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1 Introduction

Gradients are at the core of implementing deep neural network architectures. It is through gradient descent
methods that one is able to train these large networks to perform well on data sets. These methods work
by understanding the gradient of a loss function at training examples with respect to the parameters of the
network. Therefore, information on the learnable features within a training sample is present within these
gradients, and in particular how they evolve and interact with other gradients. Designing tools to investigate
how the learning algorithm manipulates these gradients can provide a lot of insight into the features learned
by the network, the processes underlying the training process, the network’s capacity to generalize, and
areas to refine the training process. In this report, I will indicate some promising exploitation of these
gradients in understanding the learning process of neural networks. Although this report will not be an
exhaustive list of the application of gradients to investigating neural network generalization, it will provide
an overview of some of the enlightening techniques.
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2 Preliminaries

2.1 Notations and Definitions

We will first introduce some basic notation that will remain constant throughout the report. Along the way,
we will need to introduce some more specialized notation for the different sections. The problems we will
concern ourselves most with will be supervised classification tasks. This means we have a feature space X
and a label space Y which combine to form the data space Z = X×Y for which some unknown D is defined
on. The challenge now is to learn a classifier h : X → Y that correctly labels samples from X according
to D. The training data S = {(xi, yi)}mi=1 consists of m i.i.d samples from D. As we are considering neural
networks, a classifier will be parameterized by a weight vector w which we will denote hw. Let W denote the
set of possible weights for a classifier and the set of all possible classifiers H will sometimes be referred to
as the hypothesis set. We will often denote the set of probability distributions over W as M(W). To assess
the quality of a classifier we define a measurable function l : Y × Y → [0,∞) called the loss function. This
function defines a loss landscape on the distribution parameter space W. At a point w ∈ W the value of the
loss landscape is given by the true error of the classifier defined by

L(w) = E(x,y)∼D(l(hw(x), y)).

As distribution D is unknown we work with the training error defined by

L̂(w) =
1

m

m∑
i=1

l(hw(xi), yi).

It will be useful to use the short-hand li(w) = l(hw(xi), yi). As our training data is just a sample from the
underlying (unknown) distribution D there is the possibility that our classifier performs well on the training
data, but performs poorly on the true distribution. Neural network generalization refers to the phenomenon
that classifiers trained to have low empirical risk are seen in practice to also have a low true risk. Despite
having sufficient capacity to memorize the training data by optimizing to a complex classifier, neural net-
works are instead observed to optimize to classifiers which learn meta-features of the training sample the
generalize well to the underlying distribution. We will now explore techniques that aim to shed light on this
phenomenon by appealing to gradients.

2.2 Stochastic Gradient Descent

The architecture of deep neural networks was proposed long before they manifested as a useful machine
learning technique. This delay was due in part to the difficulty in training the large architectures stably
and effectively. Learning algorithms such as Stochastic Gradient Descent (SGD) have extracted remark-
able properties from deep neural network architectures. Many of the properties are still mysterious to re-
searchers, and these architectures seem to have greater potential than what was previously thought. To try
and grapple with this it is important to understand the precise mechanisms of SGD as this has instantiated
the networks with the majority of these properties. A learning algorithm aims to alter the parameters of the
network to try and reach the global minimum of the loss landscape. Gradient descent methods attempt to
achieve this by observing how the loss changes with respect to perturbations in the parameters at different
training examples to determine the direction in which the parameters should be manipulated to move down
the loss landscape. Computing the gradients at each individual training example is computationally expen-
sive, and so instead gradients are calculated for batches of examples. These batches reduce computational
costs but also introduce some noise into the algorithm that can be useful in helping the algorithm escape
local minima of landscape and find more stable regions. This procedure is known as SGD and has a central
role in endowing neural networks with their generalization capacities. It has been observed that SGD can
train these networks in the over-parameterized setting such that they converge to global minima of the loss
landscape. In [2] an attempt is made to explain this using dynamic stability. This approach illustrates how
the randomness induced by SGD is vital, and why regular gradient descent (GD) is not an effective learning
algorithm for training neural networks. As is the case with most machine learning scenarios, one is trying
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to minimize the training error L̂(w) = 1
m

