
The Information Theoretic Approach Taken to Investigate
Neural Network Generalization

Thomas Walker

Summer 2023

Contents

1 Introduction 2
1.1 Notation . 2

2 VC Dimension 2

3 Controlling Bias in Data Analysis 4

4 Generalizing the Framework 5

5 Generalizing the Framework 5

6 Evolution of Mutual Information 7

7 Evolution of Mutual Information 7
7.1 Information Plane . 7
7.2 Information Bottleneck . 7
7.3 Student-Teacher Analysis . 8
7.4 Non-Linear Setting via KDE . 9

8 Generalization Bounds for Learning Algorithms 11
8.1 Application to Binary Classification . 12

9 Chaining Mutual Information 13

10 Conditional Mutual Information 15
10.1 CMI and VC Dimension . 15
10.2 Generalization via CMI . 15

1

1 Introduction

Training a neural network is essentially transferring information from the training data into the weights of the
network. The goal is to effectively represent the training data such that it can be utilized to make inferences
in a different setting. However, there exist multiple representations of information, some of which are richer
than others. Analysing networks from an information theoretic perspective provides insight into the power
of the learned representations beyond their performance on a singular metric, the loss. The framework
allows the tracking of information transfer from the input data to the outputs of the network and can indicate
different stages of the learning process. Information-theoretic approaches are inherently related to the data
inputted into the network and hence can provide more robust metrics for bounding the generalization error
of the network.

1.1 Notation

We will first introduce some basic notation that will remain constant throughout the report. Along the way, we
will need to introduce some more specialized notation for the different sections. We are going to consider
problems over feature space X and a label space Y which combine to form the data space Z = X × Y for
which some unknown D is defined on. The challenge is to train a network h : X → Y that correctly labels
samples from X according to D. The training data S = {(xi, yi)}mi=1 consists of m i.i.d samples from D.
As we are considering neural networks, a model will be parameterized by a weight vector w which we will
denote hw. Let W denote the set of possible weights for a model and the set of all possible models H will
sometimes be referred to as the hypothesis set. To assess the quality of a model we define a measurable
function l : Y × Y → [0,∞) called the loss function and we will assume that 0 ≤ l ≤ C. As our training data
is just a sample from the underlying (unknown) distribution D there is the possibility that our model performs
well on the training data, but performs poorly on the true distribution. Let the risk of our model be defined
as

R(hw) = E(x,y)∼D (l(h(x), y)) .

As our model is parameterized w we will instead write R(w) for the risk of our classifier. Similarly, we define
the empirical risk of our model to be

R̂(w) =
1

m

m∑
i=1

l(hw(xi), yi).

Note that ES∼Dm

(
R̂(w)

)
= R(w).

2 VC Dimension

It is generally accepted that having a more straightforward function that correctly classifies a dataset is
more likely to generalize well to unseen data. The generalization bounds we will discuss will often reward
simpler models, where the definition of simple may vary in different contexts. A lot of work in this field tends
to be empirical as heuristics are derived for complexity that can be monitored during training. Sometimes
theoretically motivated complexity measures are proposed that can be used to derive explicit generalization
bounds. An important complexity measure is Rademacher complexity, which forms the basis of one of the
main results in generalization theory. Suppose we have a hypothesis class H (i.e. the possible neural
networks defined by a particular set of hyper-parameters), and a training set S. For a loss function l, let
l ◦ H := {l ◦ h : h ∈ H}.

Definition 2.1 ([6]). Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zm) a fixed
sample of size m with elements in Z. Then, the empirical Rademacher complexity of G with respect to the
sample S is defined as:

RS(G) =
1

m
Eξ∈{±1}m

(
sup
f∈G

m∑
i=1

ξif(xi)

)
.

2

Definition 2.2 ([6]). Let D be a distribution from which samples are drawn. For any integer m ≥ 1, the
Rademacher complexity of a family of functions G is the expectation of the empirical Rademacher complexity
over all samples of size m drawn from D. That is,

Rm(G) = ES∼Dm

(
R̂S(G)

)
.

Theorem 2.3 ([6]). Let G be a family of functions mapping from Z to [0, 1]. Then for any δ > 0 with probability
1− δ over the draw of an i.i.d sample S of size m then,

E(g(z)) ≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +

√
log
(
1
δ

)
2m

, and

E(g(z)) ≤ 1

m

m∑
i=1

g(zi) + 2R̂m(G) + 3

√
log
(
2
δ

)
2m

.

holds for all g ∈ G.

