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1 Introduction

A great resource for introducing the field of Probably Approximately Correct (PAC) learning theory is given
in [27]. It details the progression of results in the field and motivates the various research avenues. PAC
learning theory is a general framework for studying learning algorithms, and my aim here is to illustrate
how this theory is being contextualized within machine learning, with a specific focus on neural networks.
With this report, I want to introduce the theory and detail some applications, as well as provide some recent
extensions. The main product of PAC learning theory is bounds on the performance of the output of learning
algorithms, termed PAC bounds. This report will not provide an exhaustive list of the various PAC bounds
being applied to neural networks. I will instead provide some well-known results in the literature and how
some of them manifest in applications. For a comprehensive introduction to the field of PAC, the reader is
recommended to refer to [27]. Nevertheless, this report will be mostly self-contained, with proofs for the
major results and elaboration on the implementations of PAC theory.
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2 PAC

2.1 Introducing PAC Bounds

2.1.1 Notation

We will first introduce some basic notation that is for the most part consistent with [27] and will remain
constant throughout the report. Along the way, we will need to introduce some more specialized notation for
the different sections. The problems we will concern ourselves most with will be supervised classification
tasks. This means, we have a feature space X and a label space Y which combine to form the data space
Z = X × Y for which some unknown D is defined on. The challenge now is to learn a classifier h : X → Y
that correctly labels samples from X according to D. The training data S = {(xi, yi)}mi=1 consists of m i.i.d
samples from D. As we are considering neural networks, a classifier will be parameterized by a weight
vector w which we will denote hw. Let W denote the set of possible weights for a classifier and the set of
all possible classifiers H will sometimes be referred to as the hypothesis set. We will often denote the set
of probability distributions over W asM(W). To assess the quality of a classifier we define a measurable
function l : Y × Y → [0,∞) called the loss function and we will assume that 0 ≤ l ≤ C. As our training
data is just a sample from the underlying (unknown) distribution D there is the possibility that our classifier
performs well on the training data, but performs poorly on the true distribution. Let the risk of our classifier
be defined as

R(hw) = E(x,y)∼D (l(h(x), y)) .

As our classifier is parameterized w we will instead write R(w) for the risk of our classifier. Similarly, we
define the empirical risk of our classifier to be

R̂(w) =
1

m

m∑
i=1

l(hw(xi), yi).

Note that ES∼Dm

(
R̂(w)

)
= R(w).

2.1.2 PAC Bounds

PAC bounds refer to a general class of bounds on the performance of a learned classifier. They aim to
determine with high probability what the performance of a classifier will be like on the distribution D when
trained on some training data taken from this distribution.

Theorem 2.1 ([27]). Let |W| =M <∞, δ ∈ (0, 1), and w ∈ W then it follows that

PS∼Dm

R(w) ≤ R̂(w) + C

√
log
(
M
ϵ

)
2m

 ≥ 1− δ.

Theorem 2.1.1 (Markov’s Inequality). For X a non-negative random variable and α > 0 we have that

P (X ≥ α) ≤ E(X)

α
.

Proof. Define Y as the indicator random variable I{X≥α} so that E(Y ) = P (X ≥ α). It is clear that
αY ≤ X which means that E(αY ) ≤ E(X), which implies that αP(X ≥ α) ≤ E(X). Using the fact that
α > 0 we can re-arrange this expressions to complete the proof of the theorem. ■

Corollary 2.1.2 (Chernoff Bound). For a random variable X, t > 0 and a ∈ R we have that

P (X ≥ a) = E (exp(tX)) exp(−ta)

for t > 0.
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Proof. This follows from Markov’s inequality due to the increasing, positivity and injectivity of exp(·) in
particular we have that

P (X ≥ a) = P
(
exp(tX) ≥ eta

)
≤ E (exp(tX))

eta
,

which completes the proof. ■

Lemma 2.1.3 ([11]). Let U1, . . . , Un be independent random variables taking values in an interval [a, b].
Then for any t > 0 we have that

E

(
exp

(
t

n∑
i=1

(Ui − E(Ui))

))
≤ exp

(
nt2(b− a)2

8

)
.

Proof. For s > 0 the function x 7→ esx is convex so that

esx ≤ x− a
b− a

esb +
b− x
b− a

esa.

Let Vi = Ui − E(Ui), then as E(Vi) = 0 it follows that

E (exp(sVi)) ≤
b

b− a
esa − a

b− a
esb.

With p = b
b−a and u = (b− a)s consider

ψ(u) = log
(
pesa + (1− p)esb

)
= (p− 1)u+ log (p+ (1− p)eu) .

This is a smooth function so that by Taylor’s theorem we have that for any u ∈ R there exists ξ = ξ(u) ∈
R such that

ψ(u) = ψ(0) + ψ′(0)u+
1

2
ψ′′(ξ)u2.

As
ψ′(u) = (p− 1) + 1− p

p+ (1− p)eu

we have that ψ(0) = 0 and ψ′(0) = 0. Furthermore, as

ψ′′(u) =
p(1− p)eu

(p+ (1− p)eu)2
, and ψ(3)(u) =

p(1− p)eu(p+ (1− p)eu)(p− (1− p)eu)
(p+ (1− p)eu)2

we see that ψ′′(u) has a stationary point at u∗ = log
(

p
p−1

)
. For u slightly less than u∗ we have

ψ(3)(u) > 0 and for u slightly larger than u∗ we have ψ(3)(u) < 0. Therefore, u∗ is a maximum point
and so

ψ′′(u) ≤ ψ′′(u∗) =
1

4
.

Hence, ψ(u) ≤ u2

8 which implies that

log (E (exp(sVi))) ≤
u2

8
=
s2(b− a)2

8
.
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Therefore,

E

(
exp

(
t

n∑
i=1

(Ui − E(Ui))

))
=

n∏
i=1

E (exp (t(Ui − E(Ui))))

≤
n∏

i=1

exp

(
t2(b− a)2

8

)
≤ exp

(
nt2(b− a)2

8

)
which completes the proof. ■

Proof. Recall that we have our random sample S = {(xi, yi)}mi=1 ∼ Dm. If we fix w ∈ W we can let
li(w) = l(hw(xi), yi). This is a random variable due to the randomness of S and so we can apply
Lemma 2.1.3 to Ui = E(li(w))− li(w) to get that

ES∼Dm

(
exp

(
tm
(
R(w)− R̂(w)

)))
≤ exp

(
mt2C2

8

)
.

Therefore, for any s > 0 we can apply Markov’s Inequality to get that

PS∼Dm

(
R(w)− R̂(w) > s

)
= PS∼Dm

(
exp

(
mt
(
R(w)− R̂(w)

))
> exp(mts)

)
≤

ES∼Dm

(
exp

(
mt
(
R(w)− R̂(w)

)))
exp(mts)

≤ exp

(
mt2C2

8
−mts

)
.

This bound is minimized for t = 4s
C2 so that

PS∼Dm

(
R(w) > R̂(w) + s

)
≤ exp

(
−2ms2

C2

)
.

The above bound holds for fixed w ∈ W so develop a uniform bound we consider the following.

PS∼Dm

(
sup
w∈W

(
R(w)− R̂(w)

)
> s

)
= PS∼Dm

( ⋃
w∈W

{
R(w)− R̂(w) > s

})
≤
∑
w∈W

PS∼Dm

(
R(w) > R̂(w) + s

)
≤M exp

(
−2ms2

C2

)
.

Now taking δ =M exp
(
− 2ms2

C2

)
we get that

PS∼Dm

 sup
w∈W

(
R(w)− R̂(w)

)
> C

√
log
(
M
δ

)
2m

 ≤ δ
which upon taking complements completes the proof of the theorem.

Theorem 2.1 says that with arbitrarily high probability we can bound the performance of our trained
classifier on the unknown distribution D. However, there is nothing to guarantee that the bound is useful in
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practice. Note that requiring bounds to hold for greater precision involves sending ϵ to 0 which increases
the bound. If the bound exceeds C then it is no longer useful as we know already that R(w) ≤ C. It is
important to note at this stage that are two ways in which PAC bounds can hold. One set of bounds holds
in expectation whilst the other hold in probability. Risk is a concept that will develop bounds in expectation.
In 2.3 we will introduce definitions that will let us work with bounds that hold in probability. There are two
general forms of PAC bounds, we have uniform convergence bounds and algorithmic-dependent bounds
[24]. Uniform convergence bounds have the general form

PS∼Dm

(
sup
w∈W

∣∣∣R(w)− R̂(w)
∣∣∣ ≤ ϵ(1

δ
,
1

m
,W
))
≥ 1− δ.

This can be considered as a worst-case analysis of hypothesis generalization, and so in practice will lead
to vacuous bounds. Algorithmic-dependent bounds involve the details of a learning algorithm A and take
the form

PS∼Dm

(∣∣∣R (A(S))− R̂ (A(S))
∣∣∣ ≤ ϵ(1

δ
,
1

m
,A

))
≥ 1− δ.

These bounds can be seen as a refinement of the uniform convergence bounds as they are only required
to hold for the output of the learning algorithm. It will be the subject of Section 5.1 to explore such bounds
further.

2.1.3 Occam Bounds

Occam bounds are derived under the assumption thatH is countable and that we have some bias π defined
on the hypothesis space. Note that in our setup this does not necessarily mean that W is countable, as
multiple weights may correspond to the same classifier. However, as the Occam bounds hold true for all
h ∈ H it must also be the case that they hold for all classifiers corresponding to the weight w ∈ W. Using
this we will instead assume that π is defined overW.

Theorem 2.2 ([10]). Simultaneously for all w ∈ W and δ ∈ (0, 1) the following holds,

PS∼Dm

(
R(w) ≤ inf

λ> 1
2

1

1− 1
2λ

(
R̂(w) +

λC

m

(
log

(
1

π(w)

)
+ log

(
1

δ

))))
≥ 1− δ.

Theorem 2.2.1 (Relative Chernoff Bound 1 [5]). Suppose X1, . . . , Xn are independent random variables
with range {0, 1}. Let µ =

∑n
i=1Xi. Then for δ ∈ (0, 1) we have

P (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ

.

Proof. Using Markov’s inequality we note that for t < 0 we have

P (X ≤ (1− δ)µ) = P
(
etX ≥ et(1−δ)µ

)
≤

E
(
etX
)

et(1−δ)µ

≤ exp ((et − 1)µ)

exp (t(1− δ)µ)
.

Setting t = log(1− δ) < 0 we get that

P (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ

.
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which completes the proof of the theorem. ■

Corollary 2.2.2 ([5]). Suppose X1, . . . , Xn are independent random variables with range {0, 1}. Let µ =∑n
i=1Xi. Then for δ ∈ (0, 1) we have

P (X ≤ (1− δ)µ) ≤ exp

(
−µδ

2

2

)
.

Proof. Consider

f(δ) = −δ − (1− δ) log(1− δ) + δ2

2

for δ ∈ (0, 1). Note that

f ′(δ) = log(1− δ) + δ and f ′′(δ) = − 1

1− δ
+ 1.

Which shows that f ′′(δ) < 0 for δ ∈ (0, 1) and hence f ′(0) = 0 implies that f ′(δ) ≤ 0 in this range.
Since, f(0) = 0 we have that f(δ) ≤ 0 when δ ∈ (0, 1). Therefore,

e−δ

(1− δ)1−δ
≤ exp

(
−δ

2

2

)
,

which completes the proof of the corollary. ■

Theorem 2.2.3 (Union Bound). Let E1, . . . , En be events. Then P (
⋃n

l=1El) ≤
∑n

l=1 P(El).

Proof. This can be proved by induction on n. When n = 1 the result holds clearly. Now suppose
that for events E1, . . . , Ek we have that P

(
∪kl=1El

)
≤
∑k

l=1 P(El). Then for events E1, . . . , Ek, Ek+1 it
follows that

P

(
k+1⋃
l=1

El

)
= P

(
k⋃

l=1

El

)
+ P (Ek+1)− P

((
k⋃

l=1

El

)
∩ Ek+1

)

≤ P

(
k⋃

l=1

El

)
+ P (Ek+1)

≤
k∑

l=1

P (El) + P (Ek+1)

=

k+1∑
l=1

P (El) .

Therefore, by induction the result holds for all n ∈ N which completes the proof. □ ■

Proof. For the proof we consider the case when C = 1, with the more general case following by
rescaling the loss function. For w ∈ W let

ϵ(w) =

√√√√2R(w)
(
log
(

1
π(w)

)
+ log

(
1
δ

))
m

.
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Then Corollary 2.2.2 states that

PS∼Dm

(
R̂(w) ≤ R(w)− ϵ(w)

)
≤ exp

(
−mϵ(w)2

2R(w)

)
= δπ(w).

Summing over all w and applying the union bound we conclude that the probability that a w exists
with the property that R(w) > R̂(w) + ϵ(w) is δ. Therefore, for all w

PS∼Dm

R(w) ≤ R̂(w) +

√√√√√R(w)

2
(
log
(

1
π(w)

)
+ log

(
1
δ

))
m


 ≥ 1− δ.

Using
√
ab = infλ>0

(
a
2λ + λb

2

)
we get that

PS∼Dm

R(w) ≤ R̂(w) +
R(w)

2λ
+
λ
(
log
(

1
π(w)

)
+ log

(
1
δ

))
m

 ≥ 1− δ,

which upon rearrangement completes the proof.

2.2 Expected Risk Minimization

In light of Theorem 2.1 it may seem reasonable to want to identify the parameter value ŵERM that minimizes
R̂(·). This optimization process is known as Empirical Risk Minimization (ERM) and is formally defined as

ŵERM = inf
W∈W

R̂(w).

2.3 Compression

We now show how PAC bounds can be used to bound the performance of a compressed neural network.
In classical statistical theory only as many parameters as training samples are required to overfit. So in
practice, neural networks would be able to overfit the training data as they have many more parameters
than training samples. Although overfitting to the training sample will yield a low empirical risk, in practice
neural networks do not overfit to the data. This suggests that there is some capacity of the network that
is redundant in expressing the learned function. In [17] compression frameworks are constructed that aim
to reduce the effective number of parameters required to express the function of a trained network whilst
maintaining its performance. To do this [17] capitalize on how a neural network responds to noise added to
its weights. We first introduce the compression techniques for linear classifiers and then proceed to work
with fully connected ReLU neural networks.

2.3.1 Establishing the Notion of Compression

We are in a scenario where we have a learned classifier h that achieves low empirical loss but is complex.
In this case, we are considering Y = Rk so that the output of h in the ith can be thought of as a relative
probability that the input belongs to class i. With this, we define the classification margin loss for γ ≥ 0 to
be

Lγ(h) = P(x,y)∼D

(
h(x)[y] ≤ γ +max

j ̸=y
h(x)[j]

)
.

Similarly, we have the empirical classification margin loss defined as

L̂γ(h) =
1

m

∣∣∣∣{xi ∈ S : h(xi)[yi] ≤ γ +max
j ̸=yi

f(xi)[j]

}∣∣∣∣ .
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We will sometimes use L(·) to denote L0(·) and refer to it as the classification loss. Suppose that our neural
network has d fully connected layers and let xi be the vector before the activation at layer i = 0, . . . , d
and as x0 is the input denote it x. Let Ai be the weight matrix of layer i and let layer i have ni hidden
layers with n = maxdi=1 ni. The classifier calculated by the network will be denoted hw(x), where w can be
thought of as a vector containing the weights of the network. For layers i ≤ j the operator for composition
of the layers will be denoted M i,j , the Jacobian of the input x will be denoted J i,j

x and ϕ(·) will denote the
component-wise ReLU. With these the following hold,

xi = Aiϕ
(
xi−1

)
, xj =M i,j

(
xi
)
, and M i,j

(
xi
)
= J i,j

xi x
i.

For a matrix B, ∥B∥F will be its Frobenius norm, ∥B∥2 its spectral norm and ∥B∥2
F

∥B∥2
2

its stable rank.

Definition 2.3. Let h be a classifier and GW = {gw : w ∈ W} be a class of classifiers. We say that h is
(γ, S)-compressible via GW if there exists w ∈ W such that for any x ∈ X ,

|h(x)[y]− gw(x)[y]| ≤ γ

for all y ∈ {1, . . . , k}.

Definition 2.4. Suppose GW,s = {gw,s : w ∈ W} is a class of classifiers indexed by trainable parameters
w and fixed string s. A classifier h is (γ, S)-compressible with respect to GW,s using helper string s if there
exists w ∈ W such that for any x ∈ X ,

|h(x)[y]− gw,s(x)[y]| ≤ γ

for all y ∈ {1, . . . , k}.

Theorem 2.5. Suppose GW,s = {gw,s : w ∈ W} where w is a set of q parameters each of which has
at most r discrete values and s is a helper string. Let S be a training set with m samples. If the trained
classifier h is (γ, S)-compressible via GW,s with helper string s, then there exists w ∈ W with high probably
such that

L0(gw) ≤ L̂γ(h) +O

(√
q log(r)

m

)
over the training set.

Theorem 2.5.1 (Hoeffding’s Inequality [5]). Let X1, . . . , Xn be independent random variables with range
[a, b] and E(Xi) = µ. Then for ϵ > 0 we have that

(i) P

(
1

n

n∑
i=1

Xi − µ ≤ −ϵ

)
≤ exp

(
− 2nϵ2

(b− a)2

)
and (ii) P

(
1

n

n∑
i=1

Xi − µ ≥ ϵ

)
< exp

(
− 2nϵ2

(b− a)2

)
.

Proof. Let Zi = Xi − E(Xi) and Z = 1
n

∑n
i=1 Zi. Then for λ > 0 we can apply Markov’s inequality to

deduce that

P(Z ≥ ϵ) = P
(
eλZ ≥ eλϵ

)
≤ e−λϵE

(
eλZ

)
≤ e−λϵ

n∏
i=1

E
(
exp

(
λZi

n

))

≤ e−λϵ
n∏

i=1

exp

(
λ2(b− a)2

n2

)
Lemma 2.1.3

≤ exp

(
−λϵ+ λ2(b− a)2

8n

)
.
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Setting λ = 4nϵ
(b−a)2 gives

P

(
1

n

n∑
i=1

Xi − µ ≥ ϵ

)
≤ exp

(
− 2nϵ2

(b− a)2

)
.