∑m
i=1 li(w) over the parameter space. A general optimizer for this

problem can be written as
wt+1 = wt −G(wt; ξt), (1)

where ξt is a random variable independent of wt and each ξt are i.i.d. For GD,

G(wt; ξt) =
η

m

m∑
i=1

∇li(wt),

and for SGD,
G(wt; ξt) = η∇liξt(wt).

Definition 2.1. Call w∗ a fixed point (1) if for any ξ it follows that G (w∗, ξ) = 0.

Definition 2.2. Let w∗ be a fixed point of (1). For the linearized dynamical system,

w̃t+1 = w̃t −Aξt(w̃t −w∗)

where Aξ = ∇wG(w∗, ξt). The fixed point w∗ is linearly stable if there exists a constant C such that

E
(
∥w̃t∥2

)
≤ C ∥w̃0∥2

for all t > 0.

If it is assume that L̂ (w∗) = 0, and the approximation

L̂(w) ≈ 1

2m

m∑
i=1

(w −w∗)⊤Hi(w −w∗)

with Hi = ∇2li(w
∗), is used then the linearized SGD is given by

wt+1 = xt −
η

B

B∑
j=1

Hξj (wt −w∗).

Where B is the batch size and ξ = {ξ1, . . . , ξB} is a uniform, non-replaceable random sampling of size B
on {1, . . . ,m}.

Definition 2.3. Let H = 1
m

∑m
i=1 Hi and Σ = 1

m

∑m
i=1 H

2
i − H2. Let a = λmax(H) be the sharpness, and

s = λmax

(
Σ

1
2

)
be the non-uniformity.

Theorem 2.4. The global minimum w∗ is linearly stable for SGD with learning rate η and batch size B if the
following is satisfied

λmax

(
(1− ηH)2 +

η2(n−B)

B(n− 1)
Σ

)
≤ 1.

For d = 1 this is a necessary and sufficient condition.

Remark 2.5. A simpler necessary condition is

0 ≤ a ≤ 2

η
, and 0 ≤ s ≤ 1

η

√
B(n− 1)

n−B
. (2)

For a fixed learning rate η,

1. GD can converge to minima satisfying a ≤ 2
η , and

2. SGD can converge to minima satisfying (2).

Hence, SGD can filter out minima with large non-uniformity. The difference between GD and SGD is that
SGD must converge to solutions that fit the data uniformly well. This provides a basic demonstration of how
the properties of neural networks are a manifestation of the properties of the learning algorithm. It is this
investigation that motivates future work to determine more sophisticated probing methods to understand
why certain properties of neural networks emerge.
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2.3 Complexity Measures

It is generally accepted that having a more straightforward function that correctly classifies a dataset is
more likely to generalize well to unseen data. Generalization bounds can often be derived by developing
measures of the complexity of the hypothesis class. An important complexity measure is Rademacher
complexity, which forms the basis of one of the main results in generalization theory. Recall, that we have
the space Z on which a distribution D is defined from which we draw an i.i.d sampled S = {(xi, yi)}mi=1.
Suppose we have a class of functions F = {f : Z → R}.

Definition 2.6 ([1]). The empirical Rademacher complexity of F is

R̂(F) = Eσ∈{±1}

(
sup
f∈F

(
1

m

m∑
i=1

σif((xi, yi))

))
,

where each σi is an independent random variable uniformly distribution on {±1}.

Definition 2.7 ([1]). The Rademacher complexity of F is

R(F) = ES∼Dm

(
R̂(F)

)
.

