• (Habib, 1998)
    • Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin, Bruce Reed. Probabilistic Methods for Algorithmic Discrete Mathematics. 1998
  • (McAllester, 1999)
    • D. A. McAllester. PAC-Bayesian model averaging. In Proceedings of the twelfth annual conference on Computational learning theory, pages 164–170, 1999
  • (Seeger, 2001)
    • John Langford and Matthias Seeger. “Bounds for Averaging Classifiers”. In: (Feb. 2001).
  • (Maurer, 2004)
    • Andreas Maurer. “A Note on the PAC Bayesian Theorem”. In: CoRR (2004).
  • (Mitzenmacher, 2005)
    • Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.
  • (Blanchard, 2007)
    • Gilles Blanchard and François Fleuret. Occam’s Hammer. In COLT, pages 112–126, 2007.
  • (Catoni, 2007)
    • Olivier Catoni. “Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning”. In: IMS Lecture Notes Monograph Series 56 (2007), pp. 1–163.
  • (Catoni, 2009)
    • Olivier Catoni. “A PAC-Bayesian approach to adaptive classification”. In: (Jan. 2009).
  • (Balcan, 2011)
    • Maria-Florina Balcan. Rademacher Complexity. 2011.
  • (McAllester, 2013)
    • David A. McAllester. “A PAC-Bayesian Tutorial with A Dropout Bound”. In: CoRR (2013).
  • (Scott(a), 2014)
    • Clayton Scott. Hoeffding’s Inequality. 2014.
  • (Scott(b), 2014)
    • Clayton Scott. Rademacher Complexity. 2014.
  • (Scott(c), 2014)
    • Clayton Scott. The Bounded Difference Inequality. 2014.
  • (Choi, 2017)
    • Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the Limit of Network Quantization. 2017.
  • (Dziugaite, 2017)
    • Gintare Karolina Dziugaite and Daniel M. Roy. “Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data”. In: CoRR (2017).
  • (Neyshabur, 2017)
    • Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. “A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks”. In: CoRR (2017).
  • (Arora, 2018)
    • S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. “Stronger generalization bounds for deep nets via a compression approach”. In: CoRR (2018).
  • (Guedj, 2019)
    • Benjamin Guedj. A Primer on PAC-Bayesian Learning. 2019.
  • (Zhou, 2019)
    • Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach. 2019.
  • (Dziugaite, 2020)
    • Gintare Karolina Dziugaite, Kyle Hsu,Waseem Gharbieh, and Daniel M. Roy. “On the role of data in PAC-Bayes bounds”. In: CoRR (2020).
  • (Lotz, 2020)
    • Martin Lotz. Covering Numbers. 2020.
  • (Rivasplata, 2020)
    • Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. PAC-Bayes Analysis Beyond the Usual Bounds. In NeurIPS, 2020.
  • (Rodriguez, 2021)
    • Pierre-Francois Rodriguez. Lebesgue Measure and Integration. 2021.
  • (Viallard, 2021)
    • Paul Viallard, Pascal Germain, Amaury Habrard, and Emilie Morvant. A General Framework for the Disintegration of PAC-Bayesian Bounds. 2021.
  • (Lotfi, 2022)
    • Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew Gordon Wilson. PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization. 2022.
  • (Rebeschini, 2022)
    • Patrick Rebeschini. Algorithmic Foundations of Learning. Nov. 2022.
  • (Alquier, 2023)
    • Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. 2023.