Applying the same reasoning but for P (Z ≤ −ϵ) and λ = − 4nϵ
(b−a)2 give

P

(
1

n

n∑
i=1

Xi − µ ≤ −ϵ

)
≤ exp

(
− 2nϵ2

(b− a)2

)
which completes the proof of the theorem. ■

Proof. For w ∈ W, the empirical classification margin L̂0(gw) is the average of m i.i.d Bernoulli
random variables with parameter L0(gw). Let Xi ∼ Bern(L0(gw)) so that µ = E(Xi) = L0(gw). It
follows that

P
(
L0(gw)− L̂0(gw) ≥ τ

)
= P

(
L0(gw)− 1

m

n∑
i=1

Xi ≥ τ

)

= P

(
1

m

n∑
i=1

Xi − µ ≤ −τ

)
≤ exp

(
−2τ2m

)
,

where Hoeffding’s inequality (i) has been applied. With τ =
√

q log(r)
m we have that

PS∼Dm

(
L0(gw) ≤ L̂0(gw) +

√
q log(r)

m

)
≥ 1− exp(−2q log(r)).

As there are only rq different w, we can apply a union bound arguments to conclude that for all w ∈ W
we have that

PS∼Dm

(
L0(gw) ≥ L̂0(gw) +

√
q log(r)

m

)
≤ rq exp(−q log(r))

= exp (q log(r)− 2q log(r))

= exp (−q log(r)) .

Which implies that

PS∼Dm

(
L0(gw) ≤ L̂0(gw) +

√
q log(r)

m

)
≥ 1− exp (−q log(r)) .

As h is (γ, S)-compressible via GW,S then there exists a w ∈ W such that for any x ∈ X and any y we
have

|h(x)[y]− gw(x)[y]| ≤ γ.

Therefore, as long as h has a margin at least γ the classifier gw classifies the examples correctly so
that

L̂0(gw) ≤ L̂γ(h).

Combining this with the previous observations completes the proof of the theorem.

Remark 2.6. Theorem 2.5 only gives a bound for gw which is the compression of h. However, there are
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no requirements on the hypothesis class, assumptions are only made on h and its properties on a finite
training set.

Corollary 2.7. If the compression works for 1− ζ fraction of the training sample, then with a high probability

L0(gw) ≤ L̂γ(h) + ζ +O

(√
q log r

m

)
.

Proof. The proof of this corollary proceeds in exactly the same ways as the proof of Theorem 2.5,
however, in the last step we can use the upper-bound

L̂0(gw) ≤ L̂γ(h) + ζ.

Which arises as for the fraction of the training sample where the compression doesn’t work we assume
that the loss is maximized, which was assumed to be 1.

2.3.2 Compression of a Linear Classifier

We now develop an algorithm to compress the decision vector of a linear classifier. We will use linear
classifiers to conduct binary classification, where the members of one class have label 1 and the others
have label −1. The linear classifiers will be parameterized by the weight vector w ∈ Rd such that for x ∈ X
we have hw(x) = sgn(w⊤x). Define the margin, γ > 0, of w to be such that y

(
w⊤x

)
≥ γ for all (x, y) in the

training set. In compressing w, according to Algorithm 1, we end up with a linear classifier parameterized
by the weight vector ŵ with some PAC bounds relating to its performance.

Algorithm 1 (γ,w)

Require: vector w with ∥w∥ ≤ 1, η.
Ensure: vector ŵ such that for any fixed vector ∥u∥ ≤ 1, with probability at least 1− η,

∣∣w⊤u− ŵ⊤u
∣∣ ≤ γ.

Vector ŵ has O
(

log d
ηγ2

)
non-zero entries.

for i = 1→ d do
Let zi = 1 with probability pi =

2w2
i

ηγ2 and 0 otherwise.
Let ŵi =

ziwi

pi
.

end for
return ŵ

Theorem 2.8. For any number of samples m, Algorithm 1 generates a compressed vector ŵ, such that

L(ŵ) ≤ Õ

((
1

γ2m

) 1
3

)
.

Theorem 2.8.1 (Chebyshev’s Inequality). For a random variable X, with with variance σ2 ∈ (0,∞) and
mean µ <∞, then for k > 0 we have that

P(|X − µ| ≥ kσ) ≤ 1

k2
.

12



Proof. To prove Chebyshev’s inequality we use Markov’s inequality,

P (|X − µ| ≥ kσ) = P
(
|X − µ|2 ≥ k2σ2

)
≤

E
(
(X − µ)2

)
k2σ2

=
σ2

k2σ2

=
1

k2

which completes the proof of the theorem. ■

Theorem 2.8.2 (Relative Chernoff Bound 2 [5]). Suppose X1, . . . , Xn are independent random variables
with range {0, 1}. Let µ =

∑n
i=1Xi. Then for δ > 0 we have

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ

.

Proof. Using Markov’s inequality we note that for t > 0 we have

P (X ≥ (1 + δ)µ) = P
(
etX ≥ et(1+δ)µ

)
≤

E
(
etX
)

et(1+δ)µ

≤ exp ((et − 1)µ)

exp (t(1 + δ)µ)
.

Setting t = log(1 + δ) > 0 we get that

P (X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

.

which completes the proof of the theorem. ■

Corollary 2.8.3 ([5]). Suppose X1, . . . , Xn are independent random variables with range {0, 1}. Let µ =∑n
i=1Xi. Then for δ ∈ (0, 1] we have

P (X ≥ (1 + δ)µ) ≤ exp

(
−µδ

2

3

)
.

Proof. Consider

f(δ) = δ − (1 + δ) log(1 + δ) +
δ2

3

for δ ∈ (0, 1]. Note that

f ′(δ) = − log(1 + δ) +
2

3
δ and f ′′(δ) = − 1

1 + δ
+

2

3
.

Which shows that f ′′(δ) < 0 for δ ∈
[
0, 12

)
and f ′′(δ) < 0 for δ > 1

2 . Since f ′(0) = 0 and f ′(1) < 0
we deduce that f ′(δ) ≤ 0 in the interval [0, 1]. Since, f(0) = 0 we have that f(δ) ≤ 0 when δ ∈ [0, 1].
Therefore,

eδ

(1 + δ)1+δ
≤ exp

(
−δ

2

3

)
,

13



which completes the proof of the corollary. ■

Lemma 2.8.4. Algorithm 1 (γ,w) returns a vector ŵ such that for any fixed u, with probability 1 − η,∣∣ŵ⊤u−w⊤u
∣∣ ≤ γ. The vector ŵ has at most O

(
log d
ηγ2

)
non-zero entries with high probability.

Proof. By the construction of Algorithm 1 it is clear that for all i we have E (ŵi) = wi. Similarly, we
have that

Var (ŵi) = 2pi(1− pi)
w2

i

p2i
≤ 2w2

i

pi
= ηγ2.

Therefore, for u independent of ŵ we have that

E
(
ŵ⊤u

)
=

d∑
i=1

E (ŵiui) =

d∑
i=1

E (ŵi)ui =

d∑
i=1

wiui = w⊤u,

and

Var
(
ŵu⊤

)
= Var

(
d∑

i=1

ŵiui

)
=

d∑
i=1

Var(wi)u
2
i ≤ ηγ2

d∑
i=1

u2i = ηγ2∥u∥2 ≤ ηγ2.

Therefore, by Chebyshev’s inequality we have that

P
(∣∣ŵ⊤u−w⊤u

∣∣ ≥ γ) ≤ η.
To determine how we can bound the number of non-zero entries we analyze the behavior of the right-
hand side of Theorem 2.8.2. For each entry we can define the indicator random variable Xi which is 1
when the entry is non-zero and 0 otherwise. Note that E(Xi) = pi and for X =

∑d
i=1Xi we have that

µ = E(X) =

d∑
i=1

pi =
2∥w∥2

ηγ2
≤ 2

ηγ2
.

Therefore, we need to find for what order function f(·) does

ef(d)−1

f(d)f(d)
→ 0, as d→∞,

so that the number of non-zero elements is bounded by O
(

f(d)
ηγ2

)
with high probability using Theorem

2.2.1. We observe that with f(d) = log(d) we get the desired convergence, and so this completes the
proof of the lemma. ■

In the discrete case, a similar result holds. For a vector w ∈ Rd and for a given pair (η, γ) let its discrete
version be ŵ where

ŵi =

{
0 |w̃i| ≥ 2ηγ

√
d

rounding to nearest multiple of γ

2
√
d

Otherwise.

Let its capped version be w∗ where

w∗
i =

{
0 |w̃i| ≥ 2ηγ

√
d

wi Otherwise.

Let its truncated version be w′ where

w′
i =

{
wi |wi| ≥ γ

4
√
d

0 otherwise.

14



Lemma 2.8.5. Let Algorithm 1
(
γ
2 ,w

)
return the vector w̃. Then for any fixed u with probability at least

1− η, we have that ∣∣∣ ˆ̃w⊤u−w⊤u
∣∣∣ ≤ γ.

Proof. First note that

∥w′ −w∥2 =

d∑
i=1

|w′
i − wi|

2 ≤
d∑

i=1

γ2

16d
=
γ2

16
,

which implies that ∥w′ −w∥ ≤ γ
4 . Similarly,

∥∥∥ ˆ̃w − w̃∗
∥∥∥2 =

d∑
i=1

∣∣∣ ˆ̃wi − w̃∗
i

∣∣∣2 ≤ d∑
i=1

(
1

2

γ

2
√
d

)2

=
γ2

16
,

which implies that
∥∥∥ ˆ̃w − w̃∗

∥∥∥ ≤ γ
4 . Now suppose Algorithm 2

(
γ
2 ,w

′) returns the capped vector v.
When |wi| ≤ γ

4
√
d

we have that w′
i = 0 so that vi = 0. We also have that, w̃i is either 0 or

|w̃i| =

∣∣∣∣∣∣ wi(
2w2

i

ηγ2

)
∣∣∣∣∣∣ =

∣∣∣∣ηγ22wi

∣∣∣∣ ≥ |2ηγ√d|
so that in any case we also have that w̃∗

i = 0. If instead |w̃i| ≥ 2ηγ
√
d then w̃∗

i = 0 and through
similar computations we have that |wi| ≤ γ

4
√
d

and so vi = 0. It is clear that when either of these two
conditions do not hold we have w̃∗

i = vi as wi = w′
i. Therefore, w̃∗ = v and so from Lemma 2.8.4 we

conclude that with probability at least 1 − η we have
∣∣∣(w̃∗)

⊤
u− (w′)⊤u

∣∣∣ ≤ γ
2 for a fixed vector u with

∥u∥ ≤ 1. Using these observation we deduce for a fixed vector u with ∥u∥ ≤ 1 that∣∣∣ ˆ̃w⊤u−w⊤u
∣∣∣ ≤ ∣∣∣ ˆ̃w⊤u− (w̃∗)

⊤
u
∣∣∣+ ∣∣∣(ŵ∗)

⊤
u− (w′)

⊤
u
∣∣∣+ ∣∣∣(w′)

⊤
u−w⊤u

∣∣∣
≤
∥∥∥ ˆ̃w′ − w̃∗

∥∥∥+ γ

2
+ ∥w′ −w∥

≤ γ

4
+
γ

2
+
γ

4
= γ,

with probability at least 1− η, which completes the proof of the lemma. ■

Proof. Now choose η =
(

1
γ2m

) 1
3

. By Lemma 2.8.4 and Lemma 2.8.5 we know that Algorithm 1 works

with probability 1 − η and has at most Õ
(

log(d)
ηγ2

)
parameters each of which can take some finite

number r of discrete values. Using Corollary 2.7 we know that

L (ŵ) ≤ O

(
η +

√
log(d) log(r)

ηγ2m

)
≤ Õ

(
η +

√
1

ηγ2m

)
≤ Õ

((
1

γ2m

) 1
3

)

which completes the proof of the theorem.

Remark 2.9. The rate is not optimal as it depends on m1/3 and not
√
m. To resolve this we employ helper

strings.

Remark 2.10. The vectors vi of Algorithm 2 form the helper string.
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Algorithm 2 (γ,w)

Require: vector w with ∥w∥ ≤ 1, η.
Ensure: vector ŵ such that for any fixed vector ∥u∥ ≤ 1, with probability at least 1− η, |w⊤u− ŵ⊤u| ≤ γ.

Let k =
16 log( 1

η )
γ2 .

Sample the random vectors v1, . . . , vk ∼ N (0, I).
Let zi = ⟨vi,w⟩.
(In Discrete Case) Round zi to closes multiple of γ

2
√
dk

.

return ŵ = 1
k

∑k
i=1 zivi

Theorem 2.11. For any number of sample m, Algorithm 2 with the helper string generates a compressed
vector ŵ, such that

L(ŵ) ≤ Õ
(√

1

γ2m

)
.

Lemma 2.11.1. For any fixed vector u, Algorithm 2 (γ,w) returns a vector ŵ such that with probability at
least 1− η, we have

∣∣ŵ⊤u−w⊤u
∣∣ ≤ γ.

Proof. Observe that

ŵ⊤u =
1

k

k∑
i=1

⟨vi,w⟩⟨vi, u⟩.

Where,
E (⟨vi,w⟩⟨vi, u⟩) = E

(
w⊤viv

⊤
i u
)
= w⊤E

(
viv

⊤
i

)
= w⊤u

and

Var
(
ŵ⊤u

)
≤ O

(
1

k

)
.

Therefore, by standard concentration inequalities

P
(∣∣ŵ⊤u−w⊤u

∣∣ ≥ γ

2

)
≤ exp

(
−γ2k
16

)
≤ η.

As with discretization the vector can only change by at most γ
2 , the proof of the lemma is complete. ■

Proof. Choosing η = 1
m and applying Lemma 2.11.1 we see that with probability 1−η, the compressed

vector has at most

O

(
log(m)

γ2

)
parameters. As the number of parameters is finite we can assume that there is a finite number of
discrete values, r, that each parameter can take. For example, if M is the large absolute value of the
parameter then we can take r = 2 M(

γ

2
√

dk

) + 1. Therefore, from Corollary 2.7 we know that

L (w) ≤ O

η +
√

log(m)
γ2 log(r)

m

 ≤ Õ(√ 1

γ2m

)

which completes the proof of the theorem.
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2.3.3 Compression of a Fully Connected Network

In a similar way, the layer matrices of a fully connected network can be compressed in such a way as to
maintain a reasonable level of performance. A similar compression algorithm on how to do this is detailed
in Algorithm 3. Throughout we will let w parameterize our classifier. It can just be thought of as a list of
layer matrices for our neural network.

Algorithm 3 (A, ϵ, η)
Require: Layer matrix A ∈ Rn1×n2 , error parameters ϵ, η.
Ensure: Returns Â such that for all vectors u, v we have that

P
(∣∣∣u⊤Âv − u⊤Av∣∣∣ ≥ ϵ∥A∥F ∥u∥∥v∥) ≤ η

Sample k =
log( 1

η )

ϵ2 random matrices M1, . . . ,Mk with i.i.d entries ±1.
for k′ = 1→ k do

Let Zl = ⟨A,Ml⟩Ml

end for
return Â = 1

k

∑k
l=1 Zl

Definition 2.12. If M is a mapping from real-valued vectors to real-valued vectors, and N is a noise
distribution. Then the noise sensitivity of M at x with respect to N is

ψN (M,x) = E
(
∥M(x+ η∥x∥)−M(x)∥2

∥M(x)∥2

)
,

and ψN ,S(M) = maxx∈S ψN (M,x).

Remark 2.13. When x ̸= 0 and the noise distribution is the Gaussian distribution N (0, I) then the noise
sensitivity of matrix M is exactly ∥M∥2

F

∥Mx∥2 . Hence, it is at most the stable rank of M .

Definition 2.14. The layer cushion of layer i is defined as the largest µi such that for any x ∈ X we have

µi

∥∥Ai
∥∥
F

∥∥ϕ (xi−1
)∥∥ ≤ ∥∥Aiϕ

(
xi−1

)∥∥ .
Remark 2.15. Note that 1

µ2
i

is equal to the noise sensitivity of Ai at ϕ
(
xi−1

)
with respect to noise η ∼

N (0, I).

Definition 2.16. For layers i ≤ j the inter-layer cushion µi,j is the largest number such that

µi,j

∥∥∥J i,j
xi

∥∥∥
F

∥∥xi∥∥ ≤ ∥∥∥J i,j
xi x

i
∥∥∥

for any x ∈ X . Furthermore, let µi→ = mini≤j≤d µi,j .

Remark 2.17. Note that J i,i
xi = I so that ∥∥∥J i,i

xi x
i
∥∥∥∥∥∥J i,j

xi

∥∥∥
F
∥xi∥

=
1√
hi
.

Furthermore, 1
µ2
i,j

is the noise sensitivity of J i,j
x with respect to noise η ∼ N (0, I).

Definition 2.18. The activation contraction c is defined as the smallest number such that for any layer i∥∥ϕ (xi)∥∥ ≥ ∥∥xi∥∥
c

for any x ∈ X .
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Definition 2.19. Let η be the noise generated as a result of applying Algorithm 3 to some of the layers
before layer i. Define the inter-layer smoothness ρδ to be the smallest number such that with probability
1− δ and for layers i < j we have that∥∥∥M i,j

(
xi + η

)
− J i,j

xi

(
xi + η

)∥∥∥ ≤ ∥η∥ ∥∥xj∥∥
ρδ ∥xi∥

for any x ∈ X .

Remark 2.20. For a neural network let x be the input, A be the layer matrix and U the Jacobian of the
network output with respect to the layer input. Then the network output before compression is given by
UAx and after compression the output is given by UÂx.