Theorem 2.8 ([1]). For a parameter δ ∈ (0, 1) if F ⊆ {f : Z → [0, 1]} then

PS∼Dm

Ez∼D (f(z)) ≤ 1

m

m∑
i=1

f(zi) + 2R(F) +

√
log
(
1
δ

)
m

 ≥ 1− δ,

and

PS∼Dm

Ez∼D (f(z)) ≤ 1

m

m∑
i=1

f(zi) + 2R̂(F) + 3

√
log
(
2
δ

)
m

 ≥ 1− δ.

If we let F = {(x, y) 7→ l(hw(x), y) : w ∈ W} then for any δ ∈ (0, 1) and w ∈ W we have that

PS∼Dm

L (w) ≤ L̂(w) + 2R̂(F) + 3

√
log
(
2
δ

)
m

 ≥ 1− δ.

We will later see develop measures that either bound the Rademacher complexity directly, or act as a
heuristic for the generalization capacity of neural networks.
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3 Stiffness

3.1 Intuition for Stiffness

Stiffness was an idea introduced in [3] with the intention to explain network generalization, uncover seman-
tically meaningful groups of data points, explore the effects of learning rates on the function learned by the
network, and formalise a notion of dynamical critical length. The definitions of stiffness that we will soon
introduce will be shown to relate directly to network generalization, will be sensitive to the semantically
meaningful content of inputs, and capture information about the loss landscape. The idea is the following,
consider two data points (x1, y1) and (x2, y2). Compute the gradient of the loss function with respect to the
parameters as these points as

ḡ1 = ∇wl(hw(x1), y1), and ḡ2 = ∇wl(hw(x2), y2).

Now we want to consider how the loss on the data points changes as we move the parameter in the direction
of −ḡ1. So let,

∆l1 = l(hw−ϵḡ1(x1), y1)− l(hw, y1) = −ϵḡ1 · ḡ1 +O
(
ϵ2
)
,

and
∆l2 = −ϵḡ1 · ḡ2 +O

(
ϵ2
)
.

By construction as ϵ → 0 it follows that ∆l1 < 0, however, stiffness concerns itself with the behaviour of ∆l1
as ϵ → 0. We define a positive stiffness to mean that ∆l2 > 0 in the limit, which intuitively means that in
the parameter update of SGD, these two data points support each other. The degree to which they support
each other is directly related to the quantity ḡ1 · ḡ2.

3.2 Sign and Cosine Stiffness

We now formalise the intuition of the previous section with the following definitions.

Definition 3.1. The sign stiffness is defined to be

Ssign(hw) = E(x1,y1),(x2,y2)∼D (sign (ḡ1 · ḡ2)) .

Definition 3.2. Define the cosine stiffness to be

Scos (hw) = E(x1,y1),(x2,y2)∼D (cos (ḡ1 · ḡ2)) ,

where
cos (ḡ1 · ḡ2) =

ḡ1 · ḡ2
|ḡ1||ḡ2|

.

Remark 3.3. Note the stiffness is dependent on the underlying distributions D.

3.3 Class Membership Stiffness

Empirically, we see that sign stiffness is more suitable for identifying the relationship between data points
between classes, whereas cosine stiffness better highlights the relationship between data points within
classes. As stiffness as defined is a theoretical quantity we must develop a proxy. Recall that in the
machine learning paradigm, we have our training set and a held-out validation set that is used to evaluate
the trained model. This leads to three different methods of evaluating stiffness. We can either evaluate
when both points are taken from the train set, when both points are taken from the validation set, or when
one point is taken from each set. Suppose that our set has semantic classes c1, . . . , cn.

Definition 3.4. Define the class stiffness matrix, C, to be the matrix with entries

[C]ij = EX1∈ci,x2∈cj ,x1 ̸=X2
(S((x1, y1), (x2, y2))).
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The entries of this matrix can be interpreted as follows,

• The on-diagonal elements correspond to the suitability of the gradient update to the members of the
class itself. Hence, these entries give an idea of within-class generalization.

• The off-diagonal elements express the amount of improvement transferred from one class to another.

