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1 Introduction

In [1] deep neural networks are investigated by understanding how the layers manipulate the input’s topol-
ogy. Persistent homology is used to understand how topological features of the input data evolve through
the layers of the network, and how architectural properties of the network contribute to this evolution. In
[1] a framework for this investigation is developed and some preliminary conclusions are given. It does not
attempt to explain network generalization from the topological lens.

2 Persistent Homology

Definition 2.1. A k-dimensional simplex σ in Rd is the convex hull of k + 1 affinely independent points
v0, . . . , vk ∈ Rd, denoted σ = [v0, . . . , vk].

The faces of a k-simplex are simplicies of dimension 0 to k− 1 formed by convex hulls of proper subsets
of the vertex set {v0, . . . , vk}.

Definition 2.2. An m-dimensional geometrical simplicial complex K in Rd is a finite collection of simplices
in Rd of dimension at most m that are

1. Any intersection between two simplices is K is necessarily a face of both of them, and

2. includes all faces of all its simplices.

Definition 2.3. An abstract simplicial complex is a list of simplicies K = {σ1, . . . , σn} such that if τ ⊆ σ ∈ K
then τ ∈ K.

Definition 2.4. Let C0, . . . , Cd be vector spaces over F2. Let boundary operators δk : Ck → Ck−1 be linear
maps satisfying

δk ◦ δk−1 = 0

for all k = 1, . . . , d.
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Definition 2.5. A chain complex is a sequence

0
δd+1→ Cd . . . C1

δ0→ 0,

where Cd+1 = C−1 = 0. The elements in the image of δk are called boundaries and elements of the kernel
of δk−1 are called cycles,

Bk := im(δk+1) ⊆ ker(δk) =: Zk.

Definition 2.6. The kth homology group is the quotient vector space

Hk := Zk/Bk, for k = 0, . . . , d.

The homology classes are the equivalence classes

[z] = z +Bk = {z + b ∈ Zk : b ∈ Bk} .

Definition 2.7. The kth Betti number of K is βk := dim(Hk).

Remark 2.8. The kth Betti number of K counts the number of k-dimensional holes in K.

Let K(k) = {σ1, . . . , σm} be the set of all k-dimensional simplicies in K. When working over F2, let
Ck(K) be the vector space with basis K(k). Define the boundary operator δk : Ck(K) → Ck−1(K) for a
k-simplex σ = [v0, . . . , vk] as

δk(σ) = δk

 m∑
j=1

njσj

 =

m∑
j=1

njδk(σj).

Working over F2 ensures that Hk(K) ∼= Fβk

2 and

βk(K) = dim(Hk(K)) = null(δk)− rank(δk+1) k = 0, . . . , d.

Let mk =
∣∣K(k)

∣∣, then the number of simplicies in a d-dimensional simplicial complex is bounded by

|K| ≤
d∑

i=1

(
m0

i+ 1

)
.

Definition 2.9. For K1 and K2 two abstract simplicial complexes a simplicial map f : K
(0)
1 → K

(0)
2 is such

that for σ = [v0, . . . , vk] ∈ K1 it follows that [f(v0), . . . , f(vk)] ∈ K2. This induces a map between complexes

f : Ck(K1) → Ck(K2),

m∑
j=1

njσj 7→
m∑
j=1

njf(σj),

which induces a map between homologies

Hk(f) : Hk(K1) → Hk(K2),

 m∑
j=1

njσj

 7→ [njf(σj)]

for all k = 0, . . . , d+ 1.

Definition 2.10. Let δ be a metric on Rd. The Vietoris-Rips complex at scale ϵ ≥ 0 on X ⊆ Rd is the
abstract simplicial complex

VRϵ(X) := {[x0, . . . , xk} : δ (xi, xj) ≤ 2ϵ, x0, . . . , xk ∈ X, k = 0, . . . , n} .

If X is a dense enough sample from a manifold M ⊆ Rd, then VRϵ(X) can recover in some sense the
true topology of M .

2



• At scale ϵ = 0, then VR0(X) = {[x] : x ∈ X}, that is VR0 overfits the data X.

• As ϵ → ∞ all the points of X become vertices of a single |X|-dimensional simplex, giving a contractible
topological space.

A persistence barcode is an interval [ϵ, ϵ′) where at the left end-point a new feature appears (is born) and
at the right end-point the feature disappears (or dies). The length of the interval, ϵ′ − ϵ, is the persistence
of that feature. Computing persistence barcodes for homology groups is known as persistent homology. In
the following consider the finite set of scales ϵ0 < · · · < ϵm and the simplicial complexes Kj = VR(X, ϵj).

Definition 2.11. The filtration of simplicial complexes is the chain of nested simplicial complexes

K0 ⊆ · · · ⊆ Km,

with the inclusion maps fj : Kj ↪→ Kj+1 for j = 0, . . . ,m− 1.

Remark 2.12. The index j is referred to as time. If a homology class is in Hk(Kj+1) is not in the image
Hk(Kj), then the class is born at time j + 1. If simplicies of different homology classes in Hk(Ki) are
mapped to the same homology class of Hk(Kj) for i < j then one class is said to have died, and the other
is said to have persisted from time i to j.

To identify classes that persist from time j to j+p it is sufficient to consider the p-persistent kth homology
group

Hj,p
k = Zj

k

/(
Bj+p

k ∩ Zj
k

)
.

3 Binary Classification

For binary classification, the aim is to classify two different probability distributions supported on disjoint
manifolds Ma,Mb ⊆ Rd. Suppose there exists a classifier with zero prediction error. Sample a large finite
set of points T ⊆ Ma ∪Mb uniformly and densely and deduce the Betti numbers of Ma and Mb. Consider
the feed-forward neural network v : Rd → [0, 1] given by

ν = s ◦ fl ◦ · · · ◦ f1,

where fj : Rnj → Rnj+1 is a network layer involving an affine map ρj : Rnj → Rnj+1 , x 7→ Ajx+bj composed
with an activation function σ : Rnj+1 → Rnj+1 . The function s : Rnl+1 → [0, 1] is the score function . Let

νj = fj ◦ . . . f1 and v = s ◦ νl.

The output of the network is interpreted to be the probability that the input is on Ma. A well-trained network
correctly classifies all x ∈ T . In reality, the topologies Ma and Mb may be intertwined in a complicated
manner. Using the theory built up in the previous section it can be shown experimentally that the neural
network unravels the decision boundary to opposite ends of [0, 1] for effective classification.

4 Architectural Implications on Data Topology

Every network trained with differing activation functions shows a decrease in β0 across the layers of the
network. With tanh activation the reduction is less effective, whereas ReLU demonstrated the largest decay
due to the fact that ReLU is a non-homeomorphic activation function.
A Bottleneck layer forces large topological changes, and a narrow network changes topology faster than
a wider one. Reducing the depth of a constant-width network makes it increasingly difficult to train the
network to high accuracy. As the burden of changing topology does not spread evenly across the layers,
but instead is concentrated at the final layers. Which reaches the saturation limits of the layers.

3



References

[1] Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. “Topology of deep neural networks”. In: CoRR
(2020).

4


	Introduction
	Persistent Homology
	Binary Classification
	Architectural Implications on Data Topology