Theorem 2.21. For any fully connected network hw with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin
γ. Algorithm 3 generates weights w̃ such that

PS∼Dm

L0(hw̃) ≤ L̂γ(hw) + Õ


√√√√c2d2 maxx∈S ∥hw(x)∥22

∑d
i=1

1
µ2
iµ

2
i→

γ2m


 ≥ 1− δ.

Lemma 2.21.1. For any 0 < δ and ϵ ≤ 1 let G =
{(
U i, xi

)}m
i=1

be a set of matrix-vector pairs of size m

where U ∈ Rk×n1 and x ∈ Rn2 , let Â ∈ Rn1×n2 be the output of Algorithm 3
(
A, ϵ, η = δ

mk

)
. With probability

at least 1− δ we have for any (U, x) ∈ G that
∥∥∥U(Â−A)x

∥∥∥ ≤ ϵ∥A∥F ∥U∥F ∥x∥.
Proof. For fixed vectors u, v we have that

u⊤Âv =
1

k

k∑
l=1

u⊤Zlv =
1

k

k∑
l=1

⟨A,Ml⟩
〈
uv⊤,Ml

〉
.

Furthermore, we have that

E
(
⟨A,Ml⟩

〈
uv⊤,Ml

〉)
= E

(
tr
(
A⊤Ml

)
tr
(
M⊤

l

(
uv⊤

)))
= E

∑
i,j

aijmij

∑
i,j

mijuij


=
∑
i,j

aijuij

=
〈
A, uv⊤

〉
,

where we achieve the last equality as we note that E(mijmkl) is 1 when ij = kl and 0 otherwise. By
standard concentration inequalities we deduce that

P

(∣∣∣∣∣1k
k∑

l=1

⟨A,Ml⟩
〈
uv⊤,Ml

〉
−
〈
A, uv⊤

〉∣∣∣∣∣ ≥ ϵ∥A∥F ∥∥uv⊤∥∥F
)
≤ exp

(
−kϵ2

)
.

Therefore, for the choice of k from Algorithm 3 we know that

P
(∣∣∣u⊤Âv − u⊤Av∣∣∣ ≥ ϵ∥A∥F ∥u∥ ∥v∥) ≤ η.
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Let (U, x) ∈ G and ui be the ith row of U . We can apply the above result with a union bound over the
mn rows ui in G to get that

P
(∣∣∣u⊤i Âv − u⊤i Av∣∣∣ ≤ ϵ∥A∥F ∥ui∥ ∥v∥) ≥ 1− δ

for all i simultaneously. Furthermore,∥∥∥U (Â−A)x∥∥∥2 =

n∑
i=1

(
u⊤i

(
Â−A

)
x
)2
, and ∥U∥2F =

n∑
i=1

∥ui∥2

we see that with probability at least 1− δ we have∥∥∥U(Â−A)x
∥∥∥2 =

n∑
i=1

(
u⊤i

(
Â−A

)
x
)2

≤
n∑

i=1

ϵ2∥A∥2F ∥ui∥2∥x∥

= ϵ2∥A∥2F ∥U∥2∥x∥

which completes the proof of the lemma. ■

Lemma 2.21.2. For any fully connected network hw with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any
0 < ϵ ≤ 1, Algorithm 3 can generate weights w̃ for a network with at most

32c2d2 log
(
mdn
δ

)
ϵ2

·
d∑

i=1

1

µ2
iµ

2
i→

total parameters such that for any x ∈ X we have

P (∥hw(x)− hw̃(x)∥ ≤ ϵ∥hw(x)∥) ≥ 1− δ

2
,

where µi, µi→, c and ρδ are the layer cushion, inter-layer cushion, activation contraction and inter-layer
smoother for the network.

Proof. The proof of this lemma proceeds by induction. For i ≥ 0 let x̂ji be the output at layer j if weights
A1, . . . , Ai are replaced with Ã1, . . . , Ãi. We want to show for any i if j ≥ i then

P
(∥∥∥x̂ji − xj∥∥∥ ≤ i

d
ϵ
∥∥xj∥∥) ≥ 1− iδ

2d
.

For i = 0 the result is clear as the weight matrices are unchanged. Suppose the result holds true for
i− 1. Let Âi be the result of applying Algorithm 3 to Ai with ϵi = ϵµiµi→

4cd and η = δ
6d2n2m . Consider the

set
G =

{(
J i,j
xi , x

i
)
: xi ∈ X , j ≥ i

}
and let ∆i = Âi −Ai. Note that∥∥∥x̂ji − xj∥∥∥ ≤ ∥∥∥x̂ji − x̂ji−1

∥∥∥+ ∥∥∥x̂ji−1 − x
j
∥∥∥ .

The second term is bounded by
(i−1)ϵ∥xj∥

d by inductive assumption. Therefore, it suffices to show that
the first term is bounded by ϵ

d to complete the inductive step. First observe that,∥∥∥x̂ji − x̂ji−1

∥∥∥ ≤ ∥∥∥J i,j
xi

(
∆iϕ

(
x̂i−1

))∥∥∥+ ∥∥∥M i,j
(
Âiϕ

(
x̂i−1

))
−M i,j

(
Aiϕ

(
x̂i−1

))
− J i,j

xi

(
∆iϕ

(
x̂i−1

))∥∥∥ .
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The first term can be bounded as follows∥∥∥J i,j
xi

(
∆iϕ

(
x̂i−1

))∥∥∥ ≤ ϵµiµi→

6cd

∥∥∥J i,j
xi

∥∥∥∥∥Ai
∥∥
F

∥∥ϕ (x̂i−1
)∥∥ Lemma 2.21.1

≤ ϵµiµi→

6cd

∥∥∥J i,j
xi

∥∥∥∥∥Ai
∥∥
F

∥∥x̂i−1
∥∥ Lipschitz of ϕ

≤ ϵµiµi→

3cd

∥∥∥J i,j
xi

∥∥∥∥∥Ai
∥∥
F

∥∥xi−1
∥∥ Inductive Assumption

≤ ϵµi→

3d

∥∥∥J i,j
xi

∥∥∥ ∥∥Aiϕ
(
xi−1

)∥∥
≤ ϵµi→

3d

∥∥∥J i,j
xi

∥∥∥ ∥∥xi∥∥
≤ ϵ

3d

∥∥xj∥∥ .
The second term can be split as∥∥∥(M i,j − J i,j

xi

)(
Âiϕ

(
x̂i−1

))∥∥∥+ ∥∥∥(M i,j − J i,j
xi

) (
Aiϕ

(
x̂i−1

))∥∥∥ ,
which can be bounded by inter-layer smoothness. By inductive assumption

∥∥Aiϕ
(
x̂i−1

)
− xi

∥∥ ≤ (a− 1)ϵ
∥∥xi∥∥

d
≤ ϵ

∥∥xi∥∥ .
Then by inter-layer smoothness∥∥∥(M i,j − J i,j

xi

) (
Aiϕ

(
x̂i−1

))∥∥∥ ≤ ∥∥xb∥∥ ϵ
ρδ

≤ ϵ

3d

∥∥xj∥∥ .
On the other hand,∥∥∥Âiϕ

(
x̂i−1

)
− xi

∥∥∥ ≤ ∥∥Aiϕ
(
x̂i−1

)
− xi

∥∥+ ∥∥∆iϕ
(
x̂i−1

)∥∥ ≤ (i− 1)ϵ

d
+

ϵ

3d
≤ ϵ

so that ∥∥∥(M i,j − J i,j
xi

) (
Aiϕ

(
x̂i−1

))∥∥∥ ≤ ϵ

3d

∥∥xj∥∥ .
This completes the inductive step. To complete the proof we bound the total number of parameters.
With the values of ϵi and η used in the induction we see that the total number of parameters is

d∑
i=1

log

(
1
δ

6d2n2m

)
(
ϵµiµi→

4cd

)2 =

d∑
i=1

16c2d2 log
(

6d2n2m
δ

)
ϵ2µiµi→

≤
16c2d2 log

(
d2n2m2

δ2

)
ϵ2

d∑
i=1

1

µ2
iµ

2
i→

≤
32c2d2 log

(
mdn
δ

)
ϵ2

d∑
i=1

1

µ2
iµ

2
i→
,

which completes the proof of the lemma. ■

Lemma 2.21.3. For any fully connected network hw with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any margin
γ > 0, hw can be compressed (with respect to a random string) to another fully connected network hw such
that for x ∈ X , L̂0(hw̃) ≤ L̂γ(hw) and the number of parameters in hw̃ is at most

Õ

(
c2d2 maxx∈X ∥hw(x)∥22

γ2

d∑
i=1

1

µ2
iµ

2
i→

)
.
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Proof. In the first case suppose that γ2 > 2maxx∈X ∥hw(x)∥22, then∣∣∣∣hw(x)[y]−max
j ̸=y

hw(x)[j]

∣∣∣∣2 ≤ 2max
x∈X
∥hw(x)∥22 ≤ γ

2.

Therefore, the margin can be at most γ which implies that L̂γ(hw) = 1 and so the statement holds in
this case. If instead γ2 ≤ 2maxx∈X ∥hw(x)∥22, then setting ϵ = γ2

2maxx∈X ∥hw(x)∥2
2

in Lemma 2.21.2 we
conclude that

∥hw(x)− hw̃(x)∥ ≤ γ√
2

for any x ∈ X . If for (x, y) ∈ Z we have that

hw(x)[y] ≤ γ +max
j ̸=y

fw[j]

then for hw̃ the contribution of this data point to the empirical classification loss can only be less than or
equal to its contribution to the empirical classification margin loss of hw. On the other hand, suppose
that

hw[y] > γ +max
j ̸=y

hw[j],

so that the data point doesn’t contribute to L̂γ(hw). For the data point’s contribution to L̂0(hw̃) to be
larger we need

hw̃ ≤ max
j ̸=y

hw̃(x)[y]

which would either require a change of more than γ between two components of hw(x) under compres-
sion to hw̃(x). If this change occurs then the distance between hw(x) and hw̃(x) is minimized when
only two components change by more than γ

2 . Suppose that components the ith and jth components
move sufficiently then,

∥hw(x)− hw̃(x)∥2 > |hw(x)[i]− hw̃(x)[i]|2 + |hw(x)[j]− hw̃(x)[j]|2

>
γ2

4
+
γ2

4

=
γ2

2

which contradicts the conclusion of Lemma 2.21.2. We now bound the number of total parameters.
With our value for ϵ Lemma 2.21.2 tells us that the number of total parameters is at most

32c2d2 log
(
mdn
δ

)
γ2

2maxx∈X

d∑
i=1

1

µ2
iµ

2
i→
,

from which the required result follows and completes the proof of the lemma. ■

Lemma 2.21.4. For any matrix A let Â be the truncated version of A where singular values that are smaller
than δ ∥A∥2.Let hw be a d-layer network with weights A =

{
A1, . . . , Ad

}
. Then for any input x, weights A

and Â, if for any layer i,
∥∥∥Ai − Âi

∥∥∥ ≤ 1
d∥A

i∥, then

∥hw(x)− hŵ(x)∥ ≤ e∥x∥

(
d∏

i=1

∥∥Ai
∥∥
2

)
d∑

i=1

∥∥∥Âi −Ai
∥∥∥
2

∥Ai∥2
.
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Proof ([16]). For x ∈ X recall that xi is the vector before activation at layer i. Now we also consider
x̂i as the vector before activation for the network with weights Â. For the lemma x ∈ X is fixed so let
ξi =

∣∣x̂i − xi∣∣. Now proceed by induction on the statement

ξi ≤
(
1 +

1

d

)i

∥x∥

 i∏
j=1

∥∥Aj
∥∥
2

 i∑
j=1

∥∥∥Aj − Âj
∥∥∥
2

∥Aj∥2
.

The base case clearly holds as ξ0 = 0. Therefore, for i ≥ 1 we proceed as follows,

ξi+1 =
∣∣∣Âi+1ϕ

(
x̂i
)
−Ai+1ϕ

(
xi
)∣∣∣

2

=
∣∣∣Âi

(
ϕ
(
x̂i
)
− ϕ

(
xi
))

+
(
Âi −Ai

)
ϕ
(
xi
)∣∣∣

2

≤
(∥∥Ai+1

∥∥
2
+
∥∥∥Âi+1 +Ai+1

∥∥∥
2

) ∣∣ϕ (x̂i)− ϕ (xi)∣∣
2
+
∥∥∥Âi+1 −Ai+1

∥∥∥
2

∣∣ϕ (xi)∣∣
2

≤
(∥∥Ai+1

∥∥
2
+
∥∥∥Âi+1 +Ai+1

∥∥∥
2

) ∣∣x̂i − xi∣∣
2
+
∥∥∥Âi+1 −Ai+1

∥∥∥
2

∣∣xi∣∣
2

=
(∥∥Ai+1

∥∥
2
+
∥∥∥Âi+1 +Ai+1

∥∥∥
2

)
ξi +

∥∥∥Âi+1 −Ai+1
∥∥∥
2

∣∣xi∣∣
2
,

note how the second arises as a specific property of the ReLU activation function. By the assumption
of the lemma and the inductive assumption it therefore follows that

ξi+1 ≤ ξi
(
1 +

1

d

)∥∥Ai+1
∥∥
2
+
∥∥∥Âi+1 −Ai+1

∥∥∥
2
∥x∥2

i∏
j=1

∥∥Aj
∥∥
2

≤
(
1 +

1

d

)i+1
i+1∏

j=1

∥∥Aj
∥∥
2

 ∥x∥2 i∑
j=1

∥∥∥Âj −Aj
∥∥∥
2

∥Aj∥2
+

∥∥∥Âi+1 −Ai+1
∥∥∥
2

∥Ai+1∥2
∥x∥2

i+1∏
j=1

∥∥Aj
∥∥
2

≤
(
1 +

1

d

)i+1
i+1∏

j=1

∥∥Aj
∥∥
2

 ∥x∥2 i+1∑
j=1

∥∥∥Âj −Aj
∥∥∥
2

∥Aj∥2
,

then using the fact that
(
1 + 1

d

)d ≤ e completes the proof of the lemma. ■

Proof. We can assume without loss of generality that for any i ̸= j that

∥Ai∥F = ∥Aj∥F = β.

This is because we can re-balance the matrices if necessary without effecting the cushion of the
network. Therefore, for any x ∈ X we have

βd =

d∏
i=1

∥∥Ai
∥∥
F
≤
c
∥∥x1∥∥
∥x∥µ1

d∏
i=2

∥∥Ai
∥∥
F
≤

c
∥∥x2∥∥

∥x∥µ1µ2

d∏
i=3

∥∥Ai
∥∥
F
≤ · · · ≤ cd ∥hw(x)∥

∥x∥
∏d

i=1 µi

.

Now for each layer matrix Ai we can define the single layer network by Aixi−1 = xi−1 and so with
ϵ = min

(
1
d ,

γ2

2max∥Aixi−1∥2
2

)
we can deduce from Lemma 2.21.2 that with probability at least 1− δ

2 we
have that ∥∥∥Ãi −Ai

∥∥∥
F
≤ 1

d

∥∥Ai
∥∥ .
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Which implies that
∥∥∥Ãi

∥∥∥ ≤ β (1 + 1
d

)
. Next we that as

Ãi =
1

k

k∑
l=1

〈
Ai,Ml

〉
Ml,

if Âi are the approximations of Ãi with accuracy µ then∥∥∥Âi − Ãi
∥∥∥
F
≤
√
khν ≤ √qhν

where q is the total number of parameters. Therefore, by Lemma 2.21.4 we have that

|lγ(hw̃(x), y)− lγ(hŵ(x), y)| ≤ 2e

γ
∥x∥

(
d∏

i=1

∥∥∥Ãi
∥∥∥) d∑

i=1

∥∥∥Ãi − Âi
∥∥∥
F∥∥∥Ãi

∥∥∥
F

≤ e2

γ
∥x∥βd−1

d∑
i=1

∥∥∥Ãi − Âi
∥∥∥
F

≤
e2cd ∥hw(x)∥

∑d
i=1

∥∥∥Ãi − Âi
∥∥∥
F

γβ
∏d

i=1 µi

≤ qnν

β
, By Lemma 2.21.3 :

e2d ∥hw(x)∥
γβ
∏d

i=1 µi

≤ √q.

From Algorithm 3 we see that

β =
∥∥∥Âi

∥∥∥
F
=

1

k

k∑
l=1

∥Zl∥F ≤
1

k

k∑
l=1

n|⟨A,Ml⟩|

and so using k ≤ n2 we see that parameter ⟨A,Ml⟩ has absolute value at most βn. Therefore, to get
an ϵ-cover with r choices for each parameter we require that

qn
(

βn
r

)
β

=
qn2

r
≤ ϵ

which means that r ≥ qn2

ϵ . We need these choices over q parameters and so the covering number is
given by (

qβn2

ϵ

)q

≤
(
qβn

ϵ

)2q

.

Therefore, we can bound the Rademacher complexity by

ϵ+

√√√√4q log
(

qβn
ϵ

)
m

from which we can deduce that

PS∼Dm

(
L0 (hw) ≤ L̂0 (hw̃) + Õ

(√
q

m

))
≥ 1− δ.

By the construction of w̃ we know that L̂0(hw̃) ≤ L̂γ(hw) which when combined with the above
conclusion completes the proof of the theorem.
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3 Empirical PAC-Bayes Bounds

3.1 Introduction to PAC-Bayes Theory

3.1.1 Bayesian Machine Learning

Here we will outline an introduction to Bayesian machine learning given by [18]. This will provide some
context to the framework under which PAC-Bayes bounds are derived. As before we suppose that our
training data S = {(xi, yi)}mi=1 consists of samples from the distribution D defined on Z. Bayesian machine
learning is used to find a parameter ŵ that corresponds to a hypothesis hŵ with the property that hŵ(x) ≈ y.
To do this a learning algorithm is employed, which is simply a map from the data space to the parameter
space, W. The learning algorithm requires some prior distribution, π, to be defined on W. Then using the
training data the posterior distribution, ρ, is formed from the prior distribution. From the posterior distribution,
there are many methodologies to then determine the parameter ŵ. For example, one could take ŵ to be
the mean, median or a random realization of ρ.

