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1 Stochastic Gradient Descent

The architecture of deep neural networks was proposed long before they manifested as a useful machine
learning technique. This delay was due in part to the difficulty in training the large architectures in a stable
and effective manner. Learning algorithms such as Stochastic Gradient Descent (SGD) have extracted
remarkable properties from deep neural network architectures. Many of the properties are still mysterious
to researchers, and these architectures seem to have greater potential than what was previously thought.
To try and grapple with this it is important to understand the precise mechanisms of SGD as this has
instantiated the networks with the majority of these properties. It has been observed that SGD is able to
train these networks in the over-parameterized setting such that they converge to global minima of the loss
landscape. In [3] an attempt is made to explain this using dynamic stability. This approach illustrates how
the randomness induced by SGD is vital, and why regular gradient descent (GD) is not an effective learning
algorithm for training neural networks. As is the case with most machine learning scenarios, one is trying
to minimize the training error

f(x) =
1

n

n∑
i=1

fi(x),

where each fi(x) can be thought of as the loss of the ith example of a training set at the parameter value x.
A general optimizer for this problem can be written as

xt+1 = xt −G(xt; ξt), (1)

where ξt is a random variable independent of xt and each ξt are i.i.d. Note that

• for GD, G(xt; ξt) = η∇fξt(xt), and

• for SGD, G(xt; ξt) =
η
n

∑n
i=1 ∇fi(xt).

Definition 1.1. Call x∗ a fixed point (1) if for any ξ it follows that G (x∗, ξ) = 0.
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Definition 1.2. Let x∗ be a fixed point of (1). For the linearized dynamical system,

x̃t+1 = x̃t −Aξt(x̃t − x∗)

where Aξ = ∇xG(x∗, ξt). The fixed point x∗ is linearly stable if there exists a constant C such that

E
(
∥x̃t∥2

)
≤ C ∥x̃0∥2

for all t > 0.

If it is assume that f (x∗) = 0, and the approximation

f(x) ≈ 1

2n

n∑
i=1

(x− x∗)⊤Hi(x− x∗)

with Hi∇2fi(x
∗), is used then the linearized SGD is given by

xt+1 = xt −
η

B

B∑
j=1

Hξj (xt − x∗).

Where B is the batch size and ξ = {ξ1, . . . , ξB} is a uniform, non-replaceable random sampling of size B
on {1, . . . , n}.

Definition 1.3. Let H = 1
n

∑n
i=1 Hi and Σ = 1

n

∑n
i=1 H

2
i − H2. Let a = λmax(H) be the sharpness, and

s = λmax

(
Σ

1
2

)
be the non-uniformity.

Theorem 1.4. The global minimum x∗ is linearly stable for SGD with learning rate η and batch size B if the
following is satisfied

λmax

(
(1− ηH)2 +

η2(n−B)

B(n− 1)
Σ

)
≤ 1.

For d = 1 this is a necessary and sufficient condition.

Remark 1.5. A simpler necessary condition is

0 ≤ a ≤ 2

η
, and 0 ≤ s ≤ 1

η

√
B(n− 1)

n−B
. (2)

For a fixed learning rate η,

1. GD can converge to minima satisfying a ≤ 2
η , and

2. SGD can converge to minima satisfying (2).

Hence, SGD can filter out minima with large non-uniformity. The difference between GD and SGD is that
SGD must converge to solutions that fit the data uniformly well.

2 Rademacher Complexity

It is generally accepted that having a more straightforward function that correctly classifies a dataset is
more likely to generalize well to unseen data. The generalization bounds we will discuss will often reward
simpler models, where the definition of simple may vary in different contexts. A lot of work in this field tends
to be empirical as heuristics are derived for complexity that can be monitored during training. Sometimes
theoretically motivated complexity measures are proposed that can be used to derive explicit generalization
bounds. An important complexity measure is Rademacher complexity, which forms the basis of one of the
main results in generalization theory. Suppose we have a hypothesis class H (i.e. the possible neural
networks defined by a particular set of hyper-parameters), and a training set S. For a loss function l, let
l ◦ H := {l ◦ h : h ∈ H}.
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Definition 2.1 ([1]). Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zm) a fixed
sample of size m with elements in Z. Then, the empirical Rademacher complexity of G with respect to the
sample S is defined as:

RS(G) =
1

m
Eξ∈{±1}m

(
sup
f∈G

m∑
i=1

ξif(xi)

)
.