Rademacher complexity is a complexity measure that yields theoretical bounds on the expected error
of the function of our network. By understanding our hypothesis class can separate the data points of our
training set. Subsequent work aims to develop a tractable heuristic for this measure. Refer to [9] to see
how Rademacher complexity can be bounded by VC dimension. The setup is as follows, we are performing
binary classification on input data X ⊆ Rd and labels Y = {±1}. With A ⊆ B = {a : X → {±1}} let

A ◦ {x1, . . . , xn} = {(a(x1), . . . , a(xn)) ∈ {±1}n : a ∈ A} .

Note that A ◦ x is finite even if A is infinite.

Definition 2.4. The growth function of A is defined as

τA(n) := sup
x∈X

|A ◦ x|

for any integer n ≥ 1.

That is, τA is the maximal cardinality of the set of distinct labelling of n points in X obtained using
classifiers from A.

Proposition 2.5. For any x = {x1, . . . , xn} ∈ Xn we have

R(A ◦ x) ≤
√

2 log(τA(n))

n
.

Note that τA(n) ≤ 2n.

Definition 2.6. The Vapnik-Chervonenkis (VC) dimension of A is the largest integer n such that τA(n) = 2n,

VC(A) := max {n ∈ N : τA(n) = 2n}

The quantities τA(1), τA(2), . . . are known as shatter coefficients, and we say that A shatters {x1, . . . , xn}
if |A ◦ {x1, . . . , xn}| = 2n. Hence, VC dimension is the maximum number of different elements that can be
shattered by A.

Proposition 2.7. For any x = {x1, . . . , xn} ∈ Xn we have

R(A ◦ x) ≤

√√√√2VC(A) log
(

en
VC(A)

)
n

.

This is a data-independent bound that holds for any x ∈ Xn. It can be improved through a technique
known as chaining.

3

3 Controlling Bias in Data Analysis

One of the first efforts to contextualize learning bias in information theory was done in [2]. The main result
of [2] is an information-theoretic bound on the bias of adaptively choosing a function from data. A dataset
S is drawn from a probability distribution D defined over Z. There is a set of analyses

ϕ1, . . . , ϕm : Z → R

that can be run on the data. Each ϕi is a random variable dependent on the realization S ∼ D. When the
realization is made a particular ϕT (S) is reported for T ∈ [m]. The selection rule T : Z → [m] determines
how the realization relates to the reported result. Bias may be present in the selection rule as it is a function
of the realization which is itself a proxy of the underlying distribution D. Let

Φ =

ϕ1
...
ϕm

 : Ω → Rm, T : Ω → [m]

and

µ =

µ1

...
µm

 := E(Φ).

Then the bias of the learning process will be captured by the quantity E(ϕT − µT).

Definition 3.1. A real-valued random variable X is σ-sub-Gaussian if for all λ ∈ R

E
(
eλX

)
≤ e

λ2σ2

2 .

Definition 3.2 ([3]). For two random variables X and Y , with joint distribution p(x, y), their Mutual Informa-
tion is defined as,

I(X;Y) = KL(p(x, y), p(x)p(y)) =
∑

x∈X,y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= H(X)−H(X|Y),

where H(X) and H(X|Y) are the entropy and conditional entropy of X and Y .

Mutual information quantifies the number of relevant bits that the input variable X contains about the
label Y on average.

Theorem 3.3. Suppose that for each i ∈ [m], ϕi − µi is σ-sub-Gaussian. Then,

|E(ϕT)− E(µT)| ≤ σ
√
2I(T ; Φ),

Remark 3.4.

• E(ϕT) is taken jointly over the realized values of the ϕi and T .

• E(µT) is taken over the selection procedure T .

• |E(ϕT)− E(µT)| quantifies the bias due to T .

• I(T ;ϕ) quantifies the dependence of the selection process on the noise in the test statistics.

Proposition 3.5. Let Φ = (ϕ1 ϕ2 . . .)
⊤ be a collection of independent normally distributed random variables

with mean 0 and variance σ2. For B > 1, let TB = argmax1≤i≤⌊eB⌋ϕi. Then, I(TB ; Φ) ≤ B and

E(ΦTB
)− σ

√
2B → 0

as B → ∞. Furthermore, there exists a c > 0 such that

E(ϕTB
) ≥ cσ

√
2B, ∀B ≥ 2.