3.1.2 Notations and Definitions

Bayesian machine learning is a way to manage randomness and uncertainty in the learning task. PAC-
Bayes bounds are derived under this framework.

Definition 3.1 ([27]). Let M(W) be a set of probability distributions defined over W. A data-dependent
probability measure is a function

ρ̂ :

∞⋃
n=1

(X × Y)n →M(W).

For ease of notation we will simple write ρ̂ to mean ρ̂((X1, Y1), . . . , (Xn, Yn)). The Kullback-Liebler (KL)
divergence is a measure of similarity between probability measures defined on the same measurable space.

Definition 3.2 ([27]). Given two probability measures Q and P defined on some sample space X , the KL
divergence between Q and P is

KL(Q,P ) =

∫
log

(
dQ(x)

dP (x)

)
Q(dx)

when Q is absolutely continuous with respect to P . Otherwise, KL(Q,P ) =∞.

Remark 3.3 ([15]). When Q,P are probability measures on Euclidean space Rd with densities q, p respec-
tively. The KL divergence is

KL(Q,P ) :=

∫
log

(
q(x)

p(x)

)
q(x)dx.

Note that KL divergence can take values in the range [0,∞]. Also, note the asymmetry in the definition.

For the multivariate normal distributions [15] Nq ∼ N (µq,Σq) and Np ∼ N (µp,Σp) defined on Rd we
have that,

KL(Nq, Np) =
1

2

(
tr
(
Σ−1

p Σq

)
− d+ (µp − µq)

⊤Σ−1
p (µp − µq) + log

(
detΣp

detΣq

))
.

Similarly, for Bernoulli distributions [15] B(q) ∼ Bern(q) and B(p) ∼ Bern(p) it follows that

kl(q, p) := KL(B(q),B(p)) = q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
,

For p∗ ∈ [0, 1] bounds of the form kl(q, p∗) ≤ c for some q ∈ [0, 1] and c ≥ 0 are of interest. Hence, we
introduce the notation

kl−1(q, c) := sup{p ∈ [0, 1] : kl(q, p) ≤ c}.
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For a distribution Q defined onW we will use the notation

Ew∼Q(R(w)) = R(Q) and Ew∼Q

(
R̂(w)

)
= R̂(Q)

for convenience. The first PAC-Bayes bounds we will encounter is known as Catoni’s bound. Recall, that
under the Bayesian framework, we first fix a prior distribution, π ∈M(W).

3.1.3 PAC-Bayes Bounds

Theorem 3.4 ([8]). For all λ > 0, for all ρ ∈M(W), and δ ∈ (0, 1) it follows that

PS∼Dm

(
R(ρ) ≤ R̂(ρ) + λC2

8m
+

KL(ρ, π) + log
(
1
δ

)
λ

)
≥ 1− δ.

Theorem 3.4.1 (Jensen’s Inequality). For a convex function f(x) (with a Taylor expansion) and a random
variable X defined on sample space X , if E(f(X)) and f(E(X)) are finite then

E(f(X)) ≥ f(E(X)).

Equality holds if and only if f is a linear function on some convex set A such that P(X ∈ A) = 1. If f doesn’t
have this property then equality holds if and only if the random variable is constant.

Proof ([5]). Let µ = E(X), so by assumption we know there is a c such that

f(x) = f(µ) + f ′(µ)(x− µ) + f ′′(c)(x− µ)2

2
≥ f(µ) + f ′(µ)(x− µ).

Where we have used the fact that f ′′(c) > 0 due to the convexity of f . Taking expectations of both
sides we conclude that

E(f(X)) ≥ E (f(µ) + f ′(u)(X − µ))
= E(f(µ)) + f ′(µ) (E(X)− µ)
= f(µ) = f (E(X)) ,

which completes the proof of the theorem. ■

Proposition 3.4.2. For any probability measures Q and P it follows that KL(Q,P ) ≥ 0 with equality if and
only if Q and P are the same probability distribution.

Proof. Note that log is a concave function so Jensen’s inequality is reversed. Therefore,

−KL(Q,P ) = −
∫
X
log

(
q(x)

p(x)

)
q(x)dx

=

∫
X
log

(
p(x)

q(x)

)
q(x)dx

= EQ

(
log

(
p(x)

q(x)

))
≤ log

(
EQ

(
p(x)

q(x)

))
= log

(∫
X
p(x)dx

)
= log(1) = 0,
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where Jensen’s inequality has been used to get the inequality. This shows that KL(Q,P ) ≥ 0. Note
that if KL(Q,P ) = 0 then equality must hold for Jensen’s inequality which implies that q(x)

p(x) = 1 which
implies that Q and P are the same probability distribution. On the other hand, if Q and P are the same
probability distribution on the sample space X then,

KL(Q,P ) =

∫
X
log

(
q(x)

p(x)

)
q(x)dx =

∫
X
log(1)q(x)dx = 0.

■

Lemma 3.4.3. For any measurable, bounded function f :W → R we have,

log
(
Ew∼π

(
ef(w)

))
= sup

ρ∈M(W)

(Ew∼ρ (f(w))−KL(ρ, π)) .

Moreover, the supremum with respect to ρ is achieved for the Gibbs posterior πf defined by its density with
respect to π as

dπf (w)

dπf (w)
=

ef(w)

Ew∼πf

(
ef(w)

) .
Proof. From the definition of πf (w) we have that

πf (w) =
ef(w)

Ew∼πf

(
ef(w)

)πf (w).

Therefore,

KL (ρ, πf ) =

∫
w∈W

log

(
ρ(w)

πf (w)

)
ρ(w)dw

=

∫
w∈W

log(ρ(w))ρ(w)dw −
∫
w∈W

log

(
eh(w)πf (w)

Ew∼πf

(
ef(w)

)) ρ(w)dw

=

∫
w∈W

log

(
ρ(w)

πf (w)

)
ρ(w)dw −

∫
w∈W

h(w)ρ(w)dw + log
(
Ew∼πf

(
ef(w)

))
= KL(ρ, πf )− Eρ(f(w)) + log

(
Ew∼πf

(
ef(w)

))
.

By Proposition 3.4.2 the left hand side is non-negative and equal to 0 only when ρ = πf , which
completes the proof. ■

Proof. Recall, from the proof of Theorem 2.1 that for any t > 0 we have that

ES∼Dm

(
exp

(
tm
(
R(w)− R̂(w)

)))
≤ exp

(
mt2C2

8

)
.

Letting t = λ
m we deduce that

ES∼Dm

(
exp

(
λ
(
R(w)− R̂(w)

)))
≤ exp

(
λ2C2

8m

)
.

Integrating this with respect to π gives

Ew∼πES∼Dm

(
exp

(
λ
(
R(w)− R̂(w)

)))
≤ exp

(
λ2C2

8m

)
.
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To which we can apply Fubini’s theorem to interchange the order of integration

ES∼Dm exp
(
λ
(
R(π)− R̂(π)

))
≤ exp

(
λ2C2

8m

)
,

and then apply Lemma 3.4.3 to get

ES∼Dm

(
exp

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)− λ2C2

8m

))
≤ 1.

Now fix s > 0 and apply Chernoff bound to get that

PS∼Dm

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)− λ2C2

8m
> s

)

≤ ES∼Dm

(
exp

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)

))
e−s ≤ e−s.

Setting s = log
(
1
δ

)
and rearranging completes the proof.

Theorem 3.4 motivates the study of the data-dependent probability measure

ρ̂λ = argminρ∈M(W)

(
R̂(ρ) +

KL(ρ, π)

λ

)
. (1)

Definition 3.5 ([27]). The optimization problem defined by Equation (1) has the solution ρ̂λ = π−λR̂ given
by

ρ̂λ(dw) =
exp

(
−λR̂(w)

)
π(dw)

E
(
exp

(
−λR̂(π)

)) .

This is distribution is known as the Gibbs posterior.

Corollary 3.6 ([27]). For all λ > 0, and δ ∈ (0, 1) it follows that

PS∼Dm

(
R(ρ̂λ) ≤ inf

ρ∈M(W)

(
R̂(ρ) +

λC2

8m
+

KL(ρ, π) + log
(
1
δ

)
λ

))
≥ 1− δ.

For a learning algorithm, we noted that there are different methodologies for how the learned classifier
is sampled from the posterior. In the case where consider a single random realization of the posterior
distribution, we have the following result.

Theorem 3.7. [27] For all λ > 0, δ ∈ (0, 1), and data-dependent probability measure ρ̃ we have that

PS∼DmPw̃∼ρ̃

R (w̃) ≤ R̂ (w̃) +
λC2

8m
+

log
(

dρ(w̃)
dπ(w̃)

)
+ log

(
1
δ

)
λ

 ≥ 1− δ.

Proof. The beginning of this proof proceeds in the same way as that of Theorem 3.4 up to the point
where we conclude that

Ew∼πES∼Dm

(
exp

(
λ
(
R(w)− R̂(w)

)))
≤ exp

(
λ2C2

8m

)
.
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For any non-negative function h we have that

Ew∼π(h(w)) =

∫
w∈W

h(w)π(dw)

=

∫
{ dρ̃

dπ (w)>0}
h(w)π(dw)

=

∫
{ dρ̃

dπ (w)>0}
h(w)

dπ

dρ̃
(w)ρ̃(dw)

= Ew∼ρ̃

(
h(w) exp

(
− log

(
dρ̃

dπ
(w)

)))
which means that

Ew∼πES∼Dm

(
exp

(
λ
(
R(w)− R̂(w)

)
− log

(
dρ̃

dπ
(w)

)))
≤ exp

(
λ2C2

8m

)
.

Now in the same way as the proof of Theorem 3.4 we apply the Chernoff bound, set δ and then
re-arrange the terms to complete the proof.

Note that Theorem 3.4 is a bound in probability. We now state an equivalent bound that holds in expec-
tation.

Theorem 3.8. [27] For all λ > 0, and data-dependent probability measure ρ̃, we have that

ES∼Dm(R(ρ̃)) ≤ ES∼Dm

(
R̂(ρ̃) +

λC2

8m
+

KL(ρ̃, π)

λ

)
.

Proof. Once again we proceed in the same way as Theorem 3.4 to the point where we deduce that

ES∼Dm

(
exp

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)− λ2C2

8m

))
≤ 1.

Now we apply Jensen’s inequality to get that

exp

(
ES∼Dm

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)− λ2C2

8m

))
≤ 1,

which implies that

ES∼Dm

(
sup

ρ∈M(W)

(
λ
(
R(ρ)− R̂(ρ)

))
−KL(ρ, π)− λ2C2

8m

)
≤ 0.

In particular this holds for our data-dependent probability measure ρ̃. Therefore,

ES∼Dm

(
λ
(
R(ρ̃)− R̂(ρ̃)

)
−KL(ρ̃, π)− λ2C2

8m

)
≤ 0,

and so using the linearity of expectation and rearranging completes the proof.

Corollary 3.9 ([27]). For ρ̃ = ρ̂λ, the following holds

ES∼Dm(R(ρ̃)) ≤ ES∼Dm

(
inf

ρ∈M(W)

(
R̂(ρ)

)
+
λC2

8m
+

KL(ρ, π)

λ

)
.
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In the results that follow we will consider the 0-1 loss. This is a measurable function l : Y × Y → {0, 1}
defined by l(y, y′) = 1(y ̸= y′).

Theorem 3.10. [2] For all ρ ∈M(W) and δ > 0 we have that

PS∼Dm

R(ρ) ≤ R̂(ρ) +
√

KL(ρ, π) + log
(
1
δ

)
+ 5

2 log(m) + 8

2m− 1

 ≥ 1− δ.

Proof. Refer to (McAllester, 1999) for the proof of this theorem.

Theorem 3.11 ([7]). For a > 0 and p ∈ (0, 1) let

Φa(p) =
− log (1− p(1− exp(−a)))

a
.

Then for any λ > 0, δ > 0 and ρ ∈M(W) we have that

PS∼Dm

(
R(ρ) ≤ Φ−1

λ
m

(
R̂(ρ) +

KL(ρ, π) + log
(
1
δ

)
λ

))
≥ 1− δ.

Proof. Refer to (Catoni, 2007) for the proof of this theorem.

Theorem 3.12 ([4]). For any δ > 0 and ρ ∈M(W) then we have that

PS∼Dm

R(ρ) ≤ kl−1

R̂(ρ), KL(ρ, π) + log
(

2
√
m

δ

)
m

 ≥ 1− δ.

For X1, . . . , Xn i.i.d random variables in [0, 1] and with E(Xi) = µ let X = (X1, . . . , Xn) and

M(X) =
1

n

n∑
i=1

Xi.

For any random variable X in [0, 1] let X ′ denote the Bernoulli random variables with parameter E(X) and
let X′ = (X ′

1, . . . , X
′
n).

Theorem 3.12.1. For n ≥ 2 with the notation as above we have that

E (exp (nkl(M(X), µ))) ≤ exp

(
1

12n

)√
πn

2
+ 2.

Proof. For the proof of this theorem refer to (Maurer, 2004). ■

Corollary 3.12.2. For n ≥ 2 we have that

E (exp (nkl(M(X), µ))) ≤ 2
√
n.

Proof. Replace n with the continuous variable x ∈ (0,∞). Let f(x) = exp
(

1
12x

)√
πx
2 + 2 and g(x) =

2
√
x, then

f ′(x) = g′(x)

(√
π

2
exp

(
1

12x

)(
1

2
− 1

12x

))
.

From which it is clear that f ′(x) < g′(x). Therefore, as one can numerically see that g(x) > f(x) for
x ≈ 7.5 we can conclude that for all n ≥ 8 we have that exp

(
1

12n

)√
πn
2 + 2 ≤ 2

√
n which completes

29



the proof of the corollary. ■

Proof. Recall, that

R̂(w) =
1

m

m∑
i=1

l(hw(xi), yi)

and R(w) = E(x,y)∼D (l(h(x), y)). As we are considering a loss function bounded to the interval [0, 1]
we can consider each of the l(hw(xi), yi) as i.i.d random variables with mean R(w). Therefore, for
any w ∈ W we can apply Corollary 3.12.2 to deduce that

E
(
mkl

(
R̂(w), R(w)

))
≤ 2
√
m.

Now applying Jensen’s inequality to the convexity of kl divergence and the exponential function we
have that

E− S ∼ Dm
(
exp

(
mkl

(
R̂(ρ), R(ρ)

)
− kl (ρ, π)

))
≤ ES∼Dm

(
exp

(
Ew∼ρ

(
mkl

(
R̂(w), R(w)

)
− log

(
dρ(w)

dπ(w)

))))
≤ ES∼Dm

(
Ew∼ρ

(
exp

(
mkl

(
R̂(w), R(w)

)
− log

(
dρ(w)

dπ(w)

))))
= ES∼Dm

(
Ew∼π

(
exp

(
mkl

(
R̂(w), R(w)

))( dρ
dπ

)−1
dρ

dπ

))
≤ Ew∼ρ

(
ES∼Dm

(
exp

(
mkl

(
R̂(w), R(w)

))))
≤ 2
√
m.

ApplyingMarkov′sinequalityweconcludethat

PS∼Dm

kl
(
R̂(w), R(w)

)
>

kl(ρ, π) + log
(

2
√
m

δ

)
m

 = PS∼Dm

(
exp

(
mkl

(
R̂(w), R(w)

)
− kl(ρ, π)

)
>

2
√
m

δ

)
≤ δ.

Taking the complement of this completes the proof.

3.2 Optimizing PAC-Bayes Bounds via SGD

In practice, it is often the case that these bounds are not useful. Despite providing insight into how general-
ization relates to each of the components of the learning process they do not have much utility in providing
non-vacuous bounds on the performance of neural networks on the underlying distribution. The signifi-
cance of the KL divergence between the posterior and the prior can be noted in each of the bounds of
Section 3.1.2. This motivated the work of [15] who successfully minimized this term to provide non-vacuous
results in practice. They considered a restricted problem that lends itself to efficient optimization. They use
stochastic gradient descent to refine the prior, which is effective as SGD is known to find flat minima. This is
important as around flat minima such as w∗ we have that R̂(w) ≈ R̂(w∗) [27]. The setup considered by [15]
is the same as the one we have considered throughout this report. With X ⊂ Rk and labels being ±1. That
is, we are considering binary classification based on a set of features. We explicitly state our hypothesis set
as

H =
{
hw : Rk → R : w ∈ Rd

}
.

We are still considering the 0-1, however, because our classifiers output real numbers we modify the loss
slightly to account for this. That is, we let l : R → {±1} be defined as l(y, y′) = 1(sgn(y′) = y). For
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optimization purposes we use the convex surrogate loss function l̃ : R× {±1} → R+

l̃(y, ŷ) =
log (1 + exp (−ŷy))

log(2)
.

For the empirical risk under the convex surrogate loss we write

R̃(w) =
1

m

m∑
i=1

l̃(hw(xi), yi).

Recall, that this definition implicitly depends on the training sample Sm. As noted previously the work [15]
looks to minimize the KL divergence between the prior and the posterior to achieve non-vacuous bounds.
To do this they work under a restricted setting and construct a process to minimize the divergence between
the prior and the posterior when the learning algorithm is stochastic gradient descent (SGD). To begin [15]
utilize the following bound.

Theorem 3.13 ([15]). For every δ > 0,m ∈ N, distribution D on Rk × {±1}, distribution π on W and
distribution ρ ∈M(W), we have that

PS∼Dm

(
kl
(
R̂(ρ), R(ρ)

)
≤

KL(ρ, π) + log
(
m
δ

)
m− 1

)
≥ 1− δ.

Remark 3.14. Note how this is a slightly weaker statement than Theorem 3.12. This is because [15] cited
this Theorem from [3], however, since then [4] was able to tighten the result by providing Theorem 3.12. In
the following we will update the work of [15] and use the tightened result provided by Theorem 3.12.