Definition 2.2 ([1]). Let D be a distribution from which samples are drawn. For any integer m ≥ 1, the
Rademacher complexity of a family of functions G is the expectation of the empirical Rademacher complexity
over all samples of size m drawn from D. That is,

Rm(G) = ES∼Dm

(
R̂S(G)

)
.

Theorem 2.3 ([1]). Let G be a family of functions mapping from Z to [0, 1]. Then for any δ > 0 with probability
1− δ over the draw of an i.i.d sample S of size m then,

E(g(z)) ≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +

√
log
(
1
δ

)
2m

, and

E(g(z)) ≤ 1

m

m∑
i=1

g(zi) + 2R̂m(G) + 3

√
log
(
2
δ

)
2m

.

holds for all g ∈ G.

3 Unit-Wise Capacity Measures

The work of [2] looks at two-layer fully connected ReLU networks. The inputs have dimension d, outputs
have dimension c, and layers have h hidden units. The function of the network is represented as fV,U(x) =
V(Ux)+ where x ∈ Rd,U ∈ Rh×d and V ∈ Rc×h. With ui denoting the incoming weights to hidden unit i
and vi, the outgoing weights to hidden unit i. The network is initialized with weights U0 and V0 where u0

i

and v0
i denote the corresponding weights as defined above. The network will be used to perform c-class

classification, where the maximum output of a score function gives the predicted label. Define this score
function to be the margin operator µ : Rc × [c] → R which scores an output f(x) for each label y ∈ [c]
according to µ(f(x), y) = f(x)[y]−maxi ̸=y f(x)[i]. To train the network we use the ramp loss,

lγ(f(x), y) =


0 µ(f(x), y) > γ
µ(f(x),y)

γ µ(f(x), y) ∈ [0, γ]

1 µ(f(x), y) < 0.

Hence, the following definitions of error emerge,

• Lγ(f) = P(x,y)∼D(lγ(f(x, y)), the expected margin loss of a predictor f(·), for distribution D and
margin γ > 0.

• L̂γ(f), the empirical margin loss.

• L0(f), the expected risk.

• L̂0(f), the expected training error.

For a hypothesis class H, a training set S and with lγ ◦H := {lγ ◦h : h ∈ H} Theorem 2.3 can be applied
to obtain.
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Theorem 3.1. With probability 1− δ over a training set of size m,

L0(f) ≤ L̂γ(f) + 2RS(lγ ◦ H) + 3

√
log
(
2
δ

)
2m

holds for any f ∈ H.

Definition 3.2. The unique capacity of a hidden unit i is βi =
∥∥ui − u0

i

∥∥
2
.

Definition 3.3. The unit impact of a hidden unit i is αi = ∥vi∥2.

Definition 3.4. Let W be the restricted set of parameters

W =
{
(V,U) : V ∈ Rc×h,U ∈ Rh×d, ∥vi∥ ≤ αi,

∥∥ui − u0
i

∥∥
2
≤ βi

}
and let FW be the corresponding class of neural networks

FW = {f(x) = V(Ux)+ : (V,U) ∈ W}

Theorem 3.5. Given a training set S = {xi}mi=1 and γ > 0, then

RS(lγ ◦ FW) ≤ 2
√
2c+ 2

γm

h∑
j=1

αj

(
βj∥X∥F +

∥∥u0
jX
∥∥
2

)

≤ 2
√
2c+ 2

γm
∥α∥2

∥β∥2

√√√√ 1

m

m∑
i=1

∥xi∥22 +

√√√√ 1

m

m∑
i=1

∥U0xi∥22

 .