The above are bounds on the bias involving specific assumptions on the distributions and the selection
procedure. The next section considers [1] which shows how some of these assumptions can be relaxed.

4

4 Generalizing the Framework

5 Generalizing the Framework

In [1] Theorem 3.3 is extended to distributions with non-trivial moment generating functions. Furthermore,
a new measure is introduced which generalizes mutual information.

Definition 5.1. The cumulant generating function of a random variable X is

ψ(λ) = log
(
E
(
eλx
))
, λ ≥ 0.

In what follows assume that for all considered random variables there exists a λ > 0 such that E
(
eλX

)
<

∞.

Definition 5.2. A random variable X is sub-Exponential with parameters (σ, b) if

E
(
eλX

)
≤ e

λ2σ2

2 , 0 ≤ λ <
1

b
.

Definition 5.3. A random variable X is sub-Gamma on the right tail with variance factor σ2 and scale
parameter c if

ψ(λ) ≤ λ2σ2

2(1− cλ)
, 0 < λ <

1

c
.

Definition 5.4. The β-norm of a random variable X for β ≥ 1 is

∥X∥β =

{(
E
(
|X|β

)) 1
β 1 ≤ β <∞

ess sup |X| β = ∞,

where ess sup = inf {M : P(X > M) = 0} .

Proposition 5.5. For any function f , lets its convex conjugate, f∗, be defined as

f∗(y) = sup
x∈X

(⟨x, y⟩ − f(x)).

Definition 5.6. For ϕ : R≥0 → R a convex lower semi-continuous function satisfying ϕ(1) = 0, the ϕ-
divergence of two probability distributions is

Dϕ(Q,P) =

∫
ϕ

(
dQ

dP

)
dP.

Remark 5.7. For ϕ(x) = x log(x)− x+ 1, it follows that Dϕ(Q,P) = KL(Q,P).

For non-negative sequences {an} and {bn} let an ≲ bn if there is a constantC > 0 such that lim supn
an

bn
≤

C.

Theorem 5.8. Suppose that ϕi−µi has cumulant generating function upper bounded by ψi(λ) over domain
[0, bi) where bi ∈ (0,∞]. Suppose ψi(λ) is convex with ψi(0) = ψ′

i(0) = 0. Define the expected cumulant
generating function ψ̄(λ) as

ψ̄(λ) = ET (ψT (λ)) , λ ∈
[
0,min

i
bi

)
.

Then,
E(ϕT − µT) ≤

(
ψ̄∗)−1

I(T ; Φ).

Definition 5.9. For 1 ≤ α <∞ let

Iα(X;Y) = Dϕα
(PXY , PXPY)

where ϕα(x) = |x− 1|α.

5

Remark 5.10. • Iα(X;Y) ≥ 0, and

• Iα(X;Y) = 0 if and only if X ad Y are independent.

Theorem 5.11. Suppose ϕi − µi has its β-norm upper bounded by σi, for 1 < β ≤ ∞. Let α be such that
1
α + 1

β = 1. Then,

|E(ϕT − µT)| ≤ ∥σT ∥βIα(T ; Φ)
1
α .

For β = 2 we have
|E(ϕT − µT)| ≤ ∥σT ∥2

√
n− 1,

and for 2 < β ≤ ∞ and 1 ≤ α < 2 we have

|E(ϕT − µT)| ≤ ∥σT ∥β
(
1 + nα−1

) 1
α ≤ 2

1
α ∥σT ∥βn

1
β .

Corollary 5.12. Suppose ϕi − µi is σi-sub-Gaussian. Then,

E(ϕT − µT) ≤ ∥σT ∥2
√

2I(T ; Φ).

Corollary 5.13. Suppose ϕi − µi are sub-Gamma random variables with parameters
(
σ2, c

)
. Then,

E(ϕT − µT) ≤ σ
√
2I(T ; Φ) + cI(T ; Φ).

Corollary 5.14. Suppose ϕi − µi are sub-Exponential random variables with parameters (σ, b). Then,

ET (ϕT − µT) ≤

{
σ
√
2I(T ; Φ) I(T ; Φ) ≤ σ2

2b

bI(T ; Φ) + σ2

2b2 otherwise.