This motivates the following PAC-Bayes learning algorithm.

• Fix a δ > 0 and a distribution π onW,

• Collect an i.i.d sample Sm of size m,

• Compute the optimal distribution ρ onW that minimizes

kl−1

R̂(ρ), KL(ρ, π) + log
(

2
√
m

δ

)
m

 , (2)

• Then return the randomized classifier given by ρ.

Implementing such an algorithm in this general form is intractable in practice. Recall, that we are con-
sidering neural networks and so w represents the weights and biases of our neural network. To make the
algorithm more practical we therefore consider

M(W) =
{
Nw,s = N (w,diag(s)) : w ∈ Rd, s ∈ Rd

+

}
.

Utilizing the bound kl−1(q, c) ≤ q +
√

c
2 and replacing the loss with the convex surrogate loss in Equation

(2) we obtain the updated optimization problem

min
w∈Rd,s∈Rd

+

R̃ (Nw,s) +

√√√√KL(Nw,s, π) + log
(

2
√
m

δ

)
2m

. (3)

We now suppose our prior π is of the form N (w0, λI). As we will see the choice of w0 is not too impactful,
as long as it is not 0. However, to efficiently choose a judicious value for λ we discretize the problem, with
the side-effect of expanding the eventual generalization bound. We let λ have the for c exp

(
− j

b

)
for j ∈ N,

so that c is an upper bound and b controls precision. By ensuring that Theorem 3.12 holds with probability
1 − 6δ

π2j2 for each j ∈ N we can then apply a union bound argument to ensure that we get results that hold
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for probability 1 − δ. Treating λ as continuous during the optimization process and then discretized at the
point of evaluating the bound yields the updated optimization problem

min
w∈Rd,s∈Rd

+,λ∈(0,c)
R̃(Nw,s) +

√
1

2
BRE(w, s, λ; δ) (4)

where

BRE(w, s, λ; δ) =
KL(Nw,s,N (w0, λI)) + 2 log

(
b log

(
c
λ

))
+ log

(
π2√m

3δ

)
m

.

To optimize Equation (4) we would like to compute its gradient and apply SGD. However, this is not feasible
in practice for R̃(Nw,s). Instead we compute the gradient of R̃

(
w + ξ ⊙

√
s
)

where ξ ∼ N0,1d
. Once good

candidates for this optimization problem are found we return to (2) to calculate the final error bound. With
the choice of λ it follows that with probability 1− δ, uniformly over all w ∈ Rd, s ∈ Rd

+ and λ (of the discrete
form) the expected risk of ρ = Nw,s is bounded by

kl−1
(
R̂(ρ), BRE(w, s, λ; δ)

)
.

However, it is often not possible to compute R̂(ρ) due to the intractability of ρ. So instead an unbiased
estimate is obtained by estimating ρ using a Monte Carlo approximation. Given n i.i.d samples w1, . . . ,wn

from ρ we use the Monte Carlo approximation ρ̂n =
∑n

i=1 δwi
, to get the bound

R̂(ρ) ≤ R̂n,δ′(ρ) := kl−1

(
R̂ (ρ̂n) ,

1

n
log

(
2

δ′

))
,

which holds with probability 1− δ′. Finally, by the union bound

R(ρ) ≤ kl−1
(
R̂n,δ′(ρ), BRE(w, s, λ; δ)

)
,

holds with probability 1 − δ − δ′. Now all that is left is to do is to determine optimal values for w and s. To
do this first train a neural network via SGD to get a value of w. Then instantiate a stochastic neural network
with the multivariate normal distribution ρ = Nw,s over the weights, with s = |w|. Next apply Algorithm 4 to
deduce values of w, s and λ that give a tighter bound.

Once the values of w, s and λ are found we then need to compute R̂n,δ′(ρ) := kl−1
(
R̂ (ρ̂n) ,

1
n log

(
2
δ′

))
to get our bound. We note that

R̂(ρ̂n) =

n∑
i=1

δwi

 1

m

m∑
j=1

l(hwi
(xj), yj)

 .

Then to invert the kl divergence we employ Newton’s method, in the form of Algorithm 5, to get an approxi-
mation for our bound.
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Algorithm 4 Optimizing the PAC Bounds
Require:
w0 ∈ Rd, the network parameters at initialization.
w ∈ Rd, the network parameters after SGD.
Sm, training examples.
δ ∈ (0, 1), confidence parameter.
b ∈ N, c ∈ (0, 1), precision and bound for λ.
τ ∈ (0, 1), T , learning rate.

Ensure: Optimal w, s, λ.
ζ = |w| ▷ s(ζ) = e2ζ

ρ = −3 ▷ λ(ρ) = e2ρ

B(w, s, λ,w′) = R̃(w) +
√

1
2BRE(w, s, λ)

for t = 1→ T do
Sample ξ ∼ N (0, Id)
w′(w, ζ) = w + ξ ⊙

√
s(ζ)w

ζ
ρ

 = −τ

∇wB(w, s(ζ), λ(ρ),w′(w, ζ))
∇ζB(w, s(ζ), λ(ρ),w′(w, ζ))
∇ρB(w, s(ζ), λ(ρ),w′(w, ζ))


end for
return w, s(ζ), λ(ρ)

Algorithm 5 Newton’s Method for Inverting kl Divergence
Require: q, c, initial estimate p0 and N ∈ N
Ensure: p such that p ≈ kl−1(q, c)

for n = 1→ N do
if p ≥ 1 then

return 1
else

p0 = p0 −
q log( q

c )+(1−q) log( 1−q
1−c )−c

1−q
1−p−

q
p

end if
end for
return p0
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4 Oracle PAC-Bayes Bounds

4.1 Theory of Oracle PAC-Bayes Bounds

Oracle bounds are theoretical objects that are not suitable for practical applications. Their utility lies in their
ability to highlight properties about the behavior of the bounds and they can take the form

PS∼Dm

(
R (ŵ) ≤ inf

w∈W
R(w) + rm(δ)

)
≥ 1− δ.

Where rm(δ) is a remainder term that tends to 0 as m tends to∞. Although this bound cannot be computed
in practice it is illustrative of the behavior of the bound. Just like empirical bounds, there exist oracle bounds
that hold in expectation and in probability.

4.1.1 Oracle PAC-Bayes Bounds in Expectation

Theorem 4.1 ([27]). For λ > 0 we have that

ES∼DmR(ρ̂λ) ≤ inf
ρ∈M(W)

(
R(ρ) +

λC2

8m
+

KL(ρ, π)

λ

)
.

Theorem 4.1.1 (Fubini’s Theorem). If X1 and X2 are σ-finite measurable spaces and f : X1 × X2 is mea-
surable and ∫

X1×X2

|f(x1, x2)|d(x1, x2) <∞,

then ∫
X1

(∫
X2

f(x1, x2)dx2

)
dx1 =

∫
X2

(∫
X1

f(x1, x2)dx2

)
dx1 =

∫
X1×X2

f(x1, x2)d(x1, x2).

Proof. For the proof of this theorem please refer to [23]. ■

Proof. We proceed from Corollary 3.9 to deduce that

ES∼Dm (R (ρ̂λ)) ≤ ES∼Dm

(
inf

ρ∈M(W)

(
R̂(ρ) +

λC2

8m
+

KL(ρ, π)

λ

))
≤ inf

ρ∈M(W)

(
ES∼Dm

(
R̂(ρ) +

λC2

8m
+

KL(ρ, π)

λ

))
= inf

ρ∈M(W)

(
ES∼Dm

(
R̂(ρ)

)
+
λC2

8m
+

KL(ρ, π)

λ

)
= inf

ρ∈M(W)

(
Ew∼ρ

(
ES∼Dm

(
R̂(w)

)) λC2

8m
+

KL(ρ, π)

λ

)
where Fubini’s theorem has been applied in the last inequality. Recalling that ES∼Dm

(
R̂(w)

)
= R(w)

completes the proof of the theorem.

4.1.2 Oracle PAC-Bayes Bounds in Probability

Theorem 4.2 ([27]). For any λ > 0, and δ ∈ (0, 1) we have that

PS∼Dm

(
R(ρ̂λ) ≤ inf

ρ∈M(W)

(
R(ρ) +

λC2

4m
+

2KL(ρ, π) + log
(
2
δ

)
λ

))
≥ 1− δ.
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Proof. Recall the proof of Theorem 3.4 and the subsequent application to the Gibbs posterior that
yielded Corollary 3.6.

PS∼Dm

(
R(ρ̂λ) ≤ inf

ρ∈M(W)

(
R̂(ρ) +

λC2

8m
+

KL(ρ, π) + log
(
1
δ

)
λ

))
≥ 1− δ.

In the proof we utilized the result of Theorem 2.1. The inequality of Theorem 2.1 can be reversed by
replacing the Ui by −Ui in its proof. Applying the reverse inequality of Theorem 2.1 in the proof of
Theorem 3.4 gives the updated corollary

PS∼Dm

(
R̂(ρ) ≤ R(ρ) + λC2

8m
+

KL(ρ, π) + log
(
1
δ

)
λ

)
≥ 1− δ.

Which holds for all ρ ∈M(W). Applying a union bound on Corollary 3.6 and the updated result above
gives

PS∼Dm

R(ρ̂λ) ≤ infρ∈M(W)

(
R̂(ρ) + λC2

8m +
KL(ρ,π)+log( 1

δ )
λ

)
,

R̂(ρ) ≤ R(ρ) + λC2

8m +
KL(ρ,π)+log( 1

δ )
λ

 ≥ 1− 2δ,

which holds for all ρ ∈ M(W). Using the upper bound on R̂(ρ) from the second event on the first
event gives

PS∼Dm

(
R(ρ̂λ) ≤ inf

ρ∈M(W)

(
R̂(ρ) +

λC2

4m
+

2
(
KL(ρ, π) + log

(
1
δ

))
λ

))
≥ 1− 2δ.

We can simply replace the δ with δ
2 to complete the proof.

4.1.3 Bernstein’s Assumption

Definition 4.3 ([27]). Let w∗ denote a minimizer of R when it exists,

R(w∗) = min
w∈W

R(w).

When w∗ exists and there is a constant K such that for any w ∈ W we have that

ES∼Dm

(
(l(hw(xi), yi)− l(hw∗(xi), yi))

2
)
≤ K (R(w)−R(w∗))

we say that Bernstein’s assumption is satisfied with constant K.

Theorem 4.4 ([27]). Assume Bernstein’s assumption is satisfied with some constant K > 0. Take λ =
m

max(2K,C) then we have

ES∼DmR(ρ̂λ)−R (w∗) ≤ 2 inf
ρ∈M(W)

(
R(ρ)−R (w∗) +

max(2K,C)KL(ρ, π)

m

)
.

Lemma 4.4.1. Let g denote the Bernstein function defined by

g(x) =

{
1 x = 0
ex−1−x

x2 x ̸= 0.

Let U1, . . . , Un be i.i.d random variables such that E(Ui) is finite and Ui−E(Ui) ≤ C almost surely for some
C ∈ R. Then,

E

(
exp

(
t

n∑
i=1

(Ui − E(Ui))

))
≤ exp

(
g(Ct)nt2Var(Ui)

)
.
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Proof ([1]). We first show that function g is increasing. For x ̸= 0 we have that

g′(x) =
(x− 2)ex + 2 + x

x3
.

Let h(x) = (x−2)ex+2+x then h(0) = 0 and h′(x) = (x−2)ex+1, so that h′(0) = 0 and h′′(x) = xex.
Therefore, h′(x) < 0 for x < 0 and h′(x) > 0 for x > 0 which implies that h(x) ≥ 0 for all x. This means
that g′(x) > 0 and the function g is increasing. So that

ex = 1 + x+ x2g(x) ≤ 1 + x+ x2g(α)

for x ≤ α. Therefore, if we have a random variable X with E(X) = 0 and X ≤ α it follows that

E (exp(X)) ≤ 1 + g(α)Var(X) ≤ exp(g(α)Var(X)).

Applying this conclusion to α = Ct, X = t(Ui − E(Ui)) we can conclude that

E (exp (t(Ui − E(Ui)))) ≤ exp
(
g(Ct)t2Var(Ui)

)
Therefore, by the independence of the Ui

E

(
exp

(
t

n∑
i=1

(Ui − E(Ui))

))
=

n∏
i=1

E (exp (t(Ui − E(Ui))))

≤
n∏

i=1

exp
(
g(Ct)t2Var(Ui)

)
= exp

(
g(Ct)nt2Var(Ui)

)
as required. ■

Proof. Now fix w ∈ W and apply Lemma 4.4.1 to Ui = li(w
∗) − li(w) (where we inherit the notation

of the proof of Theorem 2.1). Note that E(Ui) = R(w∗)−R(w) and therefore,

ES∼Dm

(
exp

(
tm
(
R(w)−R(w∗)− R̂(w) + R̂(w)

)))
≤ exp

(
g(Ct)mt2VarS∼Dm(Ui)

)
.

Observe that

Var(Ui) ≤ ES∼Dm

(
U2
i

)
= ES∼Dm (li(w

∗)− li(w))

≤ K(R(w)−R(w∗)).

Therefore, with λ = tn we get that

ES∼Dm

(
exp

(
λ
(
R(w)−R(w∗)− R̂(w) + R̂(w∗)

)))
≤ exp

(
g

(
λC

m

)
λ2

m
K (R(w)−R(w∗))

)
which upon rearrangement gives

ES∼Dm

(
exp

(
λ

(
1−Kg

(
λC

m

)
λ

m

)
(R(w)−R(w∗))− R̂(w)− R̂(w∗)

))
≤ 1.

Now integrate with respect to π and apply Fubini’s theorem along with Lemma 3.4.3 from the proof of
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Theorem 3.4 to get

ES∼Dm

(
exp

(
λ sup

ρ∈M(W)

((
1−Kg

(
λC

m

)
λ

m

)
(R(ρ)−R(w∗))− R̂(ρ)− R̂(w∗)−KL(ρ, π)

)))
≤ 1.

In particular, this holds for ρ− ρ̂λ, and we can apply Jensen’s inequality and re-arrange to yield(
1−Kg

(
λC

m

))
(ES∼Dm (R(ρ̂λ)−R(w∗))) ≤ ES∼Dm

(
R̂(ρ)− R̂(w) +

KL(ρ̂λ, π)

λ

)
.

From now on λ will be such that 1−Kg
(
λC
m

)
λ
m > 0, thus

ES∼Dm (R(ρ̂λ))−R(w∗) ≤
ES∼Dm

(
R̂(ρ̂λ)− R̂(w∗) + KL(ρ̂λ,π)

λ

)
1−Kg

(
λC
m

)
λ
m

.

As with λ = m
max(2K,C) it follows that

Kg

(
λC

m

)
λ

m
≤ 1

2

and so we have

ES∼Dm (R(ρ̂λ))−R(w∗) ≤ 2ES∼Dm

(
R̂(ρ̂λ)− R̂(w∗) +

KL(ρ̂λ, π)

λ

)
.

As ρ̂λ minimizes the quantity on the right hand side in expectation we can re-write this as

ES∼Dm(R(ρ̂λ)) ≤ 2ES∼Dm

(
inf

ρ∈M(W)

(
R̂(w)− R̂(w∗) +

max(2K,C)KL(ρ, π)

m

))
≤ 2 inf

ρ∈M(W)
ES∼Dm

(
R̂(w)− R̂(w∗) +

max(2K,C)KL(ρ, π)

m

)
= 2 inf

ρ∈M(W)
ES∼Dm

(
R(w)−R(w∗) +

max(2K,C)KL(ρ, π)

m

)
,

which completes the proof.

4.2 Data Driven PAC-Bayes Bounds

A lot of work to obtain non-vacuous PAC-Bayes bounds is to develop priors that reduce the size of the KL
divergence between the prior and the posterior. The idea behind the work of [20] is to hold out some of the
training data to obtain data-inspired priors. For this section, we use a PAC-Bayes bound that can be thought
of as the Bayesian equivalent of Theorem 2.2, however, now we are dealing with potentially uncountable
hypothesis sets.

Theorem 4.5 ([10]). For λ > 1
2 selected before drawing our training sample, then for all ρ ∈ M(W) and

δ ∈ (0, 1) we have that

PS∼Dm

(
R(ρ) ≤ 1

1− 1
2λ

(
R̂(ρ) +

λC

m

(
KL(ρ, π) + log

(
1

δ

))))
≥ 1− δ.

Lemma 4.5.1. For λ > 1
2 , if kl− 1

γ
(q, p) ≤ c then

p ≤ 1

1− 1
2λ

(q + λc).
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Proof. Let γ = − 1
λ for convenience, which means that γ ∈ (−2, 0). Re-arranging the assumption we

get that

p ≤ 1− eγq−c

1− eγ
.

Using eγ ≥ 1 + γ in the numerator and eγ ≤ 1 in the denominator we get

p ≤
q − c

γ

1 + 1
2γ
,

which when we substitute λ back in completes the proof of the lemma. ■

Lemma 4.5.2. Let x1, . . . , xn be realizations of a random variable X with range [0, 1] and mean µ. Let
µ̂ = 1

n

∑n
i=1 xi. Then for any fixed γ we have that

E (exp (nklγ(µ̂, µ))) ≤ 1.

Proof. Note that E (exp(nγµ̂)) = (E(exp(γX)))
n and that by the convexity of exp(·) we have that

eγX ≤ 1− x+ xeγ .

Therefore,
E (exp (nγµ̂)) ≤ (1− µ+ µeγ)

n
,

which implies that
E (exp (n (γµ̂− log (1− µ+ µeγ)))) ≤ 1

which completes the proof of the lemma. ■

Lemma 4.5.3. For probability distributions defined on the sample space X and a measurable function f we
have that

Ex∈Q(f(x)) ≤ KL(Q,P ) + log (Ex∈P (exp(f(x)))) .

Proof.