Using these interpretations we make the following definitions.

Definition 3.5. For a set of data points X with n semantic classes summarize the between-class stiffness
by

Sbetween classes =
1

n(n− 1)

∑
i

∑
i ̸=j

[C]ij .

Definition 3.6. For a set of data points X with n semantic classes summarize the within-class stiffness by

Swithin classes =
1

n

∑
i

[C]ii.

When within-class stiffness drops below 1, the generality of the features improved does not extend to
even the class itself, suggesting that overfitting may be occurring.

3.4 Stiffness and Distance

We can use stiffness to develop a notion of distance. Intuitively, data points that support each other strongly
through SGD should be related in some semantic classes. Therefore, one could imagine that they are close
in some space. Defining the distance metric

d (x1, x2) = 1− ḡ1 · ḡ2
|ḡ1||ḡ2|

tries to encapsulate this intuition. Note that at a distance of zero, the stiffness is one.
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4 Neural Tangent Kernel

Tangent kernels are used to understand what function the neural networks are learning. To discern the
features captured by the network we look at how the gradients of the functions represented by the network
interact at different points. Intuitively, at data points with similar features, these functions should have
gradients that interact strongly in the parameter space as these are reinforced by the learning algorithm. In
[4] this intuition is formalized and then also applied to give of neural network complexity.

4.1 Tangent Features and Kernel

Consider the class of scalar functions

H =
{
hw : X → R : w ∈ Rd

}
.

Definition 4.1. The tangent features of the scalar function hw : X → R is the gradient of the function with
respect to the parameters,

Φw(x) = ∇whw(x) ∈ Rd.

With the corresponding tangent kernel given by

kw(x, x̃) = ⟨Φw(x),Φw(x̃)⟩

One can quantify the changes in the output of the function as a result of perturbations of the weights
using these concepts as,

δhw(x) = ⟨δw,Φw(x)⟩+O
(
∥δw∥2

)
.

To characterise the prominent directions in parameter space as a result of the training we can look at the
eigenvalue decomposition of the covariance matrix

Σw = E(x,y)∼D
(
Φw(x)Φw(x)⊤

)
where D is the distribution of the input. That is, consider

Σw =

d∑
j=1

λwjvwjv
⊤
wj .

For each data point (xi, yi) in the the training set, and the corresponding outputs hw(xi) the gradient descent
update on the weights is given by

δwGD = −η∇wl(hw(xi), yi)

for a loss function l. The resulting function updates can be linearly approximated by

δhGD(xi) = ⟨δwGD,Φw(xi)⟩,

which can be decomposed in the eigenbasis of the tangent kernel,

uwj(xi) =
1√
λwj

⟨vwj ,Φw(xi)⟩.

Lemma 4.2. The function updates decompose as δfGD(x) =
∑d

j=1 δfjuwj(x) with

δhj = −ηλwj(uwj)
⊤(∇hw l),

where uwj = (uwj(x1) . . . uwj(xm))⊤ ∈ Rn and ∇hw is the gradient with respect to sample outputs.
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4.2 Application as a Complexity Measure

Let us consider the set of scalar functions

F =
{
hw(x) = ⟨w,Φ(x)⟩ : ≾ ∈ Rd

}
.

When given m inputs, the tangent features Φ(xi) ∈ Rd yield a feature matrix Φ ∈ Rm×d. Recall that the
Rademacher complexity depends on the size of the class F . A common method for controlling the size of
our set of functions is to bound the norm of the weight vector. However, the implicit bias induced by the
training algorithm identified by the tangent kernel can also be used.

Definition 4.3. Let A ∈ Rd×d be an invertible matrix. The vector norm of w ∈ Rd induced by A is given by
∥w∥A :=

√
w⊤ (AA⊤)w.