6

6 Evolution of Mutual Information

7 Evolution of Mutual Information

It has been shown that layered neural networks form a Markov chain, which suggests studying them from the
perspective of mutual information. That is, consider each layer to be a single random variable and look at its
mutual information with the input X and the output Y . The properties of neural network training are explored
using this approach in [3]. In this work, the learning process is formulated as finding a good representation
T (X) of the input patterns x ∈ X that generates good predictions for label y ∈ Y . Training is conducted
through stochastic gradient descent (SGD), where at each step we aim to minimize the empirical error over
the weights of the network. As this minimization occurs layer-by-layer the whole layer is treated as a single
representation T which is characterized by the encoder P (T |X) and the decoder P (Y |T) distributions.

Theorem 7.1. For any invertible functions ϕ and ψ,

I(X;Y) = I(ψ(X), ϕ(Y)).

Theorem 7.2. For any three variables that form a Markov chain X → Y → Z,

I(X;Y) ≥ I(X,Z).

7.1 Information Plane

Given P (X,Y), any representation T corresponds to a unique point in the information plane with coordi-
nates (I(X;T), I(T ;Y)). Consider a K-layered deep neural network, with Ti denoting the representation of
the ith layer then there is a unique information path which satisfies Theorem 7.2,

I(X;Y) ≥ I(T1;Y) ≥ · · · ≥ I(Tk;Y) ≥ I
(
Ŷ ;Y

)
,

H(X) ≥ I(X;T1) ≥ · · · ≥ I(X;Tk) ≥ I
(
X; Ŷ

)
.

Due to Theorem 7.1 it is possible that many different deep neural networks correspond to an information
path.

7.2 Information Bottleneck

Definition 7.3. Let X and Y be two random variables. A sufficient statistic S(X) is map or partition of X
that captures all the information that X has on Y ,

I(S(X);Y) = I(X,Y).

A minimal sufficient statistic, T (X), induces the coarsest such partition on X. Consequently, one can
form the Markov Chain

Y → X → S(X) → T (X).

Using Theorem 7.2 finding T can be formulated as the optimization problem,

T (X) = argminS(X);I(S(X);Y)=I(X;Y)I(S(X);X).

The Information Bottleneck trade-off enables a framework for finding approximate minimal sufficient statis-
tics. Let t ∈ T be the compressed representation of x ∈ X, so that x is represented as p(t|x). The
Information Bottleneck trade-off is captured in the optimization problem

min
p(t|x),p(y|t),p(t)

(I(X;T)− βI(T ;Y)).

7

Where β determines the level of relevant information captured by T . The solution to this problem is given
by

p(t|x) = p(t)
Z(x;β) exp (−βKL(p(y|x), p(y|t))

p(t) =
∑

x p(t|x)p(x),
p(y|t) =

∑
x p(y|x)p(x|t),

(1)

where Z(x;β) is the normalized function.

7.3 Student-Teacher Analysis

Work done by [7] implements this theory in different settings. In this first setting, there is a linear teacher
network that generates training examples for a deep linear student network to learn. The teacher network
has an input size of Ni and an output size of 1. The input is a multi-variate normal, X ∼ N (0, 1

Ni
INi

), and
the weights of the network, Wo, are sampled independently from N (0, σ2

2). The output for a given input is
given by Y =WoX + ϵo where ϵo ∼ N

(
0, σ2

o

)
. Take P samples from this teacher network to train a student

network using gradient descent to minimize the mean squared error. The student network consists of an
input layer, hidden layers and a single output neuron. The activation function on the hidden layer neurons
is just the identity function. This setup can be represented as Ŷ = WD+1 . . .W1X when the network has
depth D. The activity of the ith hidden layer is given by T = W̄X = Wi . . .W1X. The true generalization
error at training step t is given by

Eg(t) = ∥Wo −Wtot(t)∥2F + σ2
o .

To calculate the mutual information some noise needs to be added otherwise, it would be infinite. Hence,
let T = W̄X + ϵMI for ϵMI ∼ N (0, σ2

MI). With these assumptions, it follows that

I(T ;X) = log
∣∣W̄W̄⊤ + σ2

MIINh

∣∣− log
∣∣σ2

MIINh

∣∣ ,
where | · | denotes the determinant of a matrix and Nh is the number of hidden units in the layer. Similarly,
the mutual information with the output Y can be calculated as

H(Y) =
No

2
log(2πe) +

1

2
log
∣∣WoW

⊤
o + σ2

oINo

∣∣ ,
H(T) =

Nh

2
log(2πe) +

1

2
log
∣∣W̄W̄⊤ + σ2

MIINh

∣∣ ,
H(Y ;T) =

No +Nh

2
log(2πe) +

1

2
log

∣∣∣∣W̄W̄⊤ + σ2
MIINh

W̄W⊤
o

WoW̄
⊤ WoW

⊤
o + σ2

oINo

∣∣∣∣ ,
I(Y ;T) = H(Y) +H(T)−H(Y ;T),

where No is the size of the input. For the implementation, there will only be a single hidden layer so that
W̄ =W1, refer to Figure 1 for the results.