Ex∈Q (f(x)) = Ex∈Q (log (exp(f(x))))

= Ex∈Q

(
log

(
P (x)

Q(x)

)
ef(x) + log

(
Q(x)

P (x)

))
≤ log

(
Ex∈Q

(
P (x)

Q(x)
ef(x)

))
+KL(Q,P )

= KL(Q,P ) + log (Ex∈P (exp(f(x)))) .

■

Proof. We can use similar reasoning to that given in the proof of Theorem 3.12 to conclude from
Lemma 4.5.2 that

ES∼Dm

(
exp

(
mklγ

(
R̂(w), R(w)

)))
≤ 1

for fixed w ∈ W. Now we can take expectations over π on both sides an apply Fubini’s theorem to
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deduce that

1 ≥ Ew∼π

(
ES∼Dm

(
exp

(
mklγ

(
R̂(w), R(w)

))))
≥ ES∼Dm

(
Ew∼π

(
exp

(
mklγ

(
R̂(w), R(w)

))))
.

To which we can apply Markov’s inequality to get that

PS∼Dm

(
Ew∼π

(
exp

(
mklγ

(
R̂(w), R(w)

)))
≤ 1

δ

)
≥ 1− δ.

Letting f(w) = mklγ

(
R̂(w), R(w)

)
in Lemma 4.5.3 and using the above result we get that

PS∼Dm

(
Ew∼ρ

(
mklγ

(
R̂(w), R(w)

))
≤ KL(ρ, π) + log

(
1

δ

))
≥ 1− δ.

By the convexity of klγ we get that

PS∼Dm

(
mklγ

(
R̂(w), R(w)

)
≤ KL(ρ, π) + log

(
1

δ

))
≥ 1− δ.

Therefore, by re-arranging and applying Lemma 4.5.1 the proof of the theorem is complete.

Corollary 4.6 ([20]). Let β, δ ∈ (0, 1), D a probability distribution over Z, and π ∈ M(W). Then for all
ρ ∈M(W) we have that

PS∼Dm (R(ρ) ≤ Ψβ,δ(ρ, π;S)) ≥ 1− δ,

where Ψβ,δ(ρ, π;S) =
1
β R̂(ρ) +

KL(ρ,π)+log( 1
δ )

2β(1−β)m .

Proof. This is the result of the previous Theorem 4.5 with λ = 1
2(1−β) and C = 1.

As we have done previously, we can consider the optimization problem of minimizing the bound of
Corollary 4.6.

Theorem 4.7 ([20]). Let m ∈ N and fix a probability kernel ρ : Zm → M(W). Then for all β, δ ∈ (0, 1)
and distributions D defined on Z we that ES∼Dm (Ψβ,δ(ρ(S), π;S)) is minimized, in π, by the oracle prior
π∗ = ES∼Dm(ρ(S)).

For a subset J of {1, . . . ,m} of size n, we can use it to sample the training data and yield the subset SJ .
We can then define the data-dependent oracle prior as

π∗(SJ) = inf
π∈Zn→M(W)

E(KL(ρ(s), π(SJ)))

which turns out to be π∗(SJ) = E(ρ(S)|SJ). It can be shown that the data-dependent oracle prior minimizes
the bound of Corollary 4.6 in expectation. Therefore, despite being a theoretical quantity, as it cannot be
computed in practice, it motivates the construction of practical data-dependent priors as a method to tighten
the bounds.

4.2.1 Implementing Data-Dependent Priors

To implement data-dependent priors we restrict the optimization problem to make it tractable. We only
consider the set of Gaussian priors F that generate Gaussian posteriors. Neural networks are trained via
SGD, and hence there is some randomness to the learning algorithm. Let (Ω,F , ν) define a probability
space and let us focus on the kernels

ρ : Ω×Zm →M(W), ρ(U, S) = N (wS , s),
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where wS are the learned weights via SGD on the full dataset S. The random variable U represents the
randomness of the learning algorithm. As before we consider a non-negative integer n ≤ m and with α = n

m
we define a subset Sα of size n containing the first n indices of S processed by SGD. Let ESα,U [·] denote
the conditional expectation operator given Sα and U . Our aim now is to tighten the bound of Corollary 4.6
by minimizing ESα,U (KL(ρ(U, S), π)). To do this we further restrict the priors of consideration to those of the
form N (wα, σI) such that with σ fixed we are left with the minimization problem

argminwα

(
ESα,U (∥wS −wα∥)

)
,

which can be solved to yield wα = ESα,U (wS). This minimizer is unknown in practice so we attempt to
approximate it. We first define a so-called ghost sample, SG, which is an independent sample equal in
distribution to S. We combine a 1− α fraction of SG with Sα to obtain the sample SG

α . Let wG
α be the mean

of ρ(U, SG
α ). By construction, SGD will first process Sα then the combined portion of SG and hence wG

α

and wS are equal in distribution when conditioned on Sα and U . Therefore, wG
α is an unbiased estimator of

ESα,U (wS). Before formalizing this process algorithmically we clarify some notation.

• The SGD run on S is the base run.

• The SGD run on Sα is the α-prefix run.

• The SGD run on SG
α is the α-prefix+ghost run and obtains the parameters wG

α .

The resulting parameters of the α-prefix and α-prefix+ghost run can be used as the centres of the
Gaussian priors to give the tightened generalization bounds. However, sometimes the ghost sample is not
attainable in practice, and hence one simply relies upon α-prefix runs to obtain the mean of the prior. It is
not clear whether α-prefix+ghost run will always obtain a parameter that leads to a tighter generalization
bound. Recall, that σ is assumed to be fixed in the optimization process. Algorithm 7 is independent of this
parameter and so it can be optimized afterwards without requiring a re-run of the optimization process.

Algorithm 6 Stochastic Gradient Descent
Require: Learning rate η

function SGD(w0, S, b, t, E = −∞)
w← w0

for i← 1 to t do
Sample S′ ∈ S with |S′| = b
w← w − η∇lS′(w)
if l0-1

S (w) ≤ E then
break

end if
end for

end function
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Algorithm 7 Obtaining Bound Using SGD Informed Prior
Require: Stopping criteria E , Prefix fraction α, Ghost Data SG (If available), Batch size b.

function GETBOUND(E , α, T, σP )
Sα ← {z1, . . . , zα|S| ⊂ S}
w0

α ←SGD
(
w0, Sα, b,

|Sα|
b

)
wS ←SGD

(
w0

α, S, b,∞, E
)

▷ Base Run
wG

α ←SGD
(
w0

α, S
G
α , b, T, ·

)
▷ Ghost run if data available, otherwise prefix run

π ← N
(
wG

α , σI
)

ρ← N (wS , σI)
Bound← Ψ∗

δ(ρ, π;S \ Sα)
return Bound

end function

5 Extensions of PAC-Bayes Bounds

5.1 Disintegrated PAC-Bayes Bounds

The majority of the PAC-Bayes bounds we have discussed so far have been derived to hold for all posterior
distributions. The intention of disintegrated PAC-Bayes bounds is to refine these results by only requiring
them to hold for a single posterior distribution. We now study the work of [24] that sets out a general
framework for deriving such bounds. The setup is the same as the one we have considered so far, with
the added assumption that C = 1 and the additional consideration of a deterministic learning algorithm
A : Zm →M(W) that is applied to the training sample S.

Definition 5.1 ([24]). The two distributions P and Q defined on the some sample space X , then for any
α > 1 their Renyi divergence is defined to be

Dα(Q,P ) =
1

α− 1
log

(
Ex∼P

(
Q(x)

P (x)

)α)
.

Theorem 5.2 ([24]). For any distribution D on Z, for any parameter space W, for any prior distribution π
onW, for any ϕ : W ×Zm → R+, for any α > 1, for any δ > 0 and for any deterministic learning algorithm
A : Zm →M(W) the following holds

PS∼Dm,w∼ρS

(
α

α− 1
log (ϕ(w, S)) ≤ 2α− 1

α− 1
log

(
2

δ

)
+Dα(ρS , π) + log

(
ES′∼DmEw′∼πϕ(w

′, S′)
α

α−1
))
≥ 1−δ,

where ρS := A(S).

Proof. First note that ϕ(w, S) is a non-negative random variable. Therefore, by Markov’s inequality

Pw∼ρS

(
ϕ(w, S) ≤ 2

δ
Ew′∼ρS

(ϕ (w′, S))

)
≥ 1− δ

2
,

which is equivalent to

Ew∼ρS

(
ϕ(w, S) ≤ 2

δ
Ew′∼ρS

(ϕ (w′, S))

)
≥ 1− δ

2
.

Taking the expectations over S ∼ Dm to both we obtain the equivalent statements

PS∼Dm,w∼ρS

(
ϕ(w, S) ≤ 2

δ
Ew′∼ρS

(ϕ (w′, S))

)
≥ 1− δ

2
,
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and

ES∼Dm

(
Ew∼ρS

(
ϕ(w, S) ≤ 2

δ
Ew′∼ρS

(ϕ (w′, S))

))
≥ 1− δ

2
.

Taking the log of the first of these and then multiplying by α
α−1 gives

PS∼Dm,w∼ρS

(
α

α− 1
log (ϕ(w, S)) ≤ α

α− 1
log

(
2

δ
Ew′∼ρS

(ϕ (w′, S))

))
≥ 1− δ

2
.

Focusing on the right hand side we see that

α

α− 1
log

(
2

δ
Ew′∼ρS

(ϕ (w′, S))

)
=

α

α− 1
log

(
2

δ
Ew′∼ρS

(
ρS(w

′)π(w′)

π(w′)ρS(w′)
ϕ(w′, S)

))
for all π ∈M(W). As 1

α + 1
α

α−1
= 1 we can apply Holder’s inequality to get that

Ew′∼π

(
ρS(w

′)

π(w′)
ϕ (w′, S)

)
≤
(
Ew′∼π

(
ρS(w

′)

π(w′)

)α) 1
α (

Ew′∼π

(
ϕ(w′, S)

α
α−1
))α−1

a .

Therefore,

α

α− 1
log

(
2

δ
Ew′∼π

(
ρS(w

′)

π(w′)
ϕ (w′, S)

))
≤ Dα(ρS , π) +

α

α− 1
log

(
2

δ

)
+ log

(
Ew′∼πϕ(w

′, S)
α

α−1
)
.

From which we deduce that

PS∼Dm,w∼ρS

(
α

α− 1
log (ϕ(w, S))

≤ Dα(ρS , π) +
α

α− 1
log

(
2

δ

)
+ log

(
Ew′∼πϕ(w

′, S)
α

α−1
))
≥ 1− δ

2
. (⋆)

As Ew′∼πϕ(w
′, S)

α
α−1 is also a non-negative random variables we can apply Markov’s inequality again

to get

PS∼Dm

(
Ew′∼πϕ(w

′, S)
α

α−1 ≤ δ

2
ES′DmEw′∼πϕ(w

′, S′)
α

α−1

)
≥ 1− δ

2
.

As the left hand side is not dependent of w ∼ ρS we have that

PS∼Dm

(
Ew′∼πϕ(w

′, S)
α

α−1 ≤ δ

2
ES′DmEw′∼πϕ(w

′, S′)
α

α−1

)
= PS∼Dm,w∼ρS

(
Ew′∼πϕ(w

′, S)
α

α−1 ≤ δ

2
ES′DmEw′∼πϕ(w

′, S′)
α

α−1

)
.

Therefore,

PS∼Dm,w∼ρS

(
α

α− 1
log

(
2

δ

)
+ log

(
Ew′∼πϕ(w

′, S)
α

α−1
)

≤ 2α− 1

α− 1
log

(
2

δ

)
+ log

(
δ

2
ES′DmEw′∼πϕ(w

′, S′)
α

α−1

))
.

Combining with (⋆) using a union bound completes the proof.

5.1.1 Application to Neural Network Classifiers

We can contextualize this bound to over-parameterized neural networks. Suppose that w ∈ Rd is a weight
vector of a neural network, with d ≫ m. Assume that the network is trained for T epochs and that these
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epochs are used to generate T priors P = {πt}Tt=1. Let the priors be of the form πt = N
(
wt, σ

2Id
)

where wt

is the weight vector obtained after the tth epoch. We assume that the priors are obtained from the learning
algorithm being applied to the sample Sprior where Sprior ∩ S = ∅.

Corollary 5.3. For any distribution D on Z, for any setW, for any set P of T priors onW, for any learning
algorithm A : Zm →M(W), for any loss l : W ×Z → [0, 1] and for any δ > 0 then for any πt ∈ P we have
that

PS∼Dm,w∼ρS

(
kl
(
R̂(w), R(w)

)
≤ 1

m

(
∥w −wt∥22

σ2
+ log

(
16T
√
m

δ3

)))
≥ 1− δ.

Proof. We can apply Theorem 5.2 with ϕ(w, S) = exp
(

α−1
α mkl

(
R̂(w), R(w)

))
and α = 2. To deduce

that for all πt ∈ P we have

PS∼Dm,w∼ρS

(
kl
(
R̂(w), R(w)

)
≤ 1

m

(
D2(ρS , πt) + log

(
8T

δ3
ES′∼DmEw′∼πt

(
exp

(
mkl

(
R̂(w′), R(w)

))))))
≥ 1− δ.

Note that the empirical risk in the exponential is with respect to the distribution S′ where as the
empirical risk on the left hand side of the inequality is with respect to S. Recall, the upper bound we
determined in the proof of Theorem 3.12,

ES′∼DmEw′∼πt

(
exp

(
mkl

(
R̂(w′), R(w)

)))
≤ 2
√
m.

Furthermore, it is known that for ρS = N (w, σ2Id) and πt = N (vt, σ
2Id) that

D2(ρS , πt) =
∥w − vt∥22

σ2
.

Putting this and our bound into our deductions from Theorem 5.2 completes the proof of the corollary.

Corollary 5.4 ([24]). Under the assumptions of Corollary 5.3 with δ ∈ (0, 1) and for all πt ∈ P we have that

PS∼Dm,w∼ρS

(
kl
(
R̂(w), R(w)

)
≤ 1

m

(
∥w + ϵ−wt∥22 − ∥ϵ∥22

2σ2
+ log

(
2T
√
m

δ

)))
,

PS∼Dm,w∼ρS

(
kl
(
R̂(w), R(w)

)
≤ 1

m

(
m+ 1

m

∥w + ϵ−wt∥22 − ∥ϵ∥22
2σ2

+ log

(
T (m+ 1)

δ

)))
,

and for all c ∈ C

R(w) ≤
1− exp

(
−cR̂(w)− 1

m

(
∥w+ϵ−wt∥2

2−∥ϵ∥2
2

2σ2 + log
(

T |C|
δ

)))
1− exp(−c)

.

Where ϵ ∼ N
(
0, σ2Id

)
is Gaussian noise such that w + ϵ acts as the weights sampled from N (w, σ2Id),

and C is a set of hyper-parameters fixed a priori.

The proof of these individual statements follow the same structure. We will only prove the last of these
with the aid of Theorem 5.4.3 proven below. The first two can be proven in a similar way using Theorem 1
(i) from [22] and Proposition 3.1 from [6] respectively.
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Lemma 5.4.1. For ρS = N
(
w, σ2Id

)
and π = N

(
v, σ2Id

)
, we have that

log

(
ρS(w + ϵ)

π(w + ϵ)

)
=

1

2σ2

(
∥w + ϵ− v∥22 − ∥ϵ∥22

)
,

where ϵ ∼ N
(
0, σ2Id

)
such that w + ϵ acts as the weights sampled from N (w, σ2Id).

Proof. This follows from simple computations after recalling that

ρS(w + ϵ) =

(
1

σ
√
2π

)d

exp

(
− 1

2σ2
∥ϵ∥22

)
, and π(w + ϵ) =

(
1

σ
√
2π

)d

exp

(
− 1

2σ2
∥w + ϵ− v∥22

)
.

So this completes the proof of the lemma. □ ■

Lemma 5.4.2 ([7]). For any positive λ and w ∈ W, we have that

ES∼Dm

(
exp

(
λ
(
Φ λ

m
(R(w))− R̂(w)

)))
≤ 1.

Proof. Define the Bernoulli random variables σi(w) = I (hw(xi) ̸= yi). Using independence, the con-
cavity of log and λ > 0 we deduce that

log
(
E
(
exp

(
−λR̂(w)

)))
=

m∑
i=1

log

(
E
(
exp

(
− λ
m
σi

)))

≤ m log

(
1

m

m∑
i=1

E
(
exp

(
− λ
m
σi

)))
.

Now note that

R(w) =
1

m

m∑
i=1

E(σi)

and becaus the σi are Bernoulli random variables we have that

1

m

m∑
i=1

E
(
exp

(
− λ
m
σi

))
=

1

m

m∑
i=1

(
(1− E(σi)) + exp

(
− λ
m

)
E(σi)

)

=
1

m

m∑
i=1

(
E(σi)

(
exp

(
− λ
m

)
− 1

)
+ 1

)
.

Therefore,

Φ λ
m
(R(w)) =

1

−λ
m log

(
1−

(
1− exp

(
− λ
m

))
1

m

m∑
i=1

E(σi)

)

=
1

−λ
m log

(
1

m

m∑
i=1

(
E(σi)

(
exp

(
− λ
m

)
− 1

)
+ 1

))

=
1

−λ
m log

(
1

m

m∑
i=1

E
(
exp

(
− λ
m
σi

)))
.

From which we conclude that

log
(
E
(
exp

(
−λR̂(w)

)))
≤ −λΦ λ

m
(R(w)).
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Re-arranging the terms completes the proof of the lemma. ■

Theorem 5.4.3 ([7]). For any positive λ, any posterior distribution ρ ∈M(W), then

PS∼Dm

(
R(ρ) ≤ Φ−1

λ
m

(
R̂(ρ) +

1

λ
log

(
1

δ

dρ

dπ

)))
≥ 1− δ.

Proof. To prove this we start from Lemma 5.4.2 and integrate with respect to π to get that

ES∼Dm

(
exp

(
λ
(
Φλm (R(π))− R̂(π)

)))
≤ 1.

