate its exponential random variates. The standard
library in C++ has an exponential_distribution function to generate exponential variates. It uses the
inverse-CDF method in order to generate its variates. The boost library has a similar exponential_distribution
function to generate variates from the standard exponential. However, it generates the variates using the
Ziggurat method.

7 Generating Normal Variates

7.1 Python

Currently, we are missing the implementation to replicate the normal variates from NumPy’s normal function.
At the moment I have a function that uses the same methods (I believe) as NumPy’s normal function to
generate a normal variate from the outputs of the generator. However, upon running my implementation the
observations I find are different despite the generators being set in the same way. The algorithm which I
have written I believe to be correct as running it a large number of times I see that the output resembles that
of a normal distribution, so the discrepancy I think lies in the random aspect of the algorithm. The particular
algorithm we are implementing is the Ziggurat method, where the random element comprises of generating
a 64-bit integer from our generator and uses this to generate our normal observation. Therefore, I think the
issue lies in the 64-bit integer I am using in the algorithm rather than the algorithm itself and I haven’t found
a way to check that this is really the case. Despite this, I will give the coded implementation that I have
achieved so far, with the intention that the underlying algorithm can still be analyzed despite it not being
able to replicate the observations we see in practice.

7.2 R

To generate its normal variates R uses the inverse-CDF method. However, by looking through the source
code it is clear that it has the ability to use a vast array of other algorithms. The algorithms are implemented
such that they sample from a standard normal, the variates are subsequently scaled if we are considering
non-standard normal distributions.
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7.3 C++

The boost library generates its variates using the Ziggurat method.

8 Ziggurat Method

This is a method to generate samples from decreasing densities. It uses a form of rejection sampling to
generate its variates and works in the following way. We choose a covering set (Z) for the area (C) under
a density f(x) which consists of a set of rectangles of equal area (v) stacked on top of each other, with the
bottom strip tailing off to infinity. We will label the rightmost coordinate of rectangle i (Ri) by xi. So we have
that 0 = x0 < x1 < x2 < . . . . If a random rectangle Ri is selected then a random point in Ri is Uxi with U
uniform (0, 1), and if x < xi−1 then our random point (x, y) must be in C and so we can confirm the point x
without having to calculate y. Let r be the rightmost xi. We may generate from the base strip as follows:

• generate x = vU
f(r) , with U uniform (0, 1)

• If x < r, return x

• Else return x from the tail

So we get an x from the base rectangle with probability rf(r)
v , the same as generating an x from one of

the other rectangles. This ensures that we can easily sample an x from Z as we can randomly choose a
rectangle according to a uniform distribution (as they can be chosen with equal probability) and then we can
easily sample from the corresponding rectangle. Python implements a version of this algorithm that uses
255 rectangles, and a base strip as the covering set. To apply the algorithm in its entirety we can use the
following procedure, which uses the output of a 32-bit word generator for maximum efficiency.

1. Generate a random 32-bit word j, let i be the index provided by the rightmost 8 bits of j.

2. Set x = jwi. If j < ki return x

3. If i = 0 return an x from the tail

4. If [f(xi−1 − f(xi))]U < f(x)− f(xi), return x

5. Go to step 1

Here wi = 231xi and ki = ⌊232(xi−1

xi
)⌋ for 1 ≤ i ≤ 255 and for i = 0 k0 = ⌊232 rf(r)

v ⌋ and w0 = 231 v
f(r) So

for each density, we consider we need to find the appropriate values of r and v, and consequently, xi, to
form our rectangles for our covering set Z. We can then sample from Z and reject samples according to
our algorithm to generate variates of our desired distribution. The rejection rate for this algorithm is very low
making it efficient (for most distributions a sample x is accepted around 98% of the time).

9 Randomly Sampling and Shuffling 1-D Lists

We can now how the programming languages go about sampling from a list of elements. We will cover
multiple cases, including sampling with and without replacement as well as generating samples of different
sizes. Furthermore, we will show how programming languages shuffle the elements of a list. Some of these
cases may overlap, for example, if we take a sample without a replacement that is the same in size as the
size of the list then we are effectively permuting the elements of the list. However, we ought to be careful
as there may be different functions to perform these operations within the programming and they may yield
different results. In the proceeding sections, we will only consider Python and R.
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9.1 Python

Python shuffles a list by considering each element in turn and sampling uniformly from the set of indices be-
fore this element and then swapping the element we are at with the element at the index we have sampled.
Python’s NumPy library also has a function numpy.random.choice which allows us to sample elements
from a 1-D array. We can specify whether this sampling is with or without replacement as well as the size of
the sample to generate. We note that we get different results when we specify to sample from the discrete
uniform, which is equivalent to not specifying a discrete distribution. Generating a sample without replace-
ment with a size equal to the size of the list will give the same output as if we called our function directly
(provided we do not specify the probabilities)

9.2 R

In R we have a similar function, sample(), which allows us to generate a sample from a list either with or
without replacement. Furthermore, we can specify the size of the sample and the probability distribution
against which we sample. The sample function in R lets us set the probabilities for the discrete distribution
we wish to sample from. We note that when we set the probabilities all equal to each other we get a different
sample to the sample where we do not specify the probabilities. By default R still samples uniformly when
the probabilities are not given, however, it uses a different algorithm to do so and yields different samples.
We note that for the case where we are not specifying the probabilities, the samples obtained when we
sample with or without replacement are the same up to the point where we sample a duplicate element in
the list.
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