Proposition 4.4. For the restricted class of functions FA
MA

= {hw : x 7→ ⟨w,Φ(x)⟩ : ∥w∥A ≤ MA} and
sample set S, we have that

R̂
(
FA

MA

)
≤ MA

n

∥∥A−1Φ⊤∥∥
F
,

where
∥∥A−1Φ⊤

∥∥
F

is the Frobenius norm of the re-scaled feature matrix.

As the training algorithm is iterative we can consider the decomposition hw =
∑

t δhwt where δhwt =
⟨δwt,Φ(x)⟩. Applying a local constraint on the parameter updates we can considering the restricted class
of functions

FA
m =

{
hw : x 7→

∑
t

⟨δwt,Φ(x)⟩ : ∥δwt∥At ≤ mt

}
.

Theorem 4.5. Given any sequences A and m of invertible matrices At ∈ Rd×d and positive numbers
mt > 0 the following bound holds

R̂
(
FA

m

)
≤
∑
t

mt

m

∥∥A−1
t Φ⊤∥∥

F
.

Remark 4.6. Using the linear re-parameterisation w 7→ A⊤w and Φ 7→ A−1Φ we can consider the restricted
function class

FΦ
m =

{
hw : x 7→

∑
t

〈
δ̃wt,Φt(x)

〉
:
∥∥∥δ̃wt

∥∥∥
2
≤ mt

}
.

In this case a similar bound holds,
R̂S ≤

∑
t

mt

m
∥Φt∥F .

These bounds are for fixed sequences of feature maps. However, the results can be extrapolated to the
non-deterministic setting for which [4] proposes the following heuristic measure for the complexity of neural
networks,

C(hw) =
∑
t

∥δwt∥∥Φt∥F .

Where Φt is the learned tangent feature matrix at iteration t, and ∥δwt∥2 is the norm of the SGD update.
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5 Algorithmic Stability

The work of [5] focuses on the learning algorithm to understand network generalization. A general update
rule of GD takes the form

wt+1 = wt −
η

m

m∑
i=1

gi(wt),

where where gi(wt) is the gradient of the loss function at example i evaluated at the parameter wt, and
η is the learning rate. Our intuition says that the average gradient g(w) is strong in directions where per-
example gradients are "similar" and parameters that correspond to these stronger directions should change
more. When per-example gradients reinforce each other they are said to be coherent. A learning process
is stable if changing an example in the training set doesn’t affect the learned model in drastic ways. Strong
directions in the average gradient are stable, as multiple examples reinforce each other. The stability of the
learning process relates to the ability to generalize. That is, stable updates in the parameters should lead
to good generalization. Therefore, to approach generalization from the perspective of learning algorithms
we require a quantitative notion of coherence.

5.1 Motivating Example

Consider the linear model ŷ = w · x =
∑6

i=1 wixi which is fitted using the square loss l (y, ŷ) = 1
2 (y − ŷ)2.

Consider the datasets
i xi yi
1 1 0 0 0 0 1 1
2 0 −1 0 0 0 −1 −1
3 0 0 −1 0 0 −1 −1
4 0 0 0 1 0 1 1
5 0 0 0 0 −1 −1 −1

 ,


i xi yi
1 1 0 0 0 0 0 1
2 0 −1 0 0 0 0 −1
3 0 0 −1 0 0 0 −1
4 0 0 0 1 0 0 1
5 0 0 0 0 −1 0 −1

 ,

where the difference between the two only arises in the last entry of the xi. Refer to the first one as "real"
data and the second as "random" data, as with the first data set the last entry of the xi correlates with the
label yi. However, with the other dataset, there is no correlation between any one entry of the xi with the
labels yi and hence appears "random". Use the first 4 rows for training and the last for testing. Consider
the average gradient of the loss function on each of these datasets. For the real data set the 6th entry is
reinforced by each example, on the other hand, in the random dataset this component is not reinforced.
Hence, during gradient descent, the real dataset causes a greater change in the 6th component of the
parameter compared to the random data set. It is reassuring then that the gradients of the data points
reinforce the learnable feature so that the model can learn this.