Which for any posterior ρ can be written as

ES∼Dm

(
exp

(
λ
(
Φλm (R(ρ))− R̂(ρ)

)
− log

(
dρ

dπ

)
+ log(δ)

))
≤ δ.

From this we can deduce using by Markov’s inequality that

PS∼Dm

(
R(ρ) ≥ Φ−1

λ
m

(
R̂(ρ) +

1

λ
log

(
1

δ

dρ

dπ

)))
= PS∼Dm

(
exp

(
λ
(
Φλm (R(ρ))− R̂(ρ)

)
− log

(
dρ

dπ

)
+ log(δ)

)
≥ e0

)
≤ ES∼Dm

(
exp

(
λ
(
Φλm (R(ρ))− R̂(ρ)

)
− log

(
dρ

dπ

)
+ log(δ)

))
≤ δ

from which when we take complements we complete the proof of the theorem. ■

Proof. Apply Theorem 5.4.3 T |C| times with confidence δ
T |C| . For each prior πt ∈ P and hyperparam-

eter c ∈ C, we have that

PS∼Dm

(
R(ρS) ≤

1

1− e−c

(
1− exp

(
−cR̂(ρS)−

1

m

(
log

(
ρS(w)

πt(w)

)
+ log

(
T |C|
δ

)))))
≥ 1− δ

T |C|
.

Applying a union bound argument and Lemma 5.4.1 the conclusions of the theorem follows which
completes the proof.

5.2 PAC-Bayes Compression Bounds

We will now see how compression ideas can be capitalized to tighten PAC-Bayes bounds. The work of [19]
evaluates generalization bounds by first measuring the effective compressed size of a neural network and
then substituting this into the bounds. We have seen that compression techniques can efficiently reduce
the effective size of a network, and so accounting for this can lead to tighter bounds. This also captures the
intuition that we expect a model to overfit if it is more difficult to compress. Therefore, these updated bounds
also incorporate a notion of model complexity. The work of [19] utilizes a refined version of Theorem 3.11.

Theorem 5.5 ([7]). Let L be a 0-1 valued loss function. Let π be a probability measure on the parameter
space, and let α > 1, δ > 0. Then,

PS∼Dm

(
R(ρ) ≤ inf

λ>1
Φ−1

λ/m

(
R̂(ρ) +

α

λ

(
KL(ρ, π)− log(δ) + 2 log

(
log
(
α2λ

)
log(α)

))))
≥ 1− δ.
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Proof. We start from Theorem 3.11 and try to optimize the bound with respect to λ. Let us introduce
the parameter α > 1 and let Λ =

{
αk : k ∈ N

}
on which we define the probability measure ν

(
αk
)
=

1
(k+1)(k+2) . Now for each k ∈ N apply Theorem 3.11 with λ = αk and confidence 1− δ

(k+1)(k+2) . Now
apply a union bound argument to conclude that

PS∼Dm

R(ρ) ≤ inf
λ′∈Λ

Φ−1
λ′
m

R̂(ρ) + KL(ρ, π) + log
(
1
δ

)
+ 2 log

(
log(α2λ′)
log(α)

)
λ′


 ≥ 1− δ.

We note that λ ∈ (1,∞) (as for λ < 1 we get a bound larger than 1) and so there is a λ′ ∈ Λ such that

λ

α
≤ λ′ ≤ λ.

Moreover, for any q ∈ (0, 1) we have that β 7→ Φβ(q) is increasing on R+. Therefore,

PS∼Dm

(
R(ρ) ≤ inf

λ∈(1,∞)
Φ−1

λ
m

(
R̂(ρ) +

α

λ

(
KL(ρ, π)− log (δ) + 2 log

(
log
(
α2λ′

)
log(α)

))))
≥ 1− δ,

which completes the proof.

The intention now is to motivate the choice of π using ideas of compressibility such that KL(ρ, π) is kept
small. To do this we will choose a prior π that assigns greater probability mass to models with a shorter
code length.

Theorem 5.6 ([19]). Let |w|c denote the number of bits required to represent hypothesis hw using some
pre-specified coding c. Let ρ denote the point mass distribution at ŵ which is the compression of w and
corresponds to the compressed model hŵ. Let M denote any probability measure on the positive integers.
Then there exists a prior πc such that

KL(ρ, πc) ≤ |ŵ|c log(2)− log (M (|ŵ|c)) .

Proof. LetWc ⊆ W be the set of compressed weights. Then let πc be a distribution onWc defined by

πc(w) =
1

Z
M(|w|c) · 2−|w|c , where Z =

∑
w∈Wc

M(|w|c) · 2−|w|c .

As c is injective onWc we have that Z ≤ 1. Therefore,

KL(ρ, πc) = log

(
ρ (ŵ)

πc (ŵ)

)
ρ (ŵ) = − log (πc (ŵ))

= log(Z) + |ŵ|c log(2)− log (M (|ŵ|c))
≤ |ŵ|c log(2)− log (M (|ŵ|c)) .

Which completes the proof of the theorem.

Remark 5.7. An example of a coding scheme c could be the Huffman encoding. However, such a com-
pression scheme is agnostic to any structure of the hypotheses which is translated to the space W. By
exploiting structure in the hypothesis class the bound can be improved substantially.

We now formalize compression schemes to allow us to refine Theorem 5.6. Denote a compression
procedure by a triple (S,C,Q) where

• S = {s1, . . . , sk} ⊆ {1, . . . , d} is the location of the non-zero weights,
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• C = {c1, . . . , cr} ⊆ R, is a codebook, and

• Q = (q1, . . . , qk) for qi ∈ {1, . . . , r} are the quantized values.

Define the corresponding weights w(S,Q,C) ∈ Rd as,

wi(S,Q,C) =

{
cqj i = sj

0 otherwise.

Training a neural network is a stochastic process due to the randomness of SGD. So to analyse the gener-
alization error we try to capture randomness in the analysis by applying Gaussian noise to weights. For this
we use ρ ∼ N

(
w, σ2J

)
, with J being a diagonal matrix.

Theorem 5.8 ([19]). Let (S,C,Q) be the output of a compression scheme, and let ρS,C,Q be the stochastic
estimator given by the weights decoded from the triplet and variance σ2. Let c denote an arbitrary fixed
coding scheme and let M denote an arbitrary distribution on the positive integers. Then for any τ > 0, there
is a prior π such that

KL(ρS,C,Q, π) ≤(k⌈log(r)⌉+ |S|c + |C|c) log(2)− log(M(k⌈log(r)⌉+ |S|c + |C|c))

+

k∑
i=1

KL

N (cqi , σ2
)
,

r∑
j=1

N
(
cj , τ

2
) .

Proof. The following is a proof by construction, that is we construct prior π with the desired property.
To do this we want to express the prior as a mixture over all possible compressions provided by the
algorithm. We first define the mixture component

πS,Q,C = N
(
w(S,Q,C), τ2

)
.

We then define our prior to be a weighted mixture over all possible compressions, that is

π =
1

Z

∑
S,Q,C

M (|S|c + |C|c + k⌈log(r)⌉) · 2−|S|c−|C|c−k⌈log(r)⌉πS,Q,C .

Where Z ≤ 1 as the compression scheme is injective. Let
(
Ŝ, Q̂, Ĉ

)
be the output of our compression

algorithm, so that out posterior ρ is N
(
w
(
Ŝ, Q̂, Ĉ

)
, σ2
)

. Therefore,

KL(ρ, π) ≤ KL

ρ, ∑
S,Q,C

M (|S|c + |C|c + k⌈log(r)⌉) · 2−|S|c−|C|c−k⌈log(r)⌉πS,Q,C


≤ KL

ρ,∑
Q

M
(∣∣∣Ŝ∣∣∣

c
+
∣∣∣Ĉ∣∣∣

c
+ k⌈log (r̂)⌉

)
· 2−|Ŝ|c−|Ĉ|c−k⌈log(r̂)⌉πŜ,Q,Ĉ


≤
(∣∣∣Ŝ∣∣∣

c
+
∣∣∣Ĉ∣∣∣

c
+ k⌈log (r̂)⌉

)
log(2) + log

(
M
(∣∣∣Ŝ∣∣∣

c
+
∣∣∣Ĉ∣∣∣

c
+ k⌈log (r̂)⌉

))
+KL

ρ,∑
Q

πŜ,Q,Ĉ


Let ϕτ = N

(
0, τ2

)
. Then as the mixture term is independent across coordinates we have that∑
Q

πŜ,Q,Ĉ

 (x) =

r∑
q1,...qk=1

k∏
i=1

ϕτ
(
xi − ĉqi

)
=

k∏
i=1

r∑
qi=1

ϕτ
(
xi − ĉqi

)
.
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Furthermore, as ρ is independent over the coordinates, we get that

KL

ρ,∑
Q

πŜ,Q,Ĉk

 =

k∑
i=1

KL

ρi, r∑
qi=1

N
(
ĉqi , τ

2
) ,

from which the result follows and completes the proof of the theorem.

Choosing the prior alluded to by Theorem 5.8 and utilizing Theorem 5.5 one can obtain a PAC-Bayes
generalization bound that exploits notions of compressibility.
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6 Appendix

6.1 Extensions to Convolutional Neural Networks

In this section, we extend the ideas of Section 2.3 to convolutional neural networks (CNN) [17]. This ex-
tension is not trivial due to the parameter sharing that occurs in the CNN architecture. To investigate these
ideas we update our notation from that of Section 2.3. In particular, we suppose that the ith layer has an
image dimension of ni1 × ni2, where each pixel has li channels, and the filter at layer i has size κi × κi
with stride si. The convolutional filter has dimension li−1 × li × κi × κi. If we apply Algorithm 3 to each
copy of the filter then the number of new parameters grows proportionally to ni1ni2, which is undesirable. On
the other hand, compressing the filter once and re-using it for all patches removes the implicit assumption
that the noise generated by the compression behaves similar to a Gaussian as the shared filters introduces
correlations. To solve these issues Algorithm 8 generates p-wise independent compressed filters for each
convolution location. This results in p more parameters than a single compression, but if p grows logarithmi-
cally with respect to the relevant parameters then the filters behave like fully independent filters. To proceed
with this idea we need to introduce some operations. For k′ ≤ k let Y be a kth order tensor and Z a (k′)th

order tensor with a matching dimensionality to the last k′-dimensions of Y . The product operator ×k′ when
given tensors Y and Z returns a (k − k′)th order tensor as follows

(Y ×k′ Z)i1,...,ik−k′ =
〈
Yi1,...,ik−k′ , Z

〉
=
〈
vec
(
Yi1,...,ik−k′

)
, vec(Z)

〉
.

Let X ∈ Rl×n1×n2 be an n×n image where the pixels have l features. Denote the κ× κ sub-image starting
from pixel (i, j) by X(i,j),κ ∈ Rl×κ×κ. Let A ∈ Rl′×l×κ×κ be a convolutional weight tensor. The convolutional
operator with stride s can then be defined as

(A ∗s X)i,j = A×3 X(s(i−1)+1,s(j+1)+1),κ

for 1 ≤ i ≤
⌊
n1−κ

s

⌋
=: n′1 and 1 ≤ j ≤

⌊
n2−κ

s

⌋
=: n′2 so that A ∗s X ∈ Rl′×n′

1×n′
2 . Algorithm 8 generates

p-wise independent filters Â(a,b) for each convolution location (a, b) ∈ [n′1]× [n′2] and so Â ∗s X will be used
to denote the convolution operator((

Â ∗s X
)
i,j

)
= Â(i,j) ×3 X(s(i−1)+1,s(j+1)+1),κ

for 1 ≤ i ≤ n′1 and 1 ≤ j ≤ n′2. With this we see that for any i > 1 we have

xi+1 = ϕ
(
Ai ∗si xi

)
, and xj =M ij

(
xi
)
= J ij

xi ×3 x
i.

Definition 6.1. For any two layer i ≤ j, we define the inter-layer cushion µi,j as the largest number such
that for any (x, y) ∈ S we have that

µi,j
1√
ni1n

i
2

∥∥∥J i,j
xi

∥∥∥
F

∥∥xi∥∥ ≤ ∥∥∥J i,j
xi x

i
∥∥∥ .

For any layer i let the minimal inter-layer cushion be µi→ = mini≤j≤d µi,j = min
(

1√
li
,mini<j≤d µi,j

)
.

Definition 6.2. Let J i,j
x ∈ Rli×ni

1×ni
2×lj×nj

1×nj
2 be the Jacobian of M i,j at x. We say that the Jacobian is β

well-distributed if for any (x, y) ∈ S, any i, j and any (a, b) ∈
[
ni1 × ni2

]
we have that∥∥∥[J i,j

x

]
:,a,b,:,:,:

∥∥∥
F
≤ β√

ni1n
i
2

∥∥J i,j
x

∥∥
F
.

For any δ > 0, ϵ ≤ 1, let G =
{(
U i, V i

)}m
i=1

be a set of matrix/vector pairs where U ∈ Rl′×n′
1×n′

2×nu and
V ∈ Rl×n1×n2 , let Â(i,j) ∈ Rl×l′ be the output of Algorithm 8 with η = δ

η and ∆(i,j) = Â(i,j) − A. Suppose
the U ’s are β-well-distributed. Then for any (U, V ) ∈ G we have that

P

(
∥U ×3 (∆ ∗s V )∥ ≤ ηβ√

l′1l
′
2

∥A∥F ∥U∥F ∥V ∥F

)
≥ 1− δ (⋆). (5)
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Algorithm 8 (A, ϵ, η, n′1 × n′2))
Require: Convolution Tensor A ∈ Rl′×l×κ×κ, error parameters ϵ, η.
Ensure: Generate n′1 × n′2 different tensors Â(i,j) ((i, j) ∈ [n′1]× [n′2]) that satisfy (5).

Let k =
Q⌈κ

s ⌉
2(log( 1

η ))
2

ϵ2 for a large enough universal constant Q.

Let p = log
(

1
η

)
.

Sample a uniformly random subspace S of l′ × l × κ× κ of dimension k × p.
for (i, j) ∈ [n′1]× [n′2] do

Sample k matrices M1, . . . ,Mk ∈ N (0, 1)l
′×l×κ×κ with random i.i.d entries.

for k′ = 1→ k do
Let M ′

k′ =
√

ll′κ2

kp ProjS(Mk′).
Let Zk′ = ⟨A,M ′

k′⟩M ′
k′ .

end for
Let Â(i,j) =

1
k

∑k
k′=1 Zk′ .

end for

Algorithm 8 is designed to generate different compressed filters Âi,j in a way that keeps the total number
of parameters small, but also ensures that the Âi,j ’s behave similarly to the compressed filters that would
generated if Algorithm 3 were applied to each location independently.

Theorem 6.3. For any convolutional neural network hw with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any
margin γ, then Algorithm 8 generates weights w̃ for the network hw̃ such that

PS∼Dm

L0(hw̃) ≤ L̂γ(hw) + Õ


√√√√√c2d2 max(x,y)∈S ∥hw(x)∥22

∑d
i=1

β2
(⌈

κi
si

⌉)2

µ2
iµ

2
i→

γ2m


 ≥ 1− δ,

where µi, µi→, c, ρδ and β are layer cushion, inter-layer cushion, activation contraction, inter-layer smooth-
ness and well-distributed Jacobian respectively. Furthermore, κi and si are the filter and stride in layer
i.

Corollary 6.4. For any convolutional neural network hw with ρδ ≥ 3d, any probability 0 < δ ≤ 1 and any
margin γ, then Algorithm 8 generates weights w̃ for the network hw̃ such that

PS∼Dm

L0(hw̃) ≤ L̂γ(hw) + ζ + Õ


√√√√√c2d2 max(x,y)∈S ∥hw(x)∥22

∑d
i=1

β2
(⌈

κi
si

⌉)2

µ2
iµ

2
i→

γ2m


 ≥ 1− δ,

where µi, µi→, c, ρδ and β are layer cushion, inter-layer cushion, activation contraction, inter-layer smooth-
ness and well-distributed Jacobian respectively measured on a 1− ζ fraction of the training set S. Further-
more, κi and si are the filter and stride in layer i.

6.2 Current State of the Art PAC-Bayes Bounds

We have seen that PAC-Bayes bounds provide a theoretical perspective on the learning process and the
consequences it has on the performance of the learned classifier. In practice, we would ideally want these
bounds to be meaningful. When implemented naively they produce vacuous bounds that provide no infor-
mation. The first implementation of non-vacuous PAC-Bayes was discussed in Section 3.2 with the work
[15] that focused on a particular setting to get the non-vacuous bounds. Since then there have been directed
efforts to improve the tightness of these bounds and extend the success to different contexts. Currently, the
tightest bounds seen in practice come from the work of [25]. In this section, we will discuss the work and
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see how it is a development of some previous work we have discussed. The work of [25] is an extension of
the work of [19] and follows the same compression paradigm that was first considered by [17]. In [25] the
tighter generalization bounds are achieved by first restricting to lower-dimensional settings using a notion
called intrinsic dimensionality. Then they develop more aggressive quantization schemes that are adapted
to the problem at hand.

6.2.1 The PAC-Bayes Foundations

Throughout this section, we will adopt the same notation as the rest of this report. Consider Theorem 2.1,
the log(M) term counts the number of bits needed to specify any hypothesis hw with w ∈ W, supposing that
we assume each hypothesis is equally likely. If instead we have some prior belief on the likely hypotheses
we can construct a variable length code that uses fewer bits to specify those hypotheses. For a prior
distribution π, then for any w ∈ W the number of bits required to represent hypothesis hw is log2

(
1

π(w)

)
when using an optimal compression code for π. Furthermore, if we consider a set of good distributions ρ
and we do not care which element of Q we arrive at, we can gain some bits back. In particular, the average
number of bits to code a sample from ρ using π is the cross entropy H(ρ, π) and since we are agnostic to
the sample from ρ we get back H(ρ) bits. Therefore, the average number of bits is

H(ρ, π)−H(ρ) = KL(ρ, π).

