
A Guide to Probably Approximately Correct Bounds for
Neural Networks Graph Neural Networks

Thomas Walker

Summer 2023

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Problem Setup . 1
2.2 Graph Preliminaries . 2

2.2.1 GCNs . 2
2.2.2 MPGNNs . 3

2.3 Loss Function . 3
2.4 PAC-Bayes . 4

3 Generalization Bounds 4
3.1 Connection to MLPs/CNNs . 4

4 Conclusion 5

1 Introduction

The geometric deep learning blueprint [4] has amassed a lot of success as a method for structuring machine
learning techniques. It has enabled the innovation and investigation of machine learning algorithms as well
as supporting the rise of graph neural networks (GNNs) as a tool for solving problems in a variety of different
domains. Therefore, it is of interest to understand how the PAC learning framework can be utilised in this
new setting. The investigation of this has started with [3] who derive PAC bounds for graph convolutional
networks (GCNs) and message-passing graph neural networks (MPGNNs). Here we will detail the results
given by [3] and understand how to proceed in developing PAC bounds for GNNs. What we will see is
that the results of [3] are indeed a generalization of the results obtained for neural networks. This is to be
expected as GNNs can also be seen as a generalisation of neural networks.

2 Preliminaries

2.1 Problem Setup

Throughout, the K-class graph classification problem is considered. Each sample, z = (A,X, y) for the
problem is a triplet.

1. A, the graph adjacency matrix.

2. X ∈ Rn×h0 , the node feature matrix.

• n is the number of nodes.

1

• h0 is the input feature dimension.

3. y ∈ R1×K , the label.

We will adopt the following notation.

1. N+
k will denote the first k positive integers.

2. | · |p will note the vector p-norm.

3. ∥ · ∥p will denote the operator norm induced by the p-norm.

4. ∥ · ∥F will denote the matrix Frobenius norm.

We set up the K-class graph classification problem in the following way.

• We suppose we have a sample space Z.

• A node feature matrix X ∈ X comes from the node feature space.

• A adjacency matrix A ∈ G comes from the graph space.

• We suppose a distribution D is defined on Z so that z i.i.d∼ D.

• A model fw ∈ H comes from a hypothesis class.

• The training set is S = {z1, . . . , zm}.

• The following assumptions are made to derive our bounds.

1. Data consists of i.i.d samples from the unknown distribution D.

2. The maximum hidden dimension across all layers is h.

3. For a node feature matrix X, and for all i ∈ N+
n we have

X[i, :] ∈ XB =

x ∈ Rh0 :

h0∑
j=1

x2
j ≤ B2

 .

4. We only consider simple graphs with the maximum node degree being at most d− 1.

2.2 Graph Preliminaries

2.2.1 GCNs

Graph convolutional neural networks for the K-class graph classification problem are defined as follows.

• kth Graph Convolution Layer, Hk = σk

(
L̃Hk−1Wk

)
.

– k ∈ N+
l−1.

– Hk ∈ Rn×hk are node representations, with H0 = X.

– L̃ = D− 1
2 ÃD

1
2 with Ã = I +A is the graph Laplacian.

– σk = max(0, x) is the ReLU non-linearity.

• Readout Layer, Hl =
1
n1nHl−1Wl.

– 1n ∈ R1×n is a vector of all ones.

– l is the number of layers.

– Wj is the jth layer weight matrix.

2

2.2.2 MPGNNs

The message-passing GNNs we consider are the following.

• kth step Message Computation, Mk = g
(
C⊤

outHk−1

)
.

– k ∈ N+
l−1.

– Hk ∈ Rn×hk are node representations, with H0 = 0.

– Cout ∈ Rn×c, where c is the number of edges. Cout[i, j] = 1 indicates that the outgoing node of
the jth edge is the ith node.

– g : Rh → Rh is a non-linear mapping with Lipschitz constant Cg, and g(0) = 0.

• kth step Message Aggregation, M̄k = CinMk.

– k ∈ N+
l−1.

– Cin ∈ Rn×c, where Cin[i, j] = 1 indicates the the incoming node of the jth edge is the ith node.

• kth step Node State Update, Hk = ϕ
(
XW1 + ρ

(
M̄k

)
W2

)
.

– k ∈ N+
l−1.

– Wj is the jth layer weight matrix.

– ϕ : Rh → Rh is a non-linear mapping with Lipschitz constant Cϕ, and ϕ(0) = 0.

– ρ : Rh → Rh is a non-linear mapping with Lipschitz constant Cρ, and ρ(0) = 0.

• Readout Layer, Hl =
1
n1nHl−1Wl.

– 1n ∈ R1×n is a vector of all ones.

– l is the number of layers.

Each of the non-linear mappings can be generalised to maps defined over matrix states.

• g̃ : Rn×h → Rn×h.

• ϕ̃ : Rn×h → Rn×h.

• ρ̃ : Rn×h → Rn×h.