5.2 Coherence

Suppose the network has d trainable parameters. Let lz(w) be the loss of example z ∼ D for weight vector
w ∈ Rd and let l(w) = Ez∼D(lz(w)) be the expected loss. Denote the gradient of the loss at example z
by gz := (∇lz)(w) and the average gradient over all examples by g := (∇l)(w). Throughout η will denote
the learning rate. The learning problem is trying to minimize the expected loss through a gradient descent
algorithm where small descent steps h = −ηg are taken. Using Taylor approximations to get that

l(w + h)− l(w) ≈ g · h = −ηg · g = −ηEz∼D(gz) · Ez∼D(gz) = −ηEz,z′∼D(gz · gz′).

Which motivates using the average pairwise dot product as a metric for coherence. With this setup, there are
clear directions for improving the generalization of networks by modifying the process of gradient descent.

1. We could make gradient descent more stable by combining per-example gradients using robust mean
estimation techniques (i.e. use the median rather than sample mean) to eliminate weak directions in
the gradients.
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2. We could use l2 regularization as a means to reduce movement in weak directions.

3. As training progresses the gradients of fitted examples become negligible. Therefore, we could con-
sider early stopping to prevent the fewer examples in the latter parts of training from dominating the
average gradient and triggering over-fitting.

To use the average pairwise dot product as an interpretable metric it has to be normalized. For an individual
loss lz a step hz down its gradient gz at a parameter point w is given by,

lz(w + hz)− lz(w).

Using Taylor approximations and taking expectations over z gives

Ez∼D (lz(w + hz)− lz(w)) = −ηEz∼D(gz · gz).

This is the idealized reduction in loss, as per-example examples tend not to be aligned so steps are usually
not taken down an individual losses gradient. Therefore, it serves as a reasonable scaling factor for the
metric. Let α be the normalized metric for coherence defined as

α(D) :=
Ez,z′∼D(gz · gz′)

Ez∼D(gz·gz)
.

Theorem 5.1. Let V be a probability distribution on a collection of m vectors in Euclidean space. Then,
0 ≤ α(V) ≤ 1, where

1. α(V) = 0 if and only if Ev∼V(v) = 0, and

2. α(V) = 1 if and only if all vectors are equal.

Furthermore, for 0 ̸= k ∈ R we have
α(kV) = α(V)

where kV is the distribution of random variables kv for v ∼ V.

Remark 5.2. Typically we do not have access to the underlying distribution of the samples. Therefore, we
let αm denote the coherence of a sample S where |S| = m.

Example 5.3. Let S be a sample of size m, whose gradients gi (1 ≤ i ≤ m) are pairwise orthogonal. Then,

αm =
1
mEi(gi · gi)
Ei(gi · gi)

=
1

m
.

In this case, αm is independent of the gi. Call 1
m the orthogonal limit of a sample of size m and denote it

α⊥
m.

The quantity αm/α⊥
m can be interpreted as the average number of samples that a particular gradient

helps fit.

1. For an orthogonal sample αm/α⊥
m = 1. Examples are fitted independently.

2. For a perfectly coherent sample αm/α⊥
m = m. Examples help fit all other examples.

3. When αm/α⊥
m = 0, we have αm = 0 so on average no example helps fit any other example.

4. In the under-parameterized setting d ≪ m with a sample of k ≫ 1 copies of orthogonal gradients in
d-dimensional space (i.e. m = kd ≫ d). We have that αm = 1

d and αm/α⊥
m = k. Hence, each example

helps k other examples in the sample as expected.
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5.3 Application to the Generalization Gap

A dataset-independent argument for stability could be that small batch stochastic gradient descent is stable
as each individual example is looked at so rarely when training is not run for too long. In [5] a dataset-
dependent argument for stability is given which uses coherence, these ideas are then applied to explain
generalization. The expected generalization gap is the expected difference between training and test loss
over samples of size m from D, which we will denote gap(D,m).