8

Figure 1: Explores the Mutual Information in the teacher-student scenario with different architectures and
training data.

7.4 Non-Linear Setting via KDE

In another setting developed by [7] the mutual information for non-linear neural networks is investigated.
This is done by appealing to Kernel Density Estimation. To apply KDE the hidden activity is assumed to
be distributed as a mixture of Gaussians. As the layer activity is a deterministic function of the input noise
needs to be added to get finite mutual information. Hence, we let T = h + ϵ where h is the activity of the

9

hidden layer and ϵ ∼ N
(
0, σ2I

)
. Under these assumptions, it follows that

I(T ;X) ≤ − 1

P

∑
i

log

 1

P

∑
j

exp

(
−1

2

∥hi − hj∥22
σ2

)
I(T ;Y) ≤ − 1

P

∑
i

log

 1

P

∑
j

exp

(
−1

2

∥hi − hj∥22
σ2

)
−

L∑
l=1

pl

− 1

Pl

∑
Yi=l

log

 1

Pl

∑
Yj=l

exp

(
−1

2

∥hi − hj∥22
σ2

) ,

where

• P is the number of training samples,

• hi is the hidden activity in response to sample i,

• L is the number of output labels,

• Pl is the number of samples with label l,

• pl = Pl

P , and

• Yi = l is the sum over examples with output l.

See the results of this implementation in Figure 2. Where a network with layers 784 → 1024 → 20 →
20 → 20 → 10 is trained on 1000 images from the MNIST dataset. The activations of the third hidden layer
are observed and used to estimate the mutual information between the inputs and outputs. The orange line
corresponds to the entropy of a uniform distribution across the 1000 samples (log2(1000)).

Figure 2: The Mutual Information of a ReLU neural network estimated using Kernel Density Estimation.

10

8 Generalization Bounds for Learning Algorithms

Returning to the framework set out by [2] and [1] we can translate it into the domain of learning algorithms to
get generalization bounds using the work of [4]. Recall, that generalization error is the difference between
the true risk of a model and its empirical risk on the training data. In learning problems, generalization error
is equivalent to the bias in data analysis discussed previously. This is a promising approach to generating
generalization bounds as mutual information is strongly dependent on the input dataset, and generalization
error is also impacted by the input dataset. We can characterize the learning algorithm by a Markov kernel
PW |S . The learning algorithm is a random variable W on W with distribution PW |S . For w ∈ W, recall that
the true risk is

R(w) = Ez∼D(l(hw(x), y)).

Ideally, the learning algorithm will be such that the excess risk

R(W)− inf
w∈W

R(w)

and its expectation
Rexcess(PW |S)

are small. In practice we have to work with the empirical risk

R̂(w) :=
1

m

m∑
i=1

l(hw(xi), yi),

which is the implicitly dependent on the dataset S. Using the empirical is a potential error which is known
as the generalization error. Let

gen(PW |S) := ES∼Dm,W∼PW |S

(
R(W)− R̂(W)

)
,

then we can decompose the true risk as

EW∼PW |S (R(W)) = ES∼Dm

(
R̂(W)

)
+ gen(PW |S).

Definition 8.1. A learning algorithm is (ϵ, µ)-stable in input-output mutual information if, under the data-
generating distribution D we have that,

I(S;W) ≤ ϵ.

Definition 8.2. A learning algorithm is ϵ-stable in input-output mutual information if

sup
D
I(S;W) ≤ ϵ.

The learning algorithm PW |S can be viewed as a channel from Zn to W with supD I(S;W) being the
information capacity of the channel. Therefore, a learning algorithm is more stable if its information capacity
is smaller. Now we proceed to try and bound generalization using I(S;W). Consider a pair of random
variables X and Y with joint distribution PX,Y . Let X̄ and Ȳ be independent copies of X and Y respectively
such that PX̄,Ȳ = PX ⊗ PY .

Lemma 8.3. If f : X × Y → R is such that f
(
X̄, Ȳ

)
is σ-sub-Gaussian under PX̄,Ȳ , then∣∣E(f(X,Y))− E

(
f
(
X̄, Ȳ

))∣∣ ≤√2σ2I(X;Y).

Let X = S, Y = W and f(s, w) = 1
m

∑m
i=1 l(hw(xi), yi). For w ∈ W the empirical risk can be written as

R̂(w) = f(S,w) and the population risk can be written as R(w) = E(f(S,w)). Therefore, generalization
error is

gen(PW |S) = E
(
f
(
S̄, W̄

))
− E(f(S,W)),

where the joint distribution of S and W is PS,W = Dm ⊗ PW |S . Using the fact that if l(hw(x), y) is σ-sub-
Gaussian then f(S,w) is σ√

m
-sub-Gaussian and Lemma 8.3 yields the following.

11

Theorem 8.4. Suppose l(hw, y) is σ-sub-Gaussian under D for all w ∈ W, then

∣∣gen(PW |S)
∣∣ ≤√2σ2I(S;W)

m
.

Theorem 8.5. Let the hypothesis space W be finite. Suppose that l(hw, y) is σ-sub-Gaussian under D for
all w ∈ W, then ∣∣gen(PW |S)

∣∣ ≤√2σ2I(ΛW(S);W)

m
,

where ΛW(S) :=
(
R̂(w)

)
w∈W

.

Theorem 8.6. Suppose l(hw, y) is σ-sub-Gaussian under D for all w ∈ W. If a learning algorithm satisfies
I(ΛW(S);W) ≤ ϵ, then for any α > 0 and 0 < β ≤ 1 it follows that

PPS,W

(∣∣∣R(W)− R̂(W)
∣∣∣ > α

)
≤ β

can be guaranteed by a sample complexity of

m =
8σ2

α2

(
ϵ

β
+ log

(
2

β

))
.

Theorem 8.7. Suppose l(hw, y) is σ-sub-Gaussian under D for all w ∈ W. If a learning algorithm satisfies
I(ΛW(S);W) ≤ ϵ, then

EPS,W

(∣∣∣R(W)− R̂(W)
∣∣∣) ≤

√
2σ2(ϵ+ log(2))

m
.

8.1 Application to Binary Classification

For binary classification Z = X × Y where Y = {0, 1}. With W being a collection of classifiers and
l(hw, y) = I{hw(x) ̸= y}. Given a data set S split it into S1 and S2 with sizes m1 and m2 respectively.
Choose a subset of hypothesis W1 ⊂ W such that (hw(x1), . . . , hw(xm1

)) for w ∈ W1 are all distinct and

{hw(x1), . . . , hw(xm1
) : w ∈ W1} = {hw(x1), . . . , hw(xm1

) : w ∈ W} .

Next, choose a hypothesis from W1 such that

W = argminw∈W1
R̂S2(w).

Denote the nth shatter coefficient and the VC dimension of W by Sn and V respectively. Then,

E(R(W))− E
(
R̂S2

(W)
)
≤

√
V log(m1 + 1)

2m2
. (2)

Furthermore,

E
(
R̂S2

(W)
)
≤ inf

w∈W
R(w) + c

√
V

m1
, (3)

for some constant c. Combining (2) and (3) for m1 = m2 = m
2 gives the bound

E(R(W)) ≤ inf
w∈W

R(w) + c

√
V log(m)

m
.

12

Figure 3: Bounding the test loss of a linear classifier.

9 Chaining Mutual Information

The bounds illustrated above have some key limitations. Firstly, they ignore the dependencies between the
hypotheses within the sample space, and secondly, they ignore the dependencies between the input data
and the output. To resolve these [5] applies a method known as chaining that was developed to tighten
uniform bounds on random processes. The method works by first capturing the dependencies between
hypotheses through a metric d on a set T , and then to discretize T to determine the maximum values of
bounds on the random process. To develop this formally consider the setting of supervised learning, where
there is an input domain X and a label domain Y with Z = X × Y. The learning algorithm picks hW ∈ H
according to a random transformation PW |S . Let

gen+(PW |S) := E
(∣∣∣R(w)− R̂(w)

∣∣∣) .
We will use the notation XN := {Xi : i ∈ N}, 0 for the zero function, H(x) to denote the Shannon entropy of
discrete random variable X, and h(Y) the differential entropy of an absolutely continuous random variable
Y .

Definition 9.1. Let d be a metric on the set T

1. A finite set N is an ϵ-net for (T, d) if there exists a function πN which maps every point t ∈ T to
πN (t) ∈ N such that d(t, πN (t)) ≤ ϵ.

2. The covering number for a metric space (T, d) is the smallest cardinality of an ϵ-net for that space
denoted N(T, d, ϵ). That is,

N(T, d, ϵ) := inf{|N | : N is an ϵ-net for (T, d)}.

3. An ϵ-net N for the metric space (T, d) is called minimal if |N | = N(T, d, ϵ).

Definition 9.2. The random process {Xt}t∈T on the metric space (T, d) is called sub-Gaussian if E(Xt) = 0
for all t ∈ T and

E
(
eλ(Xt−Xs)

)
≤ e

1
2λ

2d2(t,s)

for all t, s ∈ T, λ ≥ 0.

13

Definition 9.3. The random process {Xt}t∈T is called separable if there is a countable set T0 ⊆ T such
that Xt ∈ lims→t,s∈T0 Xs for all t ∈ T a.s, where x ∈ lims→t,s∈T0 xs means that there is a sequence (sn) in
T0 such that sn → t and xsn → x.

Definition 9.4. Call a partition P = {A1, . . . , Am} of the set T an ϵ-partition of the metric space (T, d) if for
all i = 1, . . . ,m Ai can be contained within a ball of radius ϵ. A sequence of partitions {Pk}∞k=m of a set T
is called an increasing sequence if for all k ≥ m and each A ∈ Pk+1 there exists B ∈ Pk such that A ⊆ B.
For any such sequence and any t ∈ T let [t]k denote the unique set A ∈ Pk such that t ∈ A.

From now on assume that (T, d) is a bounded metric space, with k1(T) an integer such that 2−(k1(T)−1) ≥
diam(T).

Theorem 9.5. Assume that {Xt}t∈T is a separable sub-Gaussian process on the bounded metric space
(W, d). Let {Pk}k=k1(W) be an increasing sequence of partitions of W, where for each k ≥ k1(T), Pk is a
2−k-partition of (T, d).

1.

E(XW) ≤ 3
√
2

∞∑
k=k1(T)

2−k
√
I([W]k;XT),

2. For arbitrary t0 ∈ T ,

E(|XW −Xt0 |) ≤ 3
√
2

∞∑
k=k1(T)

2−k
√
I([W]k;XT) + log(2).

Corollary 9.6. Assume that {gen(w)}w∈W is a separable sub-Gaussian process on the bounded metric
space (W, d). Let {Pk}k=k1(W) be an increasing sequence of partitions of W, where for each k ≥ k1(W), Pk

is a 2−k-partition of (W, d).

1.

gen(PW |S) ≤ 3
√
2

∞∑
k=k1(W)

2−k
√
I([W]k;S),

2. If 0 ∈ {l(hw, ·) : w ∈ W}, then

gen+(PW |S) ≤ 3
√
2

∞∑
k=k1(W)

2−k
√
I([W]k;S) + log(2).

14

10 Conditional Mutual Information

When investigating learning algorithms using mutual information noise had to be introduced into our obser-
vations to get finite values of mutual information. The work of [8] resolves this by considering conditional
mutual information instead (CMI). CMI measures how well the learning algorithm can recognize the input
given the output. This is calculated by using a "supersample", which consists of regular data points and
"ghost" data points. CMI measures the ability to distinguish the regular inputs from their ghosts.

Definition 10.1. Let A : Zm → W be a randomized or deterministic algorithm. Let D be a probability
distribution on Z and let S = {(xi, yi)}2mi=1 consist of 2m samples drawn independently from D. Let ζ ∈
{0, 1}n be uniformly random and independent from S and the randomness of A. Define Sζ ∈ Zm by
(Sζ)i = Si,ζi+1 for all i ∈ [n].

• The conditional mutual information (CMI) of A with respect to D is,

CMID(A) := I (A (Sζ) ; ζ|S) .

• The (distribution-free) conditional mutual information (CMI) of A is

CMI(A) := sup
S∈Z2m

I (A (Sζ) ; ζ) .

Remark 10.2.