Definition 2.1. The percolation complexity is given by

C = CgCϕCρ∥W2∥2.

2.3 Loss Function

The multi-class γ-margin loss function is used to define the generalisation error for which the bounds are
constructed. Specifically, for γ > 0 and fw(X,A) = Hl, the generalisation error is given by

Lγ(fw) = Pz∼D

(
fw(X,A)[y] ≤ γ +max

j ̸=y
(fw(X,A)[j])

)
.

Similarly, the empirical generalisation error is given by

L̂γ(fw) =
1

m

∣∣∣∣{xi ∈ S : fw(X,A)[y] ≤ γ +max
j ̸=y

(fw(X,A)[j]))

}∣∣∣∣ .

3

2.4 PAC-Bayes

The PAC-Bayes used in this work comes from [1].

Theorem 2.2. Let fw : X → RK be a model with parameters w. Let P be a distribution over the parameters
that is independent of the training set S = {zi}mi=1, which is an i.i.d sample from a distribution D. For any
w, construct a posterior Q(w + u) where u is a random perturbation vector such that

P
(
max
x∈X

|fw+u(x)− fw(x)|∞ <
γ

4

)
>

1

2
.

Then for any γ, δ > 0, we have that

PS∼Dm

L0(fw) ≤ L̂γ(fw) +

√
2KL(Q(w + u), P) + log

(
8m
δ

)
2(m− 1)

 .

3 Generalization Bounds

Theorem 3.1 (GCN Generalization Bounds). For any B > 0, l > 1, let fw ∈ H : X × } → RK be a l layer
GCN. Then for any δ, γ > 0, with probability at least 1− δ over an i.i.d sampled training set of size m over D
we have that

L0(fw) ≤ Ŝγ + 0


√√√√B2dl−1l2h log(lh)

∏l
i=1 ∥Wi∥22

∑l
i=1

(
∥Wi∥2

F

∥Wi∥2
2

)
+ log

(
ml
δ

)
γ2m

 .

Theorem 3.2 (MPGNN Generalisation Bound). For any B > 0, l > 1, let fw ∈ H : X × } → RK be a l step
MPGCN. Then for any δ, γ > 0, with probability at least 1 − δ over an i.i.d sampled training set of size m
over D we have that

L0(fw) ≤ Ŝγ + 0


√√√√B2

(
max

(
ζ−(l+1), (λξ)

l+1
l

))2

l2h log(lh)|w|22 + log
(

m(l+1)
δ

)
γ2m

 ,

where

• ζ = min (∥W1∥2, ∥W2∥2, ∥Wl∥2),

• |w|22 = ∥W1∥2F + ∥W2∥2F + ∥l∥2F ,

• λ = ∥W1∥2∥Wl∥2, and

• ξ = Cϕ
(dC)l−1−1

dC−1 .

3.1 Connection to MLPs/CNNs

We note that MLPs/CNNs are a special case of GNNs.

• We can treat each i.i.d sample as a single-node graph, such that conventional tasks become graph-
level tasks. Such that d = 1 and L̃ = I.

Using this view we can restate the content of Theorem 3.1 with ReLU actions as,

L0(fw) ≤ L̂γ +O


√√√√B2l2h log(lh)

∏l
i=1 ∥Wi∥22

∑l
i=1

(
∥Wi∥2

F

∥Wi∥2
2

)
+ log

(
ml
δ

)
γ2m


which coincides with the results derived in [1].

4

4 Conclusion

The above analysis works for other bounded loss functions.
The limitations of this work include the following.

1. Bounds are vacuous in practice.

2. Gaussian posteriors are assumed to obtain analytic forms for the KL-divergence. However, the pos-
teriors of a learning process are likely to be non-Gaussian.

3. The analysis done is agnostic to the optimization algorithm.

Future directions of work include the following.

1. What other statistics, besides maximum node degree, have an impact on the generalisation of GNNs?

2. Can this analysis be done over other GNN architectures?

3. Can the compression techniques of [2] be transferred to the GNN framework?

4. What is the impact of the optimization algorithms like SGD on the generalisation ability of GNNs?

5. Would graph structures play a role in the analysis of optimization?

References

[1] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. “A PAC-Bayesian
Approach to Spectrally-Normalized Margin Bounds for Neural Networks”. In: CoRR (2017).

[2] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. “Stronger generalization bounds for deep nets via a
compression approach”. In: CoRR (2018).

[3] Renjie Liao, Raquel Urtasun, and Richard S. Zemel. “A PAC-Bayesian Approach to Generalization
Bounds for Graph Neural Networks”. In: CoRR (2020).

[4] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. “Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges”. In: CoRR (2021).

5

	Introduction
	Preliminaries
	Problem Setup
	Graph Preliminaries
	GCNs
	MPGNNs

	Loss Function
	PAC-Bayes

	Generalization Bounds
	Connection to MLPs/CNNs

	Conclusion