Theorem 3.6. For any h ≥ 2, γ > 0, δ ∈ (0, 1) and U0 ∈ Rh×d with probability 1 − δ over the training set
S = {xi}mi=1 ⊂ Rd, for any function f(x) = V(Ux)+ such that V ∈ Rc×h and U ∈ Rh×d,

L0(f) ≤ L̂γ(f) + Õ

(√
c∥V∥F

(∥∥U−U0
∥∥
F
∥X∥F +

∥∥U0X
∥∥
F

)
γm

+

√
h

m

)

≤ L̂γ(f) + Õ

√
c∥V∥F

(∥∥U−U0
∥∥
F
+
∥∥U0

∥∥
2

)√
1
m

∑m
i=1 ∥xi∥22

γ
√
m

+

√
h

m


Therefore, the term ∥V∥F

(∥∥U−U0
∥∥
F
+
∥∥U0

∥∥
2

)
+
√
h can be used as a heuristic for complexity.
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4 Validation Paradigm

The work of [4] looks into how the training-validation paradigm leads to deep neural networks that gen-
eralize well. In this paradigm, a validation set of data is held out to optimize the model architecture and
hyper-parameters. Giving rise to the hypothesis that deep neural networks can obtain good generalization
error by performing a model search on the validation set.
Consider an input x ∈ X and a label y ∈ Y. The loss function is denoted L and R[f ] = Ex,y∼P(X ,Y)

(L(f(x), y))
is the expected risk of a function f for P(X ,Y) being the true distribution. Let fA(S) : X → Y denote the func-
tion learnt by a learning algorithm A on training set S := {(x1, y1), . . . , (xm, ym)}. The set of possible
learned functions is characterized by the hypothesis space F . Associated with this space we have the fam-
ily of loss functions LF := {g : g ∈ F , g(x, y) = L(f(x), y)}. Machine learning aims to minimize R

(
fA(S)

)
.

However, this is non-computable as P(X ,Y) is unknown. Therefore, one minimizes the empirical risk

RS

(
fA(S)

)
=

1

|S|
∑

(x,y)∈S

L(fA(S)(x), y),

where the generalization gap is defined to be R
(
fA(S)

)
−RS

(
fA(S)

)
.

Proposition 4.1. Let S(val)
mval be a held-out validation set, where

∣∣∣S(val)
mval

∣∣∣ = mval. Assume that mval is an i.i.d

sample from P(X,Y ). Let κf,i = R(f) − L(f(xi), yi) for (xi, yi) ∈ S
(val)
mval . Suppose that E

(
κ2
f,i

)
≤ γ2 and

|κf,i| ≤ C almost surely for all (f, i) ∈ Fval × {1, . . . ,mval}. Then, for δ ∈ (0, 1], with probability 1− δ

R(f) ≤ R
S

(val)
mval

(f) +
2C log

(
|Fval|

δ

)
3mval

+

√√√√2γ2 log
(

|Fval|
δ

)
mval

holds for all f ∈ Fval.

Remark 4.2.

• Fval is independent of S(val)
mval .

• The bound is only dependent on the validation error on S
(val)
mval .

The dependence on |Fval| can be alleviated in the following corollary of Theorem 2.3.

Corollary 4.3. Assume S
(val)
mval is an i.i.d sample from P(X ,Y). Let LFval

= {g : f ∈ Fval, g(x, y) := L(f(x), y)}.
Then when L has co-domain [0, 1] it follows that,

R(f) ≤ R
S

(val)
mval

(f) + 2Rm (LFval
) +

√
log
(
1
δ

)
mval

.

Some code for implementing this paradigm can be found here.
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Figure 1: Scaling of generalization error bound with the number of models used for validation. Models used
for validation are those that achieve low training loss.
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