Theorem 5.4. If stochastic gradient descent is run for T steps on a training set consisting of m examples
drawn from distribution D, then,

|gap(D,m)| ≤ L2

m

T∑
t=1

(ηkβ)
T
k=t+1 · ηt ·

√
2(1− α(wt−1))

where

• α(w) denotes coherence at point w in parameter space,

• wt is the parameter value seen at step t of gradient descent,

• ηt is the learning rate a step t of gradient descent,

• (ηkβ)
t1
k=t0

=
∏t1

k=t0
(1 + ηkβ), and

• L and β are Lipschitz constants.

Remark 5.5.

• Note that the bound is dependent on the training length, and size of the training set.

• We see that high coherence early on in training is better than high coherence later on.

• The bound applies uniformly to stochastic and full-batch cases.

• The bound is only useful in a qualitative sense and is loose.

5.4 Coherence of Fully Connected Neural Networks

When equipped with a dataset and a neural network we can calculate an empirical value for coherence by
replacing the expectations in the definition of coherence with sample means. However, when using SGD
there are several issues that inhibit the ability to compute the coherence of a network during training.

1. Batch normalization means that it is not possible to recover per-example gradients.

2. Large training sets mean it would be impractical to consider computing the coherence even if access
to per-example gradients was granted.

We now propose a method to approximate αm/α⊥
m from batched data.

Theorem 5.6. Let v1, . . . , vk be k i.i.d variables drawn from V. Let W denote the distribution of the random
variable w = 1

k

∑k
i=1 vi. Then,

α(W) = α(kW) =
kα(V)

1 + (k − 1)α(V)
.

Furthermore, α(W) ≥ α(V) with equality if and only if α(V) = 0 or α(V) = 1.

Using Theorem 5.6 we can define a tractable method for approximating coherence by using gradients
computed at the batch level rather than the per-example level.

1. Compute the gradients for each batch.
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2. Compute coherence of the m
k batch in the usual way, α(W).

3. Re-arrange the identity of Theorem 5.6,

α(V) = α(W)

k − (k − 1)α(W)

and use this to get a value for α(V).

4. Compute αm/α⊥
m as mα(V).

5.5 Suppressing Weak Gradients

In theory, suppressing weak directions in the average gradient should lead to less over-fitting and better
generalization. Indeed current regularization techniques perform this implicitly, however, winsorized gradient
descent (WGD) aims to do it explicitly.

5.5.1 Winsorized Gradient Descent

Let w(j)
t be the jth component of the trainable parameter wt and let g(j)i (wt) be the jth component of the

gradient of the ith example at wt. Let c ∈ [0, 50] be the level of winsorization. Define l(j) and u(j) to be the
cth and (100− c)th percentile of g(j)i (wt) respectively. Then the update rule for WGD is

w
(j)
t+1 = w

(j)
t − η

m

m∑
i=1

clip
(
g
(j)
i (wt), l

(j), u(j)
)

where clip
(
g
(j)
i (wt), l

(j), u(j)
)

:= min(max(x, l), u). The parameter c acts as a threshold as to what to
consider an outlier. A similar stochastic version, winsorized stochastic gradient descent (WSGD), can also
be employed to reduce the computational costs. In any case, WGD incurs greater computational costs
as it necessitates storing all per-example (batch) gradients to perform the update. Furthermore, higher
winsorization values lead to optimization instability as training accuracy is observed to fall after a certain
point. To address these issues the median of means algorithm is used:

1. Divide the sample into k groups,

2. Compute sample mean of each group,

3. Return the median of these k means.
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6 Geometric Complexity

Rademacher complexity is a measure of complexity that focuses on the entire hypothesis space rather than
focusing on a function. Complexity notions such as VC dimension and parameter counting also focus on
quantifying complexity for the entire hypothesis space. On the other hand, measures such as counting the
number of linear pieces of ReLU networks and matrix norms, measure the complexity of the function inde-
pendently from the task at hand. The work of [6] focuses on capturing function complexity over proposed
datasets through geometrical arguments with the following proposed complexity measure.

Definition 6.1. Let hw : Rd → Rk be a neural network parameterised by w. Let gw(x) = α(fw(x)) where α
is the last layer activation, and fθ is its logit network. The Geometric Complexity (GC) of the network over a
dataset S is the discrete Dirichlet energy of its logit network,

⟨fw, S⟩ = 1

|S|
∑
x∈S

∥∇xfw(x)∥2F ,

where ∥∇xfw(x)∥F is the Frobenius norm of the network Jacobian.

6.1 Application to ReLU Networks

Let hw : Rd → Rk be a ReLU network. As hw parameterises piece-wise linear functions, the domain can
be partitioned by subsets Xi ⊂ Rd such that fw is an affine map Aix + bi. Let Si = S ∩Xi, then for every
x ∈ Xi it follows that ∥∇xfw(x)∥2F = ∥Ai∥2F so that

⟨fθ, S⟩G =
∑
i

(
mi

|S|

)
∥Ai∥2F ,

where mi = |Di|. Therefore, a stratified batch B ⊂ S has a GC that coincides with the network. Hence, the
GC on large batches can be used as a proxy for the GC of a network, making this a tractable measure of
complexity to attain during training.

6.2 Relationship to Lipschitz Smoothness

We can measure the smoothness of a function h : Rd → Rk on a subset X ⊂ Rd by its Lipschitz constant
hL which is defined to be the smallest positive real number such that

∥h(x1)− h(x2)∥ ≤ hL∥x1 − x2∥

for all x1, x2 ∈ X. Using this we can bound the GC using Lipschitz complexity as

⟨h, S⟩G =
1

|S|
∑
x∈S

∥∇xh(x)∥2F ≤ 1

|S|
∑
x∈S

min(k, d) ∥∇xh(x)∥2op ≤ min(k, d)h2
L. (3)

6.3 Encapsulating Neural Network Phenomena

Experimentally it can be shown that common training heuristics keep the GC low, which reinforces its
application as a complexity measure.

• Parameter initialization: It is found that as the number of layers increases the GC at initialization can
be brought to zero. This correlates with the theoretical result that a neural network will converge to a
constant function at random initialization as the number of layers increases.

• Explicit Regularization:
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– L2 Regularization: The L2 norm penalties on the weight matrix coincide with an explicit GC
regularization in the case of linear models. For deep ReLU networks the matrix output y for an
input x is given by

y = PlWl . . . P1W1x+ c

where c is a constant, the Pi’s are diagonal matrices with entries {0, 1} and the Wi’s are weight
matrices. The derivative of x is just the product matrix

PlWl . . . P1W1.

So the GC is the Frobenius norm of this matrix. An L2 penalty penalizes large values

∥Wl∥2F + · · ·+ ∥W1∥2F

which in turn encourages small
PlWl . . . P1W1

and hence results in lower GC values.

– Lipschitz Regularization via Spectral Norm Regularization: The spectral norm of the product of
the network’s weight matrices is an upper bound to the Lipschitz constant of the model. There-
fore, using (3) we see that any form of Lipschitz regularization also constrains the GC.

– Noise Regularization: It has been shown that the introduction of noise during training via SGD
exerts a regularization pressure on ∥∇whw∥. Now it can also be shown that pressure on ∥∇whw∥
translates to pressure ∥∇xhw∥, therefore using label noise in SGD constrains GC.

– Flatness Regularization: This involves a penalty term of the form ∥∇wlB∥2 on the loss, where lB
is the loss evaluated on a batch B. This penalizes learning trajectories that follow steep slopes.
Intuitively, it follows that flatness regularization also constrains GC as learning is encouraged to
follow shallower slopes in the loss landscape. This intuition can be shown theoretically.
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