- (Habib, 1998)
- Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin, Bruce Reed. Probabilistic Methods for Algorithmic Discrete Mathematics. 1998
- (McAllester, 1999)
- D. A. McAllester. PAC-Bayesian model averaging. In Proceedings of the twelfth annual conference on Computational learning theory, pages 164–170, 1999
- (Seeger, 2001)
- John Langford and Matthias Seeger. “Bounds for Averaging Classifiers”. In: (Feb. 2001).
- (Maurer, 2004)
- Andreas Maurer. “A Note on the PAC Bayesian Theorem”. In: CoRR (2004).
- (Mitzenmacher, 2005)
- Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
- (Blanchard, 2007)
- Gilles Blanchard and François Fleuret. Occam’s Hammer. In COLT, pages 112–126, 2007.
- (Catoni, 2007)
- Olivier Catoni. “Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning”. In: IMS Lecture Notes Monograph Series 56 (2007), pp. 1–163.
- (Catoni, 2009)
- Olivier Catoni. “A PAC-Bayesian approach to adaptive classification”. In: (Jan. 2009).
- (Balcan, 2011)
- Maria-Florina Balcan. Rademacher Complexity. 2011.
- (McAllester, 2013)
- David A. McAllester. “A PAC-Bayesian Tutorial with A Dropout Bound”. In: CoRR (2013).
- (Scott(a), 2014)
- Clayton Scott. Hoeffding’s Inequality. 2014.
- (Scott(b), 2014)
- Clayton Scott. Rademacher Complexity. 2014.
- (Scott(c), 2014)
- Clayton Scott. The Bounded Difference Inequality. 2014.
- (Choi, 2017)
- Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the Limit of Network Quantization. 2017.
- (Dziugaite, 2017)
- Gintare Karolina Dziugaite and Daniel M. Roy. “Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data”. In: CoRR (2017).
- (Neyshabur, 2017)
- Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. “A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks”. In: CoRR (2017).
- (Arora, 2018)
- S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. “Stronger generalization bounds for deep nets via a compression approach”. In: CoRR (2018).
- (Guedj, 2019)
- Benjamin Guedj. A Primer on PAC-Bayesian Learning. 2019.
- (Zhou, 2019)
- Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach. 2019.
- (Dziugaite, 2020)
- Gintare Karolina Dziugaite, Kyle Hsu,Waseem Gharbieh, and Daniel M. Roy. “On the role of data in PAC-Bayes bounds”. In: CoRR (2020).
- (Lotz, 2020)
- Martin Lotz. Covering Numbers. 2020.
- (Rivasplata, 2020)
- Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. PAC-Bayes Analysis Beyond the Usual Bounds. In NeurIPS, 2020.
- (Rodriguez, 2021)
- Pierre-Francois Rodriguez. Lebesgue Measure and Integration. 2021.
- (Viallard, 2021)
- Paul Viallard, Pascal Germain, Amaury Habrard, and Emilie Morvant. A General Framework for the Disintegration of PAC-Bayesian Bounds. 2021.
- (Lotfi, 2022)
- Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew Gordon Wilson. PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization. 2022.
- (Rebeschini, 2022)
- Patrick Rebeschini. Algorithmic Foundations of Learning. Nov. 2022.
- (Alquier, 2023)
- Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. 2023.