• For any A and D it follows that 0 ≤ CMID(A) ≤ CMI(A) ≤ n log(2).

• If CMID(A) = 0 then the output of A is independent of its input.

• If CMID(A) = n log(2) then the output of A reveals all of the input.

• CMI is always finite.

10.1 CMI and VC Dimension

Recall that VC dimension is a property of a hypothesis class, whereas, CMI depends also on the algorithm.
However, there is a connection between the two. Which enables one to utilize the theory of VC dimension
and learnability to the generalization results provided by CMI. Let W be a class of function h : X → {0, 1}.
Consider the 0-1 loss l : Y × Y → {0, 1} defined by

l(h(x), y) =

{
0 h(x) = y

1 otherwise.

We call A : Zm → W an empirical risk minimizer for W if

R̂(A(S)) = inf
w∈W

R̂(w)

for all S ∈ Zm.

Theorem 10.3. Let Z = X × {0, 1} and H = {h : X → {0, 1}} a hypothesis class with VC dimension d.
Then, there exists an empirical risk minimizer A : Zn → H such that CMI(A) ≤ d log(n) + 2.

10.2 Generalization via CMI

CMI can be used to generate generalization bounds.

15

Theorem 10.4. Let D be a distribution on Z. Let A : Zn → W be a randomized algorithm. Let l : Y×Y → R
be an arbitrary (deterministic and measurable) function. Suppose there exists ∆ : Z2 → R such that
|l(hw(x1), y1)− l(hw(x2), y2)| ≤ ∆((x1, y1), (x2, y2)) for all (x1, y1), (x2, y2) ∈ Z and w ∈ W. Then,∣∣∣ES∼Dm,A

(
R̂(A(S))−R(A(S)

)∣∣∣ ≤√ 2

m
CMID(A)E(z1,z2)∼D2

(
∆((x1, y1), (x2, y2))

2
)
.

A tighter stronger statement can be obtained by losing a factor in the bound.

Theorem 10.5. Let D be a distribution on Z. Let A : Zn → W be a randomized algorithm. Let l : Y×Y → R
be an arbitrary function. Suppose there exists ∆ : Z2 → R such that |l(hw(x1), y1) − l(hw(x2), y2)| ≤
∆((x1, y1), (x2, y2)) for all (x1, y1), (x2, y2) ∈ Z and w ∈ W. Then,∣∣∣ES∼Dm,A

(
R̂(A(S))−R(A(S)

)∣∣∣ ≤√ 2

m
(CMID(A) + log(2))E(z1,z2)∼D2

(
∆((x1, y1), (x2, y2))

2
)

16

References

[1] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. “Dependence Measures Bounding the Exploration
Bias for General Measurements”. In: CoRR (2016).

[2] Daniel Russo and James Zou. “Controlling Bias in Adaptive Data Analysis Using Information Theory”.
In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Ed. by
Arthur Gretton and Christian C. Robert. Vol. 51. Proceedings of Machine Learning Research. PMLR,
2016, pp. 1232–1240.

[3] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the Black Box of Deep Neural Networks via Informa-
tion”. In: CoRR (2017).

[4] Aolin Xu and Maxim Raginsky. “Information-theoretic analysis of generalization capability of learning
algorithms”. In: CoRR (2017).

[5] Amir R. Asadi, Emmanuel Abbe, and Sergio Verdú. “Chaining Mutual Information and Tightening Gen-
eralization Bounds”. In: CoRR (2018).

[6] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, 2018.

[7] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Daniel
Tracey, and David Daniel Cox. “On the Information Bottleneck Theory of Deep Learning”. In: Interna-
tional Conference on Learning Representations. 2018.

[8] Thomas Steinke and Lydia Zakynthinou. “Reasoning About Generalization via Conditional Mutual In-
formation”. In: CoRR (2020).

[9] Patrick Rebeschini. Algorithmic Foundations of Learning. Nov. 2022.

17

	Introduction
	Notation

	VC Dimension
	Controlling Bias in Data Analysis
	Generalizing the Framework
	Generalizing the Framework
	Evolution of Mutual Information
	Evolution of Mutual Information
	Information Plane
	Information Bottleneck
	Student-Teacher Analysis
	Non-Linear Setting via KDE

	Generalization Bounds for Learning Algorithms
	Application to Binary Classification

	Chaining Mutual Information
	Conditional Mutual Information
	CMI and VC Dimension
	Generalization via CMI