Definition 6.5. For probability measures ρ and π on a state space X that are absolutely continuous with
respect to some measure λ, then

H(ρ, π) =

∫
X
ρ(x) log (π(x)) dλ(x),

where H(ρ) := H(ρ, ρ).

With these improvements, we can get bounds such as Theorem 3.10. For this work, we will work with
Theorem 5.5 to get the generalization bounds. The prior that we will use here is known as the universal
prior and explicitly penalizes the minimum compressed length of the hypothesis,

π(w) =
2−K(w)

Z
.

Then using a point mass posterior on the single parameter w∗ we get that

KL
(
I{w=w∗}, π

)
= log

(
1

π(w∗)

)
≤ K (w∗) log(2) ≤ l(w∗) log(2) + 2 log (l(w∗)) ,

where l(w) is the length of the program that reproduces w. Improving the tightness of our bounds comes
about by reducing the compressed length l(w∗) for the w∗ achieved through training. For this work, the
method for model compression consists of two components. One component is reducing the dimensionality
of the problem, and the second is developing an aggressive quantization scheme.

6.2.2 Finding Random Subspaces

A neural network parameterized by the weight vector w ∈ RD is often optimized through gradient descent
so that the updates occur in the D-dimensional loss landscape. Despite D being very large the optimiza-
tion process is relatively stable and converges to simple solutions. However, we can work in a reduced
dimension d < D (referred to as the intrinsic dimension) by considering

w = w0 + P ŵ,

where w0 ∈ RD is the initialized weight, P ∈ RD×d is such that P⊤P ≈ Id×d and ŵ ∈ Rd. Now the vector
ŵ is optimized so that the updates take place on a d-dimensional landscape. Finding the smallest value
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of d for which we still attain good performance on the problem at hand is the bottleneck to this approach.
The work lies in finding projection P that is stable under training and finding optimal subspaces in which to
optimize in. Imposing the condition P⊤P ≈ Id×d solves the first concern, for the next, we consider three
possible methods for constructing P .

1. Kronecker Sum Projector: Construct the matrix

P⊕ =
1⊗R1 +R2 ⊗ 1√

2D

where ⊗ is the Kronecker product, R1, R2 ∼ N (0, 1)
√
D×d. Note that P⊤

⊕P⊕ = Id×d + O
(

1√
D

)
.

Applying this to a vector ŵ ∈ Rd takes O
(
d
√
D
)

time.

2. Kronecker Product Projector: Construct the matrix

P⊗ =
Q1 ⊗Q2√

D

where Q1, Q2 ∼ N (0, 1)
√
D×

√
d. Note that P⊤

⊗P⊗ = Id×d +O
(

1

D
1
4

)
. Applying this to a vector ŵ ∈ Rd

takes O
(√

dD
)

time.

6.2.3 Quantization and Training

For the full precision weight vector w = (w1, . . . , wd) ∈ Rd and vector c = (c1, . . . , cL) ∈ RL of L quantization
levels, construct the quantized vector w̃ ∈ Rd where w̃i = cq(i) where q(i) = argmink|wi − ck|. The vector c
is learned alongside w where the gradients are defined as

∂w̃i

∂wj
= δij , and

∂w̃i

∂ck
= Iq(i)=k.

c is initialized to have uniform spacing between the minimum and maximum values of w, or using k-means.
The latter approach refers to a quantization scheme proposed in [14] where for k = L we partition the
weights into clusters C1, . . . , Ck with c1, . . . , ck such that

argminC1,...,Ck

(
k∑

i=1

∑
w∈Ci

|wi − ci|2
)
, for ci =

1

|Ci|
∑
w∈Ci

w.

Next, we capitalize on the fact that certain quantization levels will be more likely than others to introduce a
variable length coding scheme. For each level ck associate the probability pk and apply arithmetic coding.
Each arithmetic coding of w takes at most ⌈d×H(p)⌉ bits, where p is the discrete distribution of the pk ’s.
Considering the total number of bits we see that

l(w) ≤ ⌈d×H(p)⌉+ L× (16 + ⌈log2(d)⌉) + 2

as L× ⌈log2(d)⌉ bits are required for the probabilities pk and 16L bites for the codebook c.

6.2.4 Optimization

Note that the smaller the intrinsic dimension d is the closer that our trained weight will be to the initialized
weight w0. Therefore, w0 is more likely under our universal prior. Recall, that we must therefore condition
on w0 to generate our prior. Similarly, if we optimize over different hyper-parameters such as d, L or the
learning rate (η), we must encode these into the prior and pay a penalty for optimizing over them. To do this
we simply redefine our weight vector to be w′ = (w, d, L, η) and so our prior becomes

π (w′) =
2−K(w′)

Z
,
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where now we have that
K (w′) ≤ K(w|d, L) +K(d) +K(L) +K(η).

Typically, we optimize these hyper-parameters over finite sets and so we can bound these terms by the
ceiling of log2 of the size of these sets. The process we have discussed can be summarized in Algorithm 9.

Algorithm 9 Compute PAC-Bayes Compression Bound
Require: Neural network hw, training data set S = {(xi, yi)}mi=1, Clusters L, Intrinsic Dimension d, Confi-

dence 1− δ, Prior distribution π
function COMPUTEBOUND(hw, L, d, S, δ, π)

w← TRAINID(hw, d, S)
w̃← TRAINQUANTIZE (hw, L, S) .
Compute quantized empirical risk R̂(w̃).
KL(ρ, π)← GETKL (w̃, π) .

return GETCATONIBOUND
(
R̂(w̃),KL(ρ, π), δ,m

)
end function
function TRAINQUANTIZE(w, L, S)

Initialize c← GETCLUSTERS (w, L) .
for i = 1→ quantepochs do(

c
w

)
←
(
c− η∇cL (w, c)
w − η∇wL(w, c)

)
.

end for
return w̃

end function
function GETKL(w̃, π)

c, count← GETUNIQUEVALSCOUNTS (w̃) .
messagesize← DOARITHMETICENCODING (w̃, c, count) .
messagesize← messagesize + hyperparamsearch
return messagesize + 2× log (messagesize) .

end function

6.3 Rademacher Complexity

Recall, that we have the space Z on which a distribution D is defined from which we draw an i.i.d sampled
S = {(xi, yi)}mi=1. Suppose we have a class of functions F = {f : Z → R}.
Definition 6.6 ([9]). The empirical Rademacher complexity of F is

R̂(F) = Eσ∈{±1}

(
sup
f∈F

(
1

m

m∑
i=1

σif((xi, yi))

))
,

where each σi is an independent random variable uniformly distribution on {±1}.
Definition 6.7 ([9]). The Rademacher complexity of F is

R(F) = ES∼Dm

(
R̂(F)

)
.

Theorem 6.8 ([9]). For a parameter δ ∈ (0, 1) if F ⊆ {f : Z → [0, 1]} then

PS∼Dm

Ez∼D (f(z)) ≤ 1

m

m∑
i=1

f(zi) + 2R(F) +

√
log
(
1
δ

)
m

 ≥ 1− δ,

and

PS∼Dm

Ez∼D (f(z)) ≤ 1

m

m∑
i=1

f(zi) + 2R̂(F) + 3

√
log
(
2
δ

)
m

 ≥ 1− δ.
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Theorem 6.8.1 (McDiamrid Inequality). Let x1, . . . , xn be independent random variables taking values in a
set A and let c1, . . . , cn be positive real constants. If ϕ : An → R satisfies

sup
x1,...,xn,x′

i

|ϕ(x1, . . . , xi, . . . , xn)− ϕ (x1, . . . , x′i, . . . , xn)| ≤ ci,

for 1 ≤ i ≤ n, then

P (ϕ(x1, . . . , xn)− E (ϕ(x1, . . . , xn)) ≥ ϵ) ≤ exp

(
−2ϵ∑n
i=1 c

2
i

)
.

Proof. For a proof of this theorem refer to [13]. ■

Lemma 6.8.2. The function

ϕ(S) = sup
h∈F

(
EŜ∼Dm (h(x, y))− 1

m

m∑
i=1

h(xi, yi)

)

satisfies
sup

z1,...,zn,z′
i∈Z
|ϕ(z1, . . . , zi, . . . , zm)− ϕ(z1, . . . , z′i, . . . , zm)| ≤ 1

m
.

Proof. Let S = {z1, . . . , zm} and S′ = {z1, . . . , z′i, . . . , zm} then

|ϕ(S)− ϕ (S′)| =

∣∣∣∣∣ suph∈F

EŜ∼Dm (h(x, y))− 1

m

∑
(xj ,yj)∈S

h(xj , yj)


− sup

h∈F

EŜ∼Dm (h(x, y))− 1

m

∑
(xj ,yj)∈S′

h(xj , yj)

∣∣∣∣∣.
Let h∗ ∈ F be the function the maximizes the supremum of ϕ(S), then

|ϕ(S)− ϕ (S′)| =

∣∣∣∣∣EŜ∼Dm (h∗(x, y))− 1

m

∑
(xj ,yj)∈S

h∗(xj , yj)

− sup
h∈F

EŜ∼Dm (h(x, y))− 1

m

∑
(xj ,yj)∈S′

h(xj , yj)

∣∣∣∣∣
and because h∗ can at best also maximize ϕ (S′) we also have that

|ϕ(S)− ϕ (S′)| ≤

∣∣∣∣∣EŜ∼Dm (h∗(x, y))− 1

m

∑
(xj ,yj)∈S

h∗(xj , yj)

− EŜ∼Dm (h∗(x, y))− 1

m

∑
(xj ,yj)∈S′

h∗(xj , yj)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
∑

(xj ,yj)∈S′

h∗(xj , yj)−
1

m

∑
(xj ,yj)∈S

h∗(xj , yj)

∣∣∣∣∣∣ .
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By using the definitions of S and S′ this simplifies to

|ϕ(S)− ϕ (S′)| ≤ 1

m
|h∗(xi, yi)− h∗ (x′i, y′i)|

≤ 1

m
,

which completes the proof of the lemma. ■

Proof. Lemma 6.8.2 shows that ϕ(S) = suph∈F
(
EŜ∼Dm (h(x, y))− 1

m

∑m
i=1 h(xi, yi)

)
satisfies the

conditions of 6.8.1, therefore,

P (ϕ(S)− ES′∼Dm (ϕ (S′)) ≥ t) ≤ exp

(
− t

2

m

)
.

With t =
√

log( 1
δ )

m we deduce that

PS∼Dm

(
EŜ∼Dm(f(x, y)) ≤ 1

m

m∑
i=1

f(xi, yi) + EŜ′∼Dm

(
ϕ
(
Ŝ′
)))

≥ 1− δ.

Now we need to bound the expectation of ϕ(S) using Rademacher complexity to complete the proof.
Let S̃ = {z̃1, . . . , z̃m} be a sample independent but identically distributed to S. As

ES̃

 1

m

∑
(x,y)∈S̃

h(x, y)

∣∣∣∣∣S
 = Ez∼D (h(z)) , and ES̃

 1

m

∑
(x,y)∈S

h(x, y)

∣∣∣∣∣S
 =

1

m

∑
(x,y)∈S

h(x, y)

we deduce that

ES∼Dm (ϕ(S)) = ES∼Dm

sup
h∈F

ES̃∼Dm

 1

m

∑
(x,y)∈S̃

(h(x, y))− 1

m

∑
(x,y)∈S

h(x, y)

∣∣∣∣∣S
 .

We can apply Jensen’s inequality as sup is convex to deduce that

ES∼Dm

(
sup
h∈F

(
ES̃∼Dm

(
1

m

∑
(x,y)∈S̃

h(x, y)− 1

m

∑
(x,y)∈S

h(x, y)

∣∣∣∣∣S
)))

≤ ES∼DmES̃∼Dm

sup
h∈F

 1

m

∑
(x,y)∈S̃

h(x, y)− 1

m

∑
(x,y)∈S

h(x, y)

 .
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As E(σi) = 0 we can multiply each term by σi, and in distribution we have −σi = σi so that

ES∼DmES̃∼Dm

(
sup
h∈F

(
1

m

∑
(x,y)∈S̃

h(x, y)− 1

m

∑
(x,y)∈S

h(x, y)

))

= Eσ∈{±1}mES∼DmES̃∼Dm

(
sup
h∈F

(
1

m

∑
(x,y)∈S̃,σi∈σ

σih(x, y)

− 1

m

∑
(x,y)∈S,σi∈σ

σih(x, y)

))

≤ Eσ∈{±1}mES∼Dm

sup
h∈F

 1

m

∑
(x,y)∈S,σi∈σ

σih(x, y)


+ Eσ∈{±1}mES̃∼Dm

sup
h∈F

 1

m

∑
(x,y)∈S̃,σi∈σ

σih(x, y)


= 2R(F),

which when substituted into our previous bounds completes the proof of the first statement. To obtain
the second statement we note that R̂(F) satisfies Theorem 6.8.1 with constant 1

m . Therefore, a
second application of Theorem 6.8.1 with confidence level (where a confidence level of δ

2 is used for
each application) gives the desired result.

If we let F = {(x, y) 7→ I (hw(x))[y] ≤ γ +maxj ̸=y hw(x)[j]) : w ∈ W} then for any δ ∈ (0, 1) and w ∈ W
we have that

PS∼Dm

Lγ (hw) ≤ L̂γ(hw) + 2R̂(F) + 3

√
log
(
2
δ

)
m

 ≥ 1− δ.

Definition 6.9. [26] Given a set S and a function ρ : S × S → R+, we call (S, ρ) a pseudo-metric space if
for all x, y, z ∈ S we have

• ρ(x, y) = ρ(y, x),

• ρ(x, z) ≤ ρ(x, y) + ρ(y, z), and

• ρ(x, x) = 0.

Definition 6.10 ([26]). Let (S, ρ) be a pseudo-metric space and let ϵ > 0. Then the set C ⊆ ∫ is an ϵ-cover
of (S, ρ) if for every x ∈ S there is a y ∈ C such that ρ(x, y) ≤ ϵ. The set C is a minimal ϵ-cover if there is no
other ϵ-cover with lower cardinality. The cardinality of any minimal ϵ-cover is the ϵ-covering number denoted
N(S, ρ, ϵ).

For a given training set S = {(xi, yi)}mi=1 we can consider the set

G = {(f(x1, y1), . . . , f(xm, ym)) : f ∈ F}.

Theorem 6.11 ([21]). Let F ⊆ {f : Z → [0, 1]} and S ∼ Dm then

R̂(F) ≤ inf
ϵ>0

(
ϵ+

√
2N(G, ρ, ϵ)

m

)
.

Lemma 6.11.1 (Massart’s Lemma[26]). Let T ⊆ Rn then we have that

R(T ) ≤ max
t∈T
∥t∥2

√
2 log |T |
n

.
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Proof ([12]). For all a ≥ 0 we have that

exp

(
aEσ∈{±1}n

(
sup
t∈T

n∑
i=1

σiti

))
= exp

(
Eσ∈{±1}n

(
a sup

t∈T

n∑
i=1

σiti

))

≤ Eσ∈{±1}n

(
exp

(
a sup

t∈T

n∑
i=1

σiti

))

= Eσ∈{±1}n

(
sup
t∈T

(
exp

(
a

n∑
i=1

σiti

)))

≤
∑
t∈T

Eσ∈{±1}n

(
exp

(
a

n∑
i=1

σiuti

))
,

where for the first inequality we have used Jensen’s inequality and the second equality holds due as
exp(·) is strictly monotonically increasing. The right-hand side is just an MGF which can be split into a
product due to independence, hence

exp

(
aEσ∈{±1}n

(
sup
t∈T

n∑
i=1

σiti

))
=
∑
t∈T

n∏
i=1

Eσi (exp (aσiti))

≤
∑
t∈T

n∏
i=1

exp

(
a(2ti)

2

8

)
,

where we get the inequality from Lemma 2.1.3. Therefore,

exp

(
aEσ∈{±1}n

(
sup
t∈T

n∑
i=1

σiti

))
≤
∑
t∈T

exp

(
a2

2

n∑
i=1

t2i

)

≤
∑
t∈T

exp

(
a2 maxt∈T ∥t∥2

2

)
= exp

(
a2 maxt∈T ∥t∥2

2

)
∥t∥2 |T | .

Taking the logarithm of both sides and dividing by a we get that

Eσ∈{±1}n

(
sup
t∈T

(
n∑

i=1

σiti

))
≤ log (|T |)

a
+
amaxt∈T ∥t∥2

2
= max

t∈T
∥t∥
√

2 log (|T |),

which completes the proof of the lemma. ■

Proof. Let T ⊆ G be an ϵ-net of size N(G, ρ, ϵ), then by Lemma 6.11.1 we have that

Eσ∈{±1}m

(
max
g′∈T

1

m
σig

′(xi, yi)

)
≤ max

g′∈T
∥g(xi, yi)∥2

√
2 log (N(G, ρ, ϵ))

m

≤
√
m

√
2 log (N(G, ρ, ϵ))

m

=

√
2 log (N(G, ρ, ϵ))

m
.
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Using this we can conclude that,

R̂(G) = Eσ∈{±1}m

(
sup
g∈G

(
1

m

m∑
i=1

σig(xi, yi)

))

≤ Eσ∈{±1}m

(
sup
g∈G

(
1

m

m∑
i=1

σig(xi, yi)− σig′(xi, yi)

))
+ Eσ∈{±1}m

(
1

m

m∑
i=1

σig
′(xi, yi)

)

≤ Eσ∈{±1}m

(
sup
g∈G

(
1

m

m∑
i=1

|g(xi, yi)− g′(xi, yi)|

))
+ Eσ∈{±1}m

(
max
g′∈T

(
1

m

m∑
i=1

σig
′(xi, yi)

))

≤ sup
g∈G

ρ((g(x1, y1), . . . , g(xm, ym)), (g′(x1, y1), . . . , g
′(xm, ym))) +

√
2 log (N(G, ρ, ϵ))

m

≤ ϵ+
√

2 log (N(G, ρ, ϵ))
m

,

which holds for all ϵ > 0 which completes the proof of the theorem.
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