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1 Introduction

So far we have dealt exclusively in the supervised learning setting. Where we are using the empirical training
error as a proxy for network performance on the underlying distribution. In the reinforcement learning case
(RL) there is an agent who is learning to make decisions that optimize some reward function. This specified
reward function is also a proxy to instil desirable performance into the agent’s actions. There are two
questions that we would like to be able to answer if we are training an RL agent. Firstly, we would like to
ensure that the training process directs the learned policy of the agent to the optimal policy defined under
reward. However, this is desirable behaviour only if the optimal policy defined under our proxy reward is
similar to the desired behaviour we want from the agent. The PAC RL framework we will discuss can only
help us answer the first question. The second question is still open and an active area of research.

2 Preliminary PAC RL Algorithm

Reinforcement learning is formulated using Markov Decision Processes (MDP), which define a trainable
agent through a stochastic process. There are different ways to set up the MDP depending on the types
of investigations one intends to conduct. As we describe the framework set out in [1] we will concur with
their implementation of the MDP. Which involves a discrete time MDP with a finite state space. Formally,
our environment is characterized by the tuple

E = (S,A,P,R, i0),

where

• S = {1, . . . , N} is our finite state space,

• A = A1 × . . .AN is the finite policy space,

• P is the set of transition probabilities,

• R is the set of expected immediate rewards, and

• i0 ∈ S is the initial state.

At time step t using the above information the MDP functions in the following way,
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1. the agent observes the state it is in,

2. based on this the agent takes an action from a ∈ Ai using its policy. The state i is the observed state
of the agent.

3. The agent then transitions to a new state j ∈ S according to pa(i, j) ∈ P, and the agent also receives
the reward Rt.

We assume that |Rt| ≤ rmax for all t, and we are interested in the total discounted reward

R0 + βR1 + β2R2 + . . .

for β ∈ [0, 1). Our intention is to learn a policy that maximizes the total discounted reward. Formally, a policy
is a function that assigns an action to a state at each time step. That is, a policy π is a sequence of functions

π = (π0, . . . , πt, . . . )

where at time step t if we are in state i we use πt(i) to determine our action. The policy is called stationary
if π0 = π1 = · · · = πt = . . . .

Definition 2.1. For a policy π the expected total return from state i if action a ∈ Ai is made and then policy
π is followed thereafter is,

Wπ(i, a) =

N∑
j=1

pa(i, j)
(
ra(i, j) + βV π+

(j)
)
,

where π+ = (π1, π2, . . . )

Definition 2.2. For a policy π the expected total discounted reward for starting in state i is

V π(i) = Wπ(i, π0(i)).

We shorten terminology by referring to V π as the value of the policy and Wπ(i, a) as the action value of
a at i under π.

Theorem 2.3. For a given discount factor β, the stationary policy π∗ given by π∗(i) = a where

Wπ∗
(i, a) = max

a′∈A

(
Wπ∗

(i, a′)
)

is optimal. Meaning that for any other policy π and i ∈ S we have that

V π∗
(i) ≥ V π(i).

This policy is not directly computable as the transition probabilities pa(i, j) and the expected immediate
rewards ra(i, j) are unknown. It can only approximate these through experimentation. Therefore, one can
see how a link to neural network generalization may arise. There is some unknown underlying process that
we aim to capture through a learning algorithm which can only utilize proxies of the underlying process.
Similar to the supervised case we can call a learning algorithm a PAC RL learner if for any environment E ,
any ϵ > 0, any δ > 0 and 0 ∈ β[0, 1) it produces a policy π in time polynomial in

|S|, max
i∈S
|Ai|,

1

ϵ
,
1

δ
,

1

1− β
, rmax

such that
P
(∣∣∣V π∗

(i0)− V π(i0)
∣∣∣ ≤ ϵ

)
≥ 1− δ.

The learning algorithm proposed in [1] works in the following way,

1. A sequence is initialized in some initial state,

2. the algorithm then explores using a sequence of decision-action steps which we can an episode.
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• An episode consists of M decision-action steps.

3. Once the algorithm has completed a sufficient number of episodes it produces the learned optimal
policy.

Let T denote the exploration time, and t be the step number of a particular episode. The algorithm is
designed to maximize information capture at each step of the exploration phase. If we let HT denote
the information the algorithm has collected so far, then our exploration policy, π̃e, will take the step that
maximizes information capture in relation to HT .

• Let mt[HT ](i, a) be the number of times action a has been tried in state i at time t of an episode.

• Let na,t[HT ](i, j) be the number of observed transitions from state i to state j under action a at time t
of an episode.

• Let Ra,t[HT ](i, j) be the total reward received on transitioning from state i to j under action a at time
t of an episode.

Algorithm 1 PAC RL Learning Algorithm
for i, j ∈ S, a ∈ Ai, t = 0→M − 1 do

mt(i, a)← 0
na,t(i, j)← 0
Ra,t(i, j)← 0
π̃e
t (i)← 1

end for
while d̂π̃

e

0 (i0) >
2

1−β do
t← 0
i← i0
while t<M do

Perform a = π̃e
t (i), receive reward Rt, observe the transition to state j.

mt(i, a)← mt(i, a) + 1
na,t(i, j)← na,t(i, j) + 1
Ra,t(i, j)← Ra,t(i, j) +Rt

t← t+ 1
i← j

end while
Compute π̃e and updated values d̂π̃

e

.
end while
return Policy π̃∗.

The Algorithm 1 using an accuracy measure d̂π̃
e

to determine when sufficient information has been
gathered in the exploration phase to then compute the approximation to the optimal policy. The returned
policy is computed as

π̃∗
t (i) = a

for
W̃ π̃∗

t (i, a) = max
a′∈Ai

W̃ π̃∗

t (i, a′).

Where W̃π
t can be thought of as the empirical expected value under the policy and with information HT .

These are defined in exactly the same way as above except that the transition probabilities are estimated
by

p̃a,t[HT ](i, j) =
na,t[HT ](i, j)

mt[HT ](i, a)

and the expected immediate rewards are estimated by

r̃a,t[HT ](i, j) =
Ra,t[HT ](i, j)

na,t[HT ](i, j)